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The propagation of initial mass uncertainty in cruise flight is studied. Two cruise conditions are

analyzed: one with given cruise fuel load, and the other with given cruise range. Two different dis-

tributions of initial mass are considered: uniform and of gamma type. The Generalized Polynomial

Chaos method is used to study the evolution of mean and variance of the aircraft mass. To com-

pute the mass distribution function as a function of time, two approximate methods are developed.

These methods are also applied to study the distribution functions of the flight time (in the case of

given fuel load), and of the fuel consumption (in the case of given range). The dynamics of mass

evolution in cruise flight is defined by a nonlinear equation, which can be solved analytically; this

exact solution is used to assess the accuracy of the proposed methods. Comparison of the numerical

results with the exact analytical solutions shows an excellent agreement in all cases, hence verifying

the methods developed in this work.

Nomenclature

A,B constants of the problem

CD, CL drag and lift coefficients

CD0 , CD2 coefficients of the drag polar

c specific fuel consumption

D aerodynamic drag

E[.] expectation

fx probability density function of random variable x
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G(k; 1) gamma distribution with scale parameter equal to one

g gravity acceleration

hi coefficients of the GPC expansion

k shape parameter of the gamma distribution

L lift

Ln Legendre polynomials

M0 minimum value of m0 with nonzero probability for the gamma distribution

m aircraft mass

m0 initial aircraft mass

m̄0 mean of the initial mass distribution

mF fuel load

S wing surface area

T thrust

t time

tf flight time

V aircraft speed

V ar[.] variance

x horizontal distance

xf range

∆ standard uniform distribution

δm width of the uniform distribution

Γ(a) Euler gamma function

Γ(a, b) incomplete Euler gamma function

φk−1
n generalized Laguerre polynomials

σ[.] typical deviation

I. Introduction

The Air Traffic Management (ATM) system is a very complex system which contains a large number of hetero-

geneous components, such as airports, aircraft, navigation systems, flight management systems (FMS), traffic con-

trollers, and weather (see Kim et al. [1]). Correspondingly, its performance is affected by numerous factors. Within

the trajectory-based-operations concept of SESAR and NextGen, aircraft trajectories are key to study ATM opera-
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tions, which are subject to many uncertainties. Sources of uncertainty for aircraft trajectories include wind and severe

weather, navigational errors, aircraft performance inaccuracies, or errors in the FMS, among others. The analysis of

the impact of uncertainties in aircraft trajectories and its propagation through the flight segments is of great interest,

since it might help to understand how sensitive the system is to the lack of precise data and measurement errors, and,

therefore, aid in the design of a more robust ATM system, with improved safety levels.

Among those sources, weather uncertainty has perhaps the greatest impact on ATM operations, being responsible

for much of the delays. Its analysis has been addressed by many authors, using different methods, for example the

following. Nilim et al. [2] consider a trajectory-based air traffic management scenario to minimize delays under

weather uncertainty, where the weather processes are modeled as stationary Markov chains. Pepper et al. [3] present

a method, based on Bayesian decision networks, of accounting for uncertain weather information in air traffic flow

management. Clarke et al. [4] develop a methodology to study airspace capacity in the presence of weather uncertainty

and formulates a stochastic dynamic programming algorithm for traffic flow management. Zheng and Zhao [5] develop

a statistical model of wind uncertainties and apply it to stochastic trajectory prediction in the case of straight, level

aircraft flight trajectories.

The framework for this work is the analysis of uncertainty propagation in aircraft trajectories, and, eventually, its

effect on the ATM system. In this paper several tools are presented to analyze uncertainty propagation in a nonlinear

problem, and they are applied to study the effect of initial aircraft mass uncertainty and its propagation through the

cruise flight phase. The relevance of this problem resides in two facts: first, the initial mass is an important source of

uncertainty in trajectory prediction, which determines mass evolution and, therefore, fuel consumption and flight cost,

and, second, cruise uncertainties have a large impact on the overall flight since the cruise phase is the largest portion

of the flight (at least for long-haul routes). In the applications, two cruise conditions are studied: one with given cruise

fuel load, and the other with given cruise range.

Several methods have been proposed to study uncertainty propagation in dynamical systems, beyond the classical

Monte-Carlo methods (which can be very expensive computationally). Halder and Bhattacharya [6] classify those

methods it two categories: parametric (in which one evolves the statistical moments) and non-parametric (in which

the probability density function is evolved). They address the problem of uncertainty propagation in planetary entry,

descent, and landing, using a non-parametric method that reduces to solving the stochastic Liouville equation.

In this paper, the evolution in time of the mean and the variance of the aircraft mass is studied using the Gener-

alized Polynomial Chaos (GPC) method (a parametric method according to Ref. [6]). The GPC representation was

introduced by Wiener [7] and it is based on the fact that any second-order process (i.e., a process with finite second-

order moments) can be represented as a Fourier-type series, with time-dependent coefficients, and using orthogonal

polynomials as GPC basis functions in terms of random variables. A general introduction to GPC can be found in Xiu

and Karniadakis [8] and in Schoutens [9], whereas details in numerical computations are studied in Debusschere et
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al. [10]. The method of polynomial chaos is used in the works of Prabhakar et al. [11] and Dutta and Bhattacharya [12]

to study, respectively, uncertainty propagation and trajectory estimation, for hypersonic flight dynamics with uncertain

initial data, and by Fisher and Bhattacharya [13] in the problem of optimal trajectory generation in the context of

stochastic optimal control.

Also, the distribution function of the aircraft mass is analyzed using two approximate methods developed in this

paper (non-parametric methods according to Ref. [6]). One method is based on the resolution of the variational

equation for the sensitivity function with respect to the initial condition, and the other is based on the computation of

the probability measure of the random variable as a function of time. These two methods are also applied, first, to the

analysis of the distribution function of the flight time, in the case of given fuel load, and, second, to the analysis of

the distribution function of the fuel consumption, in the case of given range. In this way, the effect of the initial mass

uncertainty in flight properties other than mass is studied as well.

In this paper, the case of cruise at constant altitude and constant speed is considered (cruise segments defined by

these two flight constraints are commonly flown by commercial aircraft, according to air traffic control procedures).

In this case, the evolution of aircraft mass is defined by a nonlinear equation which can be solved analytically. Results

are presented for two different distributions of initial mass (uniform and of gamma type). The analytical solutions

represent benchmark solutions which are used to assess the accuracy of the proposed methods. Comparison with the

exact analytical results is made, showing an excellent agreement in all cases.

This paper is organized as follows. First the problem of mass evolution in cruise flight is solved. Then, in Sec-

tion III, the two initial mass distributions considered are described. In Section IV mean and variance of the mass

distribution are analyzed using the GPC method. In Section V the two non-parametic methods developed to study the

evolution of distribution functions are presented, and applied to the mass distribution function. These two methods are

used, in Section VI, to study the distribution functions of flight time and fuel consumption. Some numerical results

are presented in Section VII, and some conclusions are drawn in Section VIII. Finally, the exact analytical solutions

are presented in the Appendix.

II. Mass evolution in cruise flight

The equations of motion for symmetric flight in a vertical plane (constant heading), using a flat Earth model, for

constant altitude and constant speed are (see Ref. [14])

dx

dt
= V,

dm

dt
= −cT

T = D, L = mg

(1)
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where x is the horizontal distance, t the time, V the speed, T the thrust, D the aerodynamic drag, L the lift, m the

aircraft mass, g the acceleration of gravity, and c the specific fuel consumption, which can be taken as a function of

altitude and speed, and it is therefore constant under the given cruise condition.

