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Abstract A kinetic equation for a system of elastic hard spheres or disks confined by a hard
wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in
which the effects of the confinement are taken into account and it is supposed to be valid
up to moderate densities. From the equation, balance equations for the hydrodynamic fields
are derived, identifying the collisional transfer contributions to the pressure tensor and heat
flux. A Lyapunov functional, H[ f ], is identified. For any solution of the kinetic equation,
H decays monotonically in time until the system reaches the inhomogeneous equilibrium
distribution, that is a Maxwellian distribution with a density field consistent with equilibrium
statistical mechanics.

Keywords Kinetic theory · Hard-sphere fluid · Enskog equation · H -theorem

1 Introduction

In 1922, Enskog introduced an equation that extends the Boltzmann equation for hard spheres
to moderate densities [1]. By intuitive arguments, he modified the molecular chaos assump-
tion of Boltzmann, constructing an equation that, since then, is the paradigm of kinetic
equation for moderate densities. It is not surprising, since it is known to be quite successful in
describing the dynamics of dense fluids [2,3]. The idea is the following: theBoltzmannmolec-
ular chaos assumption can be formulated mathematically approximating the two-particle
distribution function, f2, for two spheres at contact and for precollisional velocities by
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f2(r + σ , v1, r, v2, t) ≈ f (r, v1, t) f (r, v2, t), (1)

where σ is a vector that joints the centers of the two particles at contact and f the one-particle
distribution function. Therefore, it is assumed that there are neither velocity correlations nor
position correlations between the particles that are going to collide and also that f does not
vary appreciably in distance of the order of the diameter of a particle, σ . Enskog modified
this assumption and considered

f2(r + σ , v1, r, v2, t) ≈ g2(r + σ , r) f (r + σ , v1, t) f (r, v2, t), (2)

so that, still, there are not velocity correlations between the particles that are going to collide,
but the collision does not take place with the two particles at the same given points.Moreover,
it is assumed that the probability f2 is modified with respect to the Boltzmann case by a factor
g2 that takes into account correlations between the positions of the two colliding spheres.
Enskog took for g2 the equilibriumpair correlation function at contact of a homogeneousfluid,
calculated with the local density at the middle of the two particles. Under this assumption,
the Enskog equation (EE) is obtained.

Around 1970, it was shown that the generalization tomixtures of the EEwas not consistent
with the laws of irreversible thermodynamics, Onsager’s reciprocal relations were violated
[4]. Later on, it was realized that the problem could be solved by means of a modification of
the standard EE, consisting in taking g2 to be the pair correlation function at contact of an
inhomogeneous fluid at equilibrium in the presence of a force field such that the equilibrium
density of this reference system be the instantaneous actual density field, n(r, t). This new
equation is called the modified Enskog equation (MEE) [5]. Intuitively, this new hypothesis
seems appealing, since it takes into account the spatial correlations between two particles
in a non-uniform local equilibrium state, while in the standard framework non-uniformities
are only taken into account to a certain extend. Moreover, the MEE has several advantages
against the standard EE: (a) It can be derived from the Liouville equation assuming that, for all
times, the N-particle distribution function, ρN , is such that there are not velocity correlations,
although all hard spheres overlap exclusions are taken into account [6]. (b) An H-theorem
can be derived for the MEE [7,8]. (c) In the presence of an external field, the MEE yields the
correct single-particle equilibrium distribution function, whereas the standard EE does not
[9].

Until now, as far as we know, the EE (in its two versions) has been considered for an
infinite system or with periodic boundary conditions [2,3]. In particular, the derivation of
theH-theorem [7,8] is restricted to periodic boundary conditions. A priori, it seems difficult
to deal with the excluded volume effects caused by both, the boundary and the particles.
Very recently, a kinetic equation for a dilute system composed of hard spheres that takes into
account the effect of confinement was proposed [10]. The particles are confined between two
parallel plates separated a distance smaller than two particle diameters. Here, by extending
these ideas, the MEE is formulated taking into account the effects of arbitrary confinement
(a hard wall with arbitrary shape). In fact, as it will be seen along the paper, it has the same
conceptual advantages that the MEE: it can be derived from the Liouville equation under
some approximations, it is consistent with the equilibrium distribution function, and an H-
theorem can be derived. Moreover, balance equations for the hydrodynamic fields will be
obtained and the main differences with the ones from the MEE will be discussed.

In the last decades, the study of confined fluids has attracted a great deal of attention,
mostly focused on equilibrium and phase transition properties [11–17]. On the other hand,
few non-equilibrium results for confined systems seem to be well established in the context
of a general theory. In this sense, the equation formulated in this paper goes in the direction
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of filling this gap, as it let us study the dynamic of dense confined systems in the hard spheres
case. It also opens the possibility of studying new questions as, for example, existence of
hydrodynamics or, if this is the case, how the hydrodynamic equations are modified. These
effects are expected to be particularly important in situations of strong confinement, i.e.
when the size of the particles is of the order of the geometrical parameters describing the
confinement, as in the previous example of the two parallel plates.

The paper is organized as follows: in Sect. 2 theMEE for a general confinement is derived.
It is shown that the equation admits the Maxwellian equilibrium distribution with the density
profile predicted by statistical mechanics. It is also shown that the equation reduces to the
one introduced in [10] in the appropriated limit. In Sect. 3, balance equations for the hydro-
dynamic fields are deduced, while in Sect. 4 theH-theorem is proved. Finally, in Sect. 5 some
concluding remarks are formulated.

