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Abstract The problem of coordinating transfers consists of determining timetables 
which ensure the transfer of passengers between trains from different line runs at 
interchange stations. Two strategies can be considered: (1) Forcing the line runs to 
be synchronized; that is, a solution can be accepted only if there exists a connection 
between them, while the goal is minimizing travel times for passengers by using the 
minimum number of vehicles needed. (2) Minimizing an objective function that 
penalizes the lack of synchronization between line runs. The problem of transfer 
coordination turns out to be NP-hard even in the simple case of periodic timetables. 
Therefore, the problem is usually treated sequentially in two stages: first, determine 
the frequency of service according to the rate of demand, and then solve the 
problem of coordination by means of heuristics. This chapter considers a transit line 
where a train fleet circulates and stops at the stations according to a predetermined 
timetable which is known by the users. At any instant, passengers arrive at different 
stations in order to board these vehicles according to an assumed deterministic 
model of arrivals. In this scenario, a service rescheduling forced by an incidence is 
determined in order to minimize the loss of passengers who require transfers 
between different lines at the interchange stations. A case study consisting of a 
railway line with several equi-spaced stations, where it is possible a connection to
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other lines at intermediate stations is analyzed for different scenarios where the loss
of transfers is penalized.

Keywords Transit network � Transport scheduling � Disturbance management �
Schedule synchronization

1 Introduction

Timetable design is a central problem in railway planning with many interfaces
with other classical problems: line planning, vehicle scheduling, and delay man-
agement. The single-line Train Timetabling Problem (TTP) is devoted to obtaining
and optimizing timetables of periodic and non-periodic heterogeneous trains that
share a railway line with single and multiple track sections.

Given a railway infrastructure provided with different sections along a single
transit line, the Train Timetabling Problem (TTP) consists of computing timetables
that satisfy existing constraints and that optimize a single/multicriteria objective
function for trains of both, passengers and cargo. The railway line may be occupied
by other trains whose priority is higher than that of the new ones, and the new trains
to be added may belong to different train operators. The requirement for periodicity
of the timetables leads to the classification of TTP into Periodic (or cyclic) Train
Timetabling and, on the other hand, Non-Periodic Train Timetabling.

In Periodic Timetabling, the timetable is easy to remember for the passengers
although its solutions can become inefficient when planning resources such as
crews and rolling stock. The mathematical model called Periodic Event Sched-
uling Problem (PESP) by Serafini and Ukovich [16] is the most widely used in the
literature. In PESP, the events are scheduled for one cycle in such a way that the
cycle can be repeated according to periodic time windows constraints. The PESP
model has been used by authors in [10, 14, 15]. Interesting contributions on
efficient railway operation management, oriented to European real contexts, can be
found in the ARRIVAL project (http://arrival.cti.gr/, 2009).

Non-Periodic Train Timetabling is especially relevant on heavy-traffic, long-
distance corridors where the capacity of the infrastructure is limited due to great
traffic densities, as well as in presence of disturbances that can affect to the
operativeness of train transit. The non-periodic train timetabling problem has been
considered by most authors: [1, 2, 4, 5, 7–9, 11, 13, 17, 18].

Planners usually use running maps as graphic tools to help them in the planning
process. A running map is a time–space diagram where possible crossings of trains
can be observed. Figure 1 shows a time–space diagram that synthesizes the train
expeditions of a piece of the C4 line that belongs to the Madrid commuter railway
network (see Fig. 2). The names of the stations (cantons where passengers can
board or alight on/from trains) are presented on the left side, and the vertical line
represents train speeds when it passes through the sequence of tracks between
consecutive stations.

http://arrival.cti.gr/


The slope of the polygonal line associated with a train corresponds with the
commercial speed of that train (with a stop between stations), and the horizontal
segments can be viewed as the stopping time at stations. A transit corridor of high

Fig. 1 Twenty-five instances of train schedules along the transit corridor

Fig. 2 Line C4 (Parla-
Atocha)



traffic density will generate in a labyrinthine tangle of polygonal lines, each of
which will correspond to the hours of operation of a train, making infeasible a non-
automated assessment of the possible alternatives.

A conflict of crossing between trains could take place along the transit corridor.
Graphically, a conflict can be represented by means of a pair of two rectilinear
segments that intersect in the same canton. If such canton had multiple pathways,
it is possible to solve the conflict by imposing a waiting time to some of trains.

