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a b s t r a c t 

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining an

optimal timetable for each line of a transit network by establishing departure and arrival

times at each station and allocating a vehicle to each timetable. The current models for the

planning of timetables and vehicle schedules use the a priori knowledge of users’ routings.

However, the actual route choice of a user depends on the timetable. This paper solves

the TNTSP in a public transit network by integrating users’ routings in the model. The

proposed formulation guarantees that each user is allocated to the best possible timetable,

while satisfying capacity constraints. In addition, we perform a trade-off analysis by means

of a multi-objective formulation which jointly optimizes the operator’s and the users’ cri- 

teria.

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining an optimal timetable for each line

of a transit network by establishing departure and arrival times at each station and allocating a vehicle to each timetable

(see e.g. Guihaire and Hao, 2008a ). The input data consist of a public transportation network (PTN) made up of a set of

stations and links between them, a set of lines, a fleet of capacitated vehicles, a fixed budget for line runs and an ori-

gin/destination (O/D) matrix. The output data consist of a set of arrival and departure times at the stations for the vehicles.

Several criteria can be taken into consideration in these problems, for example waiting times, short transfers, fleet size,

travel time, load factor, users utilization and, in general terms, users’ and operator’s costs. Traditionally, the Transit Net-

work Timetabling Problem (TNTP, see e.g. Cacchiani and Toth, 2012 ) has been studied as a preliminary step for the Vehicle

Scheduling Problem (VSP, see e.g. Bunte and Kliewer, 2009 ), i.e. the TNTP output is an input for the VSP. Unfortunately, this

approach leads to suboptimal solutions for the TNTSP. In this paper we solve the TNTSP by integrating the TNTP and VSP. 

In this paper we assume that users are interested in minimizing their scheduled delay (see, e.g., Small, 1982; de Palma

and Lindsey, 2001; Mesa et al., 2014 ) that can be defined as the deviation between desired departure and arrival times and

actual ones. When the travel time is constant, the actions of boarding late or arriving early do not incur any inconvenience

themselves, but for many users boarding early involves some wasted time and arriving late typically has even more severe
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Fig. 1. Three strategies for traveling from A at 08:30 to B at 9:10.

Fig. 2. Inclusion relationships between the solution spaces of the TNTSP subproblems when projecting the solution spaces of these problems over the

space of the variables that describe the TNTP U .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consequences. We define a strategy as a combination of an itinerary and a potential timetable that a user can choose to travel

in a PTN. If we first assume uncapacitated vehicles, each user can freely choose the strategy that minimizes his scheduled

delay. This means that a suboptimal shortest path in the PTN with a convenient timetable may lead to a user’s scheduled

delay lower than that corresponding to a shortest path with an inconvenient timetable. If we now include vehicle capacity

constraints (CC), the PTN operator may have to assign specific itineraries to users in order to avoid overloading the vehicles.

If this option is not available (as it happens in many bus or metro networks where users freely choose their routes) the

PTN operator may have to design the timetables and allocate the vehicles in such a way that capacities are respected in the

event where all users choose their optimal strategy. This gives rise to a leader-follower behavior: demand allocation depends

on the timetables, and vice versa. The constraints we impose to guarantee these conditions are called optimal assignment

constraints. 

Example 1. Consider a user who aims to travel from station A to station B ( Fig. 1 ) departing from A at 8:30 and reaching

B at 9:10. There are two itineraries A → B and A → C → B , but if we consider the timetable this user may choose between

three strategies: (1) depart from A at 8:10 to arrive at B at 8:50, (2) depart from A at 8:45 to arrive at B at 9:25, and (3)

depart from A at 8:25 to arrive at C at 8:40 and from C at 8:45 to arrive at B at 9:15. In option 1, 20 min are wasted for

boarding in advance while option 2 leads to 15 min of lateness. Option 3 generates five wasted minutes for boarding in

advance and 5 min of lateness. If all these strategies are inconvenient for the user, he can choose an alternative mode of

transportation. 

We define several subproblems of the TNTSP depending on the types of constraints included. First, the vehicle scheduling

constraints (VSC) are those that force the timetables to be operated with a fixed fleet size. The TNTSP without VSC reduces

to the Transit Network Timetabling Problem (TNTP) which assumes unlimited fleet size and involves different problems ac-

cording to how the CCs are included. If there are no CCs, the users will travel in the PTN by following their optimal strategy.

This problem is called the User TNTP (TNTP U ). If there are vehicle capacities and the transit operator is able to route users

in the network, the problem is called Operator TNTP (TNTP O ). However, it is also possible to include CCs and let users follow

their optimal strategies. We call this problem the System TNTP (TNTP S ). Including the VSC in the previous subproblems, we

obtain respectively the User TNTSP (TNTSP U ), the Operator TNTSP (TNTSP O ) and the System TNTSP (TNTSP S ). If we project

the solution spaces of these problems over the space of variables that describe the TNTP U , the sets of feasible solutions will

be related as illustrated in Fig. 2 . 

In this paper, we study the TNTSP and its variants as described above. After reviewing our main contributions to the

TNTSP, we define the different subproblems and, in particular, we describe how to compute the available strategies for a

transportation request in a PTN. Timetables and vehicle schedules are usually computed assuming the knowledge of users’

routings from the results of a previous phase. However, the actual route a user will take depends on the timetable which

is not yet known a priori. In this paper we integrate user route choices within the TNTSP which, as far as we are aware,

is a new scientific contribution. This new solution framework is flexible and yields an optimal allocation of transportation

requests under vehicle capacity constraints. We compare the six TNTSP subproblems previously defined and their solution

spaces. We generate a testbed of randomly generated instances over several network configurations and we report computa-

tional results. In addition, we perform a trade-off analysis by means of a multi-objective formulation that jointly optimizes

the users’ and operator’s criteria. 

The remainder of this paper is structured as follows. Section 2 reviews the most relevant contributions related to this

paper. Section 3 , provides the description of the problem and the information required to compute itineraries and strategies

in a transit network made up of several lines. Section 4 presents the mathematical programming model for the integrated



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TNTSP and for the subproblems just described. Computational results are presented in Section 6 , followed by conclusions in

Section 7 . 

2. Literature review

Our literature review focuses on contributions that integrate the timetabling and the vehicle scheduling problems. For

reviews on the TNTP we refer the reader to Cacchiani and Toth (2012) ; Caprara et al. (2007, 2011) , and Lusby et al. (2011) .

For reviews on the VSP see Törnquist (2007) and Bunte and Kliewer (2009) . 

Recent research in transportation planning has focused on the benefits that can be derived through the integration

of different stages belonging to the transit planning process, known as network design, line planning, frequency setting,

timetabling, vehicle scheduling and crew rostering ( Guihaire and Hao, 2008a ). However, not much research has been devel-

oped on the integration of timetabling and vehicle scheduling ( Ibarra-Rojas et al., 2014 ). Since the VSP is easy to solve, it is

straightforward to implement an iterative procedure that modifies the current timetable and then solves the VSP. If a com-

plete integration is desired, the departure times of trips become decision variables. In this case, network flow formulations

and algorithms for the VSP are difficult to implement since the model lacks a fixed network. Instead, it deals with a set of

potential networks that depend on timetabling decisions. 

Solution approaches for integrating the two subproblems of the planning process can be divided into two types: se-

quential integration and complete integration. Sequential integration considers the characteristics of a subproblem while the

other one is optimized, which may lead to a suboptimal solution. We refer to Ceder (2001) , van den Heuvel et al. (2008) ,

Guihaire and Hao (2008b ), Ceder (2011) and Petersen et al. (2013) , for partial integration methodologies for the TNTSP. In

contrast, a complete integration defines a formulation or a solution methodology to determine the decisions of two or more

subproblems simultaneously. 

Complete integration schemes for the TNTP with the VSP have been considered in only a few papers. As far as we

know, the first study on a timetabling problem that includes the number of required vehicles in the objective function

is that of Chakroborty et al. (2001) . Here, the transit network is made up of multiple lines with a single transfer node.

Castelli et al. (2004) deal with non-periodic timetables assuming that routes, means of transport and quality of service

are fixed in advance. The operator’s main objective is to minimize cost while serving as many users as possible. These

authors integrate constraints on the number of available vehicles in the transit network timetabling problem. Liu and Shen

(2007) have proposed a bilevel optimization problem consisting of a hierarchical formulation in which the upper level solves

the VSP with the objective of minimizing the fleet size and the deadheading time, while the lower level optimizes the

TNTP in order to minimize the total transfer time for users. Fleurent and Lessard (2009) established a measure function

for the TNTP that incorporates key elements of synchronization, such as the number of users transferring from one line

to another and the related waiting time. These authors include vehicle scheduling decisions and other measures, such as

vehicle usage costs. Guihaire and Hao (2010) integrate the TNTP and VSP through an optimization model with a weighted

objective function that considers the quantity and quality of transfers, the evenness of headway times, the fleet size, and

the length of the deadheads. They assume the existence of an initial timetable and feasible time intervals for departures

and arrivals. This information serves to design line and trip shift movements that are used to modify the feasible timetable

and then find the optimal vehicle schedule. 

More recently, Ibarra-Rojas et al. (2014) proposed a bi-objective optimization problem to jointly solve the single depot

VSP and the bus TNTP by considering time windows for departure times and assuming constant demand. The objectives are

the maximization of the number of users who benefit from well-timed transfers, and the minimization of the fleet size. The

authors implemented an ε-constraint algorithm to obtain Pareto-optimal solutions. Numerical results show that in some

instances using one more vehicle leads to significant reductions in the number of user transfers. 

User-oriented optimization of public transport requires data about the users in order to develop realistic models. Current

models take user data into account by using the following two-phase approach. First, user routes are determined. Second,

the actual planning of timetables takes place using the knowledge of which routes users wish to travel given the results of

the first phase. However, the actual route a user will take strongly depends on the timetable, which is not yet known in the

first phase ( Borndörfer et al., 2015 ). Hence, the two-phase approach often yields suboptimal solutions. Almost all available

models assume that user routes are fixed before the design of a timetable starts but this topic has recently received more

attention (see Siebert and Goerigk, 2013; Schmidt and Schöbel, 2015b; 2015a; Goerigk and Schmidt, 2016 and references

therein). 