2 Kinetic Equation

The model we consider is an ensemble of N elastic hard spheres (d = 3) or disks (d = 2),
of mass m and diameter σ . The particles are confined inside a volume V with a boundary
∂V . In principle, the shape of the boundary surface is arbitrary and can have corners, but it is
assumed that it is such that particles can explore all the volume. Let us mention that, when we
refer to V , wemean the accessible volume to the centers of the particles (the distance between
any point of ∂V and the actual wall is, hence, σ/2). At a given time t , the state of the system
is given by the positions and velocities of the N particles, {R1(t),V1(t), . . . ,RN (t),VN (t)},
whereRi andVi are the position and velocity of particle i respectively. The dynamics consists
of free streaming until there is an encounter between two particles, or of a particle with the
wall. Suppose that there is a collision of two particles, say particle 1 and 2, with velocities
V1 and V2 respectively, the postcollisional velocities are

V′
1 ≡ bσ̂V1 = V1 − (V12 · σ̂ )σ̂ , (3)

V′
2 ≡ bσ̂V2 = V2 + (V12 · σ̂ )σ̂ , (4)

whereV12 ≡ V1−V2 is the relative velocity, and σ̂ a unitary vector joining the centers of the
two particles at contact (from 2 to 1). We have also introduced the operator bσ̂ that changes
functions of V1,V2 to the same functions of the scattered velocities, i.e. bσ̂ g(V1,V2) ≡
g(V′

1,V
′
2) for any arbitrary function g. When a particle collides with the wall at r ∈ ∂V with

velocity V, it experiments an elastic reflexion, and its velocity after the collision is

be(r)V = V − 2[V · N(r)]N(r). (5)

Here we have introduced the operator be(r) and the unitary vector normal to the surface
at r with an outward orientation, N(r). As the surface can have corners, the vectorial field,
N(r) : r ∈ ∂V → R

d , may have a finite number of discontinuities. Let us mention that,
although the model can be easily generalized to other collision rules and other kind of “hard”
interactions with the wall, we will restrict ourselves to this simple case, because the kinetic
equation that will be derived includes all the new ingredients that we want to analyze.

Now, the objective is to derive a kinetic equation for this model, i.e. a closed equation
for the one-particle distribution function, f (r, v, t). This function is defined as usual in
kinetic theory, so that

∫
V1

dr
∫
W1

dv f (r, v, t) is the mean number of particles with positions
inside the volume V1 and velocities inside W1 at time t , for any of such volumes. In [18],
the BBGKY hierarchy is derived for the present model, taking into account the hard wall.
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Fig. 1 Schematic representation
of the restricted solid angle for
particle 2 locate at r, Ω(r). Line
(a) is the boundary of V , while
line (b) is the actual wall

Ω (r)

2
(b)
(a)

The first equation of the hierarchy relates the one-particle distribution function with the
two-particle distribution function, f2(r1, v1, r2, v2, t), which is defined in such a way that∫
V1

dr1
∫
W1

dv1
∫
V2

dr2
∫
W2

dv2 f2(r1, v1, r2, v2, t) is the mean number of pairs of particles
such that particle 1 is in V1 with velocity in W1, while particle 2 is in V2 with velocity in W2

at time t . The equation is

(
∂

∂t
+ v2 · ∂

∂r

)

f (r, v2, t) = J [ f2], (6)

with

J [ f2] = σ d−1
∫

dv1

∫
dσ̂ |v12 · σ̂ |[θ(v12 · σ̂ )bσ̂ − θ(−v12 · σ̂ )] f2(r+σ , v1, r, v2, t). (7)

Here dσ̂ is the solid angle element for σ̂ , and θ is the Heaviside step function. The integration
is over the complete velocity space and the total solid angle for dimension d , Ωd . Looking
further at J [ f2], it is seen that, closed to the boundary, it can happen that r ∈ V while
r + σ /∈ V for certain σ̂ ∈ Ωd . Of course, f2(r + σ , v1, r, v2, t) = 0 if r + σ /∈ V .
This is due to the fact that, if the initial condition is such that all the particles are inside
the volume, the dynamic conserves this property. Let us remark that Eq. (6) has no terms
corresponding to particle-wall collisions because they are included in the boundary conditions
of the distribution functions f and f2. In fact, it is possible to formulate an equivalent equation
with a new term that incorporates the collisions with the walls. Then, the equation can be
split into a regular part and a singular part. The regular part is Eq. (6) and the singular part are
the boundary conditions. This has been explicitly done in Ref. [19] for the special geometry
of two parallel walls separated a distance smaller than twice the diameter of the particles. In
the following, it will be convenient to express J [ f2] in terms of the configurations that are
actually allowed. This can be done by taking into account that, for fixed r, only a restricted
solid angle, Ω(r), is possible, in such a way that r + σ ∈ V if and only if σ̂ ∈ Ω(r) (see
Fig. 1). Then, J [ f2] can be expressed as

J [ f2] = σ d−1
∫

dv1

∫

Ω(r)
dσ̂ |v12·σ̂ |[θ(v12·σ̂ )bσ̂ −θ(−v12·σ̂ )] f2(r+σ , v1, r, v2, t). (8)

Until now, Eq. (6) is not closed. Nevertheless, let us see that, in a similar fashion that in the
non-confined case [5,6], f2 can be expressed as a functional of f under somemathematically
well defined approximations. Let us assume that, for the evaluation of some reduced distri-
bution functions and for precollisional configurations, the N -particle probability distribution
function, ρN , can be approximated in the form

ρN (Γ, t) ≈ Θ(r1, . . . , rN )

φ(t)

N∏

n=1

W (rn, vn, t), (9)
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The Enskog Equation for Confined Elastic Hard Spheres 1003

for all times and for rn ∈ V, n = 1, 2, . . . , N , where Γ ≡ (r1, v1, . . . , rN , vN ), and

Θ(r1, . . . , rN ) ≡
N∏

i=1

∏

j>i

θ(|ri − r j | − σ), (10)

that vanishes for overlapped configurations. The functionW can be considered to be normal-
ized, i.e.

∫
dr

∫
dvW (r, v, t) = 1, and the function of time,

φ(t) =
∫

dr1w(r1, t) . . .

∫
drNw(rN , t)Θ(r1, . . . , rN ), (11)

with

w(r, t) ≡
∫

dvW (r, v, t), (12)

arises as a normalization factor of ρN . The integrals in the space variable are supposed
to be over the confining volume, V . The crucial assumption in Eq. (9) is that the velocity
dependence of ρN enters only through the function W (r, v, t) in a factorized way, keeping
the exact property that ρN must vanish for overlapped configurations due to Θ(r1, . . . , rN ).
Although the form given by Eq. (11) is exact at equilibrium (in the canonical ensemble W is
the Maxwellian distribution), it can only be an approximation for out of equilibrium systems
[6–8]. Concretely, it is a good approximation for precollisional configurations but, as it will
be shown, then it can not be valid for postcollisional configurations.

Now, let us use the approximation given by Eq. (9) to evaluate the one-particle distribution
function, f (r, v, t), and the two-particle distribution function at contact for precollisional
velocities, f2(r+ σ , v1, r, v2, t) with σ̂ · v12 < 0. This is, in fact, the part of the distribution
that we need as it is the part that appears in Eq. (8). The one-particle distribution function is

f (r1, v1, t) = N

φ(t)
W (r1, v1, t)

∫
dr2w(r2, t) . . .