The drag can be written asD =
1

2
ρV 2SCD, where ρ is the density, S the wing surface area, and the drag coefficient

CD is modeled by a parabolic polar CD = CD0
+CD2

C2
L, where CL is the lift coefficient given by CL =

2L

ρV 2S
, and

the coefficients CD0 and CD2 are constant under the given cruise condition. Using these definitions and Eqs. (1), an

autonomous equation for the mass evolution is obtained:

dm

dt
= −c

(
1

2
ρV 2SCD0

+m2 2CD2g
2

ρV 2S

)
(2)

Thus, one can write
dm

dt
= −(A+Bm2) (3)

where the constants A and B are defined as A = c
1

2
ρV 2SCD0

and B = c
2CD2

g2

ρV 2S
. Note that A,B > 0. Equation (3)

is a nonlinear equation describing the evolution of mass during cruise flight, to be solved with the initial condition

m(0) = m0 (4)

To emphasize the dependence of the mass m(t) on the initial condition, the mass is written as m(t;m0), even though

often it is just denoted as m for the sake of simplicity. The explicit solution of Eqs. (3) and (4) is

m(t;m0) =

√
A

B

m0 −
√
A

B
tan

(√
ABt

)
√
A

B
+m0 tan

(√
ABt

) (5)

A. Cruise with given fuel load

For the case in which the cruise fuel load is given, denoting the given mass of fuel as mF < m0, the solution

obtained given by Eq. (5) is valid in the time interval t ∈ [0, tf (m0)], where tf (m0) (the flight time) is obtained from

m(tf (m0);m0) = m0 −mF . From Eq. (5) one can directly compute this time as

tf (m0) =
1√
AB

arctan

( √
ABmF

A+Bm0(m0 −mF )

)
(6)

Note that tf is a monotonically decreasing function ofm0. Thus, for a given amount of fuel, the largerm0, the smaller

tf , and, as a consequence, the smaller the distance traveled by the aircraft. The initial mass m0 is unbounded, and

has a lower limit equal to mF (although these limits are not physically meaningful). Thus for m0 ∈ (mF ,∞) one
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obtains, from Eq. (6), tf ∈
(

0,
1√
AB

arctan

(√
B

A
mF

))
. Also, since m(tf ;m0) = m0 −mF the final value of

the aircraft mass satisfies m(tf ;m0) ∈ (0,∞).

In the next sections, the evolution of mass and the behavior of the flight time are studied for an uncertain value

of the initial mass, while the rest of the parameters (some of them embedded in the constants A and B) have a fixed

value.

B. Cruise with given range

For the case in which the cruise range is given, taking x as the independent variable, one has

dm

dx
= − 1

V
(A+Bm2) (7)

and the same initial condition Eq. (4). The explicit solution of Eqs. (7) and (4) is

m(x;m0) =

√
A

B

m0 −
√
A

B
tan

(
1

V

√
ABx

)
√
A

B
+m0 tan

(
1

V

√
ABx

) (8)

If the given cruise range is xf , then the final value of the aircraft massm(xf ;m0) is given by Eq. (8) particularized

for x = xf , and the fuel consumption during the cruise is

mF (m0) = m0 −m(xf ;m0) =

(
m2

0 +
A

B

)
tan

(
1

V

√
ABxf

)
√
A

B
+m0 tan

(
1

V

√
ABxf

) (9)

Note that mF is a monotonically increasing function of m0: the larger m0, the larger the fuel consumption. As before,

m0 is unbounded, and, in order to havem(xf ;m0) > 0, it has a lower limit equal to

√
A

B
tan

(
1

V

√
ABxf

)
. Thus for

m0 ∈
(√

A

B
tan

(
1

V

√
ABxf

)
,∞
)

one obtains from Eq. (9) that mF ∈
(√

A

B
tan

(
1

V

√
ABxf

)
,∞
)

. Also,

from Eq. (8) the final value of the aircraft mass satisfies m(xf ;m0) ∈
(

0,

√
A

B

(
tan

(
1

V

√
ABxf

))−1
)

.

In the next sections, the behavior of the fuel consumption is studied for an uncertain value of the initial mass,

while, as before, the rest of the parameters have a fixed value. In this case the flight time is known, trivially given by

tf =
xf
V

.
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III. Initial mass distribution

It is realistic to consider that the initial mass m0 is not a deterministic variable which is known a priori, but rather

a random variable which is not known. Then, the solution given by Eq. (5) is still valid but in a probabilistic sense,

i.e., m(t;m0) is a random process. If the distribution of m0 is known, it is possible to study the time evolution of the

distribution of the aircraft mass m(t;m0), as well as its statistical properties (mean, variance, typical deviation).

In this work, to analyze mass evolution, two probabilistic models for m0 are considered: uniform and gamma

distributions, which are described next. Note that a Gaussian distribution representing the initial mass uncertainty

would be non-physical, since it would allow (with small but nonzero probability) negative initial mass, and, therefore,

it is not considered in this paper.

A. Uniform distribution

First it is considered that m0 is distributed as a uniform continuous variable whose probability density function is

fm0
(m0) =

1

2δm
in the interval [m̄0 − δm, m̄0 + δm], and zero otherwise, where m̄0 is the mean and δm the width of

the uniform distribution, as shown in Fig. 1.

Denoting by ∆ the standardized uniform distribution taking values in the interval [−1, 1], one has that m0 =

m̄0 + δm∆. The mean of m0 is E[m0] =
∫∞

0
m0fm0

(m0)dm0 = m̄0, where E[·] is the mathematical expectation,

and the variance of m0 is Var[m0] = E[m2
0]− (E[m0])2 =

δ2
m

3
.

m0

fm0

k

Gamma
distribution

Uniform
distribution

m̄0 + δmm̄0 − δm m̄0

Fig. 1 Shape of the probability density functions of the initial mass.

B. Gamma distribution

The gamma distribution (see Ref. [15]) represents a continuous nonnegative random variable, and is denoted by

G(k, θ), where k > 0 is the shape parameter and θ > 0 is the scale parameter. It is known that E[G(k, θ)] = kθ and
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Var[G(k, θ)] = kθ2, and that the probability density function of G(k, θ) is f(x; k, θ) = xk−1 e−x/θ

θkΓ(k)
for x ≥ 0 (and

zero otherwise), where Γ is the Euler gamma function. Using the property that for θ > 0 one has G(k, θ) = θG(k, 1),

the value θ = 1 is considered in this paper without loss of generality.

To represent the initial mass distribution, let m0 = m̄0 +
δm√
3k

(G(k, 1)− k), where m̄0 and δm are the same

values chosen for the uniform distribution. Hence, only the values m0 ≥M0 have nonzero probability, where M0 (the

minimum possible value of mass for the given values of m̄0 and δm) is obtained making G(k, 1) = 0 and it is given

by

M0 = m̄0 −
δm√

3

√
k (10)

Thus, one has the following probability density function

fm0(m0) = (m0 −M0)k−1 e
−(m0−M0)

√
3k

δm(
δm√
3k

)k
Γ(k)

, m0 ≥M0 (11)

and zero otherwise. In this way, one has E[m0] = m̄0 and Var[m0] =
δ2
m

3
(independently of k), as for the previously

chosen uniform distribution.

Note that for k → ∞, one has
G(k, 1)− k√

k
→ N(0, 1) which implies m0 → N

(
m̄0,

δ2
m

3

)
, i.e., for large k the

gamma distribution resembles a Gaussian distribution. However, the maximum value of k is limited by the fact that

M0 should be greater than zero. Therefore, the value of k must be chosen taking into account Eq. (10).

In Fig. 1 the shape of the probability density function of m0 is plotted for different values of k, and compared with

the uniform distribution.

