Proyecto Fin de Grado

Ingeniería de Tecnologías Industriales

Simulación del recalentamiento mediante ultrasonidos de una aorta de roedor en Comsol Multiphysics

Autor: Carlos Moñino Hormigo Tutor: Ramón de Jesús Risco Delgado

> Dpto. de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2020

Proyecto Fin de Grado Ingeniería de Tecnologías Industriales

Simulación del recalentamiento mediante ultrasonidos de una aorta de roedor en Comsol Multiphysics

Autor:

Carlos Moñino Hormigo

Tutor:

Ramón de Jesús Risco Delgado

Profesor titular

Dpto. de Fisica Aplicado III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2020 Trabajo Fin de Grado: Simulación del recalentamiento mediante ultrasonidos de una aorta de roedor en Comsol Multiphysics

Autor: Carlos Moñino Hormigo

Tutor: Ramón de Jesús Risco Delgado

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2020

El Secretario del Tribunal

A mi familia

A mis maestros

RESUMEN

El objetivo de este trabajo es el de encontrar unos valores válidos de los parámetros que definen un sistema HIFU en el software de simulación Comsol Multiphysics con el fin de obtener un recalentamiento óptimo de una aorta de ratón o muestras biológicas de tamaño similar. En este proyecto será fijo el valor de la frecuencia, 1MHz, se utilizará la geometría de un transductor del que se disponía en el laboratorio y se estudiará como se comporta el sistema variando el valor de la potencia del transductor, para finalmente elegir cual es el valor más adecuado. Esto permitirá comparar los resultados obtenido en la simulación con posibles futuros resultados obtenidos en condiciones reales.

ABSTRACT

The aim of this Project is to find valid values of the parameters that define a HIFU system in Comsol Multiphysics in order to obtain optimal rewarming of a mouse aorta or biological simples of similar size. In this Project, the frequency value Will be fixed, 1 MHz, the geometry of a transducer that is available in the laboratory will be used. It will be studied how the system behaves by varying the value of the power of the transducer, to finally choose which is the most suitable value. The results obtained in the simulation will be compared with result obtained under real conditions.

ÍNDICE

1.	INTR	ODUCCIÓN	1
2.	ESTA	DO DEL ARTE	11
	2.1	¿QUÉ ES LA CRIOPRESERVACIÓN?	
	2.2	INICIOS DE LA CRIOPRESERVACIÓN	
	2.3	DIFICULTADES ENCONTRADAS	
	2.4	Agentes Crioprotectores	
	2.5	TÉCNICAS UTILIZADAS EN CRIOPRESERVACIÓN	
	2.6	ULTRASONIDOS FOCALIZADOS DE ALTA INTENSIDAD	
	2.6.1	Ultrasonidos	
	2.6.2	Funcionamiento del HIFU	
3.	MET	DDOLOGÍA	19
	3.1	DESCRIPCIÓN DEL MODELO EN COMSOL	
	3.2	DESCRIPCIÓN DE LAS CONDICIONES DEL MODELO	24
4.	RESU	ILTADOS	25
	4.1	ANÁLISIS DE LAS SIMULACIONES	
	4.2	ELECCIÓN DEL VALOR ÓPTIMO DE LA POTENCIA	
	4.3	DESARROLLO EN PROFUNDIDAD DE LA OPCIÓN ELEGIDA	
	4.3.1	Presión acústica	
	4.3.2	Transferencia de calor	
5.	CON	CLUSIÓN	34
6.	FUTU	IRAS LÍNEAS DE INVESTIGACIÓN	35
7.	REFE	RENCIAS	
AN	EXO 1		40

ÍNDICE DE GRÁFICAS

GRÁFICO 1: PROBABILIDAD DE CRECIMIENTO Y FORMACIÓN DE NÚCLEOS DE HIELO EN FUNCIÓN DE LA TEMPERATURA	13
GRÁFICO 2: EVOLUCIÓN DE LA TEMPERATURA PARA UNA POTENCIA DE 20 W.	
GRÁFICO 3: EVOLUCIÓN DE LA TEMPERATURA PARA UNA POTENCIA DE 100 W.	27
GRÁFICO 4: EVOLUCIÓN DE LA TEMPERATURA PARA UNA POTENCIA DE 500 W.	