∫
drNw(rN , t)Θ(r1, . . . , rN ), (13)

and the density field,

n(r1, t) = N

φ(t)
w(r1, t)

∫
dr2w(r2, t) . . .

∫
drNw(rN , t)Θ(r1, . . . , rN ). (14)

Here it is seen that the density, n, is a functional of w (note that φ is also a functional of w by
Eq. (11)). In fact, according to a theorem of density functional theory that establishes that,
for a fluid in equilibrium in the presence of an external potential, Ep(r), there is a one to one
correspondence between the external potential and the density field [20], it can be expected
that w is also a functional of n, i.e.

w(r, t) = Y(r, t |n). (15)

This is because the functional given by Eq. (14) is the same that the one that appears in

the context of density functional theory by making the substitution w(r) ↔ e− Ep (r)
T , where

T is the temperature, that is an arbitrary parameter, and the Boltzmann constant, kB , has
been taken to be unity. In any case, Eq. (15) can be taken as an additional assumption. The
two-particle distribution function at contact for precollisional velocities can be expressed in
the form

f2(r + σ , v1, r, v2, t) = g2(r + σ , r|n) f (r + σ , v1, t) f (r, v2, t), (16)

valid for σ̂ · v12 < 0, where g2 is the pair correlation function at contact, defined as

g2(r + σ , r|n) = n2(r + σ , r, t)
n(r + σ , t)n(r, t)

, (17)
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with

n2(r + σ , r, t) = N (N − 1)

φ(t)
w(r + σ , t)w(r, t)

∫
dr3w(r3, t) . . .

. . .

∫
drNw(rN , t)Θ(r + σ , r, r3, . . . , rN ). (18)

Asw is a functional of the density, n2 and consequently g2 are also functionals of the density
(in the notation introduced for g2, this is explicitly indicated). Moreover, the functional g2 is
the same as the one associated to a system in equilibrium at temperature T , in the presence of

an external force, F = − ∂Ep(r)
∂r , such that w(r) ∝ e− Ep (r)

T [21]. Let us also remark that the
two-particle distribution function at contact for postcollisional velocities can be consistently
calculated in the framework of approximation given by Eq. (16). Due to the conservation of
probability in a collision, it can be written in the form [22]

f2(r + σ , v1, r, v2, t) = g2(r + σ , r|n)bσ̂ f (r + σ , v1, t) f (r, v2, t), (19)

for σ̂ · v12 > 0. Here it is seen that Eq. (9) is clearly inconsistent for postcollisional config-
urations.

By substituting the factorized form of the two-particle distribution function, Eq. (16),
into Eq. (8), the collisional contribution is expressed in terms of f . The obtained evolution
equation for f is then

(
∂

∂t
+ v2 · ∂

∂r

)

f (r, v2, t) = JE [ f | f ], (20)

with

JE [ f | f ] = σ d−1
∫

dv1

∫

Ω(r)
dσ̂ |v12 · σ̂ |[θ(v12 · σ̂ )bσ̂ − θ(−v12 · σ̂ )]

g2(r + σ , r|n) f (r + σ , v1, t) f (r, v2, t), (21)

to be solved with the boundary conditions

f (r, v, t) = f (r, bev, t), ∀r ∈ ∂V, ∀t, ∀v with v · N(r) > 0. (22)

Equation (20) is the closed equation for the one-particle distribution function we were
looking for. It describes the dynamics of a system of hard spheres or disks confined by hard
walls of arbitrary shape, and can be considered as the starting point to tackle other questions,
such as the derivation of hydrodynamics, modification of transport coefficients, etc. As the
MEE, it is expected to be valid for moderate densities. The difference between Eq. (20) and
the MEE resides in the fact that the region of integration of the solid angle depends on r. In
the bulk, the two equations coincide but, closed to the boundary, the possible solid angles in
Eq. (20) are restricted by the fact that particles must be inside the volume V , i.e. r ∈ V and
r + σ ∈ V . Of course, the functional g2 depends also on the shape of the container.

By direct substitution, it is shown that Eq. (20) admits a stationary or equilibrium solution
of the form

fe(r, v) = ne(r)χM (v, T ), (23)

where χM (v, T ) is a Maxwellian distribution of temperature T

χM (v, T ) = e
− v2

v20

πd/2vd0

, (24)
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The Enskog Equation for Confined Elastic Hard Spheres 1005

with v0 being the thermal velocity defined through T ≡ m
2 v20 . The temperature is defined as

usual, d
2 nT ≡ ∫

dvm
2 v2 f . In effect, when Eq. (23) is substituted into Eq. (20), the velocity

dependence is eliminated and the equilibrium density must fulfill

∂

∂r
ln ne(r) = −σ d−1

∫

Ω(r)
g2(r + σ , r|ne)ne(r + σ )σ̂ , (25)

that is the first equation of the BGY hierarchy [23]. Hence, the distribution function, fe, is
consistent with the known properties of equilibrium statistical mechanics. Note also that, as
χM depends on |v|, the boundary conditions given by Eq. (22) are automatically satisfied.

Finally, let us remark that, for low densities, Eq. (20) reduces to a much simpler form. In
effect, the first term in the Mayer expansion of the pair correlation function is g2(r1, r2|n) ∼
θ(|r1 − r2| − σ), so that, in this limit, Eq. (20) takes the form

(
∂

∂t
+ v2 · ∂

∂r

)

f (r, v2, t) = JBE [ f | f ], (26)

with

JBE [ f | f ] = σ d−1
∫

dv1

∫

Ω(r)
dσ̂ |v12 · σ̂ |[θ(v12 · σ̂ )bσ̂ − θ(−v12 · σ̂ )]

f (r + σ , v1, t) f (r, v2, t). (27)

The collision operator has some similarities with the Boltzmann collision operator, because
it does not contain the correlation function, g2, but the dependence of f on distances of order
σ is still important, as in Enskog. Considering a confinement between two parallel walls
separated a distance smaller than two particle diameters, and assuming that the distribution
does not vary on distance of order σ in the directions parallels to the planes, the equation
analyzed in reference [10] is obtained. Let us remark that the equation of reference [10]
describes correctly the equilibrium properties for densities beyond Boltzmann and also some
studied nonequilibrium dynamical properties [19]. Hence, it seems that, when the density
is not so high, Eq. (26) represents a good starting point for the study of confined fluids, in
a more simplified way that with Eq. (20). Note that the Boltzmann equation is obtained in
the Grad limit, where it is fair to approximate f (r + σ , v, t) ∼ f (r, v, t) and Ω(r) = Ωd .
Clearly, this limit has no sense when the geometrical constraints due to the boundary are in
some direction of the order of the size of the particles.

