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Abstract. Using kinetic theory we analyse the fluctuations of the total internal
energy of a granular gas under stationary uniform shear flow, and find that they
are coupled to fluctuations in the different components of the total pressure
tensor. Explicit expressions for all the possible one- and two-time cross and auto
correlations of the fluctuations are obtained for the two dimensional case. For the
range of inelasticity considered, good agreement is found between the theoretical
predictions and Molecular Dynamics simulations.
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1. Introduction

A granular system can be defined as an ensemble of macroscopic particles (grains) that
collide inelastically, i.e. kinetic energy is dissipated in collisions. When the dynamics of
the grains can be partitioned into sequences of two-body collisions, the system is referred
to as a granular gas, and the reliability of a kinetic theory description is supported both
by experiments and computer simulations [1–5]. One of the models most frequently used
to study granular gases is the Inelastic Hard Sphere (IHS) model, the dynamics of which
comprise free streaming followed by instantaneous inelastic collisions. For this model, all
the techniques of kinetic theory can be applied [6]. In particular, in the low density limit,
the dynamics of the one-particle distribution function are given by the inelastic Boltzmann
equation [7, 8], and the correlation functions obey a closed set of equations [9].

Macroscopically it is known that, in many cases, the dynamics of a granular system
resemble those of a fluid. For dilute systems, hydrodynamic equations can be derived
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by applying the Chapman–Enskog expansion [10] or linear response methods [11–
13], obtaining explicit expressions for the transport coefficients. In all these studies,
the Homogeneous Cooling State (HCS) plays a particularly important role. This is a
homogeneous state in which all the time dependence in the one-particle distribution
function goes through the granular temperature (defined as the second velocity moment
of the velocity distribution). Due to the inelasticity of collisions, the temperature decays
monotonically in time [14]. It is known that, for a wide range of initial conditions, the
HCS is reached in the long time limit for isolated granular gases. Thus this state plays,
for granular gases, a role similar to the equilibrium state for molecular, elastic fluids. In
fact, the zeroth order of the gradient’s distribution in the Chapman–Enskog expansion is
a ‘local’ HCS [10].

Despite this analogy with normal fluids, there are important differences. Due to
the macroscopic character of the grains, a granular system typically contains far fewer
particles than a normal fluid. The macroscopic field fluctuations are therefore of special
relevance not only theoretically, but also from a practical point of view. Total energy
fluctuations have been studied in the HCS, and explicit expressions for its variance and
two-time correlation function have been obtained [9]. With some generality, Langevin-like
equations for the fluctuating hydrodynamic fields have been derived using the Navier–
Stokes equations [15, 16]. Fluctuation–dissipation theorems of the second kind were not
present, i.e. the amplitude of the noise is not related to the transport coefficients.
However, the two-time correlation functions decay as a macroscopic perturbation so that
fluctuation–dissipation theorems of first kind hold [17].

The study of fluctuations in the HCS is of special relevance, because it serves as
a starting point for generalization to other states. By analogy with normal fluids, the
equations for the fluctuating fields can be written intuitively for states that are close to
the HCS. The deterministic part of the equations is the linearization of the macroscopic
equations around the particular state considered. The noise can be assumed to have the
same stochastic properties as that in the HCS but with the total fields replaced by the local
actual ones. This should be valid if the state is not far from the HCS, which is the case for
small gradients. This idea has been applied in [18] to calculate the total internal energy
fluctuations in the stationary Uniform Shear Flow (USF) state. This state has a uniform
density, a constant and uniform temperature, and a flow velocity with a linear profile.
Due to its simplicity, it has been extensively studied [19–24]. The theoretical predictions
of [18] were expected to hold only for small gradients. For the stationary USF state that
means small inelasticity, due to the coupling between gradients and inelasticity, which
is a characteristic feature of stationary states of granular systems. This work examines
fluctuations of the total internal energy in the stationary USF state using kinetic theory
tools. This permits analysis of the problem in general, without any limitation to small
inelasticity. In particular, differences from the “local” HCS results of [18] will be discussed,
extending these results to finite dissipation. It will be shown that the structure of these
fluctuations is more complex than expected, since they are coupled to the fluctuations
of the several components of the total pressure tensor. Finally, explicit results will be
obtained through a systematic and controlled expansion in the degree of inelasticity.

The plan of the paper is as follows. In the next section, the IHS model is described in
some detail, and the evolution equations for the relevant distributions are summarized.
These equations are applied to the stationary USF state in section 3, where correlations of
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global quantities are specifically considered. In section 4 we study fluctuations of the total
internal energy and show that they are coupled to the components of the total pressure
tensor. Section 5 is a complete study of all the fluctuations. In section 6 the analytical
predictions are compared with Molecular Dynamics simulations, finding, in general, a
good agreement. The final section contains some general conclusions and comments.

2. Kinetic equations for the model

The system we consider is a dilute gas of N smooth inelastic hard spheres (d = 3)
or disks (d = 2) of mass m and diameter σ. Let Xi(t) ≡ {Ri(t),Vi(t)} denote
the position and velocity of particle i at time t. The dynamic state of the system,
Γ (t) ≡ {X1(t), . . . ,XN(t)}, is generated by free streaming followed by instantaneous
inelastic collisions characterized by a coefficient of normal restitution, α, independent of
the relative velocity. If at time t there is a binary encounter between particles i and j, with
velocities Vi(t) and Vj(t) respectively, the postcollisional velocities V′

i(t) and V′
j(t) are

V′
i = Vi − 1 + α

2
(σ̂ · Vij)σ̂,

V′
j = Vj +

1 + α

2
(σ̂ · Vij)σ̂, (1)

where Vij ≡ Vi − Vj is the relative velocity and σ̂ is the unit vector pointing from the
center of particle j to the center of particle i at contact.

Microscopic densities in phase space, Fs(x1, . . . ,xs, t), are defined by

F1(x1, t) =
N∑

i=1

δ[x1 −Xi(t)], (2)

F2(x1,x2, t) =
N∑

i=1

N∑
j �=i

δ[x1 −Xi(t)]δ[x2 −Xj(t)], (3)

etc, where we have introduced the field variables, xi ≡ {ri,vi}. The averages of the
microscopic densities over the probability distribution function, ρ(Γ , 0), characterizing
the initial state, are the usual one-time reduced distribution functions

fs(x1, . . . ,xs, t) ≡ 〈Fs(x1, . . . ,xs, t)〉, (4)

where we have introduced the notation

〈G〉 ≡
∫

dΓG(Γ )ρ(Γ , 0). (5)

Two-time reduced distribution functions can also be defined in terms of the microscopic
densities as

fr,s(x1, . . . ,xr, t;x1, . . . ,xs, t′) ≡ 〈Fr(x1, . . . ,xr, t)Fs(x1, . . . ,xs, t′)〉, (6)

where it will be assumed that t > t′ > 0. Evolution equations for the reduced distributions
can be derived from first principles [8,9], as for the elastic case [25]. The one-time reduced
distribution functions obey the generalization for inelastic collisions of the Bogoliubov,
Born, Green, Kirkwood and Yvon hierarchy, but its general application is limited because
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the equations are not closed. The same applies to the two-time reduced distribution
functions.

It is convenient to introduce correlation functions through the usual cluster expansion.
From the one-time reduced distributions, one-time correlations, gs(x1, . . . ,xs, t), are
defined by

f2(x1,x2, t) ≡ f1(x1, t)f1(x2, t) + g2(x1,x2, t), (7)

f3(x1,x2,x3, t) ≡ f1(x1, t)f1(x2, t)f1(x3, t) + f1(x1, t)g2(x2,x3, t)
+f1(x2, t)g2(x1,x3, t) + f1(x3, t)g2(x1,x2, t) + g3(x1,x2,x3, t), (8)

etc. Similarly, two-time correlation functions, hr,s(x1, . . . ,xr, t;x1, . . . ,xs, t′), can be
defined. In particular, h1,1 and h2,1 are introduced through

f1,1(x1, t;x′
1, t

′) = f1(x1, t)f1(x′
1, t

′) + h1,1(x1, t;x′
1, t

′), (9)

f2,1(x1,x2, t;x′
1, t

′) = f1(x1, t)f1(x2, t)f1(x′
1, t

′)+ g2(x1,x2, t)f1(x′
1, t)

+h1,1(x1, t;x′
1, t

′)f1(x2, t) +h1,1(x2, t;x′
1, t

′)f1(x1, t)
+h2,1(x1,x2, t;x′

1, t
′). (10)

In the low density limit and for distances much larger than the diameter of the particles,
a closed set of equations for f1, g2 and h1,1 is obtained [9, 25].