In order to be feasible, a timetable has to fulfill a set of constraints that can be
classified into three main groups, depending on whether they are concerned with:

• User Requirements (parameters of trains to be scheduled): time windows for
departure and arrival times, maximum delay.

• Traffic constraints: running time, crossing, commercial stop, overtaking on the
track section, delay for unexpected stop, reception time, expedition time,
simultaneous departure.

• Infrastructure constraints: network topology, finite capacity of stations, closing
time, headway time.

Many references consider Mixed Integer Problem formulations in which the
arrival and departures times are represented by continuous variables and there are
binary variables expressing the order of the train departures from each station. The
variables chosen to formulate the model must be able to formally express these
restrictions, so that only feasible timetables can be considered as possible solutions.
There are two main criteria to assess the quality of the solutions: Minimize oper-
ating costs (point of view of the operator) and Minimize riding and transfer times
(perspective of passengers). Moreover, other complementary objectives can be
used, for example: minimize the passenger waiting time in the case of changeovers,
balance the delay of trains in both directions, minimize the average delay of new
trains with respect to their optimum, etc. Accidents, strike days and other sources of
train delays or cancellations force to modify the scheduled timetable when trains in
some sections cannot run according to the initial planning. Rescheduling is the
process of updating an existing production plan in response to disruptions or other
changes [19]. Rescheduling timetables is especially important in heavily used areas
because individual events (delays) can easily impact many other trains causing
secondary delays to ripple through the network. In order to manage this domino
effect when a train is late and reduce the impact on the other trains, controllers must
manually adjust the routing of trains. The effectiveness of the rescheduling and train
control system at reducing total delay is highly dependent on the specific circum-
stances (timetable, train routes, topology of the station and occupation of those
tracks located before in the bottleneck area). The modification to the timetable
should be performed without introducing inconsistencies. In that case, assessing the
feasibility of any modification of the existing timetables will necessarily require a
computer-aided procedure. In terms of railway operation production plans, the main
decisions that must be addressed in the rescheduling process are:



• Provide new reference times for all trains located at specific points in the net-
work (downtime of trains at stations and reference speed on open track).

• Re-routing trains.
• Re-allocate available resources (staff, rolling stock).

The results presented in this chapter are focused mainly on retiming trains that
remain operative (the above first point). For that purpose, it will be necessary to
change the departure or arrival times at stations and other reference points.
Decisions can also include rerouting trains in affected areas by means of cancelling
trains, adding supplementary stops or short turns.

Research on rescheduling algorithms has been underway for many years. See,
for example, the survey paper by Cordeau et al. [6] and the recent contribution of
Canca et al. [3]. In order to successfully use rescheduling algorithms in dense
railway networks, it is necessary to analyze the whole production process to
determine how new schedules can be most efficiently implemented. The time it
takes to complete a rescheduling process (from the point of time when a given
threshold is exceeded until the new production plan is applied) for a large network
leads to three important questions regarding implementation of the process.
Namely, rescheduling: should it be periodic; could it be interrupt-able; should it be
implemented in spite of being an infeasible plan?

Each of these questions must be clarified before to completing the rescheduling
process. In this chapter, we present an approach to generate acyclic timetables for
single line track. This approach is based on geometrical properties associated to
topology of a transit corridor.

The chapter is organized as follows. In Sect. 2, a model of graphical repre-
sentation for train schedules is introduced and a procedure for estimating the
number of users associated to feasible schedules is developed. The formulation of
the decision model is introduced in Sect. 3, in addition to the subsequent extended
scenarios, where transfers between lines that cross the transit corridor are taken
into account. Finally, some conclusions are summarized in Sect. 4.

2 Discretizing Time Horizon and Weighting the Feasible
Schedules

2.1 A Graphical Schedule Representation Based
on Timetable-Points

According to Mesa et al. [12], we assume a canonical time unit h [ 0 (time taken
to travel without stopping between two consecutive sections) for generating a
uniform mesh of squares of length h in the first quadrant, that can be used to
represent the activity map of trains at section (or station) k. Inside this activity map
of the k-th stretch/station, each point will indicate the arriving time (x-coordinate)
and the leaving time (y-coordinate) of a train. Arrival time of trains can be seen in



the horizontal axis, while the projection on the vertical axis represents its departure
time. In a generic k-station, each train has assigned a unique point (timetable-point,
in the following) whose coordinates must be necessarily located in the upper
triangle of the first quadrant above the straight line y ¼ xþ h (the upper sub-
diagonal outlined in green). For instance, Fig. 3 shows data corresponding to three
different trains. The first one spends a time equivalent to 2h in boarding and
alighting passengers. Train 2 uses the minimum time required for that operation,
i.e. h. Finally, train 3 does not stop at station k, hence its position is located on the
displaced diagonal in the first quadrant.