3 Balance Equation

The hydrodynamic fields are defined as usual in kinetic theory, as the first velocity moments
of the one-particle distribution function

n(r, t) =
∫

dv f (r, v, t), (28)

n(r, t)u(r, t) =
∫

dvv f (r, v, t), (29)

d

2
n(r, t)T (r, t) = m

2

∫
dv[v − u(r, t)]2 f (r, v, t). (30)
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By taking velocity moments in the first equation of the BBGKY, Eq. (6), formal relations
between the hydrodynamic fields and the fluxes are obtained

∂

∂t
n + ∂

∂r
· (nu) = 0, (31)

∂

∂t
(nui ) + ∂

∂r
· (nuiu) + 1

m

∂

∂r
· P(k) =

∫
dvvi J [ f2], (32)

∂

∂t

(
d

2
nT + m

2
nu2

)

+ ∂

∂r
·
(
d

2
nTu + m

2
nu2u

)

+ ∂

∂r
·
(
u · P(k) + q(k)

)
= m

2

∫
dvv2 J [ f2], (33)

where we have introduced the kinetic pressure tensor

P(k)
i j (r, t) = m

∫
dv[vi − ui (r, t)][v j − u j (r, t)] f (r, v, t), (34)

and the kinetic heat flux

q(k)(r, t) = m

2

∫
dv[v − u(r, t)]2[v − u(r, t)] f (r, v, t). (35)

At first sight, it seems that Eqs. (32) and (33) are not associated to conserved quantities, due
to the collisional terms, i.e. the terms that involve J . But, in fact, this is not the case because,
as it will be shown, these terms can be transformed into the divergence of a quantity that is
associated to the collisional flux of momentum and energy. From a physical point of view the
picture is the following: there is flux of momentum and energy through a given surface due
to particles that cross the surface and due to collisions between particles (the two particles
are in opposite sites of the surface, do not cross the surface, but interchange momentum and
energy due to collisions). The first contribution to the fluxes are the kinetic fluxes defined
above, while the second contribution can be evaluated by kinetic theory arguments, just by
counting collisions and taken into account the corresponding contribution to the fluxes. This
is done in Appendix A, obtaining the collisional contribution to the pressure tensor

P(c)
i j (r, t) = m

2
σ d

∫
dv1

∫
dv2

∫ ∫

�

dλdσ̂θ(−v12 · σ̂ )

f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2, t](v12 · σ̂ )2σ̂i σ̂ j , (36)

and the collisional contribution to the heat flux

q(c)(r, t) = −u · P(c) + m

4
σ d

∫
dv1

∫
dv2

∫ ∫

�

dλdσ̂θ(−v12 · σ̂ )

f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2, t](v1 + v2) · σ̂ (v12 · σ̂ )2σ̂ . (37)

Here, we have introduced the functions

r1(λ, σ̂ ) = r + λσ , (38)

r2(λ, σ̂ ) = r − (1 − λ)σ , (39)

and the region of integration in the (λ, σ̂ ) space

� = {(λ, σ̂ )|σ̂ ∈ Ωd & 0 ≤ λ ≤ 1 & r1(λ, σ̂ ) ∈ V & r2(λ, σ̂ ) ∈ V }. (40)
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The Enskog Equation for Confined Elastic Hard Spheres 1007

Although it can be argued that Eqs. (36) and (37) are proposed on the basis of intuitive
arguments, they play the desired rule because, as it is shown in Appendix B, they fulfill

∫
dvmvJ [ f2] = − ∂

∂r
· P(c), (41)

m

2

∫
dvv2 J [ f2] = − ∂

∂r
·
(
q(c) + u · P(c)

)
. (42)

Finally, by substituting Eqs. (41) and (42) into Eqs. (32) and (33) respectively, it is obtained

∂

∂t
n + ∂

∂r
· (nu) = 0, (43)

∂

∂t
(nui ) + ∂

∂r
· (nuiu) + 1

m

∂

∂r
· P = 0, (44)

∂

∂t

(
d

2
nT + m

2
nu2

)

+ ∂

∂r
·
(
d

2
nTu + m

2
nu2u

)

+ ∂

∂r
· (u · P + q) = 0, (45)

where the total pressure tensor and heat flux have been introduced

P = P(k) + P(c), (46)

q = q(k) + q(c). (47)

The structure of Eqs. (43)–(45) clearly shows that they are associated to conserved quantities,
and they are the starting point to derive hydrodynamic equations. If the one and two-particle
distribution functions are expressed in terms of the hydrodynamic fields and their gradients,
the kinetic and collisional fluxes are expressed in the same way, and closed equations for the
hydrodynamic fields are obtained.

If the Enskog equation is taken as the starting point in the derivation of the hydrodynamic
equations (instead of the first equation of the BBGKY hierarchy), the same equations are
obtained, Eqs. (43)–(45). The expression for the kinetic fluxes are the same, Eqs. (34) and
(35), while the collisional contribution is slightly modified. Specifically, the expression for
the collisional fluxes are given by Eqs. (36) and (37), but substituting the exact two-particle
distribution, f2, by the approximate factorized form given by Eq. (16). The collisional con-
tribution of the fluxes coincide with the ones obtained in [24] for a non-confined system in
the proper limit, i.e. by making the substitution

� −→ {(λ, σ̂ )|σ̂ ∈ Ωd & 0 ≤ λ ≤ 1}.
Let us close this section analyzing some properties of the pressure tensor at the boundary.

From Eq. (36), it is clear that, for convex borders, P(c)
i j (r, t) = 0 if r ∈ ∂V , because if

r1(λ, σ̂ ) ∈ V then r2(λ, σ̂ ) /∈ V and vice versa. Hence, it is Pi j (r, t) = P(k)
i j (r, t) if r ∈ ∂V .