The one-particle distribution function satisfies the inelastic Boltzmann equation [7,8][
∂

∂t
+ L(0)(x1)

]
f1(x1, t) = J [x1, t|f1], (11)

where we have introduced the free-streaming operator

L(0)(x1) = v1 · ∂

∂r1
. (12)

The collisional term reads

J [x1, t|f1] =
∫

dx2δ(r12)T 0(v1,v2)f1(x1, t)f1(x2, t), (13)

with the binary collision operator, T0, given by

T 0(v1,v2) = σd−1
∫

dσ̂Θ(v12 · σ̂)(v12 · σ̂)[α−2b−1
σ (1, 2) − 1]. (14)

Here σ = σσ̂, dσ̂ is the solid angle element for σ̂, v12 ≡ v1 − v2, Θ is the Heaviside step
function and the operator b−1

σ (1, 2) replaces all the velocities v1 and v2 appearing to its
right by the precollisional values v∗

1 and v∗
2,

v∗
1 ≡ b−1

σ (1, 2)v1 = v1 − 1 + α

2α
(σ̂ · v12)σ̂,

v∗
2 ≡ b−1

σ (1, 2)v2 = v2 +
1 + α

2α
(σ̂ · v12)σ̂. (15)

The equation for the one-time correlation function in the low density limit is[
∂

∂t
+ L(0)(x1) + L(0)(x2) −K[x1, t|f1] −K[x2, t|f1]

]
g2(x1,x2, t)

= δ(r12)T 0(v1,v2)f1(x1, t)f1(x2, t), (16)
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where we have introduced the linear operator

K[xi, t|f1] ≡
∫

dx3δ(ri3)T 0(vi,v3)(1 + Pi3)f1(x3, t). (17)

The operator Pij interchanges the labels of particle i and j in the quantities to its right.
Basically, equation (16) shows that velocity correlations between particles with velocities
v1 and v2 are generated by uncorrelated collisions, implying particles with velocities v1

and v2 through the right hand side of equation (16), and correlated collisions implying
two particles with velocities v1 or v2 and a third particle with velocity v3 through the
linear operator K.

Finally, consider the two-time correlations. In the same limit, the following equation
for the first of these is obtained[

∂

∂t
+ L(0)(x1) −K[x1, t|f1]

]
h1,1(x1, t;x′

1, t
′) = 0. (18)

This equation has to be solved with the initial condition

h1,1(x1, t′;x′
1, t

′) = f1(x1, t′)δ(x1 − x′
1) + g2(x1,x′

1, t
′), (19)

that follows directly from the definitions in equations (6) and (9). If we consider states
with a one-particle distribution function, f̃1, very close to a given reference distribution,
f1, the difference of both distributions, δf1 ≡ f̃1 − f1, fulfils to linear order[

∂

∂t
+ L(0)(x1) −K[x1, t|f1]

]
δf1(x1, t) = 0, (20)

where K is given by equation (17). The structure of these equations is important because
it shows that the two-time correlations in a given state decay in the same way that a
linear perturbation of the one-particle distribution function around this state decays.
This is because the linear operator governing the dynamics is, in both cases, the operator
K given by equation (17). Of course, although the initial condition of equation (20) is free
(the only restriction being |δf1(x1, t′)| � f1(x1, t′)), the initial condition for equation (18)
is given by equation (19).

3. The stationary uniform shear flow state

In this section we will apply the equations of the previous section to the stationary USF
state. At a macroscopic level, this state is characterized by a uniform number density, ns,
a stationary temperature, Ts, and a constant velocity field with a linear profile, us = ayêx,
where a is the constant shear rate and êx is a unit vector in the direction of the x-axis
(the subindex s has been introduced to label the state) [20–23]. In this stationary state,
cooling due to collisions is offset by viscous heating

2a
dns

Pxy,s = ζsTs, (21)

where Pxy,s is the xy component of the stress tensor and ζs is the cooling rate. For a
hydrodynamic description, Pxy,s and ζs have to be expressed in terms of the hydrodynamic
fields, ns, Ts and us, and their gradients, i.e. the shear rate, a [10, 26].

doi:10.1088/1742-5468/2014/09/P09024 6
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The steady USF state can be studied using kinetic theory. The definitions of the
hydrodynamic fields in terms of the one-particle distribution function are those usually
employed in kinetic theory

n(r, t) ≡
∫

dvf1(x, t), (22)

n(r, t)u(r, t) ≡
∫

dvvf1(x, t), (23)

d

2
n(r, t)T (r, t) ≡

∫
dv
m

2
[v − u(r, t)]2f1(x, t). (24)

The expressions for the pressure tensor and cooling rate are [10]

Pij(r, t) = m

∫
dv[vi − ui(r, t)][vj − uj(r, t)]f1(x, t), (25)

and

ζ(r, t) =
(1 − α2)π(d−1)/2mσd−1

4dΓ
(

d+3
2

)
n(r, t)T (r, t)

∫
dv1

∫
dv2v

3
12f1(r,v1, t)f1(r,v2, t). (26)

The Boltzmann equation admits a normal solution of the steady USF type, i.e. a solution in
which all the space dependence arises from the hydrodynamic fields and all their gradients.
As the only space-dependent field is linear, the distribution function can be written in a
particularly simple form

fUSF(r,v) = fs[v − us(r),ns,Ts, a]. (27)

By substituting this expression into the Boltzmann equation, it follows that

aV1y
∂

∂V1x

fs(V1) +
∫

dV2T 0(V1,V2)fs(V1)fs(V2) = 0, (28)

where we have introduced the peculiar velocity V ≡ v − us(r), and we have omitted the
explicit dependence on the hydrodynamic fields and the shear rate in the distribution
function. Note that the form of the distribution given by equation (27) implies that the
system is homogeneous in the Lagrangian frame of reference. Although the exact solution
of equation (28) is not known, many approximate solutions are available [20–22, 24]. In
this work we will consider the ε ≡ (1 − α2)1/2 expansion of the Jenkins and Richman
approximation up to order ε2. The specific form of the distribution will be given below.

It is convenient to perform the following change of variables

{r,v, t} −→ {�(r, t) = r − aytêx,V(r, t) = v − ayêx, t}. (29)

The steady USF state is usually generated in particle simulations using Lees-Edwards
boundary conditions [27] and, as stressed in [28], these become periodic boundary
conditions in the new variables. As the Jacobian of the transformation is unity, the
function

f(�,V, t) = f1[r(�, t),v(�,V, t), t], (30)

is the actual distribution function in the new variables. Consider situations very close to
the stationary USF state, in such a way that the deviations, δf(�,V, t) ≡ f(�,V, t) −
doi:10.1088/1742-5468/2014/09/P09024 7
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fs(V), are assumed to fulfill the condition |δf(�,V, t)| << fs(V). To linear order, δf
satisfies

∂

∂t
δf(�,V1, t) = H(�,V1, t)δf(�,V1, t), (31)

where

H(�,V1, t) ≡ L(V1) − V1 · ∂
∂�

− a
y
∂

∂
x
+ atV1y

∂

∂
x
(32)

is an inhomogeneous linear operator with

L(V1)h(V1) ≡
∫

dV2T 0(V1,V2)(1 + P12)fs(V1)h(V2) + aV1y
∂

∂V1x

h(V1). (33)

Note that, in contrast with the free cooling case [11–13], the inhomogeneous term in
equation (32) is time dependent.

Consider now the one-time and two-time correlation functions in the steady USF state,
g2USF and h1,1USF respectively. In the new variables, the equations for

Gs(�1,V1, �2,V2) ≡ g2USF(x1,x2), (34)
and

hs(�1,V1, t; �2,V2, t′) ≡ h1,1USF(x1, t;x2, t′), (35)
are
[H(�1,V1, t) +H(�2,V2, t)]Gs(�1,V1, �2,V2) = −δ(�12)T 0(V1,V2)fs(V1)fs(V2), (36)
and

∂

∂t
hs(�1,V1, t; �2,V2, t′) = H(�1,V1, t)hs(�1,V1, t; �2,V2, t′), (37)

respectively. This last equation has to be solved with the initial condition (see
equation (19))

hs(�1,V1, t′; �2,V2, t′) = fs(V1)δ(�12)δ(V12) +Gs(�1,V1, �2,V2). (38)
Equations (36) and (37) describe one- and two-time two-particle correlations. Basically,
they depend on the one-particle distribution function, which is assumed to be known, and
on the linear operator defined by equation (33).

3.1. Global correlations

As the general problem is quite complex, we will focus on a simplified problem: the
study of the correlations between global quantities. In order to deal with dimensionless
distributions, we introduce the dimensionless velocity

c =
V
vs

, vs =

√
2Ts

m
, (39)

through the thermal velocity in the stationary USF state, vs, and the dimensionless time

s =
vs

λ
t, λ = (nsσ

d−1), (40)

with λ proportional to the mean free path. In terms of these units, we define the
dimensionless distributions. The scaled one-particle distribution function in the steady
USF state is

χ(c) ≡ vd
s

ns

fs(V), (41)

doi:10.1088/1742-5468/2014/09/P09024 8
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the integrated deviation of the one-particle distribution function around the steady USF
state is

δχ(c, s) ≡ vd
s

ns

∫
d�δf(�,V, t), (42)

the dimensionless marginal one-time correlation function is

φ(c1, c2) ≡ v2d
s

N

∫
d�1

∫
d�2Gs(�1,V1, �2,V2), (43)

and the dimensionless marginal two-time correlation function is

ψ(c1, c2, s− s′) ≡ v2d
s

N

∫
d�1

∫
d�2hs(�1,V1, t; �2,V2, t′). (44)

For homogeneous states in the Lagrangian frame of reference, the evolution equation
for δχ, obtained by integrating equation (31), reads

∂

∂s
δχ(c, s) = Λ(c)δχ(c, s). (45)

The operator Λ will be called the linearized Boltzmann operator which is a dimensionless
form of the linear operator defined in equation (33), i.e.