Combining information on timetables, vehicle scheduling and user choices, Mesa et al. (2014) presented an integrated

approach for jointly planning timetables and vehicle schedules along a single transit line while emphasizing the perspective

of potential users. Their setting assumes a model of fully disaggregated demand for a scenario that includes capacity con-

straints and demand behavior according to different criteria. These authors propose a p -median-based formulation which

includes specific constraints for the VSP. Demand behavior is handled through the inclusion of closest assignment type con-

straints. The authors developed a clustering based algorithm in order to provide an alternative methodology for solving

instances of the problem when computational time is limited. Their computational experiments show the difficulty of in-

cluding closest assignment constraints in a transportation problem and the advantages of deriving a clustering algorithm

that allows an appropriate preprocessing and handling of the data. 



Fig. 3. A PTN with four nodes (stations) and eight arcs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our paper differs significantly from previous research contributions. First, we develop a framework for integrating the

TNTP, the VSP and user routings. As far as we know, the integration of these three problems has never previously been

studied. Our approach not only pursues transfer coordination but also users’ preferences in terms of departure and arrival

times for a fully disaggregated demand. Moreover, each transportation request is treated individually, considering hard time

windows constraints for trip duration, departure and arrival times, as well as inconvenience costs related to deviations from

these times. Second, we formulate the TNTSP starting from the TNTP and adding constraints regarding capacities, optimal

user assignment and fleet size. We test and compare these formulations on a testbed of random instances and on different

networks as similarly proposed in previous studies. In addition, we study the multi-objective version of the problem in order

to analyze the trade-off between user and operator criteria. We use an ε-constraint method to obtain the exact Pareto front

of solutions between users’ and operator’s costs. 

3. Problem description and formulation

We now formally define and formulate the problem. The reader is referred to the Appendix for a full list of the notation

used. 

3.1. Infrastructure 

We first distinguish between the infrastructure network and the network containing all lines and walking corridors for

transferring between different lines. A public transportation network (PTN) is a graph G = (S, A ) with a set of nodes S repre-

senting stations and a set of arcs A , where each arc represents a direct connection between two stations of S . Given a PTN,

G = (S, A ) , a public transportation line (PTL) is a connected directed graph G l = (S l , A l ) where index l belongs to the set of

lines L . The set of nodes S l ⊆ S represents stations and a set of arcs A l ⊆ A contains the direct connections between two

stations using line l . We distinguish between two types of lines. The set of directed path lines L ⊆ L and a set of directed

cycle lines L̊ ⊆ L . Moreover, the set of lines L can be split into the set of lines going forward, 
−→ L ⊆ L and the set of lines

going backward, 
← −L ⊆ L . Therefore, it is obvious that L = L ∪ L̊ = 

−→ L ∪ 

← −L . In addition, each line l ∈ 

−→ L has a corresponding

line l ′ ∈ 

← −L running in opposite direction and is identified by means of l ′ = l + | −→ L | , where | · | stands for the cardinal of

a set. A terminal station is a station at which line runs can start and finish, so it can be stated that path lines have two

terminal stations (at both ends of the line) and cyclic lines have only one terminal station. 

Example 2. Fig. 3 shows a PTN of 4 nodes S = { 1 , 2 , 3 , 4 } and 8 arcs A = { (1 , 2) , (2 , 1) , (2 , 4) , (2 , 3) , (3, 2), (3, 4), (4, 2),

(4, 3)}. 

In the graph of Fig. 3 we define lines L = { 1 , 2 , 3 , 4 } where A 1 = { (1 , 2) , (2 , 3) } , A 2 = { (2 , 3) , (3 , 4) , (4 , 2) } , A 3 =
{ (3 , 2) , (2 , 1) } , A 4 = { (2 , 4) , (4 , 3) , (3 , 2) } . In addition we can define sets L = { 1 , 3 } , L̊ = { 2 , 4 } , −→ L = { 1 , 2 } , ← −L = { 3 , 4 } . �

Given a PTN G = (S, A ) , the associated Change&Go Network (CGN) is a graph G defined in order to include transfer activi-

ties between lines (see e.g. Schöbel and Scholl, 2006 Goerigk and Schmidt, 2016 ). We define here a slightly different version

of this concept adapted to our problem. It can be denoted as G = (N ∪ N̈ , A ∪ A 

(tra ) ) , where N = { (l, i ) : l ∈ L , i ∈ S l } is the

set of nodes of each line, N̈ = {| S| + 1 , . . . , | S| + | N̈ |} is the set of transfer nodes between lines, A = { (l, i, j) : l ∈ L , (i, j) ∈ A l }
is the set of arcs of all lines and A 

(tra ) = { (l, i, n ) : l ∈ L , i ∈ S l , n ∈ N̈ } is the set of transfer edges between lines. Basically,

the CGN replicates each node of the PTN once for each line and analogously with the arcs. In addition, transfer nodes are

added to the CGN as well as transfer edges for each line. 

Example 3. Given the PTN and the linepool defined in Example 2 , the associated CGN is depicted in Fig. 4 with corre-

sponding line nodes N = { (1 , 1) , (3, 1), (1, 2), (2, 2), (3, 2), (4, 2), (1, 3), (2, 3), (3, 3), (4, 3), (2, 4), (4, 4)}, transfer nodes

N̈ = { 5 , 6 } , line arcs A = { (1 , 1 , 2) , (1, 2, 3), (2, 2, 3), (2, 3, 4), (2, 4, 2), (3, 3, 2), (3, 2, 1), (4, 2, 4), (4, 4, 3), (4, 3, 2)} and
(tra ) 
transfer arcs A = { (1 , 2 , 5) , (1, 5, 2), (2, 2, 5), (2 , 5 , 2) , . . . , (4, 3, 6), (4, 6, 3)}. 



Fig. 4. Change&Go Network associated to the network of Fig. 3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Timetables and vehicle schedules 

Given a transit line l ∈ L , a line run is the journey of a vehicle making stops for boardings and alightings at every station

along the line. We assume a discretization T of the continuous time interval in order to assign departures of the κ available

vehicles to the set of time slots of T . We assume that all vehicles will have the same speed and stopping time at every

(non-terminal) station along l and, therefore, a fixed travel time τ l will be required in order to complete a line run on l

(including intermediate stops). We denote by c l the cost of implementing a line run in l and we allow a maximum cost ρ
to implement all line runs. We also assume that vehicles have the same capacity Q . 

The reader may note that there are two main assumptions throughout the paper that refer to identical vehicles, fixed

running times and fixed stopping times at stations. These assumptions can be relaxed in order to model more realistic

timetables (see e.g. Mesa et al., 2013 ) in exchange of increasing considerably the modeling size. However, since we are

integrating several problems in this paper it makes sense to simplify these decisions. 

A vehicle allocated to l ∈ 

−→ L can start a line run at any time slot t ∈ T . Once the line run is completed, the associated

vehicle becomes part of the fleet size of the line l + | −→ L | (l − | −→ L | if l ∈ 

← −L ) , and a new line run with this vehicle can be

started in any time slot t ′ ∈ T such that t ′ ≥ t + τl . Circular lines, are similar to path lines except that they have only one

terminal station. Therefore, any itinerary that involves traversing the terminal station will require a transfer at that station. 

Example 4 (cont.) . In the graph of Fig. 4 , once a vehicle of line 1 reaches station 3, it changes its direction and becomes a

vehicle of line 3. The same occurs for lines 2 and 4 once a terminal station is fixed (for example at station 2). This means

that once a vehicle of line 2 reaches station 2, it becomes a vehicle of line 4 (it cannot be used in a line run of line 2 at

that moment). Thus, if a user travels from station 4 to station 3 using line 2, a transfer will be required at station 2 toward

line 2 (again) or line 1. 

3.3. Demand 

Each user has fixed upper and lower bounds associated to the departure and arrival times. Additionally other inconve-

niences related to in-vehicle times, line-change penalties and deviation between desired departure and arrival times will

be taken into account. The concept of schedule delay , introduced by Small (1982) , arises with the fact that arriving early is

likely to involve some time wasted while for most users, arriving late has more severe repercussions. Let I be the set of user

transportation requests. In what follows, we use the terms user and request indiscriminately. Each request i ∈ I involves

an origin and a destination station and preferred departure times t i and t i + | I| to start and finish a trip between the origin

and destination of i . Furthermore, t −
i

denotes the earliest time at which user i can start the trip and t + 
i + | I| denotes the latest

time at which i can reach his destination. Note that these parameters are dependent on the travel time estimated by the

user considering the structure of the PTN (see Example 5 ). In addition we can impose a penalty of one unit if a request

is not served. Next, we will introduce in the following section an inconvenience parameter to measure the service quality

perceived by each user. 

3.4. User strategies 

Given a CGN, each itinerary offers different travel options according to each combination of the potential timetables from

the different lines that can be used for completing a trip. Let � be the set of all itineraries and � ⊆ � the subset of
i 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

itineraries that can be used by request i . Note that each itinerary π ∈ � is related with a set of lines L π and transfer nodes

used to complete a trip. Once his path is defined, a user can consider different options of departure times, depending on

the combinations of timetables that can be implemented on each line of the path. By R i π we denote the set of options that

can be used to serve request i by means of itinerary π . Given this notation, we can define an inconvenience cost function

parameter ϕi π r which computes the cost of allocating request i to itinerary π ∈ � and option r ∈ R iπ . Additionally, in order

to keep track of the capacity usage, we define a binary parameter m πa equal to one if and only if arc a ∈ A is used along

itinerary π . In addition, we denote by t i π rl the departure time slot used for a vehicle serving request i on line l when

itinerary π and option r are used. Note that, in order to simplify the notation, we will consider strategies involving at most

one transfer. This makes sense given the number of transfers that users are usually willing to perform in practice ( Stern,

1996 ). However, the proposed setting allows the implementation of several transfers in a general CGN. 

Example 5. Users can travel inside the network of Fig. 3 following different strategies. As an example, a user ( i = 1 ) going

from s = 4 to s = 3 can travel choosing one of the following itineraries: 

• itinerary 1, involving a trip from node (4, 4) to node (4, 3) (denoted by (4, 4) → (4, 3) in the following),
• itinerary 2, involving two trips (4, 4) → (4, 2), (4, 2) → (4, 3) and a intermediate transfer (at station 2),
• itinerary 3, involving two trips (4, 4) → (4, 2), (1, 2) → (1, 3) and a intermediate transfer (at station 2).