The sequence of sections (with stops or not for passengers) along the railway
line will correspond to a succession of temporary diagrams, where active time-
table-points will indicate real arrival-departure timetables. Each timetable-point in
the k-th diagram of activity will match to some other feasible timetable-point of
the vertical segment that starts from its projection on the diagonal in the ðk þ 1Þ-th
activity-map. Moreover, since activity maps have the same homogeneous structure
for all stations, a line run can be graphically viewed as a non-decreasing polygonal
line that crosses through the sequence of temporary diagrams corresponding to the
corridor stations, visiting an only timetable-point per diagram.

2.2 Assuming a Pattern for the Demand Behavior

Assume that arrival/departure times of trains at stations were previously set and are
known by users. In that case, we can ensure that these temporal marks mobilize a
population of potential travelers towards the station platform, converging in time

Fig. 3 Three trains passing
through the station k



with the timely arrival of such train. Figure 4 explains in percentage terms the
traveler accumulation on the platform of the station k, due to the imminent arrival
of the scheduled train at time ti. Time interval associated with the arrival of
travelers and their consequent accumulation in the platform is denoted by ½t�i ; tþi �.

Before arriving train ti at station k, the number of users that reaches the platform
with the purpose of boarding on the train is increasing until shortly before the
estimated time of train arrival. If the train arrived on time, the whole population
placed on platform could be transported as shows Fig. 4. Nevertheless, if train ti
were to be delayed, the reaction of users when they know the existence of such
delay would consist of initially waiting along a short certain period of time.
Subsequently, the curve that models the percentage of population waiting would
appear stabilized. After this period, the traveler population gradually decreases
until disappearing. If the train arrived late, only a portion of the population that
normally waits could be transported (Fig. 5).

Finally, if the train arrived and departed in advance, only users who were
already placed on the platform could take the train. The other passengers will be
coming in the usual way, because they were unaware of this schedule change
(Fig. 6). The option to wait a certain period of time leads to the possibility of
taking the next train.

As illustration, a study case composed of a railway line with several equi-
spaced stations, separated from each other by a distance (travel time) equal to
2 min, is considered. It has been assumed an operational time corresponding to the

Fig. 5 Demand behavior
when train is delayed

Fig. 4 Usual demand
behavior in terms of
percentage of user’s presence
at platform



morning interval (8:20–9:30) with partitions of size h (1 min). Initially, there are
three vehicles to run along the line and the arrival/departure time at stations are
known by users (Table 1).

In the trip distribution along the corridor, it has been assumed that the first
stations are mainly trip generators, while the ending station is an attractive des-
tination. In real instances, this setting is commonly associated to a transit line
which connects far residential areas with the city center. Attractiveness levels
between the first nodes and the final station have been assumed to be decreasing
with respect to the distance between them. According to the above consideration, a
time-dependent origin-destination matrix has been randomly built for a population
of 10,000 users. From it, the number of users accessing each train station is shown
in Table 2.

Assume that, as consequence of an incident, the system operator must reduce
the fleet size by one unit. Rescheduling train timetables must minimize the loss of
users, by introducing advances or delays in the original schedules of the two
vehicles which will remain operative. According to the model proposed in the
article, the following distribution of passengers that access to stations is shown in
Fig. 7 and, if train were not punctual, population waiting for boarding can be
deterministically estimated (Fig. 8). Since it is assumed that the user loss for

Fig. 6 Demand behavior if
train departed in advance

Table 1 Arrival/departure times associated to trains at stations

Station 1 2 3 4 5 6 7

Train 1 8:26/8:28 8:30/8:32 8:34/8:36 8:38/8:42 8:44/8:48 8:50/8:52 8:54/8:56
Train 2 8:38/8:40 8:42/8:44 8:46/8:48 8:50/8:54 8:56/9:00 9:02/9:04 9:06/9:08
Train 3 8:50/8:52 8:54/8:56 8:58/9:00 9:02/9:06 9:08/9:12 9:14/9:16 9:18/9:20

Table 2 Passengers boarding to train at stations

Station number 1 2 3 4 5 6 7

Train 1: Passengers 1,417 1153 664 281 77 39 0
Train 2: Passengers 1,143 756 359 113 23 10 0
Train 3: Passengers 2,131 1,204 488 117 18 7 0



railway system is only caused by decisions of putting advanced or delayed
schedules, the sequence of blue cells indicates optimal reprogramming of the two
feasible schedules.