Λ(c1)h(c1) ≡
∫

dc2T̃0(c1, c2)(1 + P12)χ(c1)h(c2) + ãsc1y
∂

∂c1x

h(c1), (46)

where T̃0 is the dimensionless counterpart of T 0

T̃0(c1, c2) ≡
∫

dσ̂Θ(c12 · σ̂)(c12 · σ̂)[α−2b−1
σ (1, 2) − 1], (47)

and

ãs =
λa

vs

, (48)

is the dimensionless shear rate.
The equation for the one-time correlation function is

[Λ(c1) + Λ(c2)]φ(c1, c2) = −T̃0(c1, c2)χ(c1)χ(c2), (49)

and the evolution equation for the two-time correlation functions is

∂

∂s
ψ(c1, c2, s) = Λ(c1)ψ(c1, c2, s), (50)

to be solved with the initial condition

ψ(c1, c2, 0) = χ(c1)δ(c12) + φ(c1, c2). (51)

Note the strong analogy between equations (49) and (50), and the equivalents in other
granular states (such as the homogeneous cooling state [9]), or other granular systems in
which the particles are accelerated by a stochastic force [29]. The analogy is also evident
with other dissipative systems [30], where the linearized Boltzmann collision operator,
Λ(c), always plays an essential role in the structure of the global correlations.
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3.2. Correlations between global quantities

Correlations between global quantities can be evaluated using the distributions we have
introduced above. Consider quantities of the form

A(t) =
N∑

i=1

a[Vi − us(Ri)] =
∫

dr
∫

dva[v − us(r)]F1(x, t), (52)

where a is supposed to be a homogeneous function of degree β, i.e. a(kc) = kβa(c). The
deviation around the mean in the steady USF state is

δA(t) ≡ A(t) − 〈A(t)〉 =
∫

dr
∫

dva(V)δF (x, t), (53)

where
δF (x, t) ≡ F1(x, t) − fUSF(x). (54)

Correlations between the fluctuations of two different quantities, A1 and A2, of the form
given in equation (52) can be expressed as

〈δA1(t)δA2(t′)〉 =
∫

dr1

∫
dv1

∫
dr2

∫
dv2a1(V1)a2(V2)h1,1USF(x1, t;x2, t′). (55)

In writing this expression, we have made use of the following:
〈δF (x1, t)δF (x2, t′)〉 = h1,1USF(x1, t;x2, t′). (56)

Expressing the integrand of (55) in terms of the dimensionless distribution defined in
equation (44), yields

〈δA1(t)δA2(t′)〉 = Nvβ1+β2
s

∫
dc1

∫
dc2a1(c1)a2(c2)ψ(c1, c2, s− s′), (57)

where β1 and β2 are the degrees of homogeneity of a1 and a2, respectively.
The expression for the one-time correlations is obtained by making s= s′ in

equation (57). Taking into account equation (51), it follows that

〈δA1(t)δA2(t)〉 = Nvβ1+β2
s

[∫
dca1(c)a2(c)χ(c) +

∫
dc1

∫
dc2a1(c1)a2(c2)φ(c1, c2)

]
. (58)

4. Fluctuations of the total internal energy

At a microscopic scale, the total internal energy is defined as

E(t) =
N∑

i=1

m

2
[Vi − us(Ri)]2, (59)

it is thus a quantity of the form introduced in the previous section. We identify,
a(V) ≡ m

2 V
2, that is a homogeneous function of degree two. Using equation (58), we get

〈δE2(t)〉 =
m2

4
Nv4

s

[∫
dcc4χ(c) +

∫
dc1

∫
dc2c

2
1c

2
2φ(c1, c2)

]
. (60)

Since the distribution χ is assumed to be known, we only have to evaluate the velocity
moment of φ that appears in the right hand side of equation (60). To do this we follow
a method based on the analysis of some spectral properties of the linearized Boltzmann
collision operator, Λ [9, 29,30].
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4.1. Spectral properties of Λ

In order to identify some modes of the Λ operator, it is necessary to introduce the time-
dependent USF state [31, 32]. As for the stationary USF, the time-dependent state is
characterized macroscopically by a constant density, nH , and a time-independent flow
velocity, uH(r) = ayêx. The temperature, TH(t), remains homogeneous, but is time-
dependent. The subindex H distinguishes it from the stationary state labelled as s. By
dimensional analysis, if a normal distribution function for this state exists, it has the form

fH(V, t) =
nH

vH(t)d
χ(c, ã), (61)

where

c =
V

vH(t)
, vH(t) =

√
2TH(t)
m

, ã =
λa

vH(t)
. (62)

We are using the same notation for the time-dependent scaled velocity V/vH(t) and for
V/vs but this will not cause any difficulty. At long times , this distribution tends to the
stationary one

χ(c, ã) → χ(c, ãs) ≡ χ(c), (63)
and the quantities vH(t) and ã tend to their stationary values vs and ãs respectively.

Consider the family of states given by equation (61) with the restriction of being close
to the stationary USF state. These states are characterized by the two parameters

ρ ≡ δn

ns

, θ ≡ δT

Ts

. (64)

It is assumed that the deviations
δn ≡ nH − ns, δT ≡ TH − Ts, (65)

are small, i.e. |δn| � ns and |δT | � Ts. Global perturbations in the velocity field are not
considered since we are always working in the frame of reference where total momentum
is zero. We do not include states with different shear rates, a, because we want all the
states to be generated by the same boundary conditions. Performing an analysis similar
to that in reference [33], the following evolution equation for θ

dθ(s)
ds

= −γ[2ρ+ θ(s)], (66)

is obtained in appendix A. As the total number of particles does not vary, ρ is constant
and we can identify the normal mode [2ρ+ θ(s)]. The eigenvalue

γ =
ζ̃(ãs)

2
− ã2

s

d

dP̃xy

dã
(ãs) − ãs

2
dζ̃
dã

(ãs), (67)

is expressed in terms of the dimensionless pressure tensor

P̃xy(ã) = 2
∫

dccxcyχ(c, ã), (68)

and the dimensionless cooling rate

ζ̃(ã) =
π(d−1)/2(1 − α2)

2dΓ
(

d+3
2

) ∫
dc1

∫
dc2c

3
12χ(c1, ã)χ(c2, ã), (69)

in the time-dependent USF state. Equation (67) is equivalent to that derived in [34] and
to that of [33] for the case ρ = 0. An explicit formula for γ as a function of the inelasticity
can be written using the expressions P̃xy and ζ̃(ãs) of the BGK model studied in [32], and
neglecting the contribution proportional to dζ̃/dã.
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4.2. An invalid approximation

Let us rewrite equation (66) in a way that suggests the approximation to be analyzed in
the following. Define the scalar product

〈h(c)|g(c)〉 ≡
∫

dch∗(c)g(c), (70)

the star denoting the complex conjugate. The deviations ρ and θ can be expressed in
terms of δχ as

ρ =
∫

dcδχ(c, s), θ(s) =
∫

dc
(

2
d
c2 − 1

)
δχ(c, s), (71)

and then

2ρ+ θ(s) =
∫

dc
(

2
d
c2 + 1

)
δχ(c, s) ≡ 〈ξ̄2(c)|δχ(c, s)〉, (72)

where we have introduced

ξ̄2(c) ≡ 2
d
c2 + 1. (73)

By taking the scalar product with ξ̄2 in equation (45), one obtains
d
ds

〈ξ̄2(c)|δχ(c, s)〉 = 〈ξ̄2(c)|Λ(c)δχ(c, s)〉. (74)

Comparing this equation with the evolution equation for θ, equation (66), it is seen that,
for δχ which belongs to the biparametric family of functions of time-dependent USF states
that are closed to the stationary USF state, 〈ξ̄2(c)|Λ(c)δχ(c, s)〉 = −γ〈ξ̄2(c)|δχ(c, s)〉. It
is consistent to consider the approximation

〈ξ̄2(c)|Λ(c)g(c)〉 ≈ −γ〈ξ̄2(c)|g(c)〉, (75)
for any function, g(c). This is, essentially, the approximation used to calculate the
fluctuations of the total energy in [9,29,30]. Let us also mention that, in the free-cooling
case, the equivalent of equation (75) is an exact property for Maxwell molecules [35].

However, it will be shown that equation (75), although consistent with linear
hydrodynamics, is not consistent with the equation for φ, equation (49). We initially
see that some velocity moments of φ can be exactly related to velocity moments of the
one-particle distribution, χ. As the total number of particles, N , does not fluctuate, it is
evident that

〈δN(t)δA(t)〉 = 0, (76)
for any fluctuating quantity, A. If, in addition, A can be expressed as in equation (52),
we have

〈δNδA(t)〉 = Nvβ
s

[∫
dca(c)χ(c) +

∫
dc1

∫
dc2a(c1)φ(c1, c2)

]
, (77)

and it can be concluded that∫
dc1

∫
dc2a(c1)φ(c1, c2) = −

∫
dca(c)χ(c), (78)

for any homogeneous function, a(c), of degree β. With this result we can easily calculate
the component

〈ξ̄2(c1)|φ(c1, c2)〉 = −
∫

dc
(

2c2

d
+ 1
)
χ(c) = −2. (79)
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On the other hand, the integral can also be evaluated by taking the scalar product with
ξ̄2 in the equation for φ, equation (49), obtaining

〈ξ̄2(c1)|φ(c1, c2)〉 =
1
γ

∫
dc1

∫
dc2

(
2c2

d
+ 1
)
T̃0(c1, c2)χ(c1)χ(c2) = − ζ̃s

γ
, (80)

where the expression of ζ̃, equation (69), has been used, and we have introduced
the notation ζ̃s ≡ ζ̃(ãs). It follows that the approximation (75) is inconsistent with
the equation for the correlation function, equation (49), because it predicts a result
for 〈ξ̄2(c1)|φ(c1, c2)〉 which differs from the exact one given by equation (79). The
approximation is not even valid in the elastic limit since γ ∼ ζ̃ in that limit. In fact,
when 〈δE2〉 is calculated using the approximate expression 〈c21c22|φ(c1, c2)〉 (evaluated
using equation (75)), the result disagrees with those of [18] even for α → 1. This is not
surprising, since the approximation is not valid in the elastic limit either.