For simplicity, we assume that the distances between adjacent stations of the PTN are all equal to 1. This way a user

( i = 2 ) traveling from station 1 to station 3 can only choose the itinerary (1, 1) → (1, 2) → (1, 3) since in this case it does

not make sense to transfer at station 2 to another line. The different options for user i = 2 and his unique available itinerary

are (assuming t 2 = 9 , t 2+ | I| = 11 , t −
2 

= 5 and t + 
2+ | I| = 15 ) starting his trip at any of the time slots {5, 6, 7, 8, 9, 10, 11, 12, 13}.

The different options for user i = 1 and itinerary 2, are (assuming t 1 = 9 , t 1+ | I| = 10 , t −
1 

= 5 and t + 
1+ | I| = 14 ) the following:

• starting his trip at time slot 5 and transferring at any of the time slots {6, 7, 8, 9, 10, 11, 12, 13},
• starting his trip at time slot 6 and transferring at any of the time slots {7, 8, 9, 10, 11, 12, 13},
• starting his trip at time slot 7 and transferring at any of the time slots {8, 9, 10, 11, 12, 13},
• starting his trip at time slot 8 and transferring at any of the time slots {9, 10, 11, 12, 13},
• starting his trip at time slot 9 and transferring at any of the time slots {10, 11, 12, 13},
• starting his trip at time slot 10 and transferring at any of the time slots {11, 12, 13},
• starting his trip at time slot 11 and transferring at any of the time slots {12, 13},
• starting his trip at time slot 12 and transferring at time slot 13.

The scheduled delay costs will depend on the selected combination itinerary-option. See Section 6 for an example of the

inconvenience cost function ϕi π r . �

4. Mathematical programming model

We now define the six models described in Section 2 . We make decisions concerning the number of line runs located on

each line ( ρ l ) and on the number of vehicles initially available on each line ( κ l ). In addition we make binary decisions by

means of variable x lt equal to one if and only if a line run is located on line l at time slot t , and by means of variable y i π r

equal to one if and only if user i is allocated to itinerary π ∈ �i and option r ∈ R iπ . 

We first consider the problem of establishing the departure times from terminal stations of the lines. Each departure

performs a line run from line l that has an associated cost c l . The formulation is as follows: 

TNTP 

U : minimize 
∑ 

i ∈ I
[ 
∑
π∈ �i 

∑ 

r∈R iπ

ϕ iπ r y iπ r + (1 −
∑ 

π∈ �i 

∑ 

r∈R iπ

y iπ r )] (1a)

subject to 

∑ 

π∈ �i 

∑ 

r∈R iπ

y iπ r ≤ 1 i ∈ I (1b)

∑ 

t∈ T
x lt ≤ ρl l ∈ L (1c)

|L π | y iπ r ≤
∑ 

l∈L π
x lt iπ rl 

i ∈ I, π ∈ �i , r ∈ R iπ (1d)

∑ 

l∈L
c l ρl ≤ ρ (1e)

x lt ∈ { 0 , 1 } l ∈ L , t ∈ T (1f)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y iπ r ∈ { 0 , 1 } i ∈ I, π ∈ �i , r ∈ R iπ (1g) 

ρl ∈ Z 

+ l ∈ L . (1h) 

The objective function (1a) minimizes the total user inconvenience. The first term computes the inconvenience of the

users who use the system whereas the second term computes the penalty cost of those users not assigned to any service

of the system. Constraints (1b) ensure that no more than one strategy is selected for user i , thus avoiding negative terms in 

the second part of the objective function. Constraints (1c) ensure that no more than ρ l line runs are located on each line

l ∈ L . Constraints (1d) ensure that no request will be allocated to a strategy that cannot be carried out with the available

line runs. Constraint (1e) ensures that the total cost incurred by the line runs is not exceeded. 

We recall that TNTP U does not take into account the fleet size or the capacity of the vehicles. Constraints (2) ensure that

the number of requests that use an arc of the CGN in a time slot do not exceed Q . ∑ 

i ∈ I 

∑ 

π∈ �i : l∈L π

∑ 

r∈R iπ : t iπ rl = t 
y iπ r m πa ≤ Qx lt l ∈ L , a ∈ A l , t ∈ T . (2) 

The TNTP U together with constraints (2) defines the TNTP O . 

Assuming that users know in advance all information related to the itineraries and timetables, it is reasonable to assume

that they will choose a strategy that enables them to reach their destination at minimum inconvenience cost. In addition,

as previously mentioned, the network operator may not be able to route transportation requests within the CGN. Therefore,

in order to model the TNTP S , we add two additional constraints. First, we impose that if there exists a given strategy (an

option within an itinerary) for a given user, then that user must be allocated to one strategy: ∑ 

l∈L π
x lt iπ rl 

≤ (|L π | − 1) +
∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ

y iπ ′ r ′ i ∈ I, π ∈ �i , r ∈ R iπ . (3) 

Second, constraints (4) ensure that if there exists a given strategy for a given user, then that user cannot be allocated to

another strategy with higher inconvenience cost: ∑ 

l∈L π
x lt iπ rl 

+
∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ : 
ϕ iπ ′ r ′ >ϕ iπ r 

y iπ ′ r ′ ≤ |L π | i ∈ I, π ∈ �i , r ∈ R iπ . (4) 

Constraints (3) are activated (a user is allocated to any strategy) when 

∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ
y iπ ′ r ′ = 1 . Therefore, (3) are acti-

vated according to the values of the number of lines in the chosen itinerary ( |L π | ) and the number of line runs that are

active for the chosen option r of itinerary π , namely 
∑ 

l∈L π x lt iπ rl 
, that is one at most if |L π | = 1 and 2 at most if |L π | = 2 .

• If |L π | = 2 , (3) is activated if and only if 
∑ 

l∈L π x lt iπ rl 
= 2 (both required line runs are active).

• If |L π | = 1 , (3) is activated if and only if
∑ 

l∈L π x lt iπ rl 
= 1 (the required line run is active).

Similarly, constraints (4) are activated (a user is not allocated to a strategy with a higher inconvenience cost) when 

( 
∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ : 
ϕ 

iπ ′ r ′ >ϕ iπ r 

y iπ ′ r ′ = 0 ). 

• If |L π | = 2 , (4) is activated if and only if 
∑ 

l∈L π x lt iπ rl 
= 2 (both required line runs are active).

• If |L π | = 1 , (4) is activated if and only if
∑ 

l∈L π x lt iπ rl 
= 1 (the required line run is active).

Constraints (4) are adapted from Wagner and Falkson (1975) and belong to the so-called class of closest assignment

constraints. According to Espejo et al. (2012) , such constraints can be modeled in many different ways, giving rise to better or

worse linear programming relaxations. As shown in that paper, the constraints provided by Wagner and Falkson (1975) can

be strengthened by using the fixed numbers of facilities (line runs) to locate. Even with such improvements, the inclusion

of constraints (3) and (4) considerably increases the computational complexity of the proposed model. 

In addition to the previous considerations we can assume that the timetables are carried out by a limited number κ of

vehicles. On each line l , vehicles change the direction of the line once the terminal station is reached and then become a

vehicle available for line l + | −→ L | (l − | −→ L | if l ∈ 

← −L ) . We describe the vehicle scheduling problem through the following sets

of constraints: 

τl ∑ 

t ′ =1 

x lt ′ ≤ κl l ∈ L (5a) 

t ∑ 

t ′ =1 

x lt ′ −
t−τl ∑ 

t ′ =1 

x 
l+ | −→ L | ,t ′ ≤ κl l ∈ 

−→L , t ∈ T : t > τl ∧ t < | T | − τl (5b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t ∑ 

t ′ =1 

x lt ′ −
t−τl ∑ 

t ′ =1 

x 
l−| −→ L | ,t ′ ≤ κl l ∈ 

←−L , t ∈ T : t > τl ∧ t < | T | − τl (5c)

∑ 

l∈L
κl ≤ κ (5d)

κl ∈ Z 

+ l ∈ L . (5e)

Constraints (5a) ensure that no more than κ l vehicles (the fleet size of line l ) depart from line l within the time interval

[1, τ l ] (that is, before any vehicle from the opposite direction could have arrived). We recall that τ l is the time required to

complete a line run along line l . After time τ l , constraints (5b) ensure that the difference between the number of vehicles

that have departed from line l (going forward) and the number of vehicles that have arrived at l (coming from the corre-

sponding line in opposite direction) never exceeds the fleet size of l . Constraints (5c) impose, for each line going backwards,

the same as (5b) . Constraint (5d) ensures that the total fleet size is not exceeded. 

The TNTP U , TNTP O , TNTP S together with constraints (5a) –(5d) are defined as the TNTSP U , TNTSP O , TNTSP S respectively. 

4.1. The multi-objective TNTSP 

There are two criteria considered by the previous problems, the level of service (captured by the timetabling) and the

operating costs (in terms of vehicle usage). A high level of service guarantees users’ benefit, but cost savings are necessary

to sustain a profitable system. As mentioned in Ibarra-Rojas et al. (2014) , there is a lack of cost-benefit analyses for the

daily operation of a transport system. Since the level of service and the operating costs are naturally in conflict, our motiva-

tion is to propose a methodology that will take into account the trade-off between these criteria by jointly optimizing the

timetabling and vehicle scheduling decisions. To this end, we propose a multi-objective optimization model and algorithm

for the TNTSP and its variants described in Section 1 . This will allow us to answer questions such as: How to improve the

service at minimum cost? How many users are favoured by introducing one more line-run or one more vehicle to the fleet?

That is, we develop a tool to quantify how much the level of service increases (or decreases) per line-run or vehicle. 