IV. Analysis of mass mean and variance

To compute the mean and variance of the mass, the Generalized Polynomial Chaos (GPC) method is used (see

Ref. [7]), in which the process is represented as a Fourier-type series, with time-dependent coefficients, and orthogo-

nal polynomials in terms of random variables are used as basis functions. The orthogonal polynomials used in GPC are

chosen from the Askey scheme (a way of organizing certain orthogonal polynomials into a hierarchy, see Ref. [16]).

If one chooses a family of polynomials which are orthogonal the convergence of the series is exponential. The or-

thogonality property implies that, when taking expectation with respect to the random variable for two polynomials of

the family φi and φj , then E[φiφj ] = δijE[φ2
i ], where δij is the Kronecker delta. For the uniform distribution ∆, the

adequate orthogonal polynomials are the Legendre polynomials Ln(∆), whereas for the gamma distribution G(k, 1)

one must use the generalized Laguerre polynomials φk−1
n (G).
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To apply the GPC method, one first write the initial mass distribution m0 in terms of the orthogonal polynomials.

For the uniform distribution, one can writem0 = m̄0L0(∆)+δmL1(∆), whereas for the gamma distribution it follows

that m0 = m̄0φ
k−1
0 (G)− δm√

3k
φk−1

1 (G).

In the following the uniform distribution case is considered (the gamma distribution is handled analogously). It is

assumed that m(t;m0) can be written as

m(t;m0) =

P∑
i=0

hi(t)Li(∆) (12)

where the coefficients hi are to be found using the mass equation (3), and P is the order of the approximation, which

is to be taken sufficiently large. Substituting Eq. (12) in Eq. (3), the following equation is obtained

P∑
i=0

ḣi(t)Li(∆) = −A−B
P∑
i=0

P∑
j=0

hi(t)hj(t)Li(∆)Lj(∆) (13)

Now, multiplying Eq. (13) by Ll(∆) for l = 0, . . . , P , taking expectation with respect to ∆, and using the orthogo-

nality property of the Ll polynomials, one obtains P + 1 equations

ḣl(t)E[L2
l (∆)] = −Aδ0l −B

P∑
i=0

P∑
j=0

hi(t)hj(t)E[Li(∆)Lj(∆)Ll(∆)], l = 0, . . . , P (14)

and calling Cijl =
E [LiLjLl]

E [L2
l ]

(which is a number that can be exactly computed since the involved expectations are

just integrals of polynomials) it follows that

ḣl = −Aδ0l −B
P∑
i=0

P∑
j=0

hihjCijl, l = 0, . . . , P (15)

which is a system of P + 1 nonlinear coupled ordinary differential equations. The same result is reached for the

gamma distribution case, with the corresponding Cijl coefficients. The initial conditions of Eqs. (15) depend on the

initial mass distribution. For the uniform distribution case they are

h0(0) = m̄0, h1(0) = δm, hl(0) = 0, for l = 2, . . . , P (16)

whereas for the gamma distribution they are given by

h0(0) = m̄0, h1(0) = − δm√
3k
, hl(0) = 0, for l = 2, . . . , P (17)

The advantage of the GPC method is that a small or moderate value of P is enough to get good results, thus resulting
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in a method that is not very intensive computationally.

Once the coefficients hi are found, it is possible to compute from Eq. (12) approximate values for quantities of

interest such as mean and variance. For the uniform distribution, taking into account Eq. (12) and L0(∆) = 1, it

follows that

E[m(t;m0)] =

P∑
i=0

hi(t)E[Li(∆)] =

P∑
i=0

hi(t)E[Li(∆)L0(∆)] = h0(t)E[L2
0(∆)] = h0(t) (18)

To compute the variance

Var[m(t;m0)] = E[m2(t;m0)]− E[m(t;m0)]2 =

P∑
i=0

P∑
j=0

hi(t)hj(t)E[Li(∆)Lj(∆)]− h2
0 =

P∑
i=1

h2
i (t)E[L2

i (∆)]

(19)

For the gamma distribution, similar results hold:

E[m(t;m0)] = h0(t), (20)

Var[m(t;m0)] =

P∑
i=1

h2
i (t)E[(φk−1

i (G))2] (21)

V. Analysis of the evolution of the mass distribution function

In this section, since the GPC method cannot be used to obtain distribution functions (see Ref. [11]), two original

approximate methods to obtain the distribution function of the mass (which evolves in time) are developed.

Recall first that, given a random variable x with distribution function fx(x), if one defines another random variable

y using a transformation g such that y = g(x), then it is known that the distribution function fy(y) of y is given by

(see Ref. [15])

fy(y) =
fx(g−1(y))

|g′(g−1(y))| (22)

with expression (22) valid only if the function g(x) is invertible in the domain of x.

Denoting m = m(t;m0) = φt(m0) as the solution of the differential equation (3) with initial condition (4), it

follows from standard uniqueness results in differential equations (see Ref. [17]) that the function relating m and m0

(for a given time t) is always monotonous. Indeed, if it were not monotonous, there would be values of mass (for a

given time t) that could be reached from two different initial conditions, which would contradict uniqueness. Since it

is monotonous, it is therefore invertible. Thus, it is possible to write

fm(m, t) =
fm0

(φ−1
t (m))

|φ′t(φ−1
t (m))| (23)
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where fm0 is the distribution of the initial mass, and fm(m, t) is the the distribution of the mass at time t.

A. Approximate method 1

The objective is to numerically approximate Eq. (23). For that, take n consecutive points from the domain of m0,

denoted as mi
0, i = 1, . . . , n, so that m1

0 < m2
0 < . . . < mn

0 . Now, fix a time τ > 0; solving the mass equation (3) for

each i with mi
0 as initial condition, one can compute the value of mass at time τ , mi(τ) = φτ (mi

0). The numerator

of Eq. (23) is computed for each i as fm0
(mi

0). To compute the denominator of Eq. (23), the theory of differential

equations is used. Noting that φ′t(m0) =
∂m

∂m0
(t) is the value of the derivative of the solution m with respect to

m0 (also known as sensitivity function with respect to the initial condition), a differential equation can be written for

φ′t(m0):
d

dt
φ′t(m0) =

d

dt

(
∂m

∂m0

)
= −2Bm

∂m

∂m0
= −2Bmφ′t(m0) (24)

with initial condition (obtained from Eq. 4)

φ′0(m0) = 1 (25)

This is the so-called variational equation, which is linear, and its solution is given by

φ′t(m0) = exp

(
−2B

∫ t

0

m(t;m0)dt

)
(26)

Numerically solving Eq. (26) to find φ′t(m
i
0) at time t = τ , the denominator of Eq. (23) is computed for each i.

Thus, for a fixed time τ , one finds the value of fm(m, τ) at the n points mi = φτ (mi
0), i = 1, . . . , n, as

fm(mi, τ) =
fm0

(mi
0)

φ′τ (mi
0)

(27)

B. Approximate method 2

Now, another method that avoids having to solve the differential equation for the sensitivity function (Eq. 24) is

formulated. As in the previous method, take n consecutive points from the domain of m0, m1
0 < m2

0 < . . . < mn
0 , fix

a time τ > 0 and solve the mass equation (3) to compute the value of mass at time t = τ , mi(τ) = φτ (mi
0). To find

the value of fm(m, τ) at these points, the intermediate value theorem for integrals is used:

Pr(mi ≤ m ≤ mi+1) =

∫ mi+1

mi

fm(µ, τ)dµ = (mi+1 −mi)fm(ξi, τ) (28)

where Pr is the probability measure and ξi ∈ [mi,mi+1], for i = 1, . . . , n− 1.