4.3. A valid approximation

As the previous result is clearly unsatisfactory, it would be desirable to find an
approximation that is consistent with both linear hydrodynamics and the equation for
the correlation function. Note also that the linearized Boltzmann operator, Λ, given by
equation (46), contains a term of the form cy∂/∂cx which mixes the subspace generated by
c2 with cxcy. It cannot therefore be expected that 〈ξ̄2|Λ ≈ −γ〈ξ̄2| is a good approximation
in general. In fact, the operator cy∂/∂cx leaves invariant the 4-dimensional subspace
generated by {1, c2, cxcy, c2y} and, for Maxwell molecules, the left eigenfunctions of Λ
are linear combinations of these 4 functions [36]. With this in mind, we will seek a
generalization of approximation (75) taking as a possible candidate for ξ̄2 a function
in the subspace generated by {1, c2, cxcy, c2y}. To identify it, we consider the evolution
equations for the homogeneous pressure tensor components of references [22,24]

∂TH

∂t
+ ζHTH +

2a
dnH

Pxy,H = 0, (81)

∂Pxy,H

∂t
+ (βνH + ζH)Pxy,H + aPyy,H = 0, (82)

∂Pyy,H

∂t
+ (βνH + ζH)Pyy,H − βnHνHTH = 0, (83)

where we have introduced the subindex H to indicate that we are considering only
homogeneous situations. The cooling rate can be expressed as

ζH =
vH

λ
ζ̃s, ζ̃s =

√
2π(d−1)/2(1 − α2)

dΓ (d/2)
, (84)

where ζ̃s coincides with ζ̃(ãs) calculated in the Jenkins and Richman approximation to ε2

order, νH is the collision frequency

νH =
vH

λ
z, z =

8π(d−1)/2
√

2(d+ 2)Γ (d/2)
,

and β is a parameter to be specified later on.
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Equations (81)–(83) admit a stationary solution. Defining the dimensionless
components of the pressure tensor in the stationary state

P̃ij,s ≡ Pij,s

nsTs

, (85)

one obtains [22,24]

P̃xy,s = −dζ̃s
2ãs

, P̃yy,s =
β

β + ζ̃s

z

. (86)

The dimensionless shear rate is

ãs = z

√
dζ̃s
2zβ

(
β +

ζ̃s
z

)
, (87)

from which the stationary temperature can be evaluated through vs = λa/ãs. Note that
all the expressions can be expressed in terms of ζ̃s and β.

The set of equations (81)–(83), plus the trivial equation for the total density, can
be linearized around the stationary state characterized by ns, Ts and Pij,s. Defining the
dimensionless deviations of the pressure tensor as

Πij =
Pij − Pij,s

nsTs

, (88)

we obtain the following set of linear equations
d

∂s
y(s) +My(s) = 0, (89)

for

y =

⎡⎢⎢⎣
ρ(s)
θ(s)

Πxy(s)
Πyy(s)

⎤⎥⎥⎦ , (90)

where we have introduced the matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

2ζ̃s
3
2
ζ̃s (βz + ζ̃s)

√
2ζ̃s
dβz

0

−
√

dζ̃sβz
2

−1
2

√
dζ̃sβz

2
ζ̃s + βz (βz + ζ̃s)

√
dζ̃s
2βz

−βz −βz 0 ζ̃s + βz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (91)

that, again, is expressed in terms of ζ̃s and β. Taking the explicit value of β evaluated in
Grad’s approximation [24]

β =
1 + α

2

[
1 − d− 1

2d
(1 − α)

]
, (92)

the matrix is expressed in terms of the inelasticity alone, α. In this way, equation (89)
becomes a set of linear differential equations for the deviations, y, defined in equation (90),
where all the coefficients of the matrix M are known functions of the coefficient of normal
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restitution, α. This is the generalization of equation (66) that we sought. The eigenvalues,
{λi}4

i=1, and their corresponding left eigenfunctions of M , {vi}4
i=1, fulfill

vi ·M = λivi, (93)

and can be calculated with Mathematica. As the expressions are very long, here we write
only the expansion to ε4 order for d = 2

λ1 = 0, λ2 ≈
√
π

2
ε2 − 3

4

√
π

2
ε4, (94)

λ3 ≈
(√

2π +
1
2

√
π

2
ε2 +

1
4

√
π

2
ε4
)

− ı

(√
πε+

19
64
ε3
)

, λ4 = λ∗
3. (95)

The corresponding left eigenfunctions to the same order are

v1 = (1, 0, 0, 0), (96)

v2 ≈
(

4 − 7ε2

2
+

17ε4

4
, 2 − 11ε2

4
+

23ε4

8
, −

√
2ε+

11ε3

8
√

2
, ε2
)

, (97)

v3 ≈
(

−1 − ε2

2
+ ε4, −1 +

ε2

16
+

67ε4

128
,
ε

4
√

2
+

19ε3

64
√

2
, 1
)

(98)

−ı
(

3ε3

2
√

2
,
ε

2
√

2
+

75ε3

128
√

2
, 1 − ε2

64
− 1841ε4

8192
, 0
)

,

v4 = v∗
3. (99)

Note that, as equation (81) was the starting point for the derivation of equation (66), λ2

can be expressed similarly to γ,

λ2 =
ζ̃(ãs)

2
− ã2

s

d

dP̃xy

dã
(ãs). (100)

Here we do not have the dζ̃
dã

contribution since it was neglected from the outset.
With the aid of the left eigenfunctions, the normal modes of equation (89) can be

easily written as

Ξj = vj · y = vj1ρ+ vj2θ + vj3Πxy + vj4Πyy, (101)

where vji is the i-th component of vj. Now, we can identify the functions, {ξ̄i(c)}4
i=1,

ξ̄i(c) = ξi1 + ξi2c
2 + ξi3cxcy + ξi4c

2
y, (102)

such that

〈ξ̄j(c)|δχ(c)〉 = Ξj. (103)

Taking into account equation (71) and

Πij(s) = 2
∫

dccicjδχ(c, s), (104)

we can identify

ξ̄1(c) = 1, (105)

ξ̄2(c) = (v21 − v22) +
2
d
v22c

2 + 2v23cxcy + 2v24c
2
y, (106)
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ξ̄3(c) = (v31 − v32) +
2
d
v32c

2 + 2v33cxcy + 2c2y, (107)

ξ̄4(c) = ξ̄∗
3(c). (108)

Note that while the coefficients {v2j}4
j=1 are real, {v3j}3

j=1 have an imaginary part. Then
the real and imaginary parts of λ3 and ξ̄3 are introduced through

λ3 = λR
3 + ıλI

3, (109)

ξ̄3(c) = ξ̄R
3 (c) + ıξ̄I

3(c). (110)

In appendix B it is shown that the approximation

〈ξ̄i(c)|Λ(c)g(c)〉 ≈ −λi〈ξ̄i(c)|g(c)〉, i = 2, 3, 4. (111)

is consistent with the equation for the correlation function, equation (49). Taking the
scalar product with {ξ̄i}3

i=1 in equation (49) an identity is obtained. Therefore, in contrast
with approximation (75), the approximation given by equation (111) is fully valid, i.e.
it is compatible with both linear hydrodynamics and the equation for the two-particle
correlations.

To summarize, we have identified four modes. The first one (with the null eigenvalue)
is trivial because it is that associated with the total number of particles. The second
eigenvalue, λ2 = γ, vanishes in the elastic limit and is the one associated with the slowest
excitations (at least in the elastic limit). For this reason, the second mode, Ξ2, will be
referred to in the following as the hydrodynamic mode. The last two modes (one is the
complex conjugate of the other) decay faster and will be called kinetic modes. Note that,
although we have extended the number of fields to describe the excitations of the system,
the number of slow modes remains the same (i.e. we have not adopted a kind of extended
hydrodynamics approach as could at first seem to be the case). Of course, these results are
consistent with the ones of section 4.1. We obtain the same eigenvalue and, although the
associated eigenfunctions are different, both modes are equivalent in the correct subspace.
The differences in the modes are not important at the level of macroscopic hydrodynamics,
but they are crucial at the level of two-particle correlations and, therefore, for identification
of the correct fluctuating hydrodynamic equations [18].