The multi-objective function (6a) minimizes simultaneously the users’ inconvenience, the line runs costs and the fleet

size costs. The domain defined by (6b) –(6n) includes the TNTSP domain defined by (1c) –(1g), (2) –(4) and (5a) –(5d) . The

multi-objective problem is then: 

minimize (z 1 , z 2 , z 3 ) ≡ minimize 

(∑ 

i ∈ I

[ ∑ 

π∈ �i 

∑ 

r∈R iπ

ϕ iπ r y iπ r + 

(
1 −

∑ 

π∈ �i 

∑ 

r∈R iπ

y iπ r 

) ]
,

∑ 

l∈L

∑ 

t∈ T
x lt c l , 

∑ 

l∈L
κl 

)
(6a)

subject to 

∑ 

π∈ �i 

∑ 

r∈R iπ

y iπ r ≤ 1 i ∈ I (6b)

∑ 

t∈ T
x lt ≤ ρl l ∈ L (6c)

|L π | y iπ r ≤
∑ 

l∈L π
x lt iπ rl 

i ∈ I, π ∈ �i , r ∈ R iπ (6d)

∑ 

l∈L
c l ρl ≤ ρ (6e)

∑ 

i ∈ I 

∑ 

π∈ �i : l∈L π

∑ 

r∈R iπ : t iπ rl = t 
y iπ r m πa ≤ Qx lt l ∈ L , a ∈ A l , t ∈ T (6f)

∑ 

l∈L π
x lt iπ rl 

≤ (|L π | − 1) +
∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ

y iπ ′ r ′ i ∈ I, π ∈ �i , r ∈ R iπ (6g)

∑ 

l∈L π
x lt iπ rl 

+
∑ 

π ′ ∈ �i 

∑ 

r ′ ∈R iπ : 
ϕ iπ ′ r ′ >ϕ iπ r 

y iπ ′ r ′ ≤ |L π | i ∈ I, π ∈ �i , r ∈ R iπ (6h)



Fig. 5. Level curves for a set of non-dominated points ( P), objectives z 1 , z 2 , z 3 , and values for z 3 equal to v 1 and v 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

τl ∑ 

t ′ =1 

x lt ′ ≤ κl l ∈ L (6i) 

t ∑ 

t ′ =1 

x lt ′ −
t−τl ∑ 

t ′ =1 

x 
l+ | −→ L | ,t ′ ≤ κl l ∈ 

−→L , t ∈ T : t > τl ∧ t < | T | − τl (6j) 

t ∑ 

t ′ =1 

x lt ′ −
t−τl ∑ 

t ′ =1 

x 
l−| −→ L | ,t ′ ≤ κl l ∈ 

←−L , t ∈ T : t > τl ∧ t < | T | − τl (6k) 

∑ 

l∈L
κl ≤ κ (6l) 

x lt ∈ { 0 , 1 } l ∈ L , t ∈ T (6m) 

y iπ r ∈ { 0 , 1 } i ∈ I, π ∈ �i , r ∈ R iπ . (6n) 

ρl ∈ Z 

+ l ∈ L (6o) 

κl ∈ Z 

+ l ∈ L . (6p) 

The multi-objective methodology presented here is not only useful to determine incomparable solutions based on the

users’ and the operator’s costs, but also to avoid solving several problems sequentially in order to guarantee optimal solu-

tions. Our multi-objective optimization problem is solved by an ε-constraint method ( Chankong and Haimes, 1983 ) which

yields exact trade-off solutions between users’ inconvenience and operator’s costs. In this manner, we are able to study the

compromises that can be made between the three criteria used in the planning process by computing exact Pareto optimal

fronts. 

5. An ε-constraint solution approach for the multi-objective TNTSP

Our multi-objective algorithm for the TNTSP aims at jointly minimizing users’ inconvenience (in terms of coverage and

schedule delays) as well as the operator’s costs (in terms of number of vehicles and budget for line-runs). We are interested

in computing Pareto optimal solutions, i.e., an undominated set of solutions with respect to the values of the different

objective functions. Since we are minimizing three different objectives, a special solution representation is required to avoid

plotting of a 3-dimensional non-dominated set of solutions ( P), which would be difficult to analyze by the decision maker.

To this end, we project the solutions onto the z 1 × z 2 plane, where z 1 is the users’ inconvenience and z 2 is the line runs

cost ( Fig. 5 ). In this plane the level curves plot points with the same z value (fleet size). We identify these curves by their
3 



Algorithm 1: Non-dominated points set P . 

Select values ρmin , ρmax , κmin , κmax , ε1 , ε2 ; // select input parameters

1 ρ := ρmax ; κ := κmax ; P = {∅} ; // reset values

2 while κ ≥ κmin do // while budget κ is above its lower bound... 

3 while ρ ≥ ρmin do // while budget ρ is above its lower bound... 

4 solve: (z ∗
1 
, z ∗

2 
, z ∗

3 
) := arg lex min (z 1 , z 2 , z 3 ) s.t. (6p) - (6p) ; // compute a new non-dominated point

5 P := P ∪ { (z ∗
1 
, z ∗

2 
, z ∗

3 
) } ; // Add the new point to the set on non-dominated points

6 ρ := z ∗
2 

− ε1 ; // decrease ρ

7 κ := κ − ε2 ; // set κ for obtaining a new level curve 

8 ρ := ρmax ; // reset ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
position (e.g. first, second,...) from left to right, or by their z 3 values. This kind of graphical representation is very informative

since it shows the demand improvement obtained by increasing either the number of vehicles or the budget for line-runs. 

As stated by Kim and de Weck (2005) , solving optimization problems with weighted objective functions often produces

poorly distributed solutions along a Pareto front and does not yield Pareto optimal solutions in non-convex regions. To

overcome these inconveniences, one may resort to adaptative weighted sum methods and additional inequality constraints.

Here we propose an ε-constraint method as in Ibarra-Rojas et al. (2014) , extended to the case of three objectives and with

other features as described in the following. 

The steps of our ε-constraint method for the multi-objective TNTSP are given in Algorithm 1 which presents the basic

idea for obtaining the different Pareto fronts (level curves). We first provide lower and upper bounds for parameters ρ and

κ (denoted by ρmin , ρmax , κmin and κmax respectively). The Pareto set P is initialized as empty. We start by computing

non-dominated points from the highest value of κ to its lowest value, and for each value of κ we compute non-dominated

points from the highest value of ρ to its lowest value. Step 5 yields a non-dominated point at each iteration and Step 6

adds it to the Pareto front. Step 7 changes the values of ρ , to generate a new non-dominated point in the level curve, and

Steps 8 and 9 change the values of κ and ρ to obtain a new non-dominated point in the next level curve. 

6. Computational experiments

Next, we report on the results of some computational experiments we have run in order to empirically compare the

proposed TNTSP formulation and its variants. We have first studied the multi-objective TNTSP and we have chosen the

TNTSP U for presenting the level curves of the Pareto fronts for different networks. Second, we analyze the computational

performance of the TNTSP and its variants for specific values of ρ and κ . 

6.1. Data generation 

In order to illustrate the applicability of the previous models, we have considered six different networks ( Fig. 6 ) inspired

from Laporte et al. (1994) and Laporte et al. (1997) . For the sake of reproducibility, we assume topological structures, so

no geographical configurations underlie and travel times between nodes are all equal to 1. All networks contain 13 nodes

and have similar numbers of edges (ranging from 12 to 16). Each configuration can be obtained by setting out three lines,

obtaining from one to five intersections. Note that each line, represented by continuous dashed and dotted lines, contains

two path lines, except for the cartwheel configuration where the dotted line contains two circular lines. First, for each

O/D pair we have precomputed the different itineraries by using a k -shortest path algorithm ( Shier, 1979 ). We have then

generated 10 random instances of transportation requests for | I| = 100 with an origin, a destination and a desired arrival

time t i + | I| ∈ T , with | T | = 60 (all random values following a discrete uniform distribution). Next, for each configuration, we

have computed the desired departure time t i of each request by means of the corresponding shortest path through the PTN.

Each desired departure time t i lies within a time window [ max { 0 , t i − 4 } , min {| T | , t i + 4 } ] , or equivalently within a set of

feasible time slots T i = { max { 0 , t i − 4 } , . . . , max { 0 , t i − 1 } , t i , min {| T | , t i + 1 } , . . . , min {| T | , t i + 4 }} (analogously for the desired

arrival time t i + | I| ). The different travel options were calculated for each user, according to the available itineraries, time

windows, and travel times in the network. Each of these options gives rise to a pair (t ∗
i 
(r, π) , t ∗

i + | I| (r, π)) representing actual

departure an arrival times for user i using itinerary π and option r . Finally, the inconvenience cost function ( ϕi π r ) was

computed using the function 

ϕ iπ r = min 

{
1 , ˜ ϕ (−| t i − t ∗i (π, r) | + ) + ˜ ϕ (| t ∗i + | I| (π, r) − t i + | I| | + )

}
, (7)

where | z| + = max { 0 , z} and ˜ ϕ is a discrete function defined as in Fig. 7 . Note that ˜ ϕ can be defined in many different ways

according to the assumptions or requirements of the demand. For example, ˜ ϕ defined as in Fig. 7 implies that an early

deviation from the desired departure time is as inconvenient as a late deviation from the desired arrival time. However, ϕ̃
can be easily adapted in order to emphasize early departures or late arrivals. 



Fig. 6. Basic configurations obtained from 3 lines.

Fig. 7. Discrete inconvenience costs under consideration.

 

 

 

 

 

 

 

All instances were solved to optimality with the MIP Xpress 7.5 optimizer, under a Windows 7 environment in an Intel(R)

Core(TM)i7 CPU 2.93 GHz processor and 8 GB RAM. Default values were initially used for all parameters of Xpress solver. 

6.2. Non-dominated solutions 

Fig. 8 presents the level curves of the Pareto fronts for the different graph configurations. For each configuration five level

curves were obtained for values of κ ∈ {6, 9, 12, 15, 18}. We have generated random instances for | I| = 100 and | T | = 60 and

travel times depending on c l = 3 | A l | . For a given fleet size ( κ) the upper-left point represents the minimum inconvenience

cost value achievable by the highest number of line runs that can be performed, and the lower-right point represents the

minimum inconvenience cost value that can be achieved by the smallest number of line runs. This explains why for κ = 18

the level curve in configuration #1 does not appear for values of ρ ≤ 300 while in configurations #2 and #3 this curve

contains only one or two points. We have bounded ρ ∈ [10 0, 30 0] and κ ∈ [6, 18], but more flexibility in this bounding

should normally give rise to more trade-off solutions. 
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Fig. 8. Level curves ( κ ∈ {18, 15, 12, 9, 6}) of the Pareto fronts for the different graph configurations. 



