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Abstract. The study of the fluctuations in the steady state of a heated granular system is reviewed.
A Boltzmann-Langevin description can be built requiring consistency with the equations for the
one- and two-particle correlation functions. From the Boltzmann-Langevin equation, Langevin
equations for the total energy and the transverse velocity field are derived. The existence of a
fluctuation-dissipation relation for the transverse velocity field is also studied.
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1. Introduction
A granular system is characterized by a continuous loss of energy in collisions. The simplest model
that we can consider to describe this kind of systems is an assembly of smooth hard spheres (or
disks in two dimensions) that collide inelastically, in such a way that part of the kinetic energy
is dissipated in the encounter. The collision is characterized by a constant coefficient of normal
restitution [16, 21]. The rich phenomenology that has been found for this kind of systems makes
them of particular interest from both a fundamental and an applied point of view. In the dilute
limit, it has been shown numerically that for a wide class of initial conditions an isolated granular
gas reaches a homogeneous state, the so-called homogeneous cooling state (HCS), in which all the
time dependence of the one-particle distribution function is embedded in the granular temperature
which is defined as the second velocity moment of the distribution [17, 18]. This state, whose
properties have been extensively studied in the literature, plays, for inelastic gases, a role similar to
that of the equilibrium state for molecular gases. Nevertheless, from an experimental point of view,
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it is not obvious to probe such a regime [19, 25]. However, it is possible to obtain a non-equilibrium
stationary state by supplying energy to the system in such a way to compensate the dissipation due
to the inelasticity of collisions. We can think of several different procedures to thermalise the
system. An inhomogeneous stationary state can be reached if the energy is injected by a moving
boundary such as a vibrating piston [8]. To obtain a spatially homogeneous stationary state, we
can consider a mechanism coupling the velocity of each particle to a white noise, the so-called
stochastic thermostat [10, 11, 12, 15, 22, 23, 24, 27, 30, 31, 32, 33]. For this kind of forcing, which
is relevant for some two-dimensional experimental configurations with a rough vibrating piston
[26], the system reaches a homogeneous stationary state after a transient regime. The Boltzmann
equation for the steady state can be written and the distribution function evaluated approximately
for thermal velocities. For large values of the modulus of the velocity, an exponential behaviour is
found. An expression for the stationary temperature can be obtained as a function of the strength
of the noise and of the inelasticity of collisions [30].

The aim of this paper is to review some recent results about the fluctuations for a system subject
to the stochastic thermostat [14, 20] generalizing the theory to the study of dynamical properties.
The study of the fluctuations of granular gases has been addressed for a system in the homoge-
neous cooling state [7]. The starting point for this study was the equations for the correlation
functions obtained from an extension of the BBGKY hierarchy for granular gases. Later, follow-
ing the ideas of Zwanzig [2], a Langevin equation for the distribution function was introduced, in
which the properties of the noise of the Boltzmann-Langevin equation were identified requiring
consistency with the equations for the correlations [6]. A similar method will be applied to the
study of heated granular gases, identifying the Boltzmann-Langevin equation for the fluctuating
distribution function close to the stationary state. Once the fundamental properties of the noise of
the equations are calculated, we focus on the derivation of Langevin equations for the total energy
and the transverse velocity. From these equations, the one-time and two-time correlation functions
are evaluated. We pay special attention to the study of the transverse velocity remarking the differ-
ences with the elastic case (where we have a fluctuation-dissipation relation) and with the undriven
inelastic case. We note that in previous studies fluctuating equations for the hydrodynamic fields
were introduced phenomenologically, expecting to provide a valid description, at least, for small
values of the inelasticity [31]. The Boltzmann-Langevin description, as we will show, is valid
for all the range of values of the inelasticity, and allows us to address the problem of finding a
fluctuating hydrodynamic description without the limitation of small inelasticity.

The remainder of the paper is organised as follows. In Sec. 2. we recall some general results
for a granular gas heated by a stochastic thermostat. Sec. 3. is devoted to the non-fluctuating
hydrodynamic equations. In Sec. 4., the Boltzmann-Langevin description is presented and it
is finally applied to the derivation of the Langevin equations for the energy and the transverse
velocity field in Sec. 5. and 6., respectively.
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2. Kinetic theory description of heated granular gases
The system considered is a dilute gas of N smooth inelastic hard particles of mass m and diameter
σ. The position and velocity of the ith particle at time t will be denoted by Ri(t) and Vi(t),
respectively. The effect of a collision between two particles i and j is to instantaneously modify
their velocities according to the collision rule

V′
i = Vi − 1 + α

2
(σ̂ ·Vij)σ̂,

V′
j = Vj +

1 + α

2
(σ̂ ·Vij)σ̂, (2.1)

where Vij ≡ Vi − Vj is the relative velocity, σ̂ is the unit vector pointing from the center of
particle j to the center of particle i at contact, and α is the coefficient of normal restitution. It is
defined in the interval 0 < α ≤ 1 and it will be considered here as a constant, independent of the
relative velocity. Between collisions, the system is heated uniformly by adding a random velocity
to the velocity of each particle at equal times. The driving is implemented in such a way that the
time between random kicks is small compared to the mean free time. Then, between collisions,
the velocities of the particles undergo a large number of kicks due to the thermostat. In addition,
we will assume that the “jump moments” of the velocities of the particles verify

Bij,βγ ≡ lim
∆t→0

〈∆Vi,β∆Vj,γ〉noise

∆t
= ξ2

0δijδβγ +
ξ2
0

N
(δij − 1)δβγ, (2.2)

i, j = 1, . . . , N and β, γ = 1, . . . , d,

where we have introduced ∆Vi,β ≡ Vi,β(t + ∆t) − Vi,β(t), Vi,β(t) being the β component of
the velocity of particle i at time t. We have also introduced the strength of the noise, ξ0, and
〈. . . 〉noise, which denotes average over different realizations of the noise. The non-diagonal terms
(corresponding to i 6= j and β = γ) are necessary in order to conserve the total momentum [14].

2.1. Kinetic Equations
Given a trajectory of the system, microscopic densities in phase space, Fs(x1, . . . , xs, t), at time t
are defined by

F1(x1, t) =
N∑

i=1

δ[x1 −Xi(t)], (2.3)

F2(x1, x2, t) =
N∑

i=1

N∑

j 6=i

δ[x1 −Xi(t)]δ[x2 −Xj(t)], (2.4)

etc. Here Xi(t) ≡ {Ri(t),Vi(t)}, while the xi ≡ {ri,vi} are field variable referring to the
one-particle phase space. The average of F1(x1, t) and F2(x1, x2, t) over the initial probability
distribution of the system ρ(Γ, 0), where Γ ≡ {X1(t), . . . , XN(t)}, are the usual one-particle and
two-particle distribution functions

f1(x1, t) = 〈F1(x1, t)〉, f2(x1, x2, t) = 〈F2(x1, x2, t)〉, (2.5)

89



P. Maynar and M.I. Garcı́a de Soria A Langevin description for driven granular gases

where we have introduced the notation

〈G〉 ≡
∫

dΓG(Γ)ρ(Γ, 0). (2.6)

In the dilute limit, assuming molecular chaos, i.e. that no correlations exist between colliding
particles, and that the sizes of the jumps due to the thermostat are small compared to the scale on
which the distribution varies, the equation for the one-particle distribution function, f1(x1, t), is
the Boltzmann-Fokker-Planck equation [30]

[
∂

∂t
+ L(0)(x1)

]
f1(x1, t) = J [f1|f1] +

ξ2
0

2

∂2

∂v2
1

f1(x1, t), (2.7)

where we have introduced the free streaming operator

L(0)(x1) = v1 · ∂

∂r1

. (2.8)

The collisional term can be expressed as

J [f1|f1] =

∫
dx2δ(r12)T̄0(v1,v2)f1(x1, t)f1(x2, t), (2.9)

in terms of the binary collision operator

T̄0(v1,v2) = σd−1

∫
dσ̂Θ(σ̂ · v12)(σ̂ · v12)[α

−2b−1
σ̂ − 1], (2.10)

where we have neglected the separation between the centers of colliding particles. The operator
b−1
σ̂ changes the velocities to its right into the pre-collisional velocities

v∗1 = v1 − 1 + α

2α
(σ̂ · v12)σ̂, (2.11)

v∗2 = v2 +
1 + α

2α
(σ̂ · v12)σ̂. (2.12)

The last term in Eq. (2.7), which does not appear in the free cooling case, is the typical diffusive
Fokker-Planck contribution from the heating.