In particular, taking i = j and both in the direction of N(r), the force per unit area that the
fluid exerts to the wall is identified as

p(r, t) =
∫

dvm[v · N(r)]2 f (r, v, t), for r ∈ ∂V . (48)

This identification can be done because the change in the momentum of any particle at the
boundary can be only due to the wall-particle force. In equilibrium, this result is known as
contact theorem [23], where pe(r) = ne(r)T , with the temperature, T , being a constant over
all the system. Nevertheless, let us remark that Eq. (48) is an exact property of any state out
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of equilibrium.Moreover, it seems that it only depends on the interaction of the particles with
the wall (the one given by Eq. (5)), independently of the interaction between the particles.

4 H-theorem

In this section, it will be shown that the kinetic equation (20) fulfills an H-theorem, i.e.
there exists a functional of the distribution function, H[ f ], such that dH[ f ]

dt ≤ 0 for all
times and initial conditions. This property represents the generalization for physical boundary
conditions ofRésibois’s result, thatwas stated for theEnskog equationwith periodic boundary
conditions [7,8].

Following Résibois, the functional H is chosen to be

H ≡
∫

dΓρN (Γ, t) ln ρN (Γ, t), (49)

where ρN (Γ, t) is taken to be of the form given by (9). Let us remark that ρN is not the actual
N-particle distribution of the system, but an approximation that can be constructed with the
knowledge of the one-particle distribution function through Eqs. (13) and (15). Then,H can
be expressed in terms of the distribution function, obtaining

H[ f ] = H(k)[ f ] + H(c)[ f ], (50)

with

H(k)[ f ] ≡
∫

dr
∫

dv f (r, v, t)[ln f (r, v, t) − 1], (51)

the Boltzmann functional, and

H(c)[ f ] ≡ − ln φ[w] −
∫

drn(r, t) ln
n(r, t)
w(r, t)

, (52)

an additional contribution that vanishes in the low-density limit. Note thatH(c) is a functional
of the density, because w is a functional of the density through Eq. (15).

In Appendix C it is shown that, with the kind of boundary conditions being considered
here,

dH(k)

dt
= σ d−1

2

∫
dr

∫
dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r, r + σ |n)

f (r + σ , v1, t) f (r, v2, t) ln
[
f (r + σ , v′

1, t) f (r, v
′
2, t)

f (r + σ , v1, t) f (r, v2, t)

]

. (53)

Employing the inequality

x ln
y

x
≤ y − x, (54)

valid ∀x, y > 0 and performing standard manipulations, it is obtained

dH(k)

dt
≤ I (t), (55)

where

I (t) ≡ σ d−1
∫

dr
∫

Ω(r)
dσ̂ g2(r, r + σ |n)n(r, t)n(r + σ , t)u(r + σ , t) · σ̂ . (56)
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The equality being valid if and only if

f (r, v′
2, t) f (r + σ , v′

1, t) = f (r, v2, t) f (r + σ , v1, t), (57)

∀r ∈ V , ∀σ̂ ∈ Ω(r) and ∀v1, v2 such that v12 · σ̂ ≤ 0. The time derivative of H(c) is also
calculated in Appendix C, obtaining

dH(c)

dt
= −I (t), (58)

so that we can conclude that
dH
dt

≤ 0, (59)

with the equality being valid when the condition given by Eq. (57) holds.
Assuming that the total number of particles and energy are finite, it can be shown that H

is bounded from below [3]. Hence, if the initial distribution function, f (r, v, 0), is such that
H is finite, as dH

dt ≤ 0,Hmust reach a stationary value in the long time limit. This stationary

value is only reached when dH(k)

dt = I , that means that the distribution function must fulfill
Eq. (57). Let us label the distribution function compatible with a stationary value ofH as f0.
By taking logarithm in Eq. (57), it is obtained

ln f0(r, v′
2, t) + ln f0(r + σ , v′

1, t) = ln f0(r, v2, t) + ln f0(r + σ , v1, t), (60)

∀r ∈ V ,∀σ̂ ∈ Ω(r) and∀v1, v2,where the restriction v12 ·σ̂ ≤ 0 has been eliminated because
v′
12 · σ̂ ≥ 0 and (v′

i )
′ = vi . Eq. (60) implies that ln f0 must be a quantity that is conserved in

a binary collision, usually called “collision invariant”. The most general collision invariant in
a binary collision is a linear combination of the number of particles, total linear momentum,
total energy and total angular momentum [25]. Therefore, ln f0 must be of the form

ln f0(r, v, t) = A0(r, t) + A1(t) · v + A2(t)v
2 + A3(t) · (r × v). (61)

Equivalently, the distribution can be written in the form

f0(r, v, t) = n(r, t)χM [v − u(r, t), T (t)], (62)

where χM is the Maxwellian distribution introduced in Eq. (24), and n, u and T can be
interpreted as the corresponding density, flow velocity, and temperature associated to f0.
As A1, A2 and A3 are arbitrary functions of time but do not depend on position, it can be
concluded that T is an arbitrary function of time and u is of the form

u(r, t) = u0(t) + w(t) × r, (63)

i.e. a translation plus a rotation. Moreover, n is an arbitrary function of the position and
time. Applying the boundary conditions, it is concluded that, in general, u(r, t) = 0. In
effect, if u is of the form given by Eq. (63), and N(r) · u(r, t) = 0,∀r ∈ ∂V and ∀t ,
then u(r, t) = 0,∀r ∈ V and ∀t . However, for some particular geometries, there can be
exceptions. For example, u(r, t) = w(t) × r is compatible with a circular shape in d = 2,
with an spherical volume in d = 3, or with a cylinder if its axes is in the direction of w.
Moreover, taking into account the continuity equation, Eq. (31), we obtain that ∂n(r,t)

∂t = 0
and

f0(r, v, t) = n(r)χM [v, T (t)]. (64)

As the total energy is time-independent, T is also time-independent. Finally, by substituting
Eq. (64) with a time-independent temperature into the Enskog equation, it is obtained that
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the function n satisfies the same equation that ne, Eq. (25). If we consider situations for
which it has only one solution, it is concluded that, for the considered initial conditions,
f (r, v, t) → f0(r, v) ≡ fe(r, v) in the long time limit.

