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Abstract: This paper presents the controller design for the stabilization of a platform 
of two degrees of freedom. The purpose of this application it is to control the velocities, 
which are measured in a inertial frame , rejecting the disturbances associated with 
moving components. A gain-scheduling controller based strategy is proposed, by way 
of which the desired specifications are accomplished . Copyright © 2001 IFA C 
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1. INTRODUCTION 

The inertial stabilization of platforms shows large 
interest in the scope of the applications of aero­
nautical and navigational systems. These kinds 
of platforms are usually located in vehicles that 
have a variable orientation related to an inertial 
frame. These variations of the vehicle orientation 
are detected by gyroscopic sensors located in the 
edge of the platform. 

This application must implement two operation 
modes. A non inertial one in which the positions 
are the controlled variables, and an inertial mode 
in which the inertial velocities of the platforms are 
controlled. 

In this paper controllers for a large dimensions 
platform have been developed . These controllers 
must achieve strict specifications in the operation 
modes. In position mode, the precision must be 
greater or equal to O.2mrad. and, in the inertial 
mode, must be greater than O.5mrad with an 
inertial set point velocity equal to zero. 

This paper is organized as follows: In section 2, 
a description of the platform model used in the 

development of the controller is given. Section 
3 gives the adopted control structure. Section 4 
presents some simulation results with the pro­
posed controllers and finally, conclusions are given 
in section 5. 

2. THE SYSTEM MODEL 

Before designing the controller , it is necessary 
to obtain a system model of the platform. The 
dynamic equations of the system can be obtained 
from Lagrange's equations . The model used rep­
resents the 2-DOF platform shown in Fig.1. It is 
composed of two main bodies: the base, where 
the position is determined by the azimut angle 
1/J, and the main body where the coordinate is 
the elevation angle () . The head of the platform 
is mechanically balanced with springs, so that the 
potential energy is invariant and hence discarded 
from the equations. The Lagrangian of the system 
is: 

1 ' 2 . 2 
L = T - V = '2(1/J (Izzl + Ixx2 sm (()) + 

2 ' 2 + Izz2cos (())) + I yy2 () ) (1) 



Fig. 1. Two degree-of-freedom platform. 

Figure 2 shows a schematic diagram block of the 
2 DOF platform model. This diagram shows how 
a gyroscopic measure model is attached to the 
output of the mechanic plant. The disturbances 
in the platform base and the internal dynamic of 
the gyroscopic sensors are considered in the gyro 
model. 
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Fig. 2. Block diagram of the system model 

The 2 DOF platform model dynamics equations 
can be expressed from the lagrangian formulation 
results: 

where the following variables are used: 

• 7j;: Platform orientation. 
• B: Platform elevation. 
• Oi: Elevation velocity of the platform. 
• -J;i : Orientation velocity of the platform. 
• TO: Applied torque in elevation. 
• T", : Applied torque in orientation. 
• Jij.: Inertia matrix of the orientation axis. 
• Ji12 : Inertia matrix of the elevation axis. 

• Oe , ~e , -J;e angular velocities of the platform 
base. 

The functions F",(-J;) and Fo(O) introduce fric­
tion torque in the orientation and elevation axes 
respectively. A static nonlinear relation between 
torque and shaft velocity as a friction model is 
used. The expression that compute the friction 
torque Tf for a generic degree of freedom q is: 

Tf = [Fv+ltjl + Fc+ + 

+ (Fs+ - Fe+)e-Bllql]Sgn+(tj) + 

+ [Fv-Itjl + Fe- + 

+ (Fs- - Fe- )e-B2Iql] sgn - (tj) (3) 

where: 

• Fe+, Fe-: Coulomb friction torques. 
• Fs+, Fe-: Stribek friction torques. 
• B l , B2 : Coefficients for the stiction phenom­

ena. 
• Fv+, Fe-: Viscous friction coefficients. 

and the sign functions are defined as follows: 

{
I (tj;::: 0) 

sgn+(q) = ° (tj < 0) 

sgn-(q) = {_01 (tj;::: 0) 
(tj < 0) 

In order to implement an inertial control of the 
platform, the gyro dynamics should be incorpo­
rated (Li and Hullender, May 1998). The gyro 
model can be described by a second order transfer 
function . 

w2 

G (s) - 9 
9 - S2 + 20 W s + w 2 

9 9 9 

(4) 

3. CONTROLLER DESIGN 

The platform stabilization attempt that the va­
riables Oi y -J;i converge to the given references r 9; 
y r ,j;;, independently of the present disturbances. 
Moreover, the maximum error of the inertial posi­
tion with a zero velocity set point must be minor or 
equal to 0.5mrad. as another specification which 
must be achieved. 