The two-particle distribution function is defined in such a way, see Eq. (2.4) and Eq. (2.5), that
the quantity f2(x1, x2, t)dx1dx2 is just the average number of pairs of particles in which one lies
inside the differential volume dx1 centered in x1 and likewise, with dx2 and x2 for the second parti-
cle. This definition is easily generalized to higher n-particle distribution functions, fn(x1, . . . , xn).
The evolution equation for f2, in the same limit in which the Boltzmann equation is valid, is [7]

[
∂

∂t
+ L(0)(x1) + L(0)(x2)

]
f2(x1, x2, t) = δ(r12)σ

d−1T̄0(v1,v2)f2(x1, x2, t)

+σd−1

∫
dx3

[
δ(r13)T̄0(v1,v3) + δ(r23)T̄0(v2,v3)

]
f3(x1, x2, x3, t) + FTH, (2.13)

90



P. Maynar and M.I. Garcı́a de Soria A Langevin description for driven granular gases

where we have introduced FTH that accounts for the external driving. The evolution equation (2.13)
contains essentially three parts: the free streaming in the left-hand side, the two terms in the right
hand side corresponding to collisions, and the last term, FTH due to the thermostat. The collisional
contribution is split into one part corresponding to collisions of particles with velocities v1 and v2,
and the other which involves collisions of particles with velocities v1 or v2 with a third particle
with arbitrary velocity, v3. The collisional contribution is identical to the one that appears in the
absence of forcing [7]. We concentrate now on the new term, FTH. Assuming that the sizes of the
jumps due to the thermostat are small compared to the scale in which the distribution f2 varies, we
can expand FTH in the spirit of the Fokker-Planck description [29]

FTH ' 1

2

d∑

β,γ=1

2∑
i,j=1

Bij,βγ
∂

∂vi,β

∂

∂vj,γ

f2(x1, x2, t)

=
1

2
ξ2
0

[
∂2

∂v2
1

+
∂2

∂v2
2

− 2

N

∂

∂v1

· ∂

∂v2

]
f2(x1, x2, t), (2.14)

where we have taken into account equation (2.2), and we have explicitly assumed that the jump
moments Bij,βγ do not depend on the magnitude of the velocities of the particles.

Two-time reduced distribution functions can also be defined in terms of the microscopic densi-
ties as

fr,s(x1, . . . , xr, t; x
′
1, . . . , x

′
s, t

′) ≡ 〈Fr(x1, . . . , xr, t)Fs(x
′
1, . . . , x

′
s, t

′)〉, (2.15)

where it will be assumed that t > t′ > 0, for concreteness. Again, in the low-density limit and
taking into account the influence of the thermostat, the lowest order distribution, f1,1, is seen to
obey the equation [7],

[
∂

∂t
+ L(0)(x1)

]
f1,1(x1, t; x

′
1, t

′) = σd−1

∫
dx2δ(r12)T̄0(v1,v2)f2,1(x1, x2, t; x

′
1, t

′)

+
ξ2
0

2

∂2

∂v2
1

f1,1(x1, t; x
′
1, t

′), (2.16)

which has to be solved with the initial condition

f1,1(x1, t
′; x′1, t

′) = δ(x1 − x′1)f1(x1, t
′) + f2(x1, x

′
1, t

′). (2.17)

Let us introduce the two-particle and three-particle correlation functions, g2 and g3, through
the usual cluster expansion

f2(x1, x2, t) = f1(x1, t)f1(x2, t) + g2(x1, x2, t), (2.18)

and

f3(x1, x2, x3, t) = f1(x1, t)f1(x2, t)f1(x3, t) + g2(x1, x2, t)f1(x3, t)

+g2(x1, x3, t)f1(x2, t) + g2(x2, x3, t)f1(x1, t) + g3(x1, x2, x3, t). (2.19)
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Similarly, for the two-time correlation functions, we introduce the two-time correlation functions
h1,1 and h2,1 through

f1,1(x1, t; x
′
1, t

′) = f1(x1, t)f1(x
′
1, t

′) + h1,1(x1, t; x
′
1, t

′), (2.20)

f2,1(x1, x2, t; x
′
1, t

′) = f1(x1, t)f1(x2, t)f1(x
′
1, t

′) + g2(x1, x2, t)f1(x
′
1, t

′)

+ h1,1(x1, t; x
′
1, t

′)f1(x2, t) + h1,1(x2, t; x
′
1, t

′)f1(x1, t)

+ h2,1(x1, x2, t; x
′
1, t

′). (2.21)

The equation for the correlation function g2(x1, x2, t) can be obtained following the same lines
as in reference [7]. Taking into account Eq. (2.18) and neglecting the three-body correlations, g3,
in Eq. (2.13), we obtain

[
∂

∂t
+ L(0)(x1) + L(0)(x2)

]
g2(x1, x2, t) = δ(r12)σ

d−1T̄0(v1,v2)f1(x1, t)f1(x2, t)

+ [K(x1, t) + K(x2, t)] g2(x1, x2, t)− ξ2
0

N

∂

∂v1

· ∂

∂v2

f1(x1, t)f1(x2, t), (2.22)

where we have introduced the linear operator K(xi, t) defined as

K(xi, t) = σd−1

∫
dx3δ(ri3)T̄0(vi,v3)(1 + Pi3)f1(x3, t) +

ξ2
0

2

(
∂

∂vi

)2

, (2.23)

and where the permutation operator Pab interchanges the labels of particles a and b in the quantities
on which it acts.

In the same way, the equation for h1,1, neglecting the contribution coming from h2,1 in Eq.
(2.16), is [

∂

∂t
+ L(0)(x1)−K(x1, t)

]
h1,1(x1, t; x

′
1, t

′) = 0, (2.24)

which have to be solved with the initial condition

h1,1(x1, t; x
′
1, t

′) = δ(x1 − x′1)f1(x1, t
′) + g2(x1, x

′
1, t

′). (2.25)

To sum up, under the same hypothesis made to derive the Boltzmann equation, we obtain
closed equations for the one-time and two-time correlation functions, Eqs. (2.22) and (2.24).
These equations represent a starting point for the study of the fluctuations and correlations in the
heated system.

2.2. The stationary state
It has been shown numerically that, for a wide class of initial conditions, the system reaches a
homogeneous stationary state [31] in which the energy input from the thermostat is compensated
by the energy lost in collisions. In this case the Boltzmann-Fokker-Planck equation reads

ξ2
0

2

∂2

∂v2
1

fH(v1) + J [fH |fH ] = 0. (2.26)

92



P. Maynar and M.I. Garcı́a de Soria A Langevin description for driven granular gases

For the sake of simplicity, let us introduce the following dimensionless distribution

fH(v) =
nH

vd
H

χH(c), (2.27)

with χH(c) an isotropic function of the modulus of c, vH = (2TH

m
)1/2, c = v

vH
and TH the granular

temperature defined as
d

2
nHTH =

∫
dv

1

2
mv2fH(v). (2.28)

By introducing equation (2.27) in equation (2.26), we obtain a closed equation for χH

∫
dc2T̄ (c1, c2)χH(c1)χH(c2) +

ξ2

2

∂

∂c2
1

χH(c1) = 0, (2.29)

where
T̄ (c1, c2) =

∫
dσ̂Θ(σ̂ · c12)(σ̂ · c12)[α

−2b−1
σ̂ − 1], (2.30)

is the dimensionless binary collision operator and ξ2 =
ξ2
0`

v3
H

is the dimensionless strength of the
noise with ` = (nHσd−1)−1 proportional to the mean free path.