5 Conclusions

In this paper, we have formulated a kinetic equation that describes the dynamics of a system
composed of elastic hard spheres or disks confined with an arbitrary hard wall (also elastic).
The equation is derived under the same hypothesis used to derive the MEE and its range of
validity is supposed to be the same. In the bulk, the obtained equation coincides with theMEE
but, closed to the boundary, the collision operator changes, and takes into account that only
some collisions are possible, due to the geometrical constraints imposed by the boundary.
Let us note that the equation can be easily generalized to incorporate other collision rules
(as, for example, inelastic collisions [24,26,27] or models of active matter [28]), by slightly
modifying the collision operator, JE . In the same lines, other kind of collisions with the
confining wall may be considered by modifying the boundary conditions of the one-particle
distribution function, f . The important ingredient for the derivation is that the particles are
hard spheres or disks and the wall is hard. In addition, a simplified equation is derived that is
supposed to be valid for densities between Boltzmann and Enskog and that works remarkably
well in the monolayer case [10,19].

From the kinetic equation, balance equations for the hydrodynamic fields are derived.
These are the starting point for a subsequent derivation of the hydrodynamic equations, for
example, via the Chapman–Enskog method. As in the MEE, the fluxes can be decomposed
in a kinetic part plus a collisional transfer contribution. Closed to the boundary, this later
contribution is different from the one derived from the MEE (again, due to geometrical
constraints) and this may imply the need to modify in a non-trivial way the structure of
hydrodynamics. In this sense, the analysis made here opens the possibility of exploring the
formof the hydrodynamic equations close to the boundary, and it can help to study instabilities
in shaken granular fluids [29–32], that are still not well understood although they seem to
have a hydrodynamic character [33].

Finally, we have shown that the kinetic equation admits an H-theorem. Using the same
functional as Résibois took for the bulkMEE, it has been proved that dHdt ≤ 0 for any solution
of the kinetic equation. Moreover, it is shown that, in the long time limit, the system reaches
the known inhomogeneous equilibrium distribution function: a Maxwellian distribution with
a constant temperature and the proper density profile given by Statistical Mechanics. In our
opinion, the result is remarkable because, despite the approximate character of the kinetic
equation, it demonstrates the approach to equilibrium of the one-particle distribution function
of a strong interacting system with a finite number of degrees of freedom and with realistic
boundary conditions. Let us note that the limitation of Résibois result to periodic boundary
conditions is mentioned several times in the literature [7,8,34]; in this context, it is seen that
the solution to this limitation resides in the correct extension of the MEE to incorporate the
boundary consistently.

Acknowledgements This research was supported by the Ministerio de Educación y Ciencia (Spain) through
Grant No. FIS2014-53808-P (partially financed by FEDER funds).
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Appendix A: Evaluation of the Collisional Fluxes

The objective of this appendix is to evaluate the collisional contribution to the pressure tensor
and heat flux. We will proceed using intuitive arguments, taking into account the collisions
that contribute to the flux with their corresponding momentum or energy interchange.

Let us first analyze the pressure tensor case. Let us consider a surface element,Δs, centered
at r and two particles at contact in such a way that the line joining the two centers cross the
surface (see Fig. 2).When the collision takes place, the variation of the momentum of particle
2 is

Δp2,i = m(σ̂ · v12)σ̂i . (65)

It is assumed that, in order to evaluate the flux, Δp2,i cross the surface through the
intersection of the surface with the line joining the two particles. To calculate the collisional
contribution to the flux, we have to consider all the possible collisions of this kind with its
corresponding Δp2,i . The surface divides the space in two regions; of course, the centers of
the particles must be in different regions. We will consider that particle 2 is in the region
pointed by Δs, as in the Figure. The center of particle 1 can be parameterized by

r1(λ, σ̂ ) = r + λσ σ̂ , (66)

with λ ∈ (0, 1) and σ̂ a unitary vector of arbitrary orientation, but compatible with Δs, i.e.
σ̂ · Δs < 0. In these conditions, particle 2 must be in a solid angle

Δσ̂2 = |σ̂ · Δs|
(λσ )d−1 , (67)

around
r2(λ, σ̂ ) = r − (1 − λ)σ σ̂ . (68)

Note that we have used the same notation for the σ̂ of the collision in Eq. (65), and for
the parameter to specify the position of particle 1 in Eq. (66). This can be done because its
difference is of order Δσ̂2.

Let us consider that particle 1 is in the volume elementΔr1 = (λσ )d−1Δ(λσ)Δσ̂ param-
eterized by (λ, σ̂ ). Hence, if particle 2 collides with particle 1 in the time interval Δt with σ̂ ,
it is in the volume element Δr2 = σ d−1Δσ̂2|v12 · σ̂ |Δt . Then, the total number of collisions
that contribute to the flux for given v1 and v2 is

Fig. 2 Sketch of a typical
collision that contributes to the
flux through Δs. It is assumed
that particles 1 and 2 have the
centers at 01 and 02 respectively 0 2

0 1

Δ s

r
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θ(−v12 · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]Δr1Δv1Δr2Δv2
= σ dθ(−v12 · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]|σ̂ · Δs||v12 · σ̂ |Δv1Δv2Δσ̂ΔλΔt. (69)

Let us take Δs = Δse j where e j is a unit vector in the direction of one of our coordinate
axes. The amount of momentum that travels through the surface in the direction of Δs per
unit time and area due to collisions of particles with velocities v1 and v2 is then

ΔP(c)
i j = mσ dθ(−v12·σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12·σ̂ )2Δv1Δv2Δσ̂Δλ, (70)

wherewe have taken into account that |v12 ·σ̂ | = −v12 ·σ̂ and |σ̂ j | = −σ̂ j . The net collisional
pressure tensor is obtained integrating in Eq. (70) for all the allowed collisions.

Far from the boundary, when there are not geometrical constraints, the result is

P(c)
i j = mσ d

∫
dv1

∫
dv2

∫ 1

0
dλ

∫

σ̂ j<0
dσ̂θ(−v12 ·σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12 ·σ̂ )2.

(71)
The integration can also be done summing for σ̂ j > 0 but, then, the amount of momentum
that crosses the surface is Δp1,i = −Δp2,i , so that

P(c)
i j = mσ d

∫
dv1

∫
dv2

∫ 1

0
dλ

∫

σ̂ j>0
dσ̂θ(−v12 ·σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12 ·σ̂ )2,

(72)
because, in this case, |σ̂ j | = σ̂ j . Hence, we can re-write Eq. (71) as

P(c)
i j = m

2
σ d

∫
dv1

∫
dv2

∫ 1

0
dλ

∫
dσ̂θ(−v12 · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12 · σ̂ )2,

(73)
that coincides with the expression derived in [24] for d = 3 when the factorization for f2
given by Eq. (16) is used.