If the solution obtained by applying this methodology (8,127 user served) is
compared with the result obtained when the train that serves to the least number of
users is cancelled (7,596), passenger loss is reduced by six.

3 Model Formulation

Assuming the previous pattern, a new timing for train arrivals at stations along the
transit line can be determined in order to take advantage of overlapping demand
curves generated from neighboring timetable-points. As a result of a disruption on
the network, the subsequent rescheduling of train timetables can be based in this
fact with the aim of minimizing the loss of passengers. Two scenarios can be
considered, depending on that passengers can (or not) require transfers toward/
from other network lines at particular times.

3.1 Scenario 1: Without Transfers

3.1.1 Indices and Sets

i 2 I index identifying trains of set I which run along the transit corridor
k 2 K index identifying cantons (or stations) of set K
u, v 2 T indices identifying the discrete time horizon T
(u, v) 2 Mk coordinates corresponding to temporary map M at station k.

Fig. 7 User’s presence at platform waiting a punctual arrival

Fig. 8 User’s presence at platform waiting a delayed arrival



3.1.2 Parameters

aik
v user population available to boarding train i at station k and at time v.

3.1.3 Decision Variables

xik
uv binary variable equals to 1 if train i is located at point (u, v) at station k 0,

otherwise.

3.1.4 Formulation of the Model Without Transfers

max
X

i2I

X

k2K

X

ðu;vÞ2Mk

aik
v xik

uv ð1Þ

s.t.
X

i2I

X

ðu;vÞ2Mk

xik
uv ¼ jIj; k 2 K ð2Þ

X

k2K

X

ðu;vÞ2Mk

xik
uv ¼ jKj; i 2 I ð3Þ

X

i2I

X

u0\v

xik
u0v� 1;

X

i2I

X

v0[ u

xik
uv0 � 1; ðu; vÞ 2 Mk; k 2 K ð4Þ

xik
uv�

X

v0[ v

xiðkþ1Þ
ðvþ1Þv0 ; ðu; vÞ 2 Mk; k 2 K ðk 6¼ jKjÞ ð5Þ

X

i2I

X

u0\v; v0[ u

xik
u0v0 � nk � xik

uv; ðu; vÞ 2 Mk; k 2 K ð6Þ

xik
uv 2 f0; 1g; ðu; vÞ 2 T ; i 2 I; k 2 K ð7Þ

The objective function maximizes the number of users that can be transported
along the rail corridor, picking them up at their respective stations during the time
interval that they are waiting on platforms. In this sense, the objective function (1)
maximizes the mobility of customers that use the railway system. Constraints (2)
establish that the number of train schedules to be located must be exactly |I|.
Restrictions (3) force passage through each station (with or without stopping) for
all trains to be determined. Constraints (4) indicate that there can be no train
arriving/departing from the k-th station if there was just another train operating.
Restrictions (5) establish that if there is a timetable-point located at position



(u, v) of the temporary map for the k-th station, then there must be another
timetable point, at the (k ? 1)-th station, on the v-th column. Limitation of the
number of trains that can operate, according to the existing number of tracks, is
indicated by means of constraints (6). Finally, restrictions (7) state the binary
nature of the decision variables of integer linear programming model.

From the temporary map corresponding to the first station to that of the last
station (respectively labeled 0 and |K|), a directed acyclic graph G = (V, E) can be
built connecting feasible sequence of timetable-points corresponding to adjacent
activity maps. Nodes Qk (uk, vk) and Qk+1 (uk+1, vk+1) are connected by an arc of
set E if both timetable-points satisfy the model constraints (2)–(6). By means of
this geometric meaning, the determination of an optimal train timetable will be
equivalent to find an optimal solution to the problem of locating a sequence of |K|
timetable-points (one for each temporary map) which maximizes the user mobility.
Subsequently, the application of a longest path algorithm on graph G = (V, E) will
generate an effective schedule for the line. This decision model uses |J| � |K| � |M|
variables, where |M| represents the maximum number of feasible timetable-points
(u, v) in the upper triangles of temporary maps associated to stations of corridor.