An approximate expression for the scaled one-particle distribution function χH(c) was derived
to second order in Sonine polynomials [30]

χH(c) =
e−c2

πd/2

[
1 + a2(α)S2

d/2−1(c
2)

]
, (2.31)

where
S2

d/2−1(c
2) =

1

2
c4 − 1

2
(d + 2)c2 +

1

8
d(d + 2). (2.32)

The coefficient a2(α) is related to the forth velocity moment of χH(c)

d

d + 2

〈c4〉H
〈c2〉2H

= 1 + a2(α), (2.33)

and an approximate expression is [30]

a2 =
16(1− α)(1− 2α2)

73 + 56d− 24αd− 105α + 30(1− α)α2
. (2.34)

In the stationary state, the expression for the temperature in the first Sonine approximation is given
by

TH = m

[
dξ2

0

√
π

(1− α2)ΩdnHσd−1

]2/3

(1 +O(a2)), (2.35)

where Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle.
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In the case of the correlation functions for this homogeneous state, gH
2 and hH

1,1, it is convenient
to introduce the dimensionless counterparts, gH and hH , as

gH
2 (x1, x2) =

nH

`dv2d
H

gH(l12, c1, c2), hH
1,1(x1, t; x2, t

′) =
nH

`dv2d
H

hH(l12, c1, c2, s− s′), (2.36)

where we have introduced the dimensionless length scale l = r/`, l12 = l1− l2 and the dimension-
less time-scale s = vH

`
t. The reduced distribution, gH , fulfills

[
Λ(c1) + Λ(c2)− c12 · ∂

∂l12

]
gH(l12, c1, c2) = −δ(l12)T̄ (c1, c2)χH(c1)χH(c2)

+ ξ2nH`d

N

∂

∂c1

· ∂

∂c2

χH(c1)χH(c2),

(2.37)

where Λ(ci) is the linearized Boltzmann-Fokker-Planck operator

Λ(ci)h(ci) =

∫
dc3T̄ (ci, c3)(1 + Pi3)χH(c3)h(ci) +

ξ2

2

∂2

∂c2
i

h(ci). (2.38)

Equation (2.37) describes the one-time correlation between fluctuations in the stationary state. As
can be seen, the correlation function is determined by the properties of the linearized Boltzmann-
Fokker-Planck operator, Λ, and by the one-particle distribution function, χH .

The evolution equation for the two-time correlation function is
[

∂

∂s
− Λ(c1) + c1 · ∂

∂l1

]
hH(l12, c1, c2, s− s′) = 0, (2.39)

which has to be solved with the initial condition

hH(l12, c1, c2, 0) ≡ hH(l12, c1, c2) = χH(c1)δ(l12)δ(c12) + gH(l12, c1, c2). (2.40)

Taking into account equation (2.37) and that the term c12 · ∂
∂l12

χH(c1)δ(l12)δ(c12) vanishes identi-
cally, the equation for this quantity is

[
Λ(c1) + Λ(c2)− c12 · ∂

∂l12

]
hH(l12, c1, c2)

= −δ(l12)Γ(c1, c2) + ξ2nH`d

N

∂

∂c1

· ∂

∂c2

χH(c1)χH(c2), (2.41)

where
Γ(c1, c2) = T̄ (c1, c2)χH(c1)χH(c2)− [Λ(c1) + Λ(c2)]χH(c1)δ(c12). (2.42)
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3. Hydrodynamics
Let us summarize briefly how the system can be analyzed from a hydrodynamic point of view. The
hydrodynamic fields can be defined as usually done in kinetic theory

n(r, t) =

∫
dvf1(x, t), (3.1)

n(r, t)u(r, t) =

∫
dvvf1(x, t), (3.2)

d

2
n(r, t)T (r, t) =

∫
dv

m

2
V(r, t)2f1(x, t), (3.3)

where the function V(r, t) ≡ v−u(r, t) is the peculiar velocity. The complete non-linear equations
for these fields for a granular system heated by the stochastic thermostat are [15, 31]

∂

∂t
n = −∇ · (nu), (3.4)

∂

∂t
u = −u · ∇u− 1

mn
∇jPij, (3.5)

∂

∂t
T = −u · ∇T − 2

dn
(∇ · q + Pij∇jui)− ζT + mξ2

0 , (3.6)

where Pij is the pressure tensor, q is the heat flux and ζ is the cooling rate, which is also a functional
of the distribution function

ζ =
(1− α2)mπ

d−1
2 σd−1

4dΓ
(

d+3
2

)
nkBT

∫
dv1

∫
dv2|v1 − v2|3f1(r,v1, t)f1(r,v2, t). (3.7)

3.1. Evolution of homogeneous perturbations
Now, we will focus on the study of a linear perturbation of the hydrodynamic fields around the
homogeneous stationary state. We are interested, primarily, in the information related to the hy-
drodynamic eigenvalues that we can obtain from them.

Considering a homogeneous state, the previous equations reduce to

∂

∂t
n = 0,

∂

∂t
u = 0,

∂

∂t
T = −ζT + mξ2

0 . (3.8)

In the long time limit, the system is expected to approach a steady state with a constant temperature
given by the equation

ζH(fH)TH = mξ2
0 . (3.9)

Substituting the explicit form of the scaled one-particle distribution function in the first Sonine
approximation, Eq. (2.31), in the equation above, we obtain the temperature given in (2.35).
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Let us consider now a homogeneous state close to this homogeneous stationary state. We can
write the hydrodynamic fields as n(t) = nH + δn, u(t) = δu and T (t) = TH + δT . We also define
the dimensionless hydrodynamic fields

δρ(s) =
δn

nH

, δw(s) =
δu

vH

, δθ(s) =
δT

TH

, (3.10)

where we used the dimensionless time scale s introduced in the previous section. Assuming that
the deviations are small, and taking into account equations (3.8)-(3.9), we can write the linearized
evolution equations for the dimensionless hydrodynamic fields in this new time scale

∂

∂s
δρ = 0,

∂

∂s
δw = 0,

∂

∂s
δθ = −ζ0δρ− 3

2
ζ0δθ, (3.11)

where ζ0 = lζH

vH
is a dimensionless coefficient that is a functional of the one-particle distribution

function in the stationary state. Its expression in the first Sonine approximation is [30]

ζ0 =
(16 + 3a2)π

d−1
2 (1− α2)

8
√

2dΓ
(

d
2

) . (3.12)

To obtain the equation for δθ we have assumed that the perturbed distribution function scales as

f1(v, t) =
n

v̄(t)d
χH

(
v

v̄(t)

)
, (3.13)

where v̄(t) =
[

2T (t)
m

]1/2

, and χH is the same scaled distribution function as for the reference
stationary state. This assumption has already been used and tested numerically in [31], but we
remark that it is an additional approximation. Then, the cooling rate ζ for the state under scrutiny
is proportional to T 1/2(t) and we obtain the equation for the linearized energy written above.
Equations (3.11) indicate that a perturbation in the total number of particles or total momentum
does not decay, as a consequence of the fact that these variables are conserved, but a perturbation
in the total energy will decay exponentially to the stationary value, as expected. Moreover, as the
equation for the temperature can be rewritten in the following form

∂

∂s

(
2

3
δρ + δθ

)
= −3

2
ζ0

(
2

3
δρ + δθ

)
, (3.14)

we can identify the hydrodynamic eigenvalues λ = 0 and γ = −3
2
ζ0, λ being (d + 1)-fold degen-

erate. For the sake of clarity, it proves convenient to relabel these eigenvalues as

λ1 = 0, λ2 = 0, λ3 = −3

2
ζ0, (3.15)

where λ2 is d-fold degenerate. The associated hydrodynamic modes, {yβ}d+2
β=1 are

y1 = δρ, y2 = δw, y3 =
2

3
δρ + δθ. (3.16)
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3.2. Enforcing consistency with the linearized Boltzmann-Fokker-Planck
equation description

We now turn our attention to the problem of finding the linearized hydrodynamic equations for a
homogeneous perturbation, directly from the Boltzmann-Fokker-Planck equation. Enforcing con-
sistency with the macroscopic considerations of section 3.1. above, we will infer useful properties
on the hydrodynamic part of the spectrum of Λ(c). We first introduce the scaled deviation of the
distribution function

δχ(c, s) =
vd

H

nH

[f1(v, t)− fH(v)]. (3.17)

The evolution of the scaled distribution is governed by

∂

∂s
δχ(c, s) = Λ(c)δχ(c, s), (3.18)

where the operator Λ(c) is the linearized Boltzmann-Fokker-Planck operator defined in (2.38). Let
us also introduce the scalar product

〈f(c)|g(c)〉 ≡
∫

dcχ−1
H (c)f ∗(c)g(c), (3.19)

where f ∗ is the complex conjugate of f . Interestingly, the hydrodynamic modes introduced in
(3.16) can then be written as

yβ = 〈ξ̄β|δχ〉, β = 1, 2, 3, (3.20)

where

ξ̄1(c) = χH(c), ξ̄2(c) = cχH(c), ξ̄3(c) =

(
c2

d
− 1

6

)
χH(c). (3.21)