Fig. 9. Level curves of the Pareto fronts comparing the different graph configurations for values of κ ∈ {9, 12, 15} . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For decision makers, the kind of graphical solutions of Fig. 8 can be very informative. For example, for each configuration

one can easily see the maximum (or minimum) number of line-runs that can be efficiently covered by a given fleet size,

and one can also see the demand inconvenience improvement resulting from adding more vehicles. Note that in some

cases, for a given value of ρ adding one more vehicle leads to a demand inconvenience percentage reduction of almost 15

points. However, when κ ≥ 15 adding an extra vehicle yields small benefits in most cases. In any case, these graphs show

that the Pareto frontier in the TNTSP is not necessarily convex and the ε-constraint algorithm yields the complete set of

non-dominated points. 

Complementary, we can add some additional remarks concerning the configurations comparison. Fig. 9 presents the

level curves of the Pareto fronts comparing the different graph configurations for values of κ ∈ {9, 12, 15}. We note that

now the level curves may not only overlap, but also intersect (see e.g. κ = 9 and ρ ∈ [190, 230]). This means that for a

given value of κ , the best configuration in a comparison may depend on the value of ρ . In any case, for values of κ ∈ {12,

15} the best configurations are #5, followed by #3, and the least efficient is configuration #2, followed by #6. The effect

of the common lines in #5, seems to be very convenient for travelers in the common segments since they have two travel

possibilities. However, for those transportation requests out of that sector, the common lines only imply a lack of supply.

We have validated this comparisons in a preliminary study comparing results for 10 different instances. However, for the

sake of simplicity, we just plot here the level curves corresponding to one of them.

6.3. Parametric analysis of solutions 

We now analyze the computational performance of the TNTSP and its variants for the different configurations and specific

values of ρ and κ . Therefore we now focus on the minimization of a single objective (the users’ inconvenience cost), we

vary ρ ∈ {170, 240, 300}, and fleet sizes are defined as κ ∈ {6, 12, 18}. 

Each table reports the following information. Each row corresponds to a group of 10 instances with the same charac-

teristics (# G, ρ, Q ) or (# G, ρ, κ, Q ) indicated in the first columns, where # G stands for configuration # i, with i ∈ {1, 2, 3,

4, 5, 6}. Column gapLR reports the relative gap computed with the optimal solution and the optimal value of the linear

relaxation at the root node. Column t reports the average running time in seconds for the 10 instances corresponding to

each row. The reader may note that all instances were solved to optimality within the time limit. Column nodes indicates

the average number of nodes explored in the branch-and-bound tree. Finally, column obj reports the mean objectives values

that we recall represent the total user inconvenience. All tables report analogous information for the different formulations



Table 1

Computational results for the TNTP U , TNTP O and TNTP S .

TNTP U TNTP O TNTP S

# G ρ Q GapLR t Nodes Obj GapLR t Nodes Obj GapLR t Nodes Obj

1 170 1 60 .39 34 .2 1392 46 .6 0 .33 0 .4 1 75 2 .09 8 .7 9 77 .9

1 170 2 60 .39 34 .2 1392 46 .6 3 .68 11 104 61 .3 9 .22 996 .8 14,287 65 .7

1 170 3 60 .39 34 .1 1392 46 .6 11 .6 56 .5 1306 54 14 .8 1259 .1 11,026 56 .2

1 240 1 66 .66 71 .6 3393 32 .9 0 0 .4 1 65 .9 4 .37 49 .6 1352 70 .6

1 240 2 66 .66 71 .6 3393 32 .9 6 .92 29 .5 1090 48 .4 14 .34 2987 .3 33,326 53

1 240 3 66 .66 71 .7 3393 32 .9 23 .75 1236 .9 37,124 40 26 .13 1668 .7 11,751 41 .5

1 300 1 69 .46 48 .8 2701 24 .1 0 .84 0 .5 1 59 8 .47 141 10,080 65 .9

1 300 2 69 .46 48 .8 2701 24 .1 12 .1 31 .3 850 38 .9 20 .57 2115 .6 39,186 43 .4

1 300 3 69 .46 48 .6 2701 24 .1 36 .46 890 .4 30,420 30 .1 39 .68 3257 .1 30,149 31 .9

2 170 1 39 .1 4 .3 647 54 0 .34 0 .2 1 75 .3 2 .2 1 .5 1090 77 .5

2 170 2 39 .1 4 .3 647 54 3 .42 2 .2 28 63 .4 5 .72 11 .5 889 65 .2

2 170 3 39 .1 4 .3 647 54 9 .94 6 .4 440 57 .6 11 .44 25 1533 58 .6

2 240 1 44 .94 5 259 41 .3 0 .08 0 .2 1 66 .4 3 .06 2 .1 253 69 .6

2 240 2 44 .94 5 259 41 .3 4 .87 2 .9 568 51 .3 8 .42 40 .5 5402 53 .5

2 240 3 44 .94 5 259 41 .3 17 .08 8 .8 913 44 .6 18 .2 40 .4 2995 45 .3

2 300 1 49 .33 6 .4 2899 32 .8 0 .05 0 .2 1 59 .4 4 .66 3 .6 1710 63 .8

2 300 2 49 .33 6 .5 2899 32 .8 7 .57 4 606 42 .3 11 .44 64 .8 8131 44 .3

2 300 3 49 .33 6 .5 2899 32 .8 25 .21 15 .3 2422 35 .5 26 .08 34 .8 24 4 4 35 .9

3 170 1 41 .47 6 .7 477 47 .9 0 .1 0 .2 1 73 .6 3 .96 1 .6 80 78 .1

3 170 2 41 .47 6 .7 477 47 .9 2 .28 3 .1 280 60 .7 7 .45 768 .4 49,515 64 .5

3 170 3 41 .47 6 .7 477 47 .9 7 .21 5 63 52 .8 10 .77 1215 .8 39,547 55 .1

3 240 1 44 .9 7 .2 335 34 .4 0 .25 1 .5 2756 65 .4 6 .41 2 .8 1511 71 .3

3 240 2 44 .9 7 .2 335 34 .4 4 .5 16 .9 4896 48 .4 11 .46 1235 .1 52,726 52 .7

3 240 3 44 .9 7 .2 335 34 .4 16 .38 39 .3 6506 39 .3 20 .45 1294 .7 37,958 41 .5

3 300 1 46 .57 8 .8 1665 26 0 .1 0 .3 3 58 .9 8 .15 3 .1 516 65 .5

3 300 2 46 .57 8 .8 1665 26 7 .69 7 .3 1405 38 .9 16 .47 1411 .1 86,987 43 .4

3 300 3 46 .57 8 .9 1665 26 25 .8 19 .7 2090 29 .6 29 .85 1309 .8 47,232 31 .5

4 170 1 51 .16 1 .7 6 47 .2 0 .33 0 .1 1 73 .9 2 .58 0 .6 1 76 .1

4 170 2 51 .16 1 .7 6 47 .2 4 .03 1 .1 4 60 .6 6 .93 14 .6 2916 62 .7

4 170 3 51 .16 1 .7 6 47 .2 12 .68 3 .4 67 53 .7 15 .43 24 .5 3157 55 .6

4 240 1 56 .96 0 .9 1 32 .7 0 0 .1 1 64 .9 2 .99 0 .9 38 67 .4

4 240 2 56 .96 0 .9 1 32 .7 7 .22 1 .8 258 47 .7 11 .7 34 .6 7368 50 .5

4 240 3 56 .96 0 .9 1 32 .7 22 .41 5 .5 832 39 .4 25 .52 113 .6 20,297 41 .1

4 300 1 59 .99 0 .8 1 24 .2 0 .85 0 .2 1 57 .9 5 .01 1 .6 70 61 .3

4 300 2 59 .99 0 .8 1 24 .2 12 .61 2 .3 238 38 .8 17 .9 132 .4 29,688 41 .7

4 300 3 59 .99 0 .8 1 24 .2 35 .3 7 .8 1982 29 .8 37 .3 53 .3 6373 30 .9

5 170 1 1 .29 0 1 69 .6 0 .17 0 1 77 .6 1 .11 0 136 78 .6

5 170 2 1 .29 0 1 69 .6 0 .59 0 .1 150 70 .4 0 .86 0 .1 161 70 .6

5 170 3 1 .29 0 1 69 .6 0 .67 0 .1 228 69 .6 0 .67 0 .2 1472 69 .6

5 240 1 1 .54 0 1 62 .4 0 .18 0 1 70 .6 1 .22 0 12 71 .6

5 240 2 1 .54 0 1 62 .4 0 .51 0 .1 98 63 0 .47 0 .1 103 63

5 240 3 1 .54 0 1 62 .4 0 .7 0 .2 1904 62 .4 0 .7 0 .3 1388 62 .4

5 300 1 1 .34 0 1 56 .9 0 .2 0 1 64 .6 1 .33 0 .1 60 65 .6

5 300 2 1 .34 0 1 56 .9 0 .34 0 7 57 .2 0 .32 0 1 57 .3

5 300 3 1 .34 0 1 56 .9 0 .46 0 7 56 .9 0 .46 0 1 56 .9

6 170 1 42 .94 9 .9 4917 49 .4 0 .32 0 .3 95 73 .4 3 .35 0 .7 266 76 .9

6 170 2 42 .94 10 4917 49 .4 2 .68 1 .8 475 61 .2 7 .21 51 .3 14,902 64 .6

6 170 3 42 .94 9 .8 4917 49 .4 9 .33 5 .8 1776 54 12 .18 85 .9 12,160 55 .9

6 240 1 47 .62 5 .2 686 35 .4 0 .24 6 .6 91,574 64 .7 5 .59 1 .1 149 69 .9

6 240 2 47 .62 5 .2 686 35 .4 5 .3 4 .3 2482 49 .1 11 .18 247 .7 64,006 52 .8

6 240 3 47 .62 5 .2 686 35 .4 17 .08 10 .1 2510 40 .8 19 .76 111 .9 15,287 42 .2

6 300 1 49 .79 6 .1 3248 26 .9 0 .04 0 .2 1 58 8 .13 1 .5 144 64 .8

6 300 2 49 .79 6 .1 3248 26 .9 8 .19 4 .9 2689 39 .9 15 .41 352 .1 63,831 43 .7

6 300 3 49 .79 6 .1 3248 26 .9 25 .04 9 .4 1576 31 .4 27 .18 65 .8 8034 32 .4

 

 

 

 

 

described in the paper. In order to facilitate the comparison among all tables, we have marked in bold the best result among

all in the same group. 