If there are geometrical constraints, we proceed similarly. Integrating in Eq. (70) for the
allowed collisions, it is obtained

P(c)
i j = mσ d

∫
dv1

∫
dv2

∫ ∫

�−
dλdσ̂θ(−v12 · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12 · σ̂ )2,

(74)
where the region of integration in (λ, σ̂ ) is

�− = {(λ, σ̂ )|σ̂ ∈ Ωd with σ̂ j < 0 & 0 ≤ λ ≤ 1 & r1(λ, σ̂ ) ∈ V & r2(λ, σ̂ ) ∈ V }.
(75)

P(c)
i j can also be calculated summing for σ̂ j > 0 but, then, the amount of momentum that

crosses the surface is Δp1,i = −Δp2,i , so that

P(c)
i j = mσ d

∫
dv1

∫
dv2

∫ ∫

�+
dλdσ̂θ(−v12·σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12·σ̂ )2,

(76)
where the region of integration in (λ, σ̂ ) is

�+ = {(λ, σ̂ )|σ̂ ∈ Ωd with σ̂ j > 0 & 0 ≤ λ ≤ 1 & r1(λ, σ̂ ) ∈ V & r2(λ, σ̂ ) ∈ V }.
(77)

123



The Enskog Equation for Confined Elastic Hard Spheres 1013

Hence, we can re-write Eq. (74) as

P(c)
i j = m

2
σ d

∫
dv1

∫
dv2

∫ ∫

�
dλdσ̂θ(−v12·σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]σ̂i σ̂ j (v12·σ̂ )2,

(78)
where the region of integration in (λ, σ̂ ) is

� = {(λ, σ̂ )|σ̂ ∈ Ωd & 0 ≤ λ ≤ 1 & r1(λ, σ̂ ) ∈ V & r2(λ, σ̂ ) ∈ V }. (79)

To calculate the collisional contribution to the energy flux, J (c)
E, j , the analysis is similar,

but taking into account that, when the collision takes place, the variation of the energy of
particle 2 is

Δe2,i = m

2
(σ̂ · v12)2 + m(σ̂ · v12)(σ̂ · v2). (80)

Once J (c)
E, j is calculated, the heat flux is expressed as q(c)

j = J (c)
E, j − ∑

i ui P
(c)
i j .

Appendix B: Evaluation of the Divergence of the Collisional Fluxes

As in the previous Appendix, we focus on the pressure tensor because the heat flux case is
similar. Let us first re-write the collisional pressure tensor given by Eq. (36) in the form

P(c)
i j (r, t) = m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂

∫ λ2(r,σ̂ )

λ1(r,σ̂ )

dλθ(−v12 · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2, t](v12 · σ̂ )2σ̂i σ̂ j , (81)

where λ1(r, σ̂ ) and λ2(r, σ̂ ) are such that σλ1(r, σ̂ ) and σλ2(r, σ̂ ) are the minimum and
maximum distance from r to r1(λ, σ̂ ) respectively, for a given orientation, σ̂ . In the bulk
of the system, we trivially have λ1(r, σ̂ ) = 0 and λ2(r, σ̂ ) = 1, for all σ̂ , but closed to the
boundary these functions depend on the geometry of it.

Taking into account Eq. (81), the divergence of P(c)
i j can be expressed as

∂

∂r
· P(c)

i j (r)

= m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ σ̂ · ∂

∂r
λ2 f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2]

−m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ σ̂ · ∂

∂r
λ1 f2[r1(λ1, σ̂ ), v1, r2(λ1, σ̂ ), v2]

+m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂

∫ λ2(r,σ̂ )

λ1(r,σ̂ )

dλσ̂ · ∂

∂r
f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]. (82)

Taking into account that

∂

∂λ
f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2] = σ · ∂

∂r
f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2], (83)
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the last term of the r.h.s. of Eq. (82) can be written as

m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂

∫ λ2(r,σ̂ )

λ1(r,σ̂ )

dλσ̂

· ∂

∂r
f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]

= m

2
σ d−1

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2]

−m

2
σ d−1

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2[r1(λ1, σ̂ ), v1, r2(λ1, σ̂ ), v2].

(84)

Changing variables,

v1 ↔ v2, (85)

σ̂ → −σ̂ , (86)

in the second term of the r.h.s., it is obtained

m

2
σ d−1

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2[r1(λ1, σ̂ ), v1, r2(λ1, σ̂ ), v2]

= −m

2
σ d−1

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2],

(87)

where it has taken into account that

r1[λ1(r,−σ̂ ),−σ̂ ] = r2[λ2(r, σ̂ ), σ̂ ], (88)

r2[λ1(r,−σ̂ ),−σ̂ ] = r1[λ2(r, σ̂ ), σ̂ ]. (89)

So, we have

m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂

∫ λ2(r,σ̂ )

λ1(r,σ̂ )

dλσ̂

· ∂

∂r
f2[r1(λ, σ̂ ), v1, r2(λ, σ̂ ), v2]

= mσ d−1
∫

dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2].

(90)

Performing the same change of variables in the second term of the r.h.s. of Eq. (82), it is
obtained

m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ σ̂ · ∂

∂r
λ1 f2[r1(λ1, σ̂ ), v1, r2(λ1, σ̂ ), v2]

= −m

2
σ d

∫
dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ σ̂

· ∂

∂r
λ2 f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2]. (91)
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By substituting Eqs. (90) and (91) into Eq. (82), it is obtained

∂

∂r
· P(c)

i j (r) = mσ d−1
∫

dv1

∫
dv2

∫
dσ̂θ(−v12 · σ̂ )

(v12 · σ̂ )2σ̂

[

1 + σ · ∂

∂r
λ2

]

f2[r1(λ2, σ̂ ), v1, r2(λ2, σ̂ ), v2].
(92)

Now, let us analyze the function 1 + σ · ∂
∂rλ2. Let us first consider the simplest case of a

plane located at z = −σ/2. If σ̂ ∈ Ω(r), then λ2(r, σ̂ ) = 1. Let us define Ω+(r), such that

Ω(r) ∪ Ω+(r) = Ωd . (93)

For a given r, it is
z = −λ2(r, σ̂ )σ σ̂z, for σ̂ ∈ Ω+(r), (94)

so that, for this simple case, we have

1 + σ · ∂

∂r
λ2(r, σ̂ ) =

{
1 if σ̂ ∈ Ω(r)
0 if σ̂ ∈ Ω+(r)

(95)

In fact, if the plane has a different orientation, the result is the same because the function is a
scalar. Moreover, in the general case of an arbitrary wall, the result also holds if the tangent
plane is defined at r + λ2σ σ̂ .