Taking the scalar product of the linearized Boltzmann-Fokker-Planck equation (3.18) with the
functions ξ̄β , we obtain the linear equations (3.11) (in the hydrodynamic time scale, that is, if we
wait long enough so that fast modes have vanished) only if the spectrum of Λ admits the three
eigenvalues written in (3.15), and the associated “hydrodynamic” eigenfunctions, {ξβ}d+2

β=1, obey
the orthogonality condition

〈ξ̄β1|ξβ2〉 = δβ1β2 , β1, β2 = 1, 2, 3. (3.22)

In Appendix A, it is shown that the null eigenvalue is (d + 1)-fold degenerate, and the correspond-
ing eigenfunctions, ξ1 and ξ2, are worked out. Moreover, as a consequence of particle and total
momentum conservation in a collision, ξ̄1 and ξ̄2 are the corresponding left eigenfunctions. We
were not able to demonstrate that λ3 is an eigenvalue of Λ, but we have shown explicitly that

〈ξ̄3|ξβ〉 = 0, for β = 1, 2. (3.23)

In the following, we will assume that Λ actually admits this third eigenvalue, with an unknown
eigenfunction ξ3 and that ξ̄3 is a good approximation of the actual left eigenfunction associated
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with λ3 . With the help of this assumption, we will see in the following sections that it is possible to
define a projector in the hydrodynamic subspace. Let us remark that for inelastic Maxwell particles
in the free cooling case the function ξ̄3 identified in this way is the actual left eigenfunction [4].
For the heated case the situation is similar and the linearized Boltzmann-Fokker-Planck operator
for inelastic Maxwell particles has a left eigenfunction which is a linear combination of the two
functions χH(c), and c2χH(c) (in fact, the linear combination which makes the function orthogonal
to ξ1(c)). These facts support our assumption as a reasonable approximation for the hard particle
case.

4. The Boltzmann-Langevin equation
The starting point for the study of the fluctuations in this work will be the Boltzmann-Langevin
equation. In this section we derive the corresponding equation and we determine the properties of
the noise in order to obtain consistency with the equations of the correlation functions presented in
section 2..

As defined in Eq. (2.5), the one-particle distribution function, f1, is the ensemble average of
the phase function F1, and its dynamics is given by the Boltzmann-Fokker-Planck equation, Eq.
(2.7). The problem is now to find an evolution equation for the fluctuating quantity

δF (l, c, s) =
vd

H

nH

[F1(x, t)− fH(v)]. (4.1)

As for the velocity of a Brownian particle [28], we expect that the difference between the equa-
tion for the fluctuating quantity δF , and its average, 〈δF 〉 = δχ, is a random force term, R [2].
Then, the fluctuations δF around χH are described by a Boltzmann equation linearized around the
solution χH with a random force, R, added

∂

∂s
δF (l, c, s) =

[
Λ(c)− c · ∂

∂l

]
δF (l, c, s) + R(l, c, s). (4.2)

Taking averages in equation (4.2), we obtain the linearized Boltzmann-Fokker-Planck equation if
and only if

〈R(l, c, s)〉 = 0. (4.3)

Equation (4.2) is the Boltzmann-Langevin equation. As in the free cooling case [6], we assume
that the noise term, R(l, c, s), is Markovian

〈R(l1, c1, s1)R(l2, c2, s2)〉H = H(l1, l2, c1, c2)δ(s1 − s2), (4.4)

where 〈. . . 〉H means average in the stationary homogeneous state. In order to evaluate the func-
tion H(l1, l2, c1, c2) explicitly, we will calculate 〈δF (l1, c1, s)δF (l2, c2, s)〉H with the Boltzmann-
Langevin equation and then, we will impose compatibility with the equation of the correlation
function of Sec. 2.. So, let us first write this function as a functional of the distribution and the
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correlation functions. Using the definitions of the microscopic densities, Eqs. (2.3), (2.4), the dis-
tribution and correlation functions, Eqs. (2.5), (2.18), (2.40), and the dimensionless distributions,
Eqs. (2.27), (2.36), we have

〈δF (l1, c1, s)δF (l2, c2, s)〉H =
v2d

H

n2
H

〈[F1(x1, t)− fH(v1)][F1(x2, t)− fH(v2)]〉H

=
v2d

H

n2
H

[〈F1(x1, t)F1(x2, t)〉H − fH(v1)fH(v2)]

=
v2d

H

n2
H

[f2,H(x1, x2, t) + fH(v1)δ(x1 − x2)− fH(v1)fH(v2)]

=
v2d

H

n2
H

[g2,H(x1, x2) + fH(v1)δ(x1 − x2)]

=
1

nH`d
[gH(l12, c1, c2) + δ(l12)δ(c12)χH(c1)]

=
1

nH`d
hH(l12, c1, c2). (4.5)

Now, let us solve Eq. (4.2) as a functional of the noise. In order to do that it is convenient to
define the linear operator

Λ(li, ci) ≡ Λ(ci)− ci · ∂

∂li
, (4.6)

in terms of which the solution for δF (l, c, s) is

δF (l, c, s) = eΛ(l,c)sδF (l, c, 0) +

∫ s

0

ds′eΛ(l,c)(s−s′)R(l, c, s′)

sÀ1→
∫ s

0

ds′eΛ(l,c)(s−s′)R(l, c, s′), (4.7)

where we have assumed that the term stemming from the initial conditions vanishes in the long
time limit. This is equivalent to assuming that the spectrum of the linearized Boltzmann-Fokker-
Planck operator is such that any perturbation without component in the subspace associated with
the null eigenvalue decays. With equation (4.7), we can evaluate

〈δF (l1, c1, s)δF (l2, c2, s)〉H
=

∫ s

0

ds′
∫ s

0

ds′′eΛ(l1,c1)(s−s′)+Λ(l2,c2)(s−s′′)〈R(l1, c1, s
′)R(l2, c2, s

′′)〉H

=

∫ s

0

ds′
∫ s

0

ds′′eΛ(l1,c1)(s−s′)+Λ(l2,c2)(s−s′′)H(l12, c1, c2)δ(s
′ − s′′)

=

∫ s

0

ds′e[Λ(l1,c1)+Λ(l2,c2)](s−s′)H(l12, c1, c2)

= −[Λ(l1, c1) + Λ(l2, c2)]
−1

[
e[Λ(l1,c1)+Λ(l2,c2)](s−s′)

]s′=s

s′=0
H(l12, c1, c2)

sÀ1→ −[Λ(l1, c1) + Λ(l2, c2)]
−1H(l12, c1, c2), (4.8)
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where we have assumed that the term e[Λ(l1,c1)+Λ(l2,c2)]sH(l12, c1, c2) → 0 in the long time limit.
After identifying the function, we will see that this is, in fact, the case, because H(l12, c1, c2) does
not have components in the subspace associated with the null eigenvalue. Equivalently we have

[Λ(l1, c1) + Λ(l2, c2)]hH(l12, c1, c2) = −nH`dH(l12, c1, c2). (4.9)

Finally, comparing equations (4.9) and (2.41) we conclude that

H(l12, c1, c2) =
1

nH`d
δ(l12)Γ(c1, c2)− ξ2

N

∂

∂c1

· ∂

∂c2

χH(c1)χH(c2), (4.10)

with Γ(c1, c2) given in Eq. (2.42). With this expression of H we can see that it does not have
components in the subspace associated with the null eigenvalue. Taking into account that ξ̄1 and
ξ̄2 are left eigenfunctions of Λ associated with the null eigenvalue and that [14]

∫
dc1

∫
dc2T̄ (c1, c2)χH(c1)χH(c2) = 0,

∫
dc1

∫
dc2c1iT̄ (c1, c2)χH(c1)χH(c2) = 0,

∫
dc1

∫
dc2c1ic2iT̄ (c1, c2)χH(c1)χH(c2) = ξ2, (4.11)

we can see that
∫

dl12

∫
dc1

∫
dc2H(l12, c1, c2) = 0,

∫
dl12

∫
dc1

∫
dc2c1iH(l12, c1, c2) = 0,

∫
dl12

∫
dc1

∫
dc2c1ic2iH(l12, c1, c2) = 0. (4.12)

If we multiply Eq. (4.2) by δF (l′, c′, s′), with s′ < s and we average, we obtain
[

∂

∂s
− Λ(c) + c · ∂

∂l

]
〈δF (l, c, s)δF (l′, c′, s′)〉H = 〈R(l, c, s)δF (l′, c′, s′)〉H . (4.13)

We can easily see that

〈δF (l, c, s)δF (l′, c′, s′〉H =
1

nH`d
hH(l− l′, c, c′, s− s′). (4.14)