Given the uniqueness of the solution, intervals in the initial condition are univocally mapped into intervals in the
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solution (as illustrated in Fig. 2), thus the probability of the mass m being in the interval (mi,mi+1) is the same as the

probability of the initial mass m0 being in the interval (mi
0,m

i+1
0 ), that is, Pr(mi ≤ m ≤ mi+1) = Pr(mi

0 ≤ m0 ≤

mi+1
0 ). These probabilities can be computed (numerically or analytically) from the distribution function of m0. Thus,

one has

fm(ξi, τ) =
Pr(mi

0 ≤ m0 ≤ mi+1
0 )

mi+1 −mi
, i = 1, . . . , n− 1 (29)

Taking

fm(m1, τ) = fm(ξ1, τ)

fm(mi, τ) =
fm(ξi−1, τ) + fm(ξi, τ)

2
, i = 2, . . . , n− 1

fm(mn, τ) = fm(ξn−1, τ)

(30)

an approximation of fm is obtained at n points.

{1n»
2
»

1
»

)¿(2m)¿(1m )¿(nm)¿({1nm)¿(3m

0
nm0

{1nm0
3m0

2m0
1m

t

Fig. 2 Evolution of the initial mass intervals in time.

VI. Analysis of the distribution function of the flight time and the fuel consumption

In this section, the distribution functions of the flight time tf (in the case of given fuel load) and of the fuel

consumption mF (in the case of given range) are analyzed using the approximate methods developed in Section V.

A. Distribution function of the flight time

The flight time tf is defined explicitly by Eq. (6), where it can be seen that it is a function of the initial mass and hence

a random variable itself. Calling tf = ϕ(m0), one has that

m(ϕ(m0);m0) = m0 −mF (31)
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The distribution function of tf is given, similarly to Eq. (23), by

ftf (tf ) =
fm0

(ϕ−1(tf ))

|ϕ′(ϕ−1(tf ))| (32)

if ϕ is invertible. To see that this is the case, take the derivative with respect to m0 in Eq. (31),

∂m

∂t
(tf ;m0)ϕ′(m0) +

∂m

∂m0
(tf ;m0) = 1 (33)

Note that
∂m

∂t
(tf ;m0) = ṁ(tf ), thus using the mass equation (3) it is found that

∂m

∂t
(tf ;m0) = −(A+Bm2(tf )) = −(A+B(m0 −mF )2) < 0 (34)

Thus, one has, from Eqs. (33) and (34),

ϕ′(m0) = −
1− ∂m

∂m0
(tf ;m0)

A+B(m0 −mF )2
(35)

On the other hand,
∂m

∂m0
satisfies the differential equation (24), hence, one has from Eq. (26) that

∂m

∂m0
(t) < 1 for

t > 0, and in particular
∂m

∂m0
(tf ;m0) < 1. Thus ϕ′(m0) < 0 and it follows that tf = ϕ(m0) is monotonically

decreasing with m0 and hence invertible. Therefore Eq. (32) is a valid equation to compute ftf (tf ).

1. Approximate method 1

Take n consecutive points from the domain of m0, denoted as mi
0, i = 1, . . . , n, so that m1

0 < m2
0 < . . . < mn

0 . Each

of these points determines a value tif by solving the mass equation (3) with initial condition mi
0 and stopping when

m = mi
0 −mF . Then, combining Eqs. (32) and (35),

ftf (tif ) =
fm0(ϕ−1(tif ))

|ϕ′(ϕ−1(tif ))| = fm0(mi
0)
A+B(mi

0 −mF )2

1− ∂m

∂m0
(tif ;mi

0)

(36)

where
∂m

∂m0
(tif ;mi

0) is obtained by computing Eq. (26) for t = tif and m0 = mi
0. Thus, the value of ftf at n points is

obtained.
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2. Approximate method 2

Take n consecutive points from the domain of m0, as before, each of which determines a value tif . It has to be noted

that since it was found before that ϕ′(m0) < 0, increasing values of m0 produce decreasing values of tf and thus

ti+1
f < tif . As it was done for the distribution of the mass, the intermediate value theorem for integrals can be applied

to find

Pr(tf
i+1 ≤ tf ≤ tf i) =

∫ tf
i

tf i+1

ftf (µ)dµ = (tf
i − tf i+1)ftf (ξi) (37)

where ξi ∈ [tf
i+1, tf

i], for i = 1, . . . , n− 1.

Reasoning as in Section V.B, it can be seen that intervals in the initial condition m0 are univocally mapped into

intervals of tf . However, noting that increasing values of m0 produce decreasing values of tf , one has that the interval

(mi
0,m

i+1
0 ) is mapped into the interval, (ti+1

f , tif ). Thus, it is deduced that Pr(ti+1
f ≤ tf ≤ tif ) = Pr(mi

0 ≤ m0 ≤

mi+1
0 ), hence

ftf (ξi) =
Pr(mi

0 ≤ m0 ≤ mi+1
0 )

tif − ti+1
f

, i = 1, . . . , n− 1 (38)

Taking

ftf (t1f ) = ftf (ξ1)

ftf (tif ) =
ftf (ξi−1) + ftf (ξi)

2
, i = 2, . . . , n− 1

ftf (tnf ) = ftf (ξn−1)

(39)

an approximation of ftf is obtained at n points.

B. Distribution function of the fuel consumption

The fuel consumption mF is defined explicitly by Eq. (9) as a function of the initial mass; thus mF is a random

variable itself. Calling this function as mF = ψ(m0), the distribution function of mF is given, similarly to Eq. (23),

by

fmF
(mF ) =

fm0(ψ−1(mF ))

|ψ′(ψ−1(mF ))| (40)

if ψ is invertible. To prove that this is the case, notice from Eq. (9) that

ψ′(m0) =
∂mF

∂m0
(m0) = 1− ∂m

∂m0
(xf ;m0) (41)
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Similarly to Eq. (24), the variable
∂m

∂m0
satisfies now a differential equation with respect to distance

d

dx

(
∂m

∂m0

)
= −2Bm

∂m

∂m0
(42)

with initial condition (from Eq. 4)
∂m

∂m0
(0) = 1 (43)

whose solution is given by
∂m

∂m0
(x;m0) = exp

(
−2B

∫ x

0

m(x;m0)dx

)
(44)

Thus, from Eq. (41) one has ψ′(m0) > 0 for xf > 0 which implies invertibility of ψ(m0). Hence, Eq. (40) is a valid

equation to compute fmF
(mF ).

1. Approximate method 1

Take n consecutive points from the domain of m0, denoted as mi
0, i = 1, . . . , n, so that m1

0 < m2
0 < . . . < mn

0 . Each

of these points determines a value mi
F = mi

0−m(xf ;mi
0) by solving the mass equation (7) with initial condition mi

0

and stopping when x = xf . Then, using Eq. (41),

fmF
(mi

F ) =
fm0(ψ−1(mi

F ))

|ψ′(ψ−1(mi
F ))| =

fm0(mi
0)

1− ∂m

∂m0
(xf ;mi

0)

(45)

where
∂m

∂m0
(xf ;mi

0) is obtained by computing Eq. (44) for x = xf and m0 = mi
0. Thus, the value of fmF

at n points

is obtained.

2. Approximate method 2

Take n consecutive points from the domain ofm0, as before, each of which determines a valuemi
F . Since it was found

before that ψ′(m0) > 0, increasing values of m0 produce increasing values of mF . As it was done for the distribution

of the mass, the intermediate value theorem for integrals can be applied to find

Pr(mF
i ≤ mF ≤ mF

i+1) =

∫ mF
i+1

mF
i

ftf (µ)dµ = (mF
i+1 −mF

i)fmF
(ξi) (46)

where ξi ∈ [mF
i,mF

i+1], for i = 1, . . . , n− 1.