3.2 Scenarios Preserving/Rewarding Transfers Between
Transit Lines

If transit corridor intersects with others transit lines at specific stations, as is shown
in Fig. 9, the determination of new timetables should ensure the transfer of pas-
sengers between trains from different line runs at such interchange stations.

Two strategies can be considered:

• Imposing synchronization between the timetables of these lines; that is, a
solution can be accepted only if the connection between them is feasible
(Scenario 2.1).

• Rewarding the possibility of providing transfers for passengers of external lines
towards concurrent expeditions of the internal line by means of a weighting
factor c[ 1 (Scenario 2.2).

The geometrical model above developed can be slightly adapted in order to
catch the consideration of transfers. For this purpose, we define different new
indices and parameters. Let j 2 J be the index that identifies trains of other transit
lines concurrent with lines runs of set I. Let s 2 S , K be the index that enu-
merates the subset of stations that allow transfers to the travelers. Let
Fs(u, v) , Ms be the subset of timetable-points in the temporary map M of station
s where transfers between two transit lines can be carried out. For instance, Fig. 10
shows the timetable-point (filled in red) of another line (line A) when arrives/
departs at/from station 4 at times u = 4 and v = 8, respectively. If the synchro-
nization between the timetables of these lines were imposed, the feasible subset of



timetable-points (i.e., Fs (4, 8)), where transfer is preserved, would coincide with
the set of unfilled points in magenta color. Consistently with the notation used for
decision variables in the model, let yjs

uv be a binary input data which is equal to 1 if
train j (of an external line whose arrival/depart timetables are given) is located at
timetable-point (u, v) at station; otherwise, its value would be 0.

Scenario 2.1: Constraints (8) establish that if there is an active (i.e., yjs
uv ¼ 1)

timetable-point located at position (u, v) of the temporary map for the s-th station of
an outside line, then there must be at least another active timetable-point at the same
station for synchronizing transfers from/toward line runs i of the inner transit line I.

yjs
uv�

X

i2I

X

ðu0;v0Þ2Fsðu;vÞ
xis

u0v0 ; j 2 J; ðu; vÞ 2 Ms; s 2 S ð8Þ

Fig. 9 Corridor intersected
with external lines

Fig. 10 Candidate locations
for timetable-points which
ensure transfers



Therefore, objective (1) and constraints (2)–(8) constitute a procedure for
maximizing the number of passengers who enter in the system after rescheduling,
once transfers towards other external lines is preserved.

Scenario 2.2: For this context, it is necessary to distinguish between users who
enter in the system from outside and passengers who previously entered into the
system with the certainty of being able to make a transfer to another line already.
Objective to maximize must take into account this division of populations and
asymmetrically favor one over the other population by using a weighting factor
c[ 1. Let bjk

uv be a real input data which represents the population available to
transferring from train j at station k and at timetable-point (u, v). The objective (1)
after being modifying is

max
X

i2I

X

k2K

X

ðu;vÞ2Mk

ðaik
v þ l

X

j2J

X

ðu0;v0Þ2Fkðu;vÞ
bjk

u0v0 Þ xik
uv ð9Þ

We must remark that if k is not an interchange station, then Fkðu; vÞ � [ and the
second additive term is cancelled. Therefore, objective (1) and constraints (2)–(8)
constitute a procedure for maximizing mobility of travelers who enter in the system
after rescheduling, by ensuring the option of transferring from/towards other
external lines at interchange stations.

4 Conclusions

A geometric approach to determine the redistribution of service along a rail cor-
ridor has been introduced. Motivation for rescheduling railway timetables is
caused by the forced reduction of fleet size due to accidents, strikes and other
sources of train delays and cancellations. Two scenarios have been presented: a
context without considering transfers from/towards other transit lines, and a setting
where the existence of transfers between lines must be preserved although the
service would have been rescheduled. In the second case, two scenarios have been
formulated taking or not into consideration an equitable evaluation between the
different collective of users. A common approach for these scenarios has been
developed by using a geometrical representation of train timetables at stations. The
associated formulations are Integer Linear Programming models, where the
number of decision variables can be reduced according to different constraints
imposed by the structural and fleet capacities. The theoretical development has
been illustrated with a non-sophisticated example in order to clarify the concepts
used through the chapter.
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