Now, if we compare Eqs. (2.39) and (4.13), we obtain that

〈R(l, c, s)δF (l′, c′, s′)〉H = 0, s > s′. (4.15)

100



P. Maynar and M.I. Garcı́a de Soria A Langevin description for driven granular gases

In the remaining of this section, we shall write the Boltzmann-Langevin equation together
with noise properties in Fourier space. This will prove useful for the subsequent analysis. Let us
introduce the Fourier component of a function of the position variable as

f̃(k) =

∫
dle−ik·lf(l), f(l) =

1

Ṽ

∑

k

eik·lf̃(k), (4.16)

where Ṽ = V
`d is the volume in units of the mean free path. The equation for δF̃ (k, c, s) is then

[
∂

∂s
− Λ(k, c)

]
δF̃ (k, c, s) = R̃(k, c, s), (4.17)

where we have introduced the operator

Λ(k, c) = Λ(c)− ik · c. (4.18)

The Fourier transform of the noise, R̃(k, c, s) obeys

〈R̃(k1, c1, s1)〉H = 0, (4.19)

〈R̃(k1, c1, s1)δF̃ (k2, c2, s2)〉H = 0, s1 > s2, (4.20)

and
〈R̃(k1, c1, s1)R̃(k2, c2, s2)〉H = H(k1,k2, c1, c2)δ(s1 − s2), (4.21)

where

H(k1,k2, c1, c2) =
Ṽ 2

N

[
Γ(c1, c2)δ(k1 + k2)− ξ̃2 ∂

∂c1

· ∂

∂c2

χH(c1)χH(c2)δ(k1)δ(k2)

]
, (4.22)

which completes the calculation of the noise variance within the Langevin description.

5. Fluctuations of the total energy
As a first application of the Boltzmann-Langevin equation, let us derive a Langevin equation for
the total energy. This calculation has been done using the correlation function formalism, and the
result was compared to results of Direct simulation Monte Carlo method, obtaining a very good
agreement for all the values of the coefficient α. Now, we will show that, from the Boltzmann-
Langevin equation it is possible to deduce an equation for the total energy that gives the same
results for the fluctuations.

We can write the energy fluctuations, in terms of the microscopic density, as

δE(t) =

∫
dv

∫
dr

1

2
mv2 [F1(x, t)− fH(v)]

=
mv2

H`dnH

2

∫
dcc2

∫
dlδF (l, c, s)

=
mv2

H

2
`dnH

∫
dcc2δF̃ (k = 0, c, s). (5.1)
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The dimensionless field δε(s) is defined by

δε(s) =
δE(t)

〈E(t)〉H =
1

Ṽ

∫
dc

2c2

d
δF̃ (k = 0, c, s), (5.2)

where 〈E(t)〉H is the total mean energy. We can identify δε(s) with the scalar product

δε(s) =
2

Ṽ
〈ξ̄3|δF̃ (k = 0, c, s)〉. (5.3)

If we consider now that ξ̄3 is approximately an eigenfunction of Λ(c) with eigenvalue λ3 = −3
2
ζ0,

using the Boltzmann-Langevin equation we can write
[

d

ds
+

3

2
ζ0

]
δε(s) = Rε(s), (5.4)

with
Rε(s) =

2

Ṽ
〈ξ̄3|R̃(k = 0, c, s)〉. (5.5)

The next step is to find the properties of the noise term, Rε(s), making use of the properties of the
noise of the Boltzmann-Langevin equation. From Eq. (4.20) it is clear that

〈Rε(s)δε(s
′)〉H = 0, s > s′. (5.6)

The correlation function of the noise is

〈Rε(s1)Rε(s2)〉H =
4

Ṽ 2

∫
dc1

∫
dc2χH(c1)

−1χH(c2)
−1ξ̄3(c1)ξ̄3(c2)H(l12, c1, c2)δ(s1 − s2)

=
4

N
δ(s1 − s2)

[〈ξ̄3(c1)ξ̄3(c2)|T̄ (c1, c2)χH(c1)χH(c2)〉
− 〈ξ̄3(c1)ξ̄3(c2)|(Λ(c1) + Λ(c2))χH(c1)δ(c12)〉

]
= Aεδ(s1 − s2), (5.7)

where we have made use of Eq. (4.22) and Eq. (2.42). The calculation is now straightforward
although lengthy. Taking into account the results obtained in [14], we have, in first order in Sonine
polynomials that

〈ξ̄3(c1)ξ̄3(c2)|T̄ (c1, c2)χH(c1)χH(c2)〉 = 3ζ0a33, (5.8)

with

a33 =
−15 + 7d + 14d2 − 3(−9 + d(9 + 2d))α + 30(1 + d)α2 − 6(9 + d)α3)

9d(−19 + 2d(−7 + 3α) + 3α(9 + 2(−1 + α)α))
. (5.9)

The other term can be easily evaluated in our approximation

〈ξ̄3(c1)ξ̄3(c2)|(Λ(c1) + Λ(c2))χH(c1)δ(c12)〉 ' −3ζ0

∫
dc

(
c2

d
− 1

6

)2

χH(c)

= −3ζ0

(
− 5

36
+

d + 2

4d
(1 + a2)

)
. (5.10)
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Finally, we can identify Aε to be

Aε =
12

N
ζ0

(
a33 − 5

36
+

d + 2

4d
(1 + a2)

)
. (5.11)

With the properties we have about the noise Rε(s), it is easy to calculate the correlation function
of δε. The solution of Eq. (5.4) can be formally written as

δε(s) = e−
3
2
ζ0sδε(0) +

∫ s

0

ds′e−
3
2
ζ0(s−s′)Rε(s

′)
sÀ1→

∫ s

0

ds′e−
3
2
ζ0(s−s′)Rε(s

′). (5.12)

So, we can evaluate

〈δε(s)2〉H =

∫ s

0

ds1

∫ s

0

ds2e
− 3

2
ζ0[(s−s1)+(s−s2)]〈Rε(s1)Rε(s2)〉H =

∫ s

0

ds1e
−3ζ0(s−s1)Aε

sÀ1→ Aε

3ζ0

.

(5.13)
In Fig. 1, we show the comparison between the theoretical result (solid line) and the DSMC
method results (circles and squares) for a two-dimensional system, as a function of the coefficient
of normal restitution. As can be seen, the agreement is satisfactory for all the range of values
of the inelasticity. In the limit, α → 1−, we find the non-trivial result 〈δε2〉H → d

3
, while in

the free cooling state, this quantity vanishes [7]. We emphasize that the elastic limit is singular:
the behaviour for elastic systems with α = 1 is not approached by taking the quasi-elastic limit
α → 1−.

We can also evaluate the two-time correlation function for the fluctuations of the total energy.
If we multiply in Eq. (5.4) by δε(s′), for s′ < s, and taking into account that the noise is not
correlated with the distribution function for a time smaller, we obtain that

〈δε(s)δε(s′)〉H = 〈δε(s′)2〉He−
3
2
ζ0(s−s′). (5.14)

Then, the decay of the two-time correlation function is the same as we have found for a homo-
geneous perturbation of the total energy. As expected, the amplitude of the fluctuations coincides
with the one obtained in [14] from the equations for the correlation functions.

6. The fluctuating transverse velocity
The objective in this section is to derive a fluctuating equation for the transverse velocity field,
w⊥(k, s). The reason to consider this field is that its equation is decoupled from the equations for
the other hydrodynamic fields [31], and it can be derived exactly in the hydrodynamic limit with
the knowledge we have about the spectrum of the linearized Boltzmann-Fokker-Planck operator,
i.e. we do not need the approximation corresponding to the third eigenfunction.

Mathematically, the transverse velocity is defined in the following way: Let us consider the
d-dimensional vector k which belongs to the space <d. This space can be spanned by the base
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Figure 1: Second moment of the fluctuations of the total energy as a function of the restitution
coefficient α. The solid line is the theoretical prediction and symbols are the two-dimensional
Monte Carlo simulation results of Ref. [32].