Reasoning as in Section V.B, it can be seen that intervals in the initial condition m0 are univocally mapped into
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intervals of mF . Thus, it is deduced that Pr(mi
F ≤ mF ≤ mi+1

F ) = Pr(mi
0 ≤ m0 ≤ mi+1

0 ), hence

fmF
(ξi) =

Pr(mi
0 ≤ m0 ≤ mi+1

0 )

mi+1
F −mi

F

, i = 1, . . . , n− 1 (47)

Taking

fmF
(m1

F ) = fmF
(ξ1)

fmF
(mi

F ) =
fmF

(ξi−1) + fmF
(ξi)

2
, i = 2, . . . , n− 1

fmF
(mn

F ) = fmF
(ξn−1)

(48)

an approximation of fmF
is obtained at n points.

VII. Results

Now, the methods presented in previous sections are applied to the two initial mass distributions defined in Sec-

tion III. The numerical resolution of the different problems is performed using the MATLAB environment. The

numerical results are compared with the exact results of the problem, so that their accuracy can be assessed; these

exact results are presented in the Appendix.

For the numerical application, the following values are used: Cd0 = 0.015, Cd2 = 0.042, ρ = 0.5ρ0, ρ0 =

1.225 kg/m3, V = 200 m/s, c = 5 · 10−5 s/m, S = 150 m2, g = 9.8 m/s2, mF = 25000 kg in the case of given

fuel load, and xf = 2500 km in the case of given range. For the initial mass distributions, the nominal values chosen

for mean and width are m̄0 = 81633 kg and δm = 5000 kg, which yields a typical deviation σ[m0] =
√

Var[m0] =

δm√
3

= 2887 kg; and for the gamma distribution the nominal value k = 8.5 is considered. A parametric study as

function of δm and k is also presented. For the nominal values, the two initial mass distributions are shown in Fig. 3.

For the uniform distribution the values of m0 with nonzero probability are in the interval [m0 − δm,m0 + δm] =

[76633, 86633] in kg, and for the gamma distribution they are in [M0,∞) = [73217,∞) in kg.

For the GPC method the number of terms used in the expansions is P = 3, which turns out to be enough to obtain

a good representation of m. In the computation of the distribution functions, the number of discretization points

considered is n = 1000, which has proven to be good enough. All the integrations have been performed using the

Matlab environment.

In Section VII.A the GPC method is applied to obtain the evolution of mass mean and variance. The distribution

function of the mass and its evolution in time are analyzed in Section VII.B. The distribution function of the flight

time in the case of given fuel load is studied in Section VII.C, and that of the fuel consumption in the case of given

range in Section VII.D.
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Fig. 3 Probability density functions of the initial mass (m̄0 = 81633 kg, δm = 5000 kg, and k = 8.5).

A. Mass mean and variance

1. Uniform distribution of the initial mass

To find the mean and variance using GPC, the value P = 3 is chosen in the GPC expansion of the mass (Eq. 12),

which, as already mentioned, is enough to obtain a good representation of m. The coefficients of the GPC expansion

are shown in Fig. 4. Note the fast decrease of their order of magnitude (six orders of magnitude from h0 to h3).
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Fig. 4 GPC coefficients for the uniform distribution case.
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The evolution of mean E[m(t;m0)] and typical deviation σ[m(t;m0)] =
√

Var[m(t;m0)] is shown in Fig. 5.

Selected values of mean and typical deviation are given in Table 1. The difference between the GPC solution and the

analytical solution (Eqs. (59) and (60)) of mean and variance is negligible; the absolute error is less than 10−4 for the

mean and less than 2 · 10−3 for the typical deviation. Thus a low-order GPC expansion, which is very fast to compute,

is enough to capture well the mean and variance evolution.

While the fact that the mean mass decreases with time is to be expected (since fuel mass in consumed), it is

remarkable that the standard deviation of the mass also decreases with time. Thus, the dispersion of the distribution

function and, therefore, the uncertainty decreases with time. This result can be explained by noting that the larger the

aircraft mass, the larger its rate of decrease (which is given at each instant by A + Bm2). Thus, if one computes the

solution m(t) given by Eq. (5) for m0 = m̄0 ± δm, say, m+(t) = m(t; m̄0 + δm) and m−(t) = m(t; m̄0 − δm), the

distance ∆m(t) = m+(t)−m−(t) decreases with time: for example, at t = 0 one has ∆m = 2δm = 10000 kg, and

at t =1.2 104 s, ∆m = 8321 kg.
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Fig. 5 Evolution of mass mean and typical deviation for the uniform distribution case.

2. Gamma distribution of the initial mass

As in the uniform distribution case, to find the mean and variance using GPC, choosing P = 3 in the GPC expansion

of the mass (Eq. 12) is good enough. The coefficients of the GPC expansion are shown in Fig. 6. Note again the fast
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Table 1 Values of mass mean and typical deviation at selected times for the uniform distribution case

Time (s) E[m(t;m0)] (kg) σ[m(t;m0)] (kg)
2 · 103 77485 2787
4 · 103 73477 2696
6 · 103 69596 2613
8 · 103 65831 2536

104 62175 2467
1.2 · 104 58616 2402

decrease of their order of magnitude (seven orders of magnitude from h0 to h3).
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Fig. 6 GPC coefficients for the gamma distribution case (k = 8.5).

The evolution of mean and typical deviation is shown in Fig. 7. Selected values of mean and typical deviation are

given in Table 2. As before, the difference between the GPC solution and the analytical solution (Eqs. (63) and (64))

of mean and variance is negligible; the absolute error is less than 4 · 10−5 for the mean and less than 2 · 10−3 for the

typical deviation. Again, both the mean and the standard deviation decrease with time.

Note that the plots and values are very similar to the ones obtained with the uniform distribution. Thus, the results

show that the evolution of mean and standard deviation is very weakly affected by the specific distribution function

chosen for the initial mass (at least for the two cases studied).
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Fig. 7 Evolution of mass mean and typical deviation for the gamma distribution case (k = 8.5).

Table 2 Values of mass mean and typical deviation at selected times for the gamma distribution case (k = 8.5)

Time (s) E[m(t;m0)] (kg) σ[m(t;m0)] (kg)
2 · 103 77485 2786
4 · 103 73477 2695
6 · 103 69596 2610
8 · 103 65831 2533

104 62175 2462
1.2 · 104 58616 2397

B. Distribution function of the mass

1. Uniform distribution of the initial mass

The mass distribution is represented at several time instants in Fig. 8. Both approximate methods developed in Sec-

tion V to approximate Eq. (23) show excellent agreement with the exact analytical results (Eq. 70) and are indistin-

guishable from them. The results in Fig. 8 show that as time increases (and m decreases), the width of the distribution

function decreases, while the probability density increases. Thus, uncertainty decreases with time (as it was seen in

Fig. 5). Note also that the uniform shape is approximately maintained.
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Fig. 8 Mass distribution at several time instants for the uniform distribution case.

2. Gamma distribution of the initial mass

In this case, the mass distribution is represented at several time instants in Fig. 9. Again, both numerical methods

developed in Section V to approximate Eq. (23) show excellent agreement with the exact analytical results (Eq. 72)

and are indistinguishable from them. As in Fig. 8, Fig. 9 shows that uncertainty decreases as time increases. Also, the

shape of the distribution function is approximately of gamma type at all times.
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Fig. 9 Mass distribution at several time instants for the gamma distribution case (k = 8.5).