Hence, by substituting Eq. (95) into Eq. (92), it is finally obtained

∂

∂r
· P(c)

i j (r)

= mσ d−1
∫

dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2(r + σ , v1, r, v2), (96)

where it has been used that λ2(r, σ̂ ) = 1 if σ̂ ∈ Ω(r).
It still remains to show that ∂

∂r · P(c)
i j coincides with

∫
dvmvJ [ f2]. By standard manipu-

lations, it can be shown that
∫

dvψ(v)J [ f2]

= σ d−1
∫

dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ | f2(r + σ , v1, r, v2)(bσ̂ − 1)ψ(v2).

(97)

Taking ψ(v) = vi , it is
∫

dvvJ [ f2] = −σ d−1
∫

dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )(v12 · σ̂ )2σ̂ f2(r + σ , v1, r, v2).

(98)
Comparing Eq. (98) with Eq. (96), we finally have

∫
dvmvJ [ f2] = − ∂

∂r
· P(c), (99)

as we wanted to prove.
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Appendix C: Evaluation of the Time Derivative of H

Let us first calculate dH(k)

dt . Using standard manipulations and applying the boundary condi-
tions, it is obtained

dH(k)

dt
=

∫
dr

∫
dvJE [ f | f ] ln f (r, v, t). (100)

Eq. (97) reduces in the Enskog case to
∫

dvψ(v)JE [ f | f ] = σ d−1
∫

dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r + σ , r|n)

f (r + σ , v1, t) f (r, v2, t)(bσ̂ − 1)ψ(v2). (101)

By taking ψ = ln f , we have

dH(k)

dt
= σ d−1

∫
dr

∫
dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r + σ , r|n)

f (r + σ , v1, t) f (r, v2, t) ln
f (r, v′

2, t)

f (r, v2, t)
. (102)

Changing variables,

v1 ↔v2, (103)

σ̂ → − σ̂ , (104)

Eq. (102) is transformed into

dH(k)

dt
= σ d−1

∫
dr

∫
dv1

∫
dv2

∫

Ω̃(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r − σ , r|n)

f (r − σ , v2, t) f (r, v1, t) ln
f (r, v′

1, t)

f (r, v1, t)
, (105)

where, now, the angular integration is taken over the new region, Ω̃(r), defined in such a way
that σ̂ ∈ Ω̃(r) if and only if r− σ ∈ V . Finally, by changing the space variable, r → r+ σ ,
it is obtained

dH(k)

dt
= σ d−1

∫
dr

∫
dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r + σ , r|n)

f (r + σ , v1, t) f (r, v2, t) ln
f (r + σ , v′

1, t)

f (r + σ , v1, t)
, (106)

where we have taken into account that g2(r+ σ , r|n) = g2(r, r+ σ |n). Taking into account
Eq. (102) and (106), we have

dH(k)

dt
= σ d−1

2

∫
dr

∫
dv1

∫
dv2

∫

Ω(r)
dσ̂θ(−v12 · σ̂ )|v12 · σ̂ |g2(r + σ , r|n)

f (r + σ , v1, t) f (r, v2, t) ln
f (r + σ , v′

1, t) f (r, v
′
2, t)

f (r + σ , v1, t) f (r, v2, t)
, (107)

that is the expression of the main text.
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Now let us calculate dH(c)

dt . The first contribution is

d

dt
ln φ(t) = 1

φ(t)

d

dt

∫
dr1w(r1, t) . . .

∫
drNw(rN , t)Θ(r1, . . . , rN )

=
∫

dr
n(r, t)
w(r, t)

∂

∂t
w(r, t), (108)

where Eq. (14) has been used. The second contribution is

d

dt

∫
drn(r, t) ln

n(r, t)
w(r, t)

=
∫

dr
[

ln
n(r, t)
w(r, t)

∂

∂t
n(r, t) − n(r, t)

w(r, t)
∂

∂t
w(r, t)

]

, (109)

so that

dH(c)

dt
= −

∫
dr

∂

∂t
n(r, t) ln

n(r, t)
w(r, t)

=
∫

dr ln
n(r, t)
w(r, t)

∂

∂r
· [n(r, t)u(r, t)], (110)

where the continuity equation, Eq. (31), has been used. As

∫
dr

∂

∂r
·
[

n(r, t)u(r, t) ln
n(r, t)
w(r, t)

]

=
∫

∂V
ds · u(r, t)n(r, t) ln

n(r, t)
w(r, t)

= 0, (111)

because u(r, t) · N(r) = 0 for all r ∈ ∂V , Eq. (110) can be written in the form

dH(c)

dt
= −

∫
drn(r, t)u(r, t) · ∂

∂r
ln

n(r, t)
w(r, t)

. (112)

Now, using the property

∂

∂r1
θ(|r1 − r2| − σ) = (r1 − r2)

σ
δ(|r1 − r2| − σ), (113)

we get, from the expressions of n and n2, Eqs. (14) and (18) respectively

∂

∂r1

[
n(r1, t)
w(r1, t)

]

= 1

w(r1, t)

∫
dr2

(r1 − r2)
σ

δ(|r1 − r2| − σ)n2(r1, r2, t). (114)

Performing the pertinent integration to eliminate the delta function, we have

∂

∂r

[
n(r, t)
w(r, t)

]

= −σ d−1 n(r, t)
w(r, t)

∫

Ω(r)
dσ̂ g2(r + σ , r|n)n(r + σ , t)σ̂ . (115)

This equation is the generalization of Eq. (25) for a genericw in our non equilibrium ensemble
given by Eq. (9). By substituting Eq. (115) into (112), we finally obtain

dH(c)

dt
= σ d−1

∫
dr

∫

Ω(r)
dσ̂n(r, t)n(r + σ , t)σ̂ · u(r, t)g2(r + σ , r|n)

= −σ d−1
∫

dr
∫

Ω(r)
dσ̂n(r, t)n(r + σ , t)σ̂ · u(r + σ , t)g2(r + σ , r|n),

(116)

where, in the last step, we have changed σ̂ → −σ̂ and r → r + σ .
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