{
k̂
} ⋃ {

k̂i
⊥
}d−1

i=1
where k̂ is a unitary vector parallel to k and

{
k̂i
⊥
}d−1

i=1
are (d−1) unitary vectors

orthogonal to k. The transverse velocity is defined as

w⊥i(k, s) =

∫
dc(c · k̂i

⊥)δF̃ (k, c, s), i = 1, . . . , d− 1. (6.1)

For the subsequent analysis, it is convenient to introduce the following projectors

P (i)f(c) ≡ 〈ξ̄2⊥i(c)|f(c)〉ξ2⊥i(c), (6.2)

Q(i)f(c) ≡ (1− P (i))f(c). (6.3)

Then, if we apply P (i) to δF̃ we obtain

P (i)δF̃ (k, c, s) = w⊥i(k, s)ξ2⊥i(c), (6.4)

and the transverse velocity is the component of δF̃ (k, c, s) in the subspace generated by ξ2⊥i(c).
In order to obtain an equation for w⊥, we apply the projectors P and Q (for simplicity in the

notation we skip the super-index) to the Langevin equation (4.17)
[

∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) = PR̃(k, c, s)− Pi(k · c)QδF̃ (k, c, s), (6.5)
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[
∂

∂s
−QΛ(k, c)

]
QδF̃ (k, c, s) = QR̃(k, c, s)−Qi(k · c)PδF̃ (k, c, s). (6.6)

Now, let us solve equation (6.6) formally

QδF̃ (k, c, s) = eQΛ(k,c)sQδF̃ (k, c, 0)

+

∫ s

0

ds′eQΛ(k,c)(s−s′)[QR̃(k, c, s′)−Qi(k · c)PδF̃ (k, c, s′)]. (6.7)

Restricting ourselves to initial conditions with QδF̃ (k, c, s) = 0, and by substituting Eq. (6.7) in
Eq. (6.5), we obtain a closed equation for PδF̃ (k, c, s)

[
∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) + P (k · c)

∫ s

0

ds′eQΛ(k,c)(s−s′)Q(k · c)PδF̃ (k, c, s′)

= PR̃(k, c, s)

− Pi(k · c)
∫ s

0

ds′eQΛ(k,c)(s−s′)QR̃(k, c, s′). (6.8)

In Appendix B it is shown that, in the hydrodynamic limit, i.e. to second order in k and in the long
time limit, equation (6.8) reduces to the following equation for the transverse velocity

[
∂

∂s
+ η̃k2

]
w⊥(k, s) = Rw(k, s). (6.9)

The coefficient η̃ is the shear viscosity given by

η̃ =

∫ ∞

0

ds

∫
dccxcye

Λ(c)scxξ2,y(c) = −
∫

dccxcyΛ(c)−1cxξ2,y(c), (6.10)

which agrees with the expression obtained in [15] by the Chapman-Enskog method, and Rw(k, s)
is a noise term which can be decomposed as

Rw(k, s) = S(k, s) + Π(k, s). (6.11)

The term S(k, s) comes from the thermostat (which does not conserve momentum locally), and the
second term, Π(k, s), is the fluctuating part of the pressure tensor. Their microscopic expressions
in terms of the noise of the Boltzmann-Langevin equation are

S(k, s) =

∫
dc(k̂⊥ · c)R̃(k, c, s), (6.12)

and
Π(k, s) = −ik

∫ s

0

ds′
∫

dc(k̂ · c)(k̂⊥ · c)eQΛ(k,c)(s−s′)QR̃(k, c, s′). (6.13)

Of course, due to the fact that 〈R̃(k, c, s)〉H = 0, the mean value of the noise vanishes

〈Rw(k, s)〉H = 0. (6.14)
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The autocorrelation function of the noise is evaluated in Appendix C. Due to symmetry consider-
ations, there are only correlations between the k and −k components, which yields

〈Rw(k, s1)Rw(−k, s2)〉H =
Ṽ 2

N

[
ξ2δ(s1 − s2) + k2Cxy(s2 − s1)

]

+ 〈S(k, s1)Π(−k, s2)〉H , s1 < s2. (6.15)

The first term is the expected zeroth order term which comes from the heating. The Dirac delta
function is an exact consequence of the fact that the external noise (the heating) is white. The
function Cxy(s2 − s1) reads

Cxy(s2 − s1) =

∫
dc1

∫
dc2c1xc1yc2xc2ye

Λ(c2)(s2−s1)φH(c1, c2). (6.16)

Here, we have introduced the function φH(c1, c2) as the space integral of the correlation function
hH(l, c1, c2)

φH(c1, c2) =

∫
dlhH(l, c1, c2) = χH(c1)δ(c12) + χ2(c1, c2), (6.17)

where χ2(c1, c2) =
∫

dlgH(l, c1, c2) and gH is the dimensionless correlation function defined in
(2.36). The equation for φH can easily be obtained by integration over space variable in Eq. (2.41),
which gives

[Λ(c1) + Λ(c2)]φH(c1, c2) = −Γ(c1, c2) + ξ2 ∂

∂c1

· ∂

∂c2

χH(c1)χH(c2). (6.18)

As discussed in Appendix C, Cxy can be physically interpreted as the autocorrelation function
of the global quantity

∑N
i=1 Vx(t)Vy(t). In the elastic case, this correlation function is related to

the shear viscosity but it is not the case for granular systems [1]. The formula for the correlation
〈S(k, s1)Π(−k, s2)〉H is given in Appendix C, and it does not seem to admit a simple physical
interpretation. As the two correlation functions, Cxy(s) and 〈S(k, s1)Π(−k, s2)〉H , decay with the
kinetic modes and, in the k → 0 limit, the fluctuating velocity is expected to be frozen (its time
evolution is given by the null eigenvalue, Eq. (6.9)), we can consider that they are proportional to
a Dirac delta function in time, and we have

Ṽ 2

N
k2Cxy(s2 − s1) + 〈S(k, s1)Π(−k, s2)〉H

→ 2

[
Ṽ 2

N
k2

∫ ∞

0

dsCxy(s) +

∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H
]

δ(s1 − s2).

(6.19)

Note that this is in contrast with the free cooling case where the noise can not be considered to be
white [6]. In this case, the equation for the transverse velocity (rescaled with the thermal velocity)
contains a term of order zero in k which is proportional to the cooling rate. Then, even in the
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k → 0 limit, the velocity is not frozen on the kinetic scale. In Appendix D the second integral of
equation (6.19) is evaluated obtaining

∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H → Ṽ 2

N
k2

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2), (6.20)

which is valid in the hydrodynamic limit. If we substitute φH(c1, c2) by its expression in terms
of the one- and two-particle distribution function, Eq. (6.17), we obtain (see Appendix E) that
the one-particle contribution vanishes and the correlation function can be written in terms of the
two-particle velocity correlation function, χ2(c1, c2)

〈Rw(k, s1)Rw(−k, s2)〉H
=

Ṽ 2

N
δ(s1 − s2)

{
ξ2 + 2k2

[
−

∫
dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1χ2(c1, c2)

+

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yχ2(c1, c2)

]}
. (6.21)

As can be seen, the k2 term has no relation, a priori, with the shear viscosity, Eq. (6.10), i.e.
there is a priori no fluctuation-dissipation relation as that assumed in [31]. However, we now
show that, under additional hypotheses (that in principle are not restricted to the elastic limit),
the aforementioned term reduces to the shear viscosity. Let us assume that the most important
contribution of the two-particle velocity correlation function, χ2(c1, c2), is the hydrodynamic part,
i.e. we assume

χ2(c1, c2) '
d+2∑

β=1

d+2∑

β′=1

aβ,β′ξβ(c1)ξβ′(c2). (6.22)

This assumption was already made in [14] where the coefficients aβ,β′ were evaluated to calculate
the total energy fluctuations. We emphasize that it led to an excellent agreement between analytical
predictions and numerical data (Monte Carlo) for energy fluctuations, for all the values of the
inelasticity [14]. In this approximation, the first integral in (6.21) vanishes because cxcyχH(c) is
orthogonal to the hydrodynamic modes. The second term is

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2y

d+2∑

β=1

d+2∑

β′=1

aβ,β′ξβ(c1)ξβ′(c2)

= a2x,2x

∫
dc1c1xξ2x(c1)

∫
dc2c2xc2yΛ(c2)

−1c2yξ2x(c2), (6.23)

where, for symmetry considerations, the only term that remains is the one associated with β =
β′ = 2. If we use now that a2i2i = −1/2 (see the reference [14]), and the formula for the shear
viscosity, Eq. (6.10), we finally have

〈Rw(k, s1)Rw(−k, s2) =
Ṽ 2

N
δ(s1 − s2)(ξ

2 + η̃k2). (6.24)
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Then, in the hydrodynamic limit and assuming that the two-particle velocity correlation function,
χ2(c1, c2), has only components in the hydrodynamic subspace, the correlation function of the
noise reduces to the one introduced phenomenologically in [31], not only in the elastic limit, but
for arbitrary inelasticity. Although we have no direct proof of the accuracy of approximation (6.22),
we note that it is backed up by numerical data, see e.g. [14].