C. Distribution function of the flight time

1. Uniform distribution of the initial mass

The distribution function of the flight time is represented in Fig. 10. Note that it looks approximately uniform, similarly

to the initial mass distribution. As in the computation of the mass distribution function, both approximate methods

developed in Section V to approximate Eq. (32) show excellent agreement with the exact analytical result (Eq. 77).
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The values of tf with nonzero probability are those in the interval [T1, T2] = [12625, 13664] in seconds, for values of

m0 with nonzero probability in [m0−δm,m0 +δm] = [76633, 86633] in kilograms, where, as shown in the Appendix,

T1 =
1√
AB

arctan

( √
ABmF

A+B(m̄0 + δm)(m̄0 + δm −mF )

)
(49)

T2 =
1√
AB

arctan

( √
ABmF

A+B(m̄0 − δm)(m̄0 − δm −mF )

)
(50)
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Fig. 10 Distribution functions of the flight time: a) uniform distribution case; b) gamma distribution case
(k = 8.5).

The mean and the typical deviation of the flight time are obtained using the distribution function, computed nu-

merically from

E[tf ] =

∫ ∞
0

tfftf (tf )dtf (51)

(σ[tf ])2 =

∫ ∞
0

t2fftf (tf )dtf − (E[tf ])
2 (52)

The results are given in Table 3.

Table 3 Computed values of E[tf ] and σ[tf ] for the uniform distribution case

Exact Method 1 Method 2
E[tf ] (s) 13144 13144 13146
σ[tf ] (s) 299.8 296.9 290.1
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Now the effect of δm on the results is analyzed. Values of σ[tf ] for different values of δm (obtained using the exact

solution) are given in Fig. 11, where it is seen that there is a proportionality between the two parameters. The values

of E[tf ] are not significantly affected by changing δm.
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Fig. 11 Typical deviation of the flight time vs. δm in the uniform distribution case.

2. Gamma distribution of the initial mass

The distribution function in this case is represented in Fig. 10. Note that this distribution function is somewhat

different from a gamma distribution, because the values of tf with nonzero probability are those in the finite interval

(0, T ] = (0, 14019] in seconds, for values of m0 with nonzero probability in [M0,∞) = [73217,∞) in kilograms,

where, as shown in the Appendix,

T =
1√
AB

arctan

( √
ABmF

A+BM0(M0 −mF )

)
(53)

Moreover, since tf decreases when m0 increases, the bell of the distribution is sort of inverted (with respect to the bell

of the initial mass distribution).

As in the computation of the mass distribution function, both numerical methods developed in Section V to ap-

proximate Eq. (32) show excellent agreement with the exact analytical result (Eq. 79).

Again, the mean and the typical deviation are computed numerically from Eqs. (51) and (52) using the distribution

function. The results are given in Table 4.

Table 4 Computed values of E[tf ] and σ[tf ] for the gamma distribution case (k = 8.5)

Exact Method 1 Method 2
E[tf ] (s) 13144 13144 13143
σ[tf ] (s) 299.3 301.6 303.9
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Note that these results of mean and standard deviation are very close to the ones obtained before for the uniform

distribution (especially for the exact distribution functions), showing again that the initial mass distribution chosen

affects the results very weakly.

Now the effect of k on the results is analyzed. Values of σ[tf ] for different values of k and δm (obtained using the

exact solution) are given in Fig. 12, where it is seen that there is no significant effect from changing k and, as in the

uniform distribution case, there is a proportionality between the values of σ[tf ] and δm. The values of E[tf ] are not

significantly affected by changing k or δm.
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Fig. 12 Typical deviation of the flight time vs. k, for different values of δm, in the gamma distribution case.

D. Distribution function of the fuel consumption

1. Uniform distribution of the initial mass

The distribution function of the fuel consumption is represented in Fig. 13. Note that it looks approximately uniform,

similarly to the initial mass distribution, although smaller values of mF show a slightly higher probability. As before,

both approximate methods developed in Section V to approximate Eq. (40) show excellent agreement with the exact

analytical results (Eq. 83).
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Fig. 13 Distribution functions of the fuel consumption: a) uniform distribution case; b) gamma distribution
case (k = 8.5).

The values of mF with nonzero probability are those in the interval [M1,M2] = [23043, 24775] in kilograms, for

values of m0 with nonzero probability in [m0− δm,m0 + δm] = [76633, 86633] in kilograms, where, as shown in the

Appendix,

M1 =

(
(m̄0 − δm)2 +

A

B

)
tan

(
1

V

√
ABxf

)
√
A

B
+ (m̄0 − δm) tan

(
1

V

√
ABxf

) (54)

M2 =

(
(m̄0 + δm)2 +

A

B

)
tan

(
1

V

√
ABxf

)
√
A

B
+ (m̄0 + δm) tan

(
1

V

√
ABxf

) (55)

As for the flight time, the mean and the typical deviation of the fuel consumption are obtained using the distribution

function, computed numerically from

E[mF ] =

∫ ∞
0

mF fmF
(mF )dmF (56)

(σ[mF ])2 =

∫ ∞
0

m2
F fmF

(mF )dmF − (E[mF ])
2 (57)

The results are given in Table 5.

Table 5 Computed values of E[mF ] and σ[mF ] for the uniform distribution case

Exact Method 1 Method 2
E[mF ] (kg) 23892 23892 23892
σ[mF ] (kg) 499.96 499.81 500.04
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Now the effect of δm on the results is analyzed. Values of σ[mF ] for different values of δm (obtained using the

exact solution) are given in Fig. 14, where one can see that there is a proportionality between both parameters. The

values of E[mF ] are not significantly affected by changing δm.
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Fig. 14 Typical deviation of fuel consumption vs. δm in the uniform distribution case.

2. Gamma distribution of the initial mass

The distribution function in this case is represented in Fig. 13 for k = 8.5. Note that its shape is approximately

of gamma type, as the initial mass distribution. The values of mF with nonzero probability are those in the inter-

val [M,∞) = [22499,∞) in kilograms, for values of m0 with nonzero probability in [M0,∞) = [73217,∞) in

kilograms, where, as shown in the Appendix

M =

(
M2

0 +
A

B

)
tan

(
1

V

√
ABxf

)
√
A

B
+M0 tan

(
1

V

√
ABxf

) (58)

As before, the approximate methods developed in Section V to approximate Eq. (40) show excellent agreement

with the exact analytical result (Eq. 85).

Again, the mean and the typical deviation are computed numerically from Eqs. (56) and (57) using the distribution

function. The results are given in Table 6. Note that these results of mean and standard deviation are very close to the

ones obtained before for the uniform distribution, showing again that the initial mass distribution chosen affects very

weakly the results.
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Table 6 Computed values of E[mF ] and σ[mF ] for the gamma distribution case (k = 8.5)

Exact Method 1 Method 2
E[mF ] (kg) 23891 23891 23894
σ[mF ] (kg) 506.46 506.37 506.46

Now the effect of k on the results is analyzed. Values of σ[mF ] for different values of k and δm (obtained using

the exact solution) are given in Fig. 15, where one can see that the influence of k in σ[mF ] is negligible. Also, as in

the uniform distribution case, there is a proportionality between the values of σ[mF ] and δm. The values of E[mF ]

are not significantly affected by changing k or δm.
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Fig. 15 Typical deviation of the fuel consumption vs. k, for different values of δm, in the gamma distribution
case.

VIII. Conclusions

The problem of propagation of initial mass uncertainty in cruise flight has been studied, using a nonlinear model

which has known analytical solution. To study the evolution of mean and variance of the aircraft mass, the generalized

polynomial chaos (GPC) method has been used, where an expansion with just four terms has proven to be accurate

enough. The study of the evolution of the mass distribution function has also been considered and two approximate

methods have been developed. These two methods are applicable to problems in which there is just one random

variable and for the analysis of distribution functions of functions of the random variable which are invertible. Using

these methods, the distribution functions of the flight time in the case of given fuel load, and of the fuel consumption

in the case of given range have been also studied. The results obtained with these methods have been compared with

the exact analytical results, showing an excellent agreement in all cases; thus, the accuracy of the methods has been

assessed, and therefore they are proposed as accurate and computationally efficient candidates to study uncertainty
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propagation.