Let us evaluate the fluctuations of the total energy using the approximation given
by (111). This can be done by taking the scalar products with 〈ξ̄i(c1)ξ̄j(c2)| in the
equation (49) for i, j = 2, 3, 4, but, in contrast with the previous cases, these fluctuations
are coupled to those of the pressure tensor. We will nevertheless see that this coupling
disappears in the elastic limit (restricting ourselves to d = 2). In effect, multiplying
equation (49) with 〈ξ̄2(c1)ξ̄2(c2)| one obtains

2γ〈ξ̄2(c1)ξ̄2(c2)|φ(c1, c2)〉 = −〈ξ̄2(c1)ξ̄2(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, (112)

where approximation (111) has been used. For d = 2 and for leading order terms only
(ε2 order in this case), we have

γ〈ξ̄2(c1)ξ̄2(c2)|φ(c1, c2)〉 ≈
√
π

2
ε2〈(2 + 2c21)(2 + 2c22)|φ(c1, c2)〉

=
√
π

2
ε2
[
4〈c21c22|φ(c1, c2)〉 − 12

]
. (113)
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The relation (78) has been used to evaluate∫
dc1φ(c1, c2) =

∫
dc1c

2
iφ(c1, c2) = −1. (114)

The right hand side of equation (112) is evaluated in appendix C using the ε expansion
of the Jenkins and Richman approximation, obtaining

〈ξ̄2(c1)ξ̄2(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉 ≈ −16
√

2πε2. (115)

By introducing equations (113) and (115) into equation (112), we have

lim
α→1

〈c21c22|φ(c1, c2)〉 = −1. (116)

Finally, taking into account equation (60), we can calculate the elastic limit of

N
〈δE2〉
〈E〉2 =

[∫
dcc4χ(c) +

∫
dc1

∫
dc2c

2
1c

2
2φ(c1, c2)

]
→ 1, (117)

consistently with the results of [18].

5. Fluctuations of the relevant global quantities

The structure of the modes derived above implies a coupling between the fluctuations of
the total energy and the fluctuations of the pressure tensor for finite ε. In this section,
all these cross correlations will be evaluated. The fluctuating total pressure tensor is
defined as

Pij(t) ≡ m

∫
dr
∫

dvViVjF1(x, t), (118)

and its deviation can be written in the form indicated in equation (53). The correlations
between δE and δPij can be calculated with the aid of equation (58), obtaining

〈δE(t)δPij(t)〉 =
m2

2
Nv4

s

[∫
dcc2cicjχ(c) +

∫
dc1

∫
dc2c

2
1c2ic2jφ(c1, c2)

]
(119)

and analogously

〈δPij(t)δPnm(t)〉 = m2Nv4
s

[∫
dccicjcncmχ(c) +

∫
dc1

∫
dc2c1ic1jc2nc2mφ(c1, c2)

]
. (120)

This expression involves the first velocity moments of the correlation function, φ. It is
convenient to introduce the following notation

b(c) =

⎡⎢⎢⎣
1
c2

cxcy
c2y

⎤⎥⎥⎦ , (121)

allowing the moments to be expressed in the following matrix form

Cij =
∫

dc1

∫
dc2bi(c1)bj(c2)φ(c1, c2), (122)

that is trivially symmetric, i.e. Cij = Cji.
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The moments {C1j}4
j=1 can easily be calculated because the total number of particles

is conserved. Taking into account equation (78), we get

C11 = −1, C12 = −1, C13 = −1
2
P̃xy,s, C14 = −1

2
P̃yy,s. (123)

To calculate the other Cij the scalar product 〈ξ̄i(c1)ξ̄j(c2)| is taken in equation (49) and
the approximation (111) introduced, obtaining

(λi + λj)〈ξ̄i(c1)ξ̄j(c2)|φ(c1, c2)〉 = 〈ξ̄i(c1)ξ̄j(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, i, j = 2, 3, 4. (124)

Actually, there are only 6 independent equations, because of the relation between the
third and fourth modes. As the scalar products 〈ξ̄i(c1)ξ̄j(c2)|φ(c1, c2)〉 (see equation (102)
and (122)) can be written in terms of the Cij coefficients through

〈ξ̄i(c1)ξ̄j(c2)|φ(c1, c2)〉 =
4∑

l=1

ξilξjlCll +
4∑

k>l=1

(ξikξjl + ξilξjk)Ckl, (125)

equation (124) defines a linear system of six equations for the six unknown coefficients
{C22,C23,C24,C33,C34,C44} (remember that {C1j}4

j=1 are known).
The calculations leading to expressions for the coefficients Cij are detailed in

appendix C. Since the 〈ξ̄i(c1)ξ̄j(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉 are evaluated using the Jenkins
and Richman distribution function for d = 2, in the following all the results are restricted
to this dimension. To order ε2 the expressions obtained are

C22 = −1 +
27
32
ε2, C23 =

5
8
√

2
ε, C24 = −1

2
+

51
64
ε2,

C33 = − 23
256

ε2, C34 =
5

16
√

2
ε, C44 = −1

4
+

145
256

ε2. (126)

The one-particle averages that appear in the equations of the fluctuations,
〈bi(c)bj(c)|χ(c)〉, can be calculated to the same approximation, obtaining

〈c4|χ(c)〉 = 2 +
1
2
ε2, 〈c2cxcy|χ(c)〉 = − 3

2
√

2
ε, 〈c2c2y|χ(c)〉 = 1 − 1

2
ε2,

〈c2xc2y|χ(c)〉=1
4
(1 + ε2), 〈cxc3y|χ(c)〉 = − 3

4
√

2
ε, 〈c4y|χ(c)〉 =

3
4
(1 − ε2). (127)

To express the final result in a compact notation it is useful to introduce the matrix
elements

Bij(0) ≡
∫

dc1

∫
dc2bi(c1)bj(c2)ψ(c1, c2, 0) = 〈bi(c)bj(c)|χ(c)〉 +Cij.(128)

By substituting equations (126) and (127) into the equation above, the expansion
including terms up to ε2 of B(0) is obtained,

B(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1 +
199ε2

64
− 7ε

8
√

2
1
2

+
19ε2

64

0 − 7ε
8
√

2
1
4

+
41ε2

256
− 7ε

16
√

2

0
1
2

+
19ε2

64
− 7ε

16
√

2
1
2

− 47ε2

256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (129)
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Finally, taking into account equations (128), (60), (119) and (120), we can express all the
correlation functions in terms of Bij(0),

〈δE2(t)〉 =
m2

4
Nv4

sB22(0), 〈δE(t)δPxy(t)〉 =
m2

2
Nv4

sB23(0),

〈δE(t)δPyy(t)〉 =
m2

2
Nv4

sB24(0), 〈δP2
xy(t)〉 = m2Nv4

sB33(0),

〈δPxy(t)δPyy(t)〉 = m2Nv4
sB34(0), 〈δP2

yy(t)〉 = m2Nv4
sB44(0). (130)

It is worth remarking that, although the system has been solved consistently to ε2 order,
the expressions for the correlation functions are not the exact power expansion of the
correlation functions. This is because the Jenkins and Richman approximation to ε2 order
is not the exact expansion of the distribution [21].

Finally, let us calculate the two-time correlation functions between the global
quantities already considered. Using equation (57) we arrive at the generalization of
equations (60), (119) and (120) for two-times

〈δE(t)δE(t′)〉 =
m2

4
Nv4

s

∫
dc1

∫
dc2c

2
1c

2
2ψ(c1, c2; s− s′), (131)

〈δE(t)δPij(t′)〉 =
m2

2
Nv4

s

∫
dc1

∫
dc2c

2
1c2ic2jψ(c1, c2, s− s′), (132)

〈δPij(t)δE(t′)〉 =
m2

2
Nv4

s

∫
dc1

∫
dc2c1ic1jc

2
2ψ(c1, c2, s− s′), (133)

〈δPij(t)δPnm(t′)〉 = m2Nv4
s

∫
dc1

∫
dc2c1ic1jc2nc2mψ(c1, c2, s− s′). (134)

Again, it is convenient to define the matrix elements

Bij(s) ≡
∫

dc1

∫
dc2bi(c1)bj(c2)ψ(c1, c2, s). (135)

Inserting the formal expression of ψ(s)

ψ(c1, c2, s) = esΛ(c1)[χ(c1)δ(c12) + φ(c1, c2)], (136)

into the above equations, and taking into account that the functions {bi(c)}4
i=1 can be

written in terms of the functions {ξ̄i(c)}4
i=1, the correlation functions can be evaluated

explicitly by using the approximation (111), with the result

Bij(s) =
4∑

l=1

4∑
l=1

Q−1
ik QkleλksBlj(0), s > 0. (137)
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Here we have introduced the matrix Q⎡⎢⎢⎣
ξ̄1(c)
ξ̄2(c)
ξ̄3(c)
ξ̄4(c)

⎤⎥⎥⎦ = Qb(c), (138)

and its inverse, Q−1, that can be identified through equation (102). Up to terms in ε2 we
have

Q =

⎡⎢⎢⎣
ξ11 ξ12 ξ13 ξ14

ξ21 ξ22 ξ23 ξ24

ξ31 ξ32 ξ33 ξ34

ξ41 ξ42 ξ43 ξ44

⎤⎥⎥⎦≈

⎡⎢⎢⎢⎢⎣
1 0 0 0

2 − 3ε2

4 2 − 11ε2

4 −2
√

2ε 2ε2

−9ε2

16 −1 + ε2

16 − ı ε
2
√

2
ε

2
√

2
− 2ı

(
1 − ε2

64

)
2

−9ε2

16 −1 + ε2

16 + ı ε
2
√

2
ε

2
√

2
+ 2ı

(
1 − ε2

64

)
2

⎤⎥⎥⎥⎥⎦ . (139)

Obviously, the correlation functions given by (137) fulfill the initial conditions. Moreover,
they are a linear combination of the two modes λ2 and λ3 (λ4 = λ∗

3). The complete expres-
sions for all the correlation functions are very lengthy and here we only write explicitly the
expressions for the two-time autocorrelation function of the energy and pressure tensor,

〈δE(t)δE(0)〉 =
m2

4
Nv4

sB22(s), 〈δPxy(t)δPxy(0)〉 = m2Nv4
sB33(s), (140)

with B22(s) and B33(s) given by equation (137), i.e.