ÍNDICE DE ILUSTRACIONES

ILUSTRACIÓN 1: CLASIFICACIÓN DE ONDAS DE SONIDO	17
ILUSTRACIÓN 2: ESQUEMA BÁSICO DEL FUNCIONAMIENTO DEL HIFU	17
ILUSTRACIÓN 3: TRANSDUCTOR DE ULTRASONIDOS.	
ILUSTRACIÓN 4: ESQUEMA BÁSICO DE ARRAY DE TRANSDUCTORES	
ILUSTRACIÓN 5: ESQUEMA SIMPLIFICADO TRANSDUCTOR-AORTA	
ILUSTRACIÓN 6: MODELO EN 2D.	
ILUSTRACIÓN 7: MODELO EN 3D.	
ILUSTRACIÓN 8: CAMPO DE PRESIÓN ACÚSTICA 2D.	
ILUSTRACIÓN 9: CAMPO DE PRESIÓN ACÚSTICA 3D ZONA FOCAL	
ILUSTRACIÓN 10: NIVEL DE PRESIÓN SONORA 2D	
ILUSTRACIÓN 11: NIVEL DE PRESIÓN SONORA 3D ZONA FOCAL	
ILUSTRACIÓN 12: CAMPO DE INTENSIDAD ACÚSTICA	
ILUSTRACIÓN 13: TEMPERATURA EN SUPERFICIE DE MODELO 3D	
ILUSTRACIÓN 14: TEMPERATURA DE LA ZONA FOCAL DEL MODELO 3D	
ILUSTRACIÓN 15: CURVA DE NIVEL: TEMPERATURA (K)	
ILUSTRACIÓN 16: DISEÑO DEL RECIPIENTE EN CAD	
ILUSTRACIÓN 17: ENDER3 IMPRIMIENDO ALGUNAS PARTES DEL RECIPIENTE	
ILUSTRACIÓN 18: TRANSDUCTOR DEL QUE SE DISPONE EN EL LABORATORIO	
ILUSTRACIÓN 19: ESQUEMA REPRESENTATIVO DE UN TERMOPAR	
ILUSTRACIÓN 20: MÓDULO DE RECOGIDA DE DATOS (PICOLOG)	
ILUSTRACIÓN 21: GRÁFICA GENERADA POR EL SOFTWARE PICOLOG	

ÍNDICE DE ECUACIONES

ECUACIÓN 1:	
Ecuación 2:	19
Ecuación 3	
Ecuación 4	
Ecuación 5	20
Ecuación 6	20
ECUACIÓN 7	
ECUACIÓN 8	21
Ecuación 9	21
Есиасіо́л 10	21
Ecuación 11	21

1.INTRODUCCIÓN

La preservación de órganos y tejidos es un campo poco explorado por la comunidad científica. Avances en este área podría suponer un gran impulso en el ámbito de trasplantes, medicina regenerativa, cuidado de traumas, descubrimiento de nuevos fármacos y cura del cáncer, entre otros.

Debido a la escasa disponibilidad de órganos y tejidos, y al estrecho margen de tiempo para poder trasplantarlos, es de vital importancia encontrar una forma de conservación de las pocas unidades disponibles. Surge así el concepto de Banco de Órganos o 'Organ Banking', que permitiría el almacenamiento de órganos y tejidos para ser utilizados cuando se requieran, es decir, la criopreservación de muestras. Esto podría suponer una revolución en el ámbito de trasplantes, ya que abriría la posibilidad de disponer de un stock de órganos, pudiéndose así salvar la vida de millones de personas. Por ejemplo, dos de cada tres corazones de donantes no pueden ser trasplantados debido al reto que supone transportarlo de un lugar a otro en menos de 4 horas, que es el tiempo del que se dispone sin que se comprometa la viabilidad del transpolante. A través de la criopreservación, podrían eliminarse las listas de espera.

La criopreservación está compuesta de dos etapas clave, el enfriamiento o 'cooling' y el recalentamiento o 'rewarming'. La principal limitación que presenta actualmente es el daño causado por la formación de grandes cristales de hielo. Esto se debe a que en la etapa de enfriamiento se forman pequeños cristales de hielo, que no son perjudiciales en sí mismos (debido a su pequeño tamaño), sin embargo, crecen en la etapa de recalentamiento. Este problema se puede evitar en pequeñas muestras, realizando un recalentamiento rápido, no obstante, no es tan sencillo de conseguir para muestras voluminosas. Todo esto, será explicado en profundidad más adelante.