As an application of Eq. (6.9), let us calculate the two-time correlation for the transverse veloc-
ity field. Proceeding as in Sec. 5., the two-time correlation function can be calculated, obtaining

〈w⊥(k, s)w⊥(−k, s′)〉H =
Ṽ 2

N

ξ2 + η̃k2

2η̃k2
e−η̃k2(s−s′). (6.25)

As seen, the correlation function decays as a linear macroscopic perturbation, with an amplitude
which is a function of the heating and the shear viscosity.

7. Conclusions
In this work, we have presented a theory of fluctuations for a dilute gas heated by a stochastic
thermostat in the stationary state. The starting point has been the Boltzmann-Langevin equation:
a stochastic equation for the fluctuating distribution function. This equation has the same form as
the linearized Boltzmann equation but adding a noise term. The properties of the noise are deter-
mined enforcing consistency with the equations for the correlation functions, for both the one-time
and the two-time correlation functions. We consider that the noise is white as it is the case for
molecular fluids. From this equation it would be possible to construct a set of fluctuating hydro-
dynamic equations, and from them to evaluate the one-time and two-time correlation functions of
the fluctuating fields. We have focused on the study of the simplest two fluctuating quantities: the
total energy and the transverse velocity, whose equations are decoupled. The results obtained for
the energy fluctuations match up with the ones calculated earlier by means of the equation for the
correlation function [14]. We have also deduced the decay of the correlations for the fluctuations,
finding that they decay in the same way as a linear perturbation. These results have been success-
fully tested against the numerical results obtained by the Direct simulation Monte Carlo method
for all the range of values of the coefficient of normal restitution α [14, 32]. For the transverse
velocity field, some important differences have been found in comparison with the free cooling
case [5, 6], where it was shown that the relevant Langevin noise is not white and that there is no a
fluctuation-dissipation relation of the second kind (the amplitude of the noise is not related to the
shear viscosity). Firstly, the noise has two parts, one coming from the thermostat and the other one
coming from the fluctuating pressure tensor. Moreover, the noise can be considered to be white as
the dynamics of the velocity is as slow as desired in the hydrodynamic (low k) limit. With regard
to the validity of the fluctuation-dissipation relation in the heated case in the hydrodynamic limit,
the amplitude of the noise is priori not related to the shear viscosity. However, considering that the
two-particle velocity correlation function has only hydrodynamic modes –which seems a reason-
able assumption– the coupling between the two noises somehow restores fluctuation-dissipation
and we obtain the expression assumed in [31], with the actual inelastic shear viscosity. In princi-
ple, this rather surprising result is not limited to small inelasticity.
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A Eigenvalue problem for Λ

We consider here the eigenvalue problem for the homogeneous linear Boltzmann-Fokker-Planck
operator Λ, defined in (2.38)

Λ(c)ξβ(c) = λβξβ(c). (A1)

We are interested in the eigenfunctions and eigenvalues associated with linear hydrodynamics and,
to perform the analysis, similar techniques as in [3, 7, 13] will be required.

Consider first the function
ψ1(c) = χH(c). (A2)

When the linearized operator Λ acts on χH , we have

Λ(c1)χH(c1) =

∫
dc2T̄ (c2, c3)(1 + P12)χH(c2)χH(c1) +

ξ2

2

(
∂

∂c1

)2

χH(c1). (A3)

Taking into account the equation for χH , Ec. (2.29), we obtain the following relation

Λ(c1)ψ1(c1) = −ξ2

2

(
∂

∂c1

)2

χH(c1). (A4)

Now, let us considerer the function

ψ2(c) = − ∂

∂c
χH(c). (A5)

Taking derivate in the equation obeyed by χH(c−w) with respect to w, and subsequently evalu-
ating the result for w = 0, we obtain

Λ(c1)ψ2(c1) = 0. (A6)

Finally, we will consider the function

ψ3(c) = c · ∂

∂c
χH(c). (A7)

From the equation obeyed by ψ3(λc1), we can take derivate with respect to λ, and evaluate the
result for λ = 1. We arrive at an equation for ψ3(c1),

Λ(c1)ψ3(c1) = (d + 3)
ξ2

2

(
∂

∂c1

)2

χH(c1). (A8)
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From equations (A4), (A6) and (A8), we can identify two eigenfunctions of Λ. Making use of
(A4) and (A8), it appears that

Λ(c)

(
1

3

∂

∂c
· [cχH(c)] + χH(c)

)
= 0. (A9)

Hence, from Eqs. (A6) and (A9) we can conclude that the null eigenvalue is (d + 1)-fold
degenerate with the eigenfunctions

ξ1(c) =
1

3

∂

∂c
· [cχH(c)] + χH(c), ξ2 = − ∂

∂c
χH(c). (A10)

B Derivation of the transverse velocity field equation
In this Appendix we derive the equation for the transverse velocity field, w⊥(k, s), in the hydrody-
namic limit. The starting point is equation (6.8)

[
∂

∂s
− PΛ(k, c)

]
PδF̃ (k, c, s) + P (k · c)

∫ s

0

ds′eQΛ(k,c)(s−s′)Q(k · c)PδF̃ (k, c, s′)

= PR̃(k, c, s)

− Pi(k · c)
∫ s

0

ds′eQΛ(k,c)(s−s′)QR̃(k, c, s′). (B1)

Let us first consider the term PΛ(k, c)PδF̃ (k, c, s). As Λ(c)ξ2⊥(c) = 0 and
∫

dc(k̂⊥ · c)(k̂ ·
c)ξ2⊥(c) = 0, we easily have

PΛ(k, c)PδF̃ (k, c, s) = 0. (B2)

Let us evaluate the last term of the left-hand side of Eq. (B1). To second order in k, we have

P (k · c)
∫ s

0

ds′eQΛ(k,c)(s−s′)Q(k · c)PδF̃ (k, c, s′)

' k2ξ2⊥(c)

∫ s

0

ds′w⊥(k, s′)
∫

dc(k̂ · c)(k̂⊥ · c)eΛ(c)(s−s′)k̂ · cξ2⊥(c)

= k2ξ2⊥(c)

∫ s

0

ds′w⊥(k, s′)Gxy(s− s′) (B3)

where we have introduced

Gxy(s) ≡
∫

dc(k̂⊥ · c)(k̂ · c)eΛ(c)s(k̂ · c)ξ2⊥(c)

=

∫
dccxcye

Λ(c)scxξ2y(c), (B4)

and use has been made of the fact that the operator Λ(c) is isotropic. In the hydrodynamic limit,
the velocity evolves in a scale much slower that the scale in which the function Gxy(s) decays. We
then have ∫ s

0

ds′w⊥(k, s′)Gxy(s− s′) → η̃w⊥(k, s), (B5)
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where η̃ is the dimensionless shear viscosity

η̃ =

∫ ∞

0

dsGxy(s). (B6)

The noise terms are the last two terms of Eq. (B1)

PR̃(k, c, s) = ξ2⊥(c)

∫
dc(k̂⊥ · c)R̃(k, c, s)

= ξ2⊥(c)S(k, s), (B7)

and

P (ik · c)
∫ s

0

ds′eQΛ(k,c)(s−s′)QR̃(k, c, s′)

= ξ2⊥(c)ik

∫
dc(k̂⊥ · c)(k̂ · c)

∫ s

0

ds′eQΛ(k,c)(s−s′)QR̃(k, c, s′)

= −ξ2⊥(c)Π(k, s), (B8)

where we have used the definitions of S(k, s) and the fluctuating pressure tensor, Π(k, s), Eqs.
(6.12) and (6.13). Finally, by multiplying Eq. (B1) by k̂⊥ ·c and further integrating over velocities,
we obtain the equation of the transverse velocity of the main text.

C Autocorrelation function of Rw(k, s)

In this Appendix we evaluate the correlation function of the noise of the transverse velocity field,
Rw(k, s). We consider k 6= 0, s1 < s2 with s1 large. It is convenient to introduce the following
notation for the transverse and parallel components of the vector c

k̂⊥ · c = c⊥, k̂ · c = c‖. (C1)

The autocorrelation function of Rw(k, s) reads, in terms of S(k, s) and Π(k, s),

〈Rw(k, s1)Rw(−k, s2)〉H = 〈(S(k, s1) + Π(k, s1))(S(−k, s2) + Π(−k, s2))〉H
= 〈S(k, s1)S(−k, s2)〉H + 〈S(k, s1)Π(−k, s2)〉H
+ 〈Π(k, s1)S(−k, s2)〉H + 〈Π(k, s1)Π(−k, s2)〉H .