There exists a dependence between the network configuration and the results presented in the tables ( Table 1 for the

TNTP and Tables 2 and 3 for the TNTSP). First, regarding the running times, the instance that was more difficult to solve

was the Cartwheel (#1) with a significant difference with respect to the other configurations. The main reason for this is

because it is the network that offers the largest number of possible itineraries and hence strategies. In contrast, configuration



Table 2

Computational results for the TNTSP U , TNTSP O and TNTSP S .

TNTSP U TNTSP O TNTSP S

# G ρ κ Q GapLR t Nodes Obj GapLR t Nodes Obj GapLR t Nodes Obj

1 170 6 1 60 .7 190 .1 7426 50 0 .45 3 .2 8 76 .2 4 .5 52 .2 909 80 .7

1 170 6 2 60 .7 191 .3 7426 50 4 .79 27 .7 214 63 .9 10 .78 1795 .3 14,497 68 .6

1 170 6 3 60 .7 192 .7 7426 50 13 .98 265 .2 4743 57 .3 18 .74 2933 22,425 60 .9

1 170 12 1 60 .39 35 .3 1165 46 .6 0 .35 0 .6 1 75 .1 2 .09 14 116 77 .9

1 170 12 2 60 .39 35 .1 1165 46 .6 3 .68 12 .8 120 61 .3 9 .23 1327 .6 20,677 65 .7

1 170 12 3 60 .39 35 .4 1165 46 .6 11 .6 70 .3 1910 54 14 .94 2254 .9 18,775 56 .3

1 170 18 1 60 .39 46 .5 2166 46 .6 0 .33 0 .5 1 75 2 .09 10 24 77 .9

1 170 18 2 60 .39 46 .8 2166 46 .6 3 .68 11 .7 78 61 .3 9 .22 999 .4 15,943 65 .7

1 170 18 3 60 .39 46 .3 2166 46 .6 11 .6 60 .4 1327 54 14 .8 1725 .2 12,831 56 .2

1 240 6 1 63 .88 360 .6 12,539 43 .4 0 .31 3 .6 1 70 .9 8 .65 314 .9 8257 78 .5

1 240 6 2 63 .88 361 .1 12,539 43 .4 7 .55 67 .3 1056 56 .9 18 .03 3004 .1 19,511 64 .5

1 240 6 3 63 .88 360 .9 12,539 43 .4 21 .84 740 .8 9728 50 .2 27 .4 2876 .9 16,903 54 .1

1 240 12 1 66 .94 126 .9 6953 33 .2 0 .01 0 .8 1 66 5 .27 124 .7 5547 71 .3

1 240 12 2 66 .94 125 .5 6953 33 .2 7 .22 61 .1 2521 48 .6 16 .15 3056 .1 32,869 54 .2

1 240 12 3 66 .94 126 6953 33 .2 23 .94 921 .3 27,740 40 .1 26 .4 2134 .1 19,077 41 .7

1 240 18 1 66 .66 69 .4 3108 32 .9 0 0 .5 1 65 .9 4 .37 60 .1 2357 70 .6

1 240 18 2 66 .66 69 .3 3108 32 .9 6 .92 35 .2 1384 48 .4 14 .27 3168 .8 34,816 52 .9

1 240 18 3 66 .66 69 3108 32 .9 23 .75 853 .2 27,198 40 25 .78 2150 .4 15,994 41 .3

1 300 6 1 63 .58 297 .7 11,609 42 .9 0 .52 6 10 69 .7 10 .18 347 .2 9426 78 .5

1 300 6 2 63 .58 297 .7 11,609 42 .9 7 .65 58 .7 667 55 .7 18 .79 2949 .7 19,425 63 .8

1 300 6 3 63 .58 297 .6 11,609 42 .9 21 .65 349 .8 4478 48 .9 29 .3 2804 .3 16,830 54 .4

1 300 12 1 69 .77 139 .8 9021 24 .9 0 .91 1 .5 1 59 .5 9 .98 269 15,482 67 .5

1 300 12 2 69 .77 140 .3 9021 24 .9 12 .75 153 5481 39 .8 25 .41 2643 .1 30,208 46 .9

1 300 12 3 69 .77 141 .3 9021 24 .9 37 .44 1779 .3 40,717 30 .9 41 .6 3125 .1 24,323 33 .3

1 300 18 1 69 .46 70 .1 3819 24 .1 0 .84 0 .8 1 59 8 .6 179 .3 12,586 66

1 300 18 2 69 .46 69 .9 3819 24 .1 12 .1 35 .2 1002 38 .9 20 .64 2796 .6 36,600 43 .5

1 300 18 3 69 .46 70 .1 3819 24 .1 36 .46 1031 .1 40,814 30 .1 39 .69 3343 .3 31,074 31 .9

2 170 6 1 38 .02 13 .5 680 57 .6 0 .5 1 .9 1135 76 .9 3 .48 7 .7 800 80 .1

2 170 6 2 38 .02 13 .5 680 57 .6 3 .9 5 .9 196 66 .7 6 .72 71 .8 6418 68 .9

2 170 6 3 38 .02 13 .5 680 57 .6 10 .25 11 .4 266 61 .5 12 .86 96 .3 3916 63 .4

2 170 12 1 39 .1 5 .9 257 54 0 .34 5 .3 40,666 75 .3 2 .22 2 .8 156 77 .5

2 170 12 2 39 .1 5 .9 257 54 3 .41 2 .6 55 63 .4 5 .91 24 .7 1979 65 .3

2 170 12 3 39 .1 5 .9 257 54 9 .94 6 .9 668 57 .6 11 .44 24 .2 1163 58 .6

2 170 18 1 39 .1 5 .2 336 54 0 .34 0 .4 1 75 .3 2 .2 2 .6 1127 77 .5

2 170 18 2 39 .1 5 .2 336 54 3 .42 2 .7 65 63 .4 5 .72 14 .8 1111 65 .2

2 170 18 3 39 .1 5 .3 336 54 9 .94 7 .8 1071 57 .6 11 .44 28 .9 2010 58 .6

2 240 6 1 40 .78 16 .6 451 53 .1 0 .11 0 .8 4 72 .5 5 .94 13 2274 78 .1

2 240 6 2 40 .78 16 .7 451 53 .1 5 .23 8 .5 68 62 9 .22 125 4698 64 .9

2 240 6 3 40 .78 16 .7 451 53 .1 15 .12 27 .4 715 57 .6 17 .54 193 .4 5286 59 .4

2 240 12 1 44 .85 7 .6 280 41 .4 0 .11 1 .1 1 66 .8 3 .62 6 .9 2001 70 .4

2 240 12 2 44 .85 7 .5 280 41 .4 4 .92 5 .4 74 51 .7 10 320 .4 34,073 54 .8

2 240 12 3 44 .85 7 .5 280 41 .4 17 .68 26 .5 2890 45 19 .01 82 .4 5867 45 .8

2 240 18 1 44 .94 6 .3 440 41 .3 0 .08 0 .3 1 66 .4 3 .06 3 .2 204 69 .6

2 240 18 2 44 .94 6 .3 440 41 .3 4 .87 6 .3 1750 51 .3 8 .42 50 .8 5787 53 .5

2 240 18 3 44 .94 6 .3 440 41 .3 17 .08 9 .8 628 44 .6 18 .2 46 .8 3044 45 .3

2 300 6 1 40 .68 17 .5 461 53 0 .03 0 .3 1 72 .4 5 .98 11 .5 1996 78 .1

2 300 6 2 40 .68 17 .5 461 53 5 .26 11 .3 56 62 9 .25 106 .7 5190 64 .9

2 300 6 3 40 .68 17 .5 461 53 15 .11 24 .3 477 57 .6 17 .55 214 .6 5789 59 .4

2 300 12 1 48 .11 6 .6 111 33 .1 0 .15 0 .9 76 60 .7 6 .17 18 .3 6119 65 .9

2 300 12 2 48 .11 6 .5 111 33 .1 7 .67 14 .4 24 4 4 43 .5 42 .61 1625 .7 40,798 44 .8

2 300 12 3 48 .11 6 .6 111 33 .1 25 .32 49 .5 5419 36 .2 26 .89 119 .3 6866 37 .1

2 300 18 1 49 .33 11 4128 32 .8 0 .02 0 .3 1 59 .5 5 .1 8 .9 3575 64 .1

2 300 18 2 49 .33 11 4128 32 .8 7 .57 6 .3 312 42 .3 11 .44 84 .9 9582 44 .4

2 300 18 3 49 .33 11 4128 32 .8 25 .21 14 .5 1933 35 .5 26 .08 30 1199 35 .9

3 170 6 1 42 .05 129 .1 8770 56 .2 0 .41 1 .6 376 76 .8 4 .74 9 1358 81 .7

3 170 6 2 42 .05 128 .9 8770 56 .2 3 .49 8 .5 460 66 .2 9 .52 1012 .5 46,765 71

3 170 6 3 42 .05 129 .2 8770 56 .2 11 .13 28 .3 949 60 .5 13 .53 168 .4 3944 62 .3

3 170 12 1 41 .65 13 2465 48 .1 0 .09 0 .4 46 73 .6 4 .14 3 364 78 .3

3 170 12 2 41 .65 13 2465 48 .1 2 .32 7 .1 1246 60 .8 7 .54 1220 .4 45,343 64 .6

3 170 12 3 41 .65 13 2465 48 .1 7 .56 10 .4 565 53 11 .04 1211 .8 28,587 55 .2

3 170 18 1 41 .47 11 .5 3135 47 .9 0 .1 0 .5 306 73 .6 3 .96 2 .9 54 78 .1

3 170 18 2 41 .47 11 .4 3135 47 .9 2 .28 4 .2 186 60 .7 7 .45 1213 .3 68,758 64 .5