Véase: (Risco Delgado, Morris, Dumont, & Amorim, 2019)

2.1 <u>¿Qué es la criopreservación?</u>

La criopreservación consiste en la reducción de las funciones vitales de una muestra, deteniendo así, el deterioro de la misma. Comienza con una etapa de congelación, seguido del almacenamiento de la muestra, generalmente entre -80°C y -196°C (temperatura del nitrógeno líquido), para que posteriormente mediante el recalentamiento, dicha célula, tejido u órgano vuelva a un estado similar al de antes de que se iniciara el proceso de congelación.

2.2 Inicios de la criopreservación

El primer estudio sobre la criopreservación fue llevado a cabo por el biólogo Rostand en 1946, centrándose en la congelación de gametos de anfibios. Este estudio supuso una revolución, captando la atención de la comunidad científica. Tres años después, en 1949, Polge amplió los estudios de Rostand, centrándose en aves. Posteriormente, en 1952, con la ayuda de Row, Polge aplicó la criopreservación a espermatozoides de toro, lo cual hizo aumentar las esperanzas de una futura aplicación de esta técnica en humanos.

En la década de los 60, en EE. UU., se produjo un gran aumento demográfico, por lo que fue necesario aumentar el número de vacas, productoras de leche y carne, para abastecer la demanda. Nace así la necesidad de obtener un método por el cual se pudiera mantener un gran número de sementales, sin gastar en pasto. La respuesta a este problema fue la inseminación artificial, utilizando los espermatozoides congelados de los sementales, los cuales eran sacrificados. La experiencia hizo que las técnicas que se utilizaban para la criopreservación mejorasen notablemente durante esta década.

Durante los años 70 se empezó a experimentar con las implantaciones de embriones de ratones, conejos y ovejas. No fue hasta 1979, cuando Trouson y Mohr consiguieron la congelación de un embrión humano, que fue conservado durante 4 meses. Una vez pasados los 4 meses, fue recalentado e implantado. A pesar de que la implantación se realizó con éxito, el embarazo fracasó a las 24 semanas. Finalmente, fue en 1986, cuando Testart y Lasalle llevaron a cabo con éxito los primeros embarazos de embriones que habían sido previamente criopreservados. Véase: (Grupo Criopreservacion, 2007)

2.3 Dificultades encontradas

Para que un proceso de criopreservación sea eficiente debe superar con éxito tres etapas: enfriamiento, almacenamiento y recalentamiento. A día de hoy, se han resuelto con éxito la etapa de enfriamiento y de almacenamiento. Sin embargo, es en la etapa de recalentamiento donde reside el principal problema de la criopreservación. Cuando la temperatura de la muestra está por debajo de -20°C, se puede formar hielo. Para que esto suceda y a la vez sea perjudicial para el órgano deben darse dos fenómenos: la nucleación de hielo y el crecimiento de éste.

Las moléculas en medio acuoso tienden a agruparse y desagruparse aleatoriamente. Dichas moléculas forman núcleos que son destruidos por la agitación térmica. No obstante, si la agrupación de moléculas de agua alcanza cierto tamaño, la agitación térmica no es capaz de destruir dichos núcleos. La formación de éstos se denomina nucleación. A medida que la temperatura de la muestra disminuye, el tamaño requerido para la formación de los núcleos también baja, debido a la disminución de la agitación térmica.

Por otro lado, el crecimiento se define como la formación de dendritas en los núcleos de hielo formados en el proceso de nucleación. Este fenómeno será inversamente proporcional a la viscosidad: si la viscosidad es muy alta, el proceso se detiene. Para poder aumentar la viscosidad de la muestra, se recurre a agentes crioprotectores, de los que se hablará más adelante.

En el gráfico 1, se representa la temperatura subcero frente a la probabilidad de nucleación y de crecimiento para una cierta concentración de agente crioprotector. Generalmente, en una muestra biológica, ambas curvas se encontrarían superpuestas, pero mediante la adición de agentes criopreservantes, las dos curvas comienzan a separarse, hasta el momento en el que dejan de superponerse (el caso de la figura).