(C2)

We now calculate each correlation function taking into account the microscopic expressions of
S(k, s) and Π(k, s), Eqs. (6.12) and (6.13), and the correlation function of the noise of the
Boltzmann-Langevin equation, Eqs. (4.21) and (4.22).
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The first term is

〈S(k, s1)S(−k, s2)〉H =

∫
dc1

∫
dc2c1⊥c2⊥〈R̃(k, c1, s1)R̃(−k, c2, s2)〉H

=
Ṽ 2

N
δ(s1 − s2)

∫
dc1

∫
dc2c1⊥c2⊥Γ(c1, c2)

=
Ṽ 2

N
δ(s1 − s2)

∫
dc1

∫
dc2c1⊥c2⊥T̄ (c1, c2)χH(c1)χH(c2)

= ξ2 Ṽ 2

N
δ(s1 − s2). (C3)

where we have used the relation
∫

dc1

∫
dc2c1⊥c2⊥T̄ (c1, c2)χH(c1)χH(c2) = ξ̃2, that is proved in

[14].
The second correlation function is

〈S(k, s1)Π(−k, s2)〉H
=

∫
dc1c1⊥ik

∫ s2

0

ds

∫
dc2c2‖c2⊥eQ2Λ(−k,c2)(s2−s)〈R̃(k, c1, s1)Q2R̃(−k, c2, s)〉H

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥eQ2Λ(−k,c2)(s2−s1)Q2Γ(c1, c2). (C4)

Here, we have changed the sign of Π(−k, s) because we are dealing with the −k component and
then k̂ → −k̂ (we do not change k̂⊥ → −k̂⊥, because this vector comes from the projector P and
it is fixed).

The third term vanishes

〈Π(k, s1)S(−k, s2)〉H = −ik

∫ s1

o

ds′
∫

dc1c1‖c1⊥

∫
dc2c2⊥

× eQ1Λ(k,c1)(s−s′)Q1〈R̃(k, c1, s
′)R̃(−k, c2, s2)〉H = 0,

(C5)

because 〈R̃(s′)R̃(s2)〉H = 0 for s′ ∈ (0, s1) with s1 < s2.
Finally, we evaluate the last term to second order in k

〈Π(k, s1)Π(−k, s2)〉H
' k2

∫ s1

0

ds′1

∫ s2

0

ds′2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)(s1−s′1)+Λ(c2)(s2−s′2)

×〈R̃(k, c1, s
′
1)R̃(−k, c2, s

′
2)〉H

=
Ṽ 2

N
k2

∫ s1

0

ds′1

∫ s2

0

ds′2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)(s1−s′1)+Λ(c2)(s2−s′2)Γ(c1, c2)δ(s

′
1 − s′2)
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=
Ṽ 2

N
k2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

∫ s1

0

dseΛ(c1)(s1−s)+Λ(c2)(s2−s)Γ(c1, c2)

=
Ṽ 2

N
k2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c1)s1+Λ(c2)s2

∫ s1

0

dse−s[Λ(c1)+Λ(c2)]Γ(c1, c2)

' Ṽ 2

N
k2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥eΛ(c2)(s2−s1)

×[Λ(c1) + Λ(c2)]
−1

[
−Γ(c1, c2) + ξ2 ∂

∂c1

· ∂

∂c2

χH(c1)χH(c2)

]
, (C6)

where, in the last step, we have taken into account that s1 is large and we have introduced the term
∂

∂c1
· ∂

∂c2
χH(c1)χH(c2). This term does not contribute to the integral, but is written for convenience,

to make a connection with the global correlation function φH(c1, c2) ≡
∫

dlhH(l, c1, c2) which
fulfils Eq. (6.18). In doing so, we find that the autocorrelation function of Π(k, s) reads

〈Π(k, s1)Π(−k, s2)〉H ' Ṽ 2

N
k2Cxy(s2 − s1), (C7)

where
Cxy(s2 − s1) =

∫
dc1

∫
dc2c1xc1yc2xc2ye

Λ2(s2−s1)φH(c1, c2). (C8)

As φH(c1, c2) is the integral of the correlation function hH(l, c1, c2), Cxy can be identified as the
correlation function of the global quantity

∑N
i=1 Vx(t)Vy(t).

D Evaluation of 〈S(k, 0)Π(−k, s)〉H
In this Appendix we evaluate the time integral of the correlation function 〈S(k, 0)Π(−k, s)〉H in
the hydrodynamic limit. Using the notation of the previous Appendix, we have

∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

[
eQ2Λ(−k,c2)s

Q2Λ(−k, c2)

]∞

0

Q2Γ(c1, c2)

= −ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)
Q2Γ(c1, c2)

= ik
Ṽ 2

N

∫
dc1

∫
dc2c1⊥c2‖c2⊥

Q2[Λ(k, c1) + Λ(−k, c2)]

Q2Λ(−k, c2)
φH(k, c1, c2),

(D1)

where we have introduced the function

φH(k, c1, c2) =

∫
dle−ik·lhH(l, c1, c2), (D2)
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that fulfils the Fourier transform of Eq. (2.41)

[Λ(k, c1) + Λ(−k, c2)]φH(k, c1, c2) = −Γ(c1, c2) + ξ2 ∂

∂c1

· ∂

∂c2

χH(c1)χH(c2)δ(k). (D3)

Note that the last term in the previous equation only appears for k = 0. Taking into account that
c⊥χH(c) is left eigenfunction associated with the null eigenvalue and after some algebra we obtain

∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉H

=
Ṽ 2

N
k2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)
φH(k, c1, c2)

+
Ṽ 2

N
ik

∫
dc1

∫
dc2c1⊥c2‖c2⊥φH(k, c1, c2). (D4)

Now, let us consider the hydrodynamic limit of (D4). The first term gives

Ṽ 2

N
k2

∫
dc1

∫
dc2c1‖c1⊥c2‖c2⊥

1

Q2Λ(−k, c2)
φH(k, c1, c2) → − Ṽ 2

N
k2

∫ ∞

0

dsCxy(s). (D5)

The second term can be evaluated by using the following expansion in powers of k

[Λ(c)− ik · c]−1 ' Λ(c)−1 + Λ(c)−1(ik · c)Λ(c)−1, (D6)

which yields

Ṽ 2

N
ik

∫
dc1

∫
dc2c1⊥c2‖c2⊥φH(k, c1, c2)

→ Ṽ 2

N
k2

∫ ∞

0

dsCxy(s)− Ṽ 2

N
k2

∫
dc1

∫
dc2c1xc2xc2y

∫ ∞

0

dseΛ(c2)sc2yφH(c1, c2).

(D7)

Taking into account (D5) and (D7), we obtain
∫ ∞

0

ds〈S(k, 0)Π(−k, s)〉 → − Ṽ 2

N
k2

∫
dc1

∫
dc2c1xc2xc2y

∫ ∞

0

dseΛ(c2)sc2yφH(c1, c2)

=
Ṽ 2

N
k2

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2). (D8)

E Evaluation of the k2 contribution of 〈Rw(k, s1)Rw(−k, s2)〉H
In this Appendix we evaluate the k2 component of the correlation function of Rw in terms of the
one- and two-particle distribution functions, χH and χ2

φH(c1, c2) = χH(c1)δ(c12) + χ2(c1, c2). (E1)
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The first term is
∫ ∞

0

dsCxy(s) =

∫ ∞

0

ds

∫
dc1

∫
dc2c1xc1yc2xc2ye

sΛ(c2)φH(c1, c2)

= −
∫

dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1φH(c1, c2)

= −
∫

dccxcyΛ(c)−1cxcyχH(c)

−
∫

dc1

∫
dc2c1xc1yc2xc2yΛ(c2)

−1χ2(c1, c2). (E2)

If we do the same in the second term, we have
∫

dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yφH(c1, c2) =

∫
dccxcyΛ(c)−1cxcyχH(c)

+

∫
dc1

∫
dc2c1xc2xc2yΛ(c2)

−1c2yχ2(c1, c2).

(E3)

It can be seen that the sum of the two terms only depends on the two-particle correlation function
and we obtain the k2 part of Eq. (6.21).
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