B22(s) =
(

1 +
225ε2

128

)
e−λ2s − 5ε2

8
cos (λI

3s)e
−λR

3 s, (141)

B33(s) =

[(
1
4

− 3ε2

256

)
cos (λI

3s) +
√

2ε
32

sin (λI
3s)

]
e−λR

3 s +
11ε2

64
e−λ2s. (142)

We see that both functions have a hydrodynamic and a kinetic part. Nevertheless, the
main contribution of B22(s) is the hydrodynamic one (the kinetic part is of order ε2),
while the opposite occurs with B33(s).

6. Simulation results

We have performed Molecular Dynamics (MD) simulations of a two dimensional system
of N = 2000 inelastic hard disks of mass m and diameter σ, in a square box of side
L, corresponding to a number density ns = 0.02σ−2. To generate the stationary USF
state, Lees-Edwards boundary conditions [27] in the y-direction and periodic boundary
conditions in the x-direction have been used. Once the steady state was reached, we
measured all the quantities studied in the previous section. The resulting values have
been averaged over 300 trajectories, and in time over a period of about 150 collisions per
particle. This has been done for various values of the inelasticity, α. The shear rate was
in all cases a = 6.32 × 10−3(T (0)/m)1/2σ−1, where T (0) is the initial temperature.

Figure 1 plots the quantity B22(0) as a function of the inelasticity. The symbols are
the simulation results and the solid line the theoretical prediction given by equation (129).
Also shown are the theoretical prediction of the fluctuating hydrodynamic approach
(dashed line) and the improved one (dotted-line) taking into account rheological effects in
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Figure 1. Dimensionless matrix element B22(0) as function of the restitution
coefficient, α, for a system of N = 2000 hard disks. The symbols (dots) are
the simulation results, the solid line is the theoretical prediction given by equa-
tion (129), the dashed line is the prediction using fluctuating hydrodynamics,
and the dotted line the improved prediction given in [18].
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Figure 2. Dimensionless matrix elements of B(0). The symbols are the simulation
data and the solid lines correspond to the expansion to terms in ε2 given in
equation (129). In the left figure, the circles, squares and triangles correspond
to B24(0), B44(0) and B33(0) respectively. In the right figure, the circles and
squares correspond to B34(0) and B23(0) respectively.

the viscosity [18]. As the figure indicates, the last of these is very close to the prediction
given by (129). Figure 2 plots the remaining matrix elements of B as a function of α. The
solid lines are the theoretical predictions and the symbols are the simulation results. While
the agreement is very good for B23(0), B33(0) and B34(0), there are some discrepancies
for B22(0), B24(0) and B44(0) as the inelasticity increases.

As the Bij(0) coefficients have two components, the one-particle component and the
correlation function component, we have measured the implied one-particle moments
in order to establish the origin of the discrepancies. Figure 3 plots 〈c4〉 and 〈c2c2y〉. As
the figure shows, there are important differences between the simulation results (points)
and the Jenkins and Richman approximation (solid line). Also shown is the theoretical
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Figure 3. One-particle averages 〈c4〉 (left) and 〈c2c2
y〉 (right). The simulation data

(symbols) are compared with the predictions of Jenkins and Richman [20] (solid
line) and with the BGK model [22] (dashed line).
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Figure 4. Comparison of the simulation results for B22(0) and B24(0) with the
theoretical predictions using the Jenkins and Richman approximation [20] (solid
lines) or the BGK model [22] (dashed line) for the one-particle moments.

prediction of the moments to terms in ε2 using the BGK model [22] which gives a much
better agreement. Its explicit expressions are

〈c4〉BGK = 2 + ε2, 〈c2c2y〉BGK = 1 − ε2

4
. (143)

The remaining moments are accurately described by the Jenkins and Richman
approximation. In fact, they coincide with the BGK ones apart from 〈c2xc2y〉, for which
the Jenkins and Richman approximation does better than the BGK prediction.

Figure 4 plots B22(0) and B24(0) using the one-particle moments of the BGK model,
showing that this considerably improves the agreement with the simulation results. Hence,
we can conclude that agreement between the simulation results and the theoretical
predictions (considering the most accurate expression for the one-particle moments) is
excellent for all the coefficients, over the range of inelasticities considered. The only
exception is B44 for which the agreement is moderately good. We stress that, if the
correlation function components are evaluated with the BGK distribution, the agreement
is always worse than with the Jenkins and Richman one.
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Figure 5. Decay of B22(s)/B22(0) for a system with α = 0.80 (left) and α = 0.90
(right). The solid lines (red) are the predictions given by equation (141), and the
symbols are the simulation results.
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Figure 6. Decay of B33(s)/B33(0) for a system with α = 0.80 (left) and α = 0.90
(right). The solid lines (red) are the predictions given by equation (142), and the
symbols are the simulation results.

Finally, we have also measured the two-time correlation functions. Figure 5 shows
the evolution of B22(s)/B22(0), for systems with α = 0.80 (left) and α = 0.90 (right). In
figure 6 the decay of B33(s)/B33(0) has been plotted for the same values of the inelasticity.
As the correlation functions are a combination of two exponentials, it is difficult to
make a detailed comparison between the theoretical prediction and the simulation
results. Nevertheless, we observe that B33(s) decays faster than B22(s), as predicted by
equations (141) and (142). B33(s) has a hydrodynamic part that is of order ε2, while the
kinetic part is of order unity (the contrary occurs forB22(s)). We have also seen that, in the
long time limit, both correlation functions decay in the same way (with the hydrodynamic
mode). In order to see the behaviour of the functions at long times, they have been plotted
on a logarithmic scale. This is done in figure 7 for a system with α = 0.90, where it is
seen that, if the time s is sufficiently large, the slopes become the same.
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Figure 7. Comparison of the decay in the long time limit of the correlations
B22(s)/B22(0) and B33(s)/B33(0) for a system with α = 0.90.

7. Conclusion and discussion

In this paper, we have studied the fluctuations of the total internal energy of a granular
gas in the stationary USF state. Using the approximation given by equation (111), it has
been shown that the fluctuations of the total internal energy are coupled to the fluctua-
tions of the several components of the total pressure tensor. The approximation is fully
consistent with the kinetic equation for the correlation function and is not, in principle,
limited to small inelasticities. One of the main results of the paper is the closed system of
equations given in (124), for the first six moments of the correlation function. With them,
one can calculate all the possible one-time correlations of the total internal energy, and
the different components of the total pressure tensor. The system depends on several com-
plex moments of the one-particle distribution function in the stationary USF state. Since
this distribution function is not known exactly, the Jenkins and Richman distribution has
been used to ε2 order. For d = 2, all the correlation functions have been evaluated as a
function of the degree of inelasticity, ε, giving a good agreement with Molecular Dynamics
simulation results. The two-time correlations have also been evaluated.

At this point it is convenient to analyze the main analogies and differences between the
HCS and the steady USF state. In both cases, there is no fluctuation–dissipation relation
of the second kind, as the expression for the auto-correlation function of the total internal
energy is not directly related to the coefficients of the macroscopic equation, which in this
case is the cooling rate [18]. Moreover, in both the HCS state and the steady USF state,
the two-time correlation function decays as a homogeneous macroscopic perturbation,
see equation (50), so that there is a fluctuation–dissipation relation of the first kind.
The main difference between the two cases lies in the nature of the approximation
given in equation (111). While in the HCS case, the approximate eigenfunction can
be identified by looking at the linearized homogeneous hydrodynamic equations, in
the stationary USF case the equations for the pressure tensor components are needed.
Although, in principle, this fact has no direct consequences at the level of macroscopic
hydrodynamics, it is important at the level of the fluctuations. Actually, the correlation
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function, 〈δPxy(t)δPxy(0)〉, does not decay as a pure kinetic mode, as is the case in the
HCS and as was assumed in [18]. The fluctuating quantity δPxy(t) cannot thus be treated
simply as a noise in a consistent way (one of the conditions for the results of [18] to
hold was that the correlation function of the noise decays faster than that of the energy).
We stress that, as the hydrodynamic part of the correlation function is of ε2 order, the
coupling disappears in the elastic limit at which point we exactly recover the result of [18].