3 170 18 3 41 .47 11 .4 3135 47 .9 7 .21 10 .3 428 52 .8 10 .75 1213 .6 46,455 55 .1

3 240 6 1 42 .5 125 6327 55 0 .08 0 .5 1 75 .6 5 .54 11 .5 1336 81 .4

3 240 6 2 42 .5 125 .4 6327 55 4 .43 15 .3 154 64 .9 10 .87 1283 .6 32,296 69 .9

3 240 6 3 42 .5 124 .8 6327 55 13 .18 34 .7 750 59 .5 15 .35 285 .1 3947 61 .1

3 240 12 1 45 .53 18 .7 1473 35 .1 0 .18 0 .8 363 65 .9 7 .02 7 .6 2135 72 .3

( continued on next page )



Table 2 ( continued )

TNTSP U TNTSP O TNTSP S

# G ρ κ Q GapLR t Nodes Obj GapLR t Nodes Obj GapLR t Nodes Obj

3 240 12 2 45 .53 18 .6 1473 35 .1 5 .23 20 .1 7235 49 .5 13 .1 1370 .6 53,813 54 .3

3 240 12 3 45 .53 18 .7 1473 35 .1 17 .1 41 .2 9433 40 .2 23 .47 1660 .8 69,918 43 .8

3 240 18 1 44 .9 8 .2 372 34 .4 0 .25 2 .6 5533 65 .4 6 .44 4 .6 1426 71 .3

3 240 18 2 44 .9 8 .2 372 34 .4 4 .5 33 .1 18,875 48 .4 11 .61 1247 .7 48,034 52 .7

3 240 18 3 44 .9 8 .2 372 34 .4 16 .38 69 .9 22,311 39 .3 20 .91 1307 .3 45,680 41 .8

3 300 6 1 42 .5 83 .3 3700 55 0 .08 0 .3 1 75 .6 5 .54 11 .3 1290 81 .4

3 300 6 2 42 .5 83 .4 3700 55 4 .43 11 .7 118 64 .9 10 .87 1274 .4 37,486 69 .9

3 300 6 3 42 .5 83 .6 3700 55 13 .18 36 .9 754 59 .5 15 .35 294 4176 61 .1

3 300 12 1 45 .8 30 .1 2654 27 .6 0 .2 1 .7 40 60 .3 10 .48 33 .2 7894 68 .7

3 300 12 2 45 .8 30 .2 2654 27 .6 9 .37 51 .8 5872 42 .1 19 .89 2360 .5 112,090 48

3 300 12 3 45 .8 30 .1 2654 27 .6 25 .82 50 .4 3088 32 .3 32 .44 1540 .4 43,657 35 .7

3 300 18 1 46 .57 14 .1 3136 26 0 .12 0 .8 1 59 8 .59 8 .4 1506 65 .9

3 300 18 2 46 .57 14 .1 3136 26 7 .72 12 .5 4307 39 17 .42 1859 .3 120,764 43 .9

3 300 18 3 46 .57 14 .3 3136 26 25 .8 28 .1 2065 29 .6 30 .24 1420 .2 74,767 31 .6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backbone (#5) was the fastest to solve. Surprisingly, the Backbone (#5) was faster to solve than the Star configuration (#4).

In spite of the fact that #5 offers more possibilities for completing the trips than #4, these trips are along common lines

over edges (3,7) and (3,8), and this seems to make the allocation of users easier. Regarding U and Cross (#2) and Triangle

(#6), we observe a similar performance except for the TNTSP U problem where #2 seems to be more difficult. With respect

to column gapLR we observe a direct relationship with column t , that is, those configurations which left a larger integrality

gap at the root node were the most difficult to solve. Column nodes shows that, in spite of the big gapLR values, many of

the TNTP U and TNTSP U instances could be solved at the root node of the branch-and-bound tree search. The last column obj

shows that the lowest level of inconvenience depends of the configuration, as discussed in Section 6.2 . 

Comparing the discussed results among the different problems we found that some of the instances corresponding to

TNTP O and TNTSP O were more easily solvable than TNTP U and TNTSP U , respectively, in terms of t, gapLR and nodes . This

makes sense considering that the capacity constraints significantly reduce the solution space. Those transportation requests

that cannot fit in the available vehicles are simply neglected (that is not served and, therefore, included in the objective

function with the maximum inconvenience/penalty), which is not a major difficulty in the allocation problem. This is not

the case of the TNTP S or TNTSP S for which the assignment is more difficult since it must be optimal for each transportation

request once that a timetable is fixed (in the x variables). In general terms, adding the vehicle scheduling constraints makes

it more difficult to solve each timetabling variant. 

7. Conclusions

We have presented a new methodology for solving the integration of the Transit Network Timetabling and Scheduling

Problem simultaneously with the users’ routing problem. Traditionally, these problems have been studied sequentially but

this approach leads to suboptimal solutions. We have presented a flexible framework that allows the allocation of transporta-

tion requests to their optimal strategies under capacity constraints. This approach not only pursues transfer coordination but

also users’ preferences in terms of preferred departure and arrival times for a fully disaggregated demand. Moreover, each

transportation request is handled individually, under hard time windows constraints for departure and arrival times, as well

as inconvenience costs related to trip duration and time deviations for desired departure and arrival times. We have gen-

erated a testbed of random instances for different network configurations and we have reported and analyzed extensive

computational results. In addition, we have studied the multi-objective version of the problem in order to establish trade-

offs between users’ and operator’s criteria. We have applied an ε-constraint method to obtain the exact Pareto front of

solutions. 
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Table 3

Computational results for the TNTSP U , TNTSP O and TNTSP S .

TNTSP U TNTSP O TNTSP S

# G ρ κ Q GapLR t Nodes Obj GapLR t Nodes Obj GapLR t Nodes Obj

4 170 6 1 49 .5 7 .5 16 53 0 .25 0 .3 1 75 4 .39 6 .2 597 79 .2

4 170 6 2 49 .5 7 .4 16 53 4 .57 3 .9 252 64 .2 8 .51 242 .5 16,984 67 .2

4 170 6 3 49 .5 7 .4 16 53 13 .54 6 .5 52 58 .2 16 .87 187 .3 9640 60 .6

4 170 12 1 51 .25 3 1 47 .3 0 .33 0 .3 1 73 .9 2 .52 1 .1 7 76 .1

4 170 12 2 51 .25 3 1 47 .3 4 .33 3 .2 22 60 .8 7 .18 33 5346 63

4 170 12 3 51 .25 3 1 47 .3 12 .73 4 .9 276 53 .8 15 .89 60 .5 8678 55 .9

4 170 18 1 51 .16 2 .3 5 47 .2 0 .33 0 .3 1 73 .9 2 .58 1 1 76 .1

4 170 18 2 51 .16 2 .3 5 47 .2 4 .03 1 .8 1 60 .6 6 .93 14 .1 1796 62 .7

4 170 18 3 51 .16 2 .3 5 47 .2 12 .68 5 186 53 .7 15 .43 28 3212 55 .6

4 240 6 1 45 .54 2 .5 1 44 .9 0 .06 0 .6 1 72 .3 7 .37 19 5362 78 .9

4 240 6 2 45 .54 2 .5 1 44 .9 4 .86 5 .6 83 59 .3 12 .44 205 .7 10,547 64 .7

4 240 6 3 45 .54 2 .5 1 44 .9 12 .96 5 .4 18 51 .7 20 .4 764 33,283 56 .5

4 240 12 1 56 .69 3 8 32 .9 0 .04 0 .3 1 64 .9 3 .91 3 .2 332 68 .3

4 240 12 2 56 .69 3 8 32 .9 7 .85 4 .3 315 48 .9 12 .6 249 .3 28,900 51 .8

4 240 12 3 56 .69 3 8 32 .9 22 .7 17 .9 2480 40 .1 26 .4 742 78,345 42 .3

4 240 18 1 56 .96 1 .2 1 32 .7 0 0 .2 1 64 .9 3 .06 1 .7 77 67 .5

4 240 18 2 56 .96 1 .2 1 32 .7 7 .24 2 .1 133 47 .8 11 .96 173 21,388 50 .7

4 240 18 3 56 .96 1 .2 1 32 .7 22 .41 5 .8 491 39 .4 25 .52 139 .3 17,382 41 .1

4 300 6 1 45 .54 2 .4 1 44 .9 0 .06 0 .5 1 72 .3 7 .37 19 .7 4960 78 .9

4 300 6 2 45 .54 2 .3 1 44 .9 4 .86 6 187 59 .3 12 .44 465 .4 26,716 64 .7

4 300 6 3 45 .54 2 .3 1 44 .9 12 .86 5 12 51 .6 20 .4 372 .7 14,964 56 .5

4 300 12 1 57 .67 1 .7 1 24 .5 0 .69 0 .9 1 58 .8 7 .95 22 6338 64 .5

4 300 12 2 57 .67 1 .7 1 24 .5 12 8 .1 216 40 .7 20 .06 1936 .1 153,327 45 .1

4 300 12 3 57 .67 1 .7 1 24 .5 34 .08 36 .2 3003 31 .6 37 .37 1391 .6 78,921 33 .3

4 300 18 1 59 .99 2 1 24 .2 0 .89 0 .3 1 57 .9 5 .49 3 .2 170 61 .7

4 300 18 2 59 .99 2 1 24 .2 12 .76 5 .3 828 38 .9 18 .44 463 .6 70,128 42

4 300 18 3 59 .99 2 1 24 .2 35 .3 11 .9 1580 29 .8 37 .48 156 .2 18,699 31

5 170 6 1 0 .88 5 .5 48,332 70 .4 0 .67 75 .7 729,220 78 .3 1 .63 1 .1 7033 79 .4

5 170 6 2 0 .88 5 .5 48332 70 .4 0 .53 10 .7 84,442 71 .7 0 .82 35 214,672 72

5 170 6 3 0 .88 5 .5 48332 70 .4 0 .38 11 .3 97,090 70 .5 0 .38 8 .4 86,260 70 .5