The results presented in this work show that both mass mean and standard deviation decrease with time, with

the distribution function getting narrower and more concentrated around the mean; thus, an important conclusion of

this analysis is that uncertainty (represented by the dispersion of the distribution function) decreases with time. On

the other hand, the shape of the distribution function of the mass is fundamentally unchanged from its initial shape.

The results also show that the values of both mean and standard deviation is very weakly affected by the specific

distribution function chosen for the initial mass (at least in the uniform and gamma cases).

The distribution functions of other flight properties different from mass (flight time and fuel consumption) have

been analyzed as well, and their main statistical properties have been computed. Again, it has been shown that the

results are affected very weakly by the choice of the initial mass distribution. The influence of the parameters of the

initial mass distributions (δm and k) has been studied: the mean is not significantly affected by changing δm or k; and

the typical deviation varies almost linearly with δm, and is not affected by k. In these cases, the mean and variance

have been obtained directly using the known distribution functions (and not the GPC method, as in the case of the

mass distribution).

The approximate methods developed in this paper can be applied to other flight phases defined by more complicated

flight conditions, and they can be extended to consider other sources of uncertainty, not only in the initial conditions

but, for example, persistently affecting the system, such as wind. The analysis of these problems is left for future

work.
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Appendix: Exact results

In this Appendix, the different analytic expressions used for comparison purposes throughout the paper are pre-

sented, and their derivation is briefly explained. To simplify the notation, the following parameters are defined:

c1(t) = tan
(√

ABt
)
≥ 0, c2 =

√
A

B
> 0 and c3 = tan

(
1

V

√
ABxf

)
> 0.
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A. Mean and typical deviation of the mass

1. Uniform distribution of the initial mass

The analytical value of the mean is computed directly from Eq. (5), obtaining

E[m(t;m0)] =
1

2δm

∫ m̄0+δm

m̄0−δm
m(t;m0)dm0

=
c2

2δm

∫ m̄0+δm

m̄0−δm

m0 − c1c2
c2 + c1m0

dm0

=
c2
c1(t)

(
1− c2

c1(t)

c21(t) + 1

2δm
log

[
c2 + (m̄0 + δm)c1(t)

c2 + (m̄0 − δm)c1(t)

])
(59)

Similarly, the computation of the variance of m(t) gives

Var[m(t;m0)] = E[m2(t;m0)]− (E[m(t;m0)])
2

=
1

2δm

∫ m̄0+δm

m̄0−δm
m2(t;m0)dm0 − (E[m(t;m0)])

2

=
c22

2δm

∫ m̄0+δm

m̄0−δm

(m0 − c1c2)2

(c2 + c1m0)2
dm0 − (E[m(t;m0)])

2

=
c42
c41(t)

(
c21(t) + 1

)2
2δm

 2δm(
m̄0 +

c2
c1(t)

)2

− δ2
m

− 1

2δm

(
log

[
c2 + (m̄0 + δm)c1(t)

c2 + (m̄0 − δm)c1(t)

])2

(60)

Expressions (59) and (60) are both indeterminate for t = 0 (which implies c1 = 0). For numerical purposes, it is

convenient to develop both expressions as a second-order Taylor series for small t (i.e. small values of c1) as follows:

E[m(t;m0)] ≈ m̄0 −
c1
c2

(
m̄2

0 + c22 +
δ2
m

3

)
+
c21
c22
m̄0

(
c22 + δ2

m + m̄2
0

)
(61)

V ar[m(t;m0)] ≈ δ2
m

3
− 4c1

3c2

(
m̄0δ

2
m

)
+

2c21
45c22

δ2
m

(
15c22 + 11δ2

m + 75m̄2
0

)
(62)
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2. Gamma distribution of the initial mass

For the gamma distribution, the exact value of the mean obtained from Eq. (5) is

E[m(t;m0)] = c2

∫ ∞
M0

m0 − c1c2
c2 + c1m0

(m0 −M0)k−1 e
−(m0−M0)

√
3k

δm(
δm√
3k

)k
Γ(k)

dm0

=
c2
c1(t)

− c22
(
c21(t) + 1

)
c21(t)

δm√
3k

e

√
3k

δm

(
M0+

c2
c1(t)

)M0 +
c2
c1(t)

δm√
3k


k−1

Γ

1− k,
M0 +

c2
c1(t)

δm√
3k

(63)

where M0 is defined by Eq. (10) and Γ(s, x) is the upper incomplete Euler gamma function defined as Γ(s, x) =∫∞
x
ts−1e−tdt (see Ref. [18]).

The variance of m(t) is as follows:

Var[m(t;m0)] = E[m2(t;m0)]− (E[m(t;m0)])
2

= c22

∫ ∞
M0

(m0 − c1c2)2

(c2 + c1m0)2
(m0 −M0)k−1 e

−(m0−M0)

√
3k

δm(
δm√
3k

)k
Γ(k)

dm0 − (E[m(t;m0)])
2

=

[1− k −
M0 +

c2
c1(t)

δm√
3k

 e

√
3k

δm

(
M0+

c2
c1(t)

)M0 +
c2
c1(t)

δm√
3k


k

Γ

1− k,
M0 +

c2
c1(t)

δm√
3k

+

M0 +
c2
c1(t)

δm√
3k

−e

√
3k

δm

(
M0+

c2
c1(t)

)M0 +
c2
c1(t)

δm√
3k


2kΓ

1− k,
M0 +

c2
c1(t)

δm√
3k




2 ]
c42
c21(t)

(
c21(t) + 1

c1(t)M0 + c2

)2

(64)

Expressions (63) and (64) are both indeterminate for t = 0 (which implies c1 = 0). For numerical pur-

poses, it is convenient to approximate both expressions up to order 3 in 1/c1 using the asymptotic series Γ(s, x) =
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xs−1e−x
(

1 + (s− 1)
1

x
+ (s− 1)(s− 2)

1

x2
+ . . .

)
, valid for x→∞ (see Ref. [18]). It follows that

E[m(t;m0)] ≈ c2M0 − c22c1
c1M0 + c2

+ k
c22
(
c21 + 1

)
c1M0 + c2




δm√
3k

c1M0 + c2

− (k + 1)c1


δm√
3k

c1M0 + c2


2

+(k + 1)(k + 2)c21


δm√
3k

c1M0 + c2


3

− (k + 1)(k + 2)(k + 3)c31


δm√
3k

c1M0 + c2


4

+(k + 1)(k + 2)(k + 3)(k + 4)c41


δm√
3k

c1M0 + c2


5 ]

(65)

V ar[m(t;m0)] ≈ δ2
m

3

(c21 + 1)2c42
(c1M0 + c2)4

[
1− 4(k + 1)

 c1
δm√
3k

c1M0 + c2

+ 2(k + 1)(5k + 9)

 c1
δm√
3k

c1M0 + c2


2

−4(1 + k)(2 + k)(12 + 5k)

 c1
δm√
3k

c1M0 + c2


3

+(1 + k)(2 + k)(300 + 7k(29 + 5k))

 c1
δm√
3k

c1M0 + c2


4 ]

(66)

B. Distribution function of the mass

To compute the distribution function of the mass, note that
∂m

∂m0
can be exactly computed from Eq. (5) as

∂m

∂m0
(t;m0) =

A

B

1 + tan2
(√

ABt
)

(√
A

B
+m0 tan

(√
ABt

))2 = c22
1 + c21(t)

(c2 +m0c1(t))
2 (67)

Also from Eq. (5), m0 can be written in terms of m(t) as follows

m0 = c2
m(t) + c2c1(t)

c2 − c1(t)m(t)
(68)
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Thus
∂m

∂m0
in terms of m is written as

∂m

∂m0
(t;m) =

(c2 − c1(t)m)2

c22(1 + c21(t))
(69)

1. Uniform distribution of the initial mass

Since fm0
=

1

2δm
, using Eqs. (23) and (69), the exact distribution function of the mass as a function of time is

fm(m, t) =
c22(1 + c21(t))

2δm(c2 − c1(t)m)2
(70)

if m ∈
[
c2(m̄0 − δm)− c22c1(t)

c2 + c1(t)(m̄0 − δm)
,
c2(m̄0 + δm)− c22c1(t)

c2 + c1(t)(m̄0 + δm)

]
, and zero otherwise. The limit points in the interval have

been found from Eq. (5) evaluated at the limit points in the initial mass distribution (m̄0 − δm and m̄0 + δm).