Gráfico 1: Probabilidad de crecimiento y formación de núcleos de hielo en función de la temperatura

Fuente: (Risco Delgado, Morris, Dumont, & Amorim, 2019)

Durante la etapa de enfriamiento, recorriendo el gráfico 1 de derecha a izquierda, la muestra cruza la región de crecimiento de hielo. Sin embargo, aún no existen núcleos de hielo que puedan crecer. Poco después, pasa la región de nucleación, formándose los núcleos de hielo, sin la posibilidad de crecer, debida a alta viscosidad provocada por la baja temperatura. Una vez pasado este proceso, la muestra puede ser almacenada con dichos núcleos de hielo sin ningún riesgo.

El problema reside en la etapa de recalentamiento, a diferencia de la etapa de enfriamiento, en esta ya se han formado los embriones de hielo. La muestra debe volver a pasar la zona de crecimiento, donde la viscosidad es baja. Debido a estas condiciones, el crecimiento se produce y los cristales de hielo adquieren un tamaño perjudicial para la muestra, dañándola mecánicamente. Es por ello que es necesario que la velocidad de recalentamiento sea alta, para evitar este crecimiento.

Véase: (Risco Delgado, Morris, Dumont, & Amorim, 2019)

2.4 Agentes Crioprotectores

Los crioprotectores son sustancias hidrosolubles de baja toxicidad, que buscan disminuir el punto de fusión o solidificación de una solución. El motivo principal del uso de este tipo de sustancias es evitar la deshidratación

total de la célula, es decir, la formación de hielo intracelular.

Se pueden clasificar atendiendo a su estado bioquímico, distinguiendo tres tipos de criopreservantes: los azúcares, los alcoholes y el dimetil sulfóxido. También es posible clasificarlos atendiendo a la capacidad de penetración celular, encontrando crioprotectores penetrantes y no penetrantes. Los crioprotectores penetrantes se caracterizan por su bajo peso molecular y por ser permeables a través de la membrana celular. Los más destacados eran el gricerol y el dimetil sulfóxido (DMSO), pero fueron sustituidos por uno con menor toxicidad, el propanediol (PROH), el cual se sigue utilizando hoy día. Por otro lado, los criopreservantes no penetrantes se caracterizan por su alto peso molecular y se suele utilizar junto a los agentes penetrantes. Algunos de los más utilizados son la sacarosa y la glucosa.

Véase: (Ávila-Portillo, y otros, 2006) y (Grupo Criopreservación, 2007)

2.5 <u>Técnicas utilizadas en criopreservación</u>

Como se comentó anteriormente, el proceso de criopreservación está compuesto de dos etapas clave: la congelación y el recalentamiento. A continuación, se detallan distintas técnicas utilizadas para cada una de ellas.

Hasta hace relativamente poco, la metodología de congelación más utilizada en la etapa de enfriamiento era la técnica conocida como congelación lenta o 'slow freezing'. Dicha técnica, es un procedimiento en el que la muestra es inmersa en una solución isotónica con un 10% de agentes crioprotectores. Una solución isotónica es aquella en la cual la concentración existente de soluto es igual tanto dentro como fuera de la célula.

Una vez hecha la solución, es sometida a un descenso lento y controlado de la temperatura, el cual se realiza en congeladores programables. Durante la fase de equilibrio con el crioprotector, se produce una deshidratación de la célula, y a su vez, se produce una entrada de dicho crioprotector en la célula. Mediante este proceso, la solución se convierte en un sólido amorfo, evitando así la formación de hielo que sería muy perjudicial para la muestra. Sin embargo, este método es aplicable si las células pueden reubicarse entre las dendritas del hielo extracelular. En la actualidad, esta técnica se emplea, por ejemplo, para la preservación de tejidos, aprovechándose las células que consiguen librarse del hielo.

Está demostrado que a medida que la temperature disminuye, las reacciones químicas se ralentizan. Surge de este hecho la idea de aumentar la concentración de criopreservantes a medida que la temperatura disminuye, puesto que el efecto tóxico de estas sustancias será menor a bajas temperaturas. La cantidad de anticongelante añadida será la exacta para evitar la formación de cristales de hielo. El problema reside en el aumento de la viscosidad al disminuir la temperatura, dificultándose así la deshidratación de la célula por parte del anticongelante. Esta técnica ha adoptado el nombre de 'Liquidus tracking'.