3.1 Position Control 

The equations (2) show how the system is coupled 
due to Coriolis and inertia terms. However, as 
a result of the torque is being applied to the 
joint axis through gear reductions, the coupling 
is decreased and an independent joint control 
technique can be applied. 



The design specification imposes the system must 
achieve, as soon as possible, a position in a region 
close to the reference. Moreover, the amplitude of 
the limit cycle that is created by the hunting phe­
nomena must be bounded. In order to accomplish 
this, two controllers are designed. The first con­
troller brings the states near the setpoints and the 
second controls the states around the setpoints . 
This control strategy is shown in figure 3. 

The large displacements controller can be ob­
tained imposing a closed loop dynamic. If a PD 
controller is used: 

(5) 

where Kp and Kd are the controllers gains, e(t) is 
the tracking error and and 4 is the velocity of the 
axis . By neglecting nonlinear terms in (2), we can 
design the linear controller with the plant: 

K 
Gp(s) = () (6) 

ss+a 

with K = Kr/Jmax and a = FV~in/Jmax, so a 
closed loop transfer function can be obtained in 
the form: 

where K and a are the gain and the pole of 
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Fig. 3. Commutation ellipse between controllers gains 

3.2 Velocity control 

Given the required specification and the dynamics 
of the gyro measure, the controller cannot be 
implemented in a single loop form. This is due 
to the high controller gain required in order to 
reject friction disturbances which produces an 
unstable closed loop when the gyro dynamics 
is introduced. In order to solve this problem, a 

the open loop transfer function respectively. The 1-------
goal is to bring the system to a place near the f--·------ --
reference, the disturbance created by the Coulomb Cv _~.~.:, _~ 2 DO' 

torque produces an error that can be bounded '. _ _ J-::-:::-l " 
with the proportional gain. The steady state error 1~~"(') h.(l~-_ .. 
becomes: L l ... -----' 

Fe 
ess == -

Kp 
(8) 

where Fe is the Coulomb friction. This condition 
may be more restrictive than the one imposed by 
the rise time of the close loop response. The con­
troller parameter K d is computed by forcing the 
dynamics in equation (7) to a critically damped 
second order response. 

2,/KKp - a 
Kd= K (9) 

In order to accomplish the commutation, an ellip­
tic limit is designed. This limit is given by the 
equation: 

e2 42 

-+-=1 (10) 
elim qlim 

where elim Y qlim are the diameters of the ellip­
se. Once the system is inside the ellipse, the 
controller gains are modified in order to control 
the amplitude of the limit cycle. The amplitude 
Ale and the period 'ne can be estimated by the 
expressions (C . Canudas de Wit, 1999): 

A ~ Fs - Fe 4K p Fs + Fe 
le ~ 2K TIe ~ K · F - F. 

p t s e 
(11) 

hence some second gains may be obtained for the 
gain scheduling controller. 

Fig. 4. Cascade control structure 

master-slave structure of controllers is proposed 
in figure 4. An inner velocity loop is created with 
the measure of the tachometer and another outer 
one is closed with the measure of the gyro. With 
this structure the nonlinear disturbances of the 
plant are rejected by the inner loop, as long as 
the outer loop rejects the disturbances created by 
the platform base motion. 

The inner loop must be designed in such way 
that it has a faster behavior than the external 
loop, therefore the controllers can be indepen­
dently designed. A PI controller is designed for 
the inner loop, where the controller is given by 
the equations: 

K _ 2JwoT -1 
p- K (12) 

2 K. _ WoT 
,- K (13) 

where Wo and J are respectively the natural fre­
quency and the damping factor of the closed loop 
created by the inner loop. K and T are respectively 



the gain and the time constant of the linear part 
of the system. 

Due to the nonlinear influence of the actuator sat­
uration, the system has an undesirable overshoot 
when large reference changes are given. Hence an 
anti-wind up strategy is added to the controller as 
show in figure 5. 

Fig. 5. Anti-windup strategy 

A gain scheduling controller has been imple­
mented for the inertial velocity outer loop (Astrom 
and Wittenmark, 1989), this way it is possible to 
fulfill the specifications in several work zones. The 
margin phase for a PI controller associated to the 
proportional and integral parameters (Kpi' K ii ) 
is shown in figure 6. The limit stability can be 
symbolically computed, the limit is defined by the 
equations: 

(0: (w~ + 28gwga) - w~a - Kpw~K) 

0: = 28gwg + a (14) 

The operational region of the controller has 
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Fig. 6. Margin phase of the system according to the 
selected controller gains Kp y Ki 

been classified according to the magnitude of the 
set point and the velocity of the shafts. The system 
must basically operate in two regions, a high re­
ference value mode and another for a small or 
zero reference. In the second mode, the platform 
must move slowly in order to compensate the 
motion of the base. In this mode the integral gain 

is modified according to the velocity axis. This 
produces an improvement of stabilization. The 
operation regions of the outer loop are shown in 
figure 7. 