2. Gamma distribution of the initial mass

In this case the distribution function fm0
given by Eq. (11) has to be written in terms ofm(t) using Eq. (68), as follows

fm0(m, t) =

(
c2m+ c22c1(t)

c2 − c1(t)m
−M0

)k−1
e
−

√
3k

δm

c2m+ c22c1(t)

c2 − c1(t)m
−M0


(
δm√
3k

)k
Γ(k)

(71)

Then, using Eqs. (23), (69), and (71), the exact distribution function of the mass as a function of time is

fm(m, t) =

(
c2m+ c22c1(t)

c2 − c1(t)m
−M0

)k−1
e
−

√
3k

δm

c2m+ c22c1(t)

c2 − c1(t)m
−M0


(
δm√
3k

)k
Γ(k)

c22(1 + c21(t))

(c2 − c1(t)m)2
(72)

if m ≥ c2
M0 − c2c1(t)

c2 +M0c1(t)
, and zero otherwise. The lower limit is found evaluating Eq. (5) at m0 = M0.
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C. Distribution function of the flight time

To compute Eq. (32), using Eq. (6), the values of ϕ and its inverse can be explicitly obtained as

tf = ϕ(m0) =
1√
AB

arctan

( √
ABmF

A+Bm0(m0 −mF )

)
(73)

m0 = ϕ−1(tf ) =
mF

2
+

√√√√√√m2
F

4
− A

B
+

√
A

B
mF

tan
(√

ABtf

) =
mF

2
+ Φ(tf ) (74)

where Φ(tf ) =

√√√√√√m2
F

4
− A

B
+

√
A

B
mF

tan
(√

ABtf

) is defined to simplify the expressions. Also ϕ′(m0) is given by

ϕ′(m0) =
−BmF (2m0 −mF )

(A+Bm0(m0 −mF ))
2

+ABm2
F

(75)

Hence

|ϕ′(ϕ−1(tf ))| =
2 sin2

(√
ABtf

)
AmF

Φ(tf ) (76)

These results are now used to derive an explicit expression for ftf , for the two initial mass distributions under consid-

eration.

1. Uniform distribution of the initial mass

From Eq. (32), using fm0 =
1

2δm
and Eq. (76), the resulting expression for the exact distribution function of the flight

time is

ftf (tf ) =
AmF

4δm sin2
(√

ABtf

)
Φ(tf )

(77)

if tf ∈ [T1, T2], and zero otherwise, where the endpoints of this interval are found evaluating Eq. (73) at the endpoints

of the uniform distribution of m0 (namely, m̄0 − δm and m̄0 + δm), and are given by

T1 =
1√
AB

arctan

( √
ABmF

A+B(m̄0 + δm)(m̄0 + δm −mF )

)
and T2 =

1√
AB

arctan

( √
ABmF

A+B(m̄0 − δm)(m̄0 − δm −mF )

)
.
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2. Gamma distribution of the initial mass

To find ftf now, the distribution function fm0 for the gamma case (Eq. 11) has to be written in terms of tf using

Eq. (74), as follows

fm0(tf ) =
(mF

2
+ Φ(tf )−M0

)k−1 e
−

√
3k

δm

(mF

2
+Φ(tf )−M0

)
(
δm√
3k

)k
Γ(k)

(78)

Then, from Eq. (32), using Eqs. (78) and (76), the resulting expression for the exact distribution function of the

flight time is

ftf (tf ) =
(mF

2
+ Φ(tf )−M0

)k−1 AmF

2 sin2
(√

ABtf

) e
−

√
3k

δm

(mF

2
+Φ(tf )−M0

)
(
δm√
3k

)k
Γ(k)Φ(tf )

(79)

for tf ∈
(

0,
1√
AB

arctan

( √
ABmF

A+BM0(M0 −mF )

)]
, and zero otherwise. The upper limit value is found evaluat-

ing Eq. (73) at m0 = M0.

D. Distribution function of the fuel consumption

To compute Eq. (40), the inverse of ψ(m0) is necessary. For that, one has to solve for m0 in Eq. (9), finding

m0 = ψ−1(mF ) =
mF

2
+

√
m2
F

4
+
mF c2
c3
− c22 =

mF

2
+ Ψ(mF ) (80)

where Ψ(mF ) =

√
m2
F

4
+
mF c2
c3
− c22 has been defined.

Also, taking the derivative with respect to m0 in Eq. (9), the value of ψ′(m0) is found as

ψ′(m0) = c3
2c2m0 +

(
m2

0 − c22
)
c3

(c2 +m0c3)
2 (81)

For Eq. (40), it is necessary to explicitly compute |ψ′(ψ−1(mF ))| using Eqs. (80) and (81), finding

|ψ′(ψ−1(mF ))| = c3

(mF

2
+ Ψ(mF )

)2

c3 + 2
(mF

2
+ Ψ(mF )

)
c2 − c3c22[

c2 + c3

(mF

2
+ Ψ(mF )

)]2 (82)

This result is now used to derive an explicit expression for fmF
, for the two initial mass distributions under consider-

ation.
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1. Uniform distribution of the initial mass

From Eq. (40), using fm0 =
1

2δm
and Eq. (76), the resulting expression for the exact distribution function of the flight

time is

fmF
(mF ) =

1

2δmc3

[
c2 + c3

(mF

2
+ Ψ(mF )

)]2
(mF

2
+ Ψ(mF )

)2

c3 + 2
(mF

2
+ Ψ(mF )

)
c2 − c3c22

(83)

if mF ∈
[(

(m̄0 − δm)2 + c22
)
c3

c2 + (m̄0 − δm)c3
,

(
(m̄0 + δm)2 + c22

)
c3

c2 + (m̄0 + δm)c3

]
, and zero otherwise. The endpoints of this interval are

found evaluating Eq. (9) at the endpoints of the uniform distribution of m0 (m̄0 − δm and m̄0 + δm).

2. Gamma distribution of the initial mass

To find fmF
now, the distribution function fm0 for the gamma case (Eq. 11) has to be written in terms of mF using

Eq. (80), as follows

fm0
(mF ) =

(mF

2
+ Ψ(mF )−M0

)k−1 e
−
(mF

2
+Ψ(mF )−M0

)√3k

δm(
δm√
3k

)k
Γ(k)

(84)

Then, from Eq. (40), using Eqs. (84) and (82), the resulting expression for the exact distribution function of the

fuel consumption is

fmF
(mF ) =

e
−
(mF

2
+Ψ(mF )−M0

)√3k

δm(
δm√
3k

)k
Γ(k)c3

(mF

2
+ Ψ(mF )−M0

)k−1 [
c2 + c3

(mF

2
+ Ψ(mF )

)]2
(mF

2
+ Ψ(mF )

)2

c3 + 2
(mF

2
+ Ψ(mF )

)
c2 − c3c22

(85)

for mF ≥
(
M2

0 + c22
)
c3

c2 +M0c3
, and zero otherwise. The lower limit is found evaluating Eq. (9) at m0 = M0.
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