Finally, let us mention that many of the general properties shown in the paper can ap-
pear in any system beyond Navier–Stokes. Moreover, these results provide a starting point
for the complete study of hydrodynamic fluctuating fields in the stationary USF state.
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Appendix A. Evolution equation for the temperature

The objective of this appendix is to identify the mode that emerges after a homogeneous
perturbation of the density and the temperature. Assuming that the hydrodynamic stage
has been reached and the distribution function is that of the time-dependent USF state,
we have

dTH(t)
dt

= − 2a
dnH

Pxy,H(t) − ζH(t)TH(t) (A.1)

where the pressure tensor and cooling rate can be written as

Pxy,H(t) =
1
2
nHmvH(t)2P̃xy(ã), (A.2)

ζH(t) =
vH(t)
λ

ζ̃(ã), (A.3)

where P̃xy(ã) and ζ̃(ã) are defined in equations (68) and (69) respectively.
The deviation

δ

[
Pxy,H

nH

]
≡ Pxy,H

nH

− Pxy,s

ns

, (A.4)

around the stationary value given by ns and Ts is, to linear terms,

δ

[
Pxy,H

nH

]
=

1
2
mv2

s P̃xy,sθ − 1
2
mv2

s ãs
dP̃xy

dã
(ãs)

(
1
2
θ + ρ

)
, (A.5)

where we have used[
∂ã

∂vH

]
vH=vs

= − ãs

vs

,
[
∂ã

∂nH

]
vH=vs

= − ãs

ns

. (A.6)

By analogy, for the cooling rate term we have

δ[ζH(t)TH(t)] = Ts
vs

λ

[
3
2
ζ̃(ãs) − ãs

2
dζ̃
dã

(ãs)

]
θ + Ts

vs

λ

[
ζ̃(ãs) − ãs

dζ̃
dã

(ãs)

]
ρ. (A.7)
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Taking into account equations (A.5) and (A.7), we obtain

dθ
ds

=

[
2
ã2

s

d

∂P̃xy

∂ã
(ãs) − ζ̃s + ãs

dζ̃
dã

(ãs)

]
ρ

+

[
ã2

s

d

∂P̃xy

∂ã
(ãs) − 2ãs

d
P̃xy,s − 3

2
ζ̃s +

1
2
ãs

dζ̃
dã

(ãs)

]
θ. (A.8)

But, as in the stationary state we have
2ãs

d
P̃xy,s = −ζ̃s, (A.9)

we obtain the result of the main text, equation (66).

Appendix B. Validity of the approximation given by equation (111)

In this Appendix we prove that the approximation given by equation (111) is consistent
with the equation for the correlation function, equation (49). Taking the scalar product
with ξ̄j(c1) in equation (49) and performing the approximation (111), we obtain

λj〈ξ̄j(c1)|φ(c1, c2)〉 = 〈ξ̄j(c1)|T̃0(c1, c2)χ(c1)χ(c2)〉, (B.1)
the validity of which can be proven. Here we will use a different approach. Equation (B.1)
can be obtained by first integrating with respect to c2 in equation (49) and then taking
the scalar product with ξ̄j(c1) in the c1 space. The first step gives

Λ(c)χ(c) = −ãscy
∂

∂cx
χ(c), (B.2)

where we have used∫
dc2φ(c1, c2) = −χ(c). (B.3)

Note that equation (B.2) is simply the non-linear Boltzmann equation for the stationary
state, but expressed in terms of the linearized Boltzmann operator. Approximation (111)
now has to be consistent when applied to equation (B.2), so that we have to prove that

λi〈ξ̄i(c)|χ(c)〉 = ãs〈ξ̄i(c)|cy ∂

∂cx
χ(c)〉, i = 2, 3, 4. (B.4)

For i = 1 the previous equation trivially holds.
Equations (B.4) can be expressed in a different basis of the subspace {ξ̄i}4

i=1. The basis
{hi}4

i=1 turns out to be useful, where

h(c) =

⎡⎢⎢⎣
1

2c2

d
− 1

2cxcy
2c2y

⎤⎥⎥⎦ , (B.5)

because we have∫
dch(c)δχ(c, s) =

⎡⎢⎢⎣
ρ
θ(s)

Πxy(s)
Πyy(s)

⎤⎥⎥⎦ , (B.6)
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and, equation (B.4) can then be written as

M

⎡⎢⎢⎣
1
0

P̃xy,s

P̃yy,s

⎤⎥⎥⎦ = −ãs

⎡⎢⎢⎣
0

2
d
P̃xy,s

P̃yy,s

0

⎤⎥⎥⎦ , (B.7)

where we have used∫
dch(c)χ(c) =

⎡⎢⎢⎣
1
0

P̃xy,s

P̃yy,s

⎤⎥⎥⎦ ,
∫

dch(c)χ(c)cy
∂

∂cx
χ(c) = −

⎡⎢⎢⎣
0

2
d
P̃xy,s

P̃yy,s

0

⎤⎥⎥⎦ . (B.8)

Taking the explicit expressions of M , P̃xy,s, and P̃yy,s as a function of ζ̃s and β of the main
text, it is straightforward to prove the validity of equation (B.7).

Appendix C. Evaluation of the Cij coefficients

In this appendix we calculate the coefficients Cij defined in equation (122), starting from
equation (124). As said, we only have 6 independent equations, because of the relation
between the third and fourth mode. The corresponding equation for i = j = 2 is

2λ2〈ξ̄2(c1)ξ̄2(c2)|φ(c1, c2)〉 = 〈ξ̄2(c1)ξ̄2(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉. (C.1)

For i = 2 and j = 3 we have two equations, one associated with the real part

(λ2 + λR
3 )〈ξ̄2(c1)ξ̄R

3 (c2)|φ(c1, c2)〉 − λI
3〈ξ̄2(c1)ξ̄I

3(c2)|φ(c1, c2)〉
= 〈ξ̄2(c1)ξ̄R

3 (c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, (C.2)

and other with the imaginary part

(λ2 + λR
3 )〈ξ̄2(c1)ξ̄I

3(c2)|φ(c1, c2)〉 − λI
3〈ξ̄2(c1)ξ̄R

3 (c2)|φ(c1, c2)〉
= 〈ξ̄2(c1)ξ̄I

3(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, (C.3)

where we have used a decomposition into the real and imaginary parts of the third
eigenvalue and eigenfunctions given by equations (109)–(110). For i = j = 3 we also
have two independent equations

2λR
3 [〈ξ̄R

3 (c1)ξ̄R
3 (c2)|φ(c1, c2)〉 − 〈ξ̄I

3(c1)ξ̄I
3(c2)|φ(c1, c2)〉] − 4λI

3〈ξ̄R
3 (c1)ξ̄I

3(c2)|φ(c1, c2)〉
= 〈ξ̄R

3 (c1)ξ̄R
3 (c2)|T̃0(c1, c2)χ(c1)χ(c2)〉

−〈ξ̄I
3(c1)ξ̄I

3(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, (C.4)

and

λI
3[〈ξ̄R

3 (c1)ξ̄R
3 (c2)|φ(c1, c2)〉 − 〈ξ̄I

3(c1)ξ̄I
3(c2)|φ(c1, c2)〉] + 2λR

3 〈ξ̄R
3 (c1)ξ̄I

3(c2)|φ(c1, c2)〉
= 〈ξ̄R

3 (c1)ξ̄I
3(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉. (C.5)

Finally, there is an additional equation corresponding to i = 3, j = 4

2λR
3 〈ξ̄R

3 (c1)ξ̄R
3 (c2)|φ(c1, c2)〉 + 〈ξ̄I

3(c1)ξ̄I
3(c2)|φ(c1, c2)〉]

= 〈ξ̄R
3 (c1)ξ̄R

3 (c2)|T̃0(c1, c2)χ(c1)χ(c2)〉
+〈ξ̄I

3(c1)ξ̄I
3(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉, (C.6)

that can be written in terms of the third mode because λ4 = λ∗
3 and ξ̄4 = ξ̄∗

3 .
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The scalar products 〈ξ̄i(c1)ξ̄j(c2)|φ(c1, c2)〉 can be written in terms of the Cij

coefficients through equation (125), so that the system of equations (C.1)–(C.6) is a linear
system of six equations for the six unknown coefficients {C22,C23,C24,C33,C34,C44}. Note
that the results so far are valid for any dimension, d, and the only approximation made
was that given by equation (111). Of course, it still remains to evaluate the coefficients

〈ξ̄i(c1)ξ̄j(c2)|T̃0(c1, c2)χ(c1)χ(c2)〉 =
4∑

l=1

ξilξjlTll +
4∑

k>l=1

(ξikξjl + ξilξjk)Tkl, (C.7)

where we have introduced the matrix elements

Tij =
∫

dc1

∫
dc2bi(c1)bj(c2)T̃0(c1, c2)χ(c1)χ(c2)

=
∫

dc1

∫
dc2χ(c1)χ(c2)T0(c1, c2)bi(c1)bj(c2), (C.8)

with

T0(c1, c2) =
∫

dσ̂Θ(c12 · σ̂)(c12 · σ̂)[bσ(1, 2) − 1]. (C.9)

The first coefficients, {T1j}4
j=1, can easily be calculated. In effect,

T11 = 0, (C.10)

due to the conservation of the total number of particles, and the second is related to the
cooling rate

T12 = −d
2
ζ̃s, (C.11)

by equation (69). On the other hand, taking into account the equation for χ,
equation (B.2), we have

T13 = −ãs

∫
dccxc2y

∂

∂cx
χ(c) =

1
2
ãsP̃yy,s, (C.12)

and

T14 = −ãs

∫
dcc2y

∂

∂cx
χ(c) = 0. (C.13)