Fig. 7. Adaptation for the Ki parameter in the external 
loop 

4. COMPUTER SIMULATIONS 

The computer simulations of the controller have 
been implemented with the whole model from the 
equations (2) . A static and asymmetric friction 
model is used for the position and velocity con­
trollers simulations. 

In order to accomplish the simulation a parameter 
set has been used from the following table: 

Parameter Azimut Elevation Vd. 
Izz 16 13 kg/cm2 

Ixx 25 - kg/cm2 

Iyy 20 - kg/cm2 

Fv+ 61 30 Nm/{rad/s) 

Fv 39 59 Nm/{rad/s) 

Fsi 6 30 Nm 

FsI 52 60 Nm 

Fci 5 15 Nm 

Fc1 50 31 Nm 

R 108 202 
KT 1.3350 0.81 Nm/V 

Figures 8 and 9 show the step responses in the 
orientation and elevation axis. When a large set­
point change is produced, the controller produces 
a saturated signal control and the system is accele­
rated and decelerated quickly. Next the second 
controller corrects the steady state and the system 
is situated in a limit cycle that fulfills the required 
precision. 

Figures 10 and 11 show how the inertial velocity 
controller works when a reference equal to zero is 
given. In this simulation the disturbances created 
by the motion the of the platform base have been 
included. The signals used are the following: 



Azimut Controller 
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Fig. 9. Limit cycles of the controlled system 

. 1r 
1/Jc = cPc = Bc = O.OS3sm(O.OSt - 2') 

. . . 1r 
1/Jc = cPc = Bc = O.007cos(O.OSt - 2') (15) 

Some small disturbances have been chosen, hence 
the platform must perform motion at low veloc­
ities where the friction is more relevant. Figure 
10 shows how the inertial velocity remains close 
to zero, only some velocity peaks can be observed 
when the motor velocity has a zero velocity transi­
tion . At this moment, the motor shaft is stopped 
due to the friction torque and the disturbances 
cannot be rejected. 

In figure 11 the inertial position of the plat­
form when the reference is zero velocity is pre­
sented. The position oscillates due to the imper­
fect cancellation of the disturbances. But with 
gain scheduling strategy, the amplitude of the 
oscillation can be bounded and the specifications 
are fulfilled . 

The inertial velocity controller has been compared 
with a friction compensation based controller 
(Altpeter, 1999), without the cascade structure. 
In this case, a LuGre model is used for the plant 
and a static model is used for the compensation. 
The LuGre friction model (C. Canudas de Wit and 

Fig. 10. Inertial velocity response for external distur­
bances and r = 0 
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Fig. 11. Inertial position response for external distur­
bances and r = 0 

Lischinscky, March, 1995) has been implemented 
in an asymmetric form as the static model. 

dz . ao . 
dt = q - g(q) zlql 

g(q) = [F/ + W: - Fc+)e-Bdcil]sgn+(q) + 

+ [Fc- + (Fs- - Fc-)e-B2Iql] sgn-(q) 

dz 
Tf = aoz + al dt + 

+ (F;;q) sgn+(q) + (Fv-q) sgn-(q) (16) 

where: 

• z: Average deflection for the bristle friction 
model. 

• ao: Stiffness of the material. 
• aj : Damping coefficient. 

The two different models allow us to test the 
friction compensation when there are unmodelled 
dynamics. Similar results are obtained using both 
control strategies. The cascade control has inher­
ent benefits, the system stability is not compro­
mised and the control shows better robust prop­
erties when model deviation occurs. 



5. CONCLUSIONS 

This paper presents a inertial controller for a 
two degree of freedom platform. The mechanical 
model corresponds to a large dimension platform 
where a strict operation specification are required 
where a gyro sensor has been added. 

Some gain scheduling algorithms have been de­
signed for position control of the motors and 
the inertial velocities of the platform. These con­
trollers have shown an acceptable performance, 
achieving all the required specification. 

The contents reveal how the control of inertial 
velocities of the platform can be solved by simple 
control structures, despite the fact that the system 
has important nonlinear elements. Therefore this 
fact produces more robust and reliable controllers. 
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