5 170 12 1 1 .29 0 .3 1560 69 .6 0 .17 38 .1 1,296,782 77 .6 1 .11 37 .7 662,709 78 .6

5 170 12 2 1 .29 0 .3 1560 69 .6 0 .59 0 .4 1104 70 .4 0 .86 3 .5 39,160 70 .6

5 170 12 3 1 .29 0 .3 1560 69 .6 0 .67 1 .1 9175 69 .6 0 .67 1 .4 12,795 69 .6

5 170 18 1 1 .29 0 .3 895 69 .6 0 .17 36 .2 598 77 .6 1 .11 6 .4 116,376 78 .6

5 170 18 2 1 .29 0 .3 895 69 .6 0 .59 0 .8 5912 70 .4 0 .86 2 .1 21,780 70 .6

5 170 18 3 1 .29 0 .3 895 69 .6 0 .67 3 .4 36,812 69 .6 0 .67 1 .7 15,733 69 .6

5 240 6 1 0 .78 0 .1 1 64 .3 0 .22 0 .2 294 71 .7 2 .92 0 .9 221 74 .3

5 240 6 2 0 .78 0 .1 1 64 .3 0 .27 0 .3 10 65 .5 1 0 .7 1156 66

5 240 6 3 0 .78 0 .1 1 64 .3 0 .27 0 .1 1 64 .4 0 .27 0 .1 1 64 .4

5 240 12 1 1 .54 0 .2 1287 62 .4 0 .18 0 .1 1 70 .6 1 .22 12 .1 168,020 71 .6

5 240 12 2 1 .54 0 .2 1287 62 .4 0 .51 30 .4 283,976 63 0 .47 59 .3 538,854 63

5 240 12 3 1 .54 0 .2 1287 62 .4 0 .7 72 .5 789,900 62 .4 0 .7 40 416,043 62 .4

5 240 18 1 1 .54 3 .4 47183 62 .4 0 .18 19 .1 933,441 70 .6 1 .22 21 .2 272,756 71 .6

5 240 18 2 1 .54 3 .3 47183 62 .4 0 .51 11 180,486 63 0 .47 529 5,158,983 63

5 240 18 3 1 .54 3 .3 47,183 62 .4 0 .7 1 10042 62 .4 0 .7 43 .6 416,546 62 .4

5 300 6 1 0 .64 0 .1 1 63 .1 0 .15 0 .3 55 69 .5 4 .36 0 .2 1 73 .8

5 300 6 2 0 .64 0 .1 1 63 .1 0 0 1 64 0 .87 0 .2 4 64 .6

5 300 6 3 0 .64 0 .1 1 63 .1 0 .15 0 1 63 .2 0 .15 0 .1 1 63 .2

5 300 12 1 1 .31 0 .2 58 56 .9 0 .2 581 .6 7,609,794 64 .6 2 .22 1 .4 11,173 66 .3

5 300 12 2 1 .31 0 .2 58 56 .9 0 .34 0 .3 239 57 .4 0 .32 0 .3 196 57 .4

5 300 12 3 1 .31 0 .2 58 56 .9 0 .44 0 .5 1132 57 0 .44 0 .3 349 57

5 300 18 1 1 .35 0 .1 1 56 .9 0 .2 0 .1 4 64 .6 1 .33 0 .2 1 65 .6

5 300 18 2 1 .35 0 .1 1 56 .9 0 .34 0 .3 20 57 .2 0 .32 0 .1 1 57 .3

5 300 18 3 1 .35 0 .1 1 56 .9 0 .46 0 .2 2 56 .9 0 .46 0 .2 1 56 .9

6 170 6 1 42 .65 13 .9 668 55 .6 0 .23 1 .6 158 75 .7 5 .07 3 .8 1140 80 .6

6 170 6 2 42 .65 13 .9 668 55 .6 3 .75 6 .8 240 65 .3 9 .28 80 .5 7154 69 .7

6 170 6 3 42 .65 13 .9 668 55 .6 11 .02 12 .3 346 59 .8 13 .12 46 .2 2176 61 .3

6 170 12 1 42 .79 48 .4 55,714 49 .4 0 .35 1200 .3 5,522,963 73 .5 3 .42 1 .4 45 76 .9

6 170 12 2 42 .79 47 .5 55,714 49 .4 2 .7 3 .1 1082 61 .2 7 .3 39 .6 10,221 64 .7

6 170 12 3 42 .79 47 .2 55,714 49 .4 9 .36 11 .4 5724 54 12 .54 580 .3 70,596 56 .1

6 170 18 1 42 .94 43 .8 54,006 49 .4 0 .32 1200 5,584,532 73 .4 3 .35 1 .4 409 76 .9

6 170 18 2 42 .94 44 .6 54,006 49 .4 2 .68 3 .5 1765 61 .2 7 .21 37 .6 8987 64 .6

6 170 18 3 42 .94 43 .6 54,006 49 .4 9 .33 11 .9 6701 54 12 .18 147 .2 20,555 55 .9

6 240 6 1 42 .68 11 .1 152 53 .4 0 .2 1 .1 4 73 .8 6 .29 4 .2 422 79 .9

6 240 6 2 42 .68 11 .1 152 53 .4 4 .69 9 .4 76 63 .3 10 .68 63 .6 4269 68

6 240 6 3 42 .68 11 .1 152 53 .4 12 .77 14 372 57 .8 14 .79 37 .4 516 59 .2

6 240 12 1 47 .48 14 .4 6108 36 0 .4 3 .9 9176 65 .1 6 .94 3 .7 2032 71 .2

( continued on next page )



Table 3 ( continued )

TNTSP U TNTSP O TNTSP S

# G ρ κ Q GapLR t Nodes Obj GapLR t Nodes Obj GapLR t Nodes Obj

6 240 12 2 47 .48 14 .4 6108 36 5 .96 9 .5 3136 50 12 .49 274 .4 36,802 54 .2

6 240 12 3 47 .48 14 .6 6108 36 17 .19 24 .5 5284 41 .5 21 .22 1285 .7 81,063 43 .7

6 240 18 1 47 .62 7 .4 2339 35 .4 0 .24 4 .8 26,133 64 .7 5 .64 2 .3 260 69 .9

6 240 18 2 47 .62 7 .4 2339 35 .4 5 .3 4 .8 886 49 .1 11 .19 308 .2 77,276 52 .9

6 240 18 3 47 .62 7 .3 2339 35 .4 17 .08 18 .4 6464 40 .8 19 .76 366 .1 38,674 42 .2

6 300 6 1 42 .68 10 .9 149 53 .4 0 .2 1 2 73 .8 6 .29 4 .1 250 79 .9

6 300 6 2 42 .68 10 .9 149 53 .4 4 .69 7 .8 143 63 .3 10 .68 72 .6 4181 68

6 300 6 3 42 .68 11 149 53 .4 12 .77 13 .9 340 57 .8 14 .79 43 .9 1061 59 .2

6 300 12 1 48 .06 18 .1 3647 28 .4 0 .39 2 .7 434 59 .6 10 .55 5 .3 1426 67 .9

6 300 12 2 48 .06 18 .1 3647 28 .4 8 .23 9 .4 844 42 .5 18 .12 1826 .7 153,738 48

6 300 12 3 48 .06 18 .2 3647 28 .4 24 .41 30 2326 33 .8 28 .05 1376 .6 58,543 35 .6

6 300 18 1 49 .79 16 .6 14,680 26 .9 0 .04 0 .3 34 58 .1 8 .55 3 .3 1316 65 .1

6 300 18 2 49 .79 16 .8 14,680 26 .9 8 .14 6 .8 1743 39 .9 15 .61 334 .6 53,534 43 .8

6 300 18 3 49 .79 16 .7 14,680 26 .9 25 .04 10 .1 1182 31 .4 27 .41 147 .4 16,557 32 .5

 

Appendix A. Notation 

Infrastructure: 

G Graph corresponding to the PTN 

S Node set (stations) 

A Set of arcs (indexed by a ) 

L Set of lines (indexed by l ) 

S l ⊆ S Subset of stations used by line l 

A l ⊂ A Subset that contains all edges used by line l 

L ⊆ L Set of directed path lines 

L̊ ⊆ L Set of directed cycle lines −→ L ⊆ L Set of path lines going forward ← −L ⊆ L Set of path lines going backwards (a line l ∈ 

−→L is associated to its respective (opposite) line l ′ ∈ 

← −L by means of

l ′ = l + | −→ L |
N Set of nodes of all lines ( N = { (l, i ) : l ∈ L , i ∈ S l } )
A Set of arcs of all lines ( A = { (l, i, j) : l ∈ L , (i, j) ∈ A l } )
d d otN Set of transfer nodes 

A 

(tra ) Set of transfer edges ( A 

(tra ) = { (l, i, n ) : l ∈ L , i ∈ S l , n ∈ N̈ } )
Timetables and vehicle scheduling: 

T Set of time slots ( T = { 1 , . . . , | T |} ) 
τ l Fixed travel time required to complete a line run in line l 

Q Vehicle capacity 

c l Cost associated to locate a line run in line l 

ρ Total available budget to locate line runs 

κ Fleet size 

Demand: 

i ∈ I Set of transportation requests 

t i , t i + | I| Preferred departure and arrival times for request i 

t −
i

, t + 
i

Earliest and latest times that are admissible for serving request i 

Strategies: 

π ∈ � Set of possible itineraries within the PTN 

�i ⊂� Subset of itineraries that are valid for user i 

L iπ ⊆ L Set of lines used by request i when itinerary π ∈ �i is selected 

r ∈ R iπ Set of options available for request i when using itinerary π ∈ �i 

ϕi π r Cost of allocating request i to itinerary π and option option r 

m πa Binary parameter equal to one if itinerary π ∈ �i occupies arc a ∈ A 

t i π rl Time slot that is used for a vehicle departure in line l when the itinerary π and the option r are used 

Decision variables: 

ρ l Number of line runs to locate in line l 

κ Fleet size to assign in line l 
l 



x lt ∈ {0, 1} Binary variable equal to 1 if and only if a vehicle starts a line run in line l at time t 

y i π r ∈ {0, 1} Binary variable equal to 1 if and only if request i is allocated to itinerary π ∈ �i and option r ∈ R iπ
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