To evaluate the other coefficients we have to calculate explicitly T0(c1, c2)bi(c1)bj(c2).
In reference [9] the term T0(c1, c2)c21c

2
2 has already been calculated yielding

T0(c1, c2)c21c
2
2 = − π(d−1)/2

Γ
(

d+5
2

) [(1 − α2)(d+ 1 + 2α2)
16

g5

+
d+ 5 − α2(d+ 1) + 4α

4
g3G2 − 1 + α

2
(2d+ 3 − 3α)g(g · G)2

]
, (C.14)

where we have introduced the new variables

g = c1 − c2, (C.15)

G =
1
2
(c1 + c2). (C.16)
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For the rest of coefficients, we first evaluate [bσ(1, 2) − 1]bi(c1)bj(c2). Using the collision
rule, equation (1), we obtain

[bσ(1, 2) − 1]c21c2xc2y =
1 + α

2
(σ̂ · g)[c21(c2xσ̂y + c2yσ̂x) − 2(σ̂ · c1)c2xc2y]

+
(1 + α)2

4
(σ̂ · g)2[c21σ̂xσ̂y + c2xc2y − 2(σ̂ · c1)(c2xσ̂y + c2yσ̂x)]

+
(1 + α)3

8
(σ̂ · g)3[c2xσ̂y + c2yσ̂x − 2(σ̂ · c1)σ̂xσ̂y] +

(1 + α)4

16
(σ̂ · g)4σ̂xσ̂y,

(C.17)

[bσ(1, 2) − 1]c21c
2
2y = (1 + α)(σ̂ · g)[c21c2yσ̂y − c22y(σ̂ · c1)]

+
(1 + α)2

4
(σ̂ · g)2[c21σ̂

2
y + c22y − 4(σ̂ · c1)c2yσ̂y]

+
(1 + α)3

4
(σ̂ · g)3[c2yσ̂y − (σ̂ · c1)σ̂2

y ] +
(1 + α)4

16
(σ̂ · g)4σ̂2

y , (C.18)

[bσ(1, 2) − 1]c1xc1yc2xc2y =
1 + α

2
(σ̂ · g)(σ̂yc1xc2xgy + σ̂xc1yc2ygx)

+
(1 + α)2

4
(σ̂ · g)2[σ̂xσ̂ygxgy − σ̂2

xc1yc2y − σ̂2
yc1xc2x]

−(1 + α)3

8
(σ̂ · g)3(σ̂xσ̂

2
ygx + σ̂2

xσ̂ygy) − (1 + α)4

16
(σ̂ · g)4σ̂2

xσ̂
2
y , (C.19)

[bσ(1, 2) − 1]c1xc1yc
2
2y =

1 + α

2
(σ̂ · g)[σ̂y(2c1xc1yc2y − c1xc

2
2y) − σ̂xc1yc

2
2y]

+
(1 + α)2

4
(σ̂ · g)2[σ̂2

y(c1xc1y − 2c1xc2y) + σ̂xσ̂y(c22y − 2c1yc2y)]

+
(1 + α)3

8
(σ̂ · g)3[σ̂xσ̂

2
y(2c2y − c1y) − σ̂3

yc1x] +
(1 + α)4

16
(σ̂ · g)4σ̂xσ̂

3
y ,

(C.20)

and

[bσ(1, 2) − 1]c21yc
2
2y = (1 + α)(σ̂ · g)σ̂y(c21yc2y − c1yc

2
2y)

+
(1 + α)2

4
(σ̂ · g)2σ̂2

y(c
2
1y + c22y − 4c1yc2y)

−(1 + α)3

4
(σ̂ · g)3σ̂3

ygy +
(1 + α)4

16
(σ̂ · g)4σ̂4

y . (C.21)

After multiplying by σ̂ · g, the σ̂-integrals can be calculated with the aid of∫
dσ̂Θ(σ̂ · g)(σ̂ · g)2σ̂i =

π
d−1
2

Γ
(

d+3
2

)ggi, (C.22)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)3 =

π
d−1
2

Γ
(

d+3
2

)g3, (C.23)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)3σ̂iσ̂j =

π
d−1
2

2Γ
(

d+5
2

)(3ggigj + g3δij), (C.24)
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dσ̂Θ(σ̂ · g)(σ̂ · g)4σ̂i =

2π
d−1
2

Γ
(

d+5
2

)g3gi, (C.25)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)4σ̂2

yσ̂j =
π

d−1
2

Γ
(

d+7
2

) [3gg2
ygj + g3gj + 2g3gyδyj], (C.26)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)4σ̂xσ̂yσ̂z =

3π
d−1
2

Γ
(

d+7
2

)ggxgygz, (C.27)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)5σ̂iσ̂j =

π
d−1
2

Γ
(

d+7
2

)(5g3gigj + g5δij), (C.28)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)5σ̂3

yσ̂j =
3π

d−1
2

2Γ
(

d+9
2

) [5ggy(g2 + g2
y)gj + g3(g2 + 5g2

y)δyj], (C.29)

calculated for arbitrary dimension and∫
dσ̂Θ(σ̂ · g)(σ̂ · g)5σ̂2

xσ̂
2
j =

3π
1
2

2Γ
(

11
2

) [g3(g2 + g2
x) + 8g3gxgjδxj + (g3 + 5gg2

x)g
2
j ], (C.30)

for d = 2.
In the following we will restrict ourselves to the case d = 2 and will use the Jenkins

and Richman distribution to ε2 order [20]

χ(c) ≈ e−c2

π

[
1 − ε

√
2cxcy + ε2

(
1
4

− c2y + c2xc
2
y

)]
. (C.31)

To the same approximation, we have

χ(c1)χ(c2) ≈ 1
π2 e−c21−c22

[
1 − ε

√
2(c1xc1y + c2xc2y)

+ε2
(

1
4

− c21y − c22y + c21xc
2
1y + c22xc

2
2y + 2c1xc1yc2xc2y

)]
, (C.32)

or, in terms of the new variables {g,G}

χ(c1)χ(c2) ≈ e− 1
2g2−2G2

π2

{
1 − ε√

2
(gxgy + 4GxGy)

+
ε2

4
[
2 + (g2

x − 2)g2
y + 8gxgyGxGy + 8(2G2

x − 1)G2
y

]}
. (C.33)

The velocity integrals given by equation (C.8) can be calculated with the aid of
Mathematica, obtaining, up to ε2

T22 = − 3
2

√
π

2
ε2, (C.34)

T23 =
5
8
√
πε, (C.35)

T24 = − 1
8

√
π

2
ε2, (C.36)
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T33 = − 19
64

√
π

2
ε2, (C.37)

T34 =
5
16

√
πε, (C.38)

T44 =
11
64

√
π

2
ε2. (C.39)

Finally, by substituting the expressions for the Tij coefficients obtained above into
equation (C.7) and that into equations (C.1)–(C.6), we obtain the linear system for
Cij mentioned above. This system is solved with the aid of Mathematica to obtain the
expressions in the main text.
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[36] Garćıa de Soria M I and Maynar P to be published

doi:10.1088/1742-5468/2014/09/P09024 31

http://dx.doi.org/10.1088/0953-8984/12/8A/306
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1103/PhysRevE.72.021306
http://dx.doi.org/10.1103/RevModPhys.78.641
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1007/BF02181270
http://dx.doi.org/10.1103/PhysRevE.70.011302
http://dx.doi.org/10.1103/PhysRevE.58.4638
http://dx.doi.org/10.1103/PhysRevE.68.030302
http://dx.doi.org/10.1103/PhysRevE.72.011303
http://dx.doi.org/10.1017/S0022112083003419
http://dx.doi.org/10.1103/PhysRevE.79.051305
http://dx.doi.org/10.1103/PhysRevE.83.041303
http://dx.doi.org/10.1103/PhysRevE.86.031304
http://dx.doi.org/10.1017/S0022112084000586
http://dx.doi.org/10.1017/S0022112088001879
http://dx.doi.org/10.1063/1.869012
http://dx.doi.org/10.1103/PhysRevE.55.2846
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1007/BF01008484
http://dx.doi.org/10.1088/0022-3719/5/15/006
http://dx.doi.org/10.1103/PhysRevA.33.459
http://dx.doi.org/10.1080/00268970902794842
http://dx.doi.org/10.1209/0295-5075/78/24002
http://dx.doi.org/10.1103/PhysRevE.85.021302
http://dx.doi.org/10.1103/PhysRevE.86.061308
http://dx.doi.org/10.1103/PhysRevE.73.021304
http://dx.doi.org/10.1103/PhysRevE.82.021303
http://dx.doi.org/10.1088/1742-5468/2014/09/P09024

	 Contents
	1. Introduction
	2. Kinetic equations for the model
	3. The stationary uniform shear flow state
	3.1. Global correlations
	3.2. Correlations between global quantities

	4. Fluctuations of the total internal energy
	4.1. Spectral properties of 
	4.2. An invalid approximation
	4.3. A valid approximation

	5. Fluctuations of the relevant global quantities
	6. Simulation results
	7. Conclusion and discussion

	 Acknowledgments
	 Appendix A. Evolution equation for the temperature
	 Appendix B. Validity of the approximation given by equation (111)
	 Appendix C. Evaluation of the Cij coefficients
	 References