Otra técnica muy utilizada es la vitrificación, que logra que un líquido enfriado suficientemente rápido consiga solidificarse sin formar cristales. Inicialmente, la velocidad de enfriamiento de la muestra tendría que ser muy alta, del orden de 10^7 grados por minuto. Sin embargo, con la adición de algunos solutos se consigue disminuir la velocidad de enfriamiento requerida. Se distinguen dos tipos de vitrificación: vitrificación mediante enfriamiento ultrarrápido y vitrificación en equilibrio.

La vitrificación mediante enfriamiento ultrarrápido se caracteriza por no ser en equilibrio. El tiempo de enfriamiento al que es sometido la muestra es bajo, por lo que es la técnica idónea para aquellas muestras que se ven afectadas si se les aplica un largo periodo de enfriamiento, tales como embriones y células madre. El problema de está técnica es que no se puede utilizar para muestras voluminosas, debido a que no se dispone de la tecnología necesaria para enfriar tan rápidamente muestras de este tamaño. Por el contrario, la vitrificación en equilibrio sí es capaz de crioconservar sistemas de gran tamaño, reduciendo la velocidad de enfriamiento mediante la adición de solutos, como se comentó anteriormente.

La adición de agentes criopreservantes conseguía reducir la velocidad de enfriamiento necesaria. Es por ello, que se utilizará la mayor concentración de agentes anticongelantes posible. Sin embargo, dicha concentración estará limitada por la toxicidad del criopreservante. Se ha demostrado que la toxicidad de una mezcla de crioprotectores es menor que la de la misma cantidad de uno solo de ellos. Por lo tanto, una posible estrategia será la de añadir una mezcla de varios crioprotectores para conseguir que el sistema se enfríe con la mínima formación de hielo posible.

Por otro lado, hay que hacer especial hincapié en que el mayor problema del proceso de criopreservación de muestras reside en la etapa de recalentamiento, debido al crecimiento dendrítico de los núcleos de hielo formados anteriormente. Los nuevos estudios en el campo de la criopreservación se están centrando en la búsqueda de nuevas técnicas que consigan mitigar este problema. A continuación, se explicarán algunas de las más utilizadas.

La agregación de partículas ferromagnéticas a la solución crioprotectora es una técnica capaz de recalentar una muestra voluminosa de forma rápida y homogénea. La muestra es sometida a un campo magnético, provocando que las partículas ferromagnéticas generen corrientes inducidas y se calienten. Por lo tanto, se consigue que cada partícula sea una fuente de calor dentro del órgano. El principal problema de esta técnica, llamada 'nanowarning', es la toxicidad de dichas partículas.

Otra técnica ampliamente utilizada es el recalentamiento con microondas. Ésta consigue una gran velocidad de recalentamiento, pudiendo evitar así el crecimiento dendrítico. No obstante, esta técnica no proporciona un recalentamiento uniforme, ya que las regiones más grasas se calentarán más rápidamente que las regiones no grasas.

Por último, una de las técnicas objeto de estudio en los últimos años, es el uso de ultrasonidos focalizados de alta intensidad, de aquí en adelante HIFU. Este proceso está basado en la aplicación de alta frecuencia y un haz de ultrasonidos de alta energía para lograr el calentamiento de la muestra.

Véase: (Mínguez & García Velasco)

2.6 Ultrasonidos focalizados de alta intensidad

Este proceso está basado en la aplicación de un haz de ultrasonido de alta frecuencia para lograr el recalentamiento de la muestra, pudiendo llegar a calentarla decenas de grados en pocos segundos, con la peculiaridad de que los tejidos circundantes no se ven afectados. Los HIFU se han aplicado con éxito en tratamientos musculoesqueléticos, endocrinos, neurológicos y oncológicos. Destaca el uso de esta técnica en los últimos años con el objetivo de eliminar células malignas.

2.6.1 Ultrasonidos

Un ultrasonido es una onda de presión cuya frecuencia es superior a la máxima audible por el ser humano, que se encuentra entre 18 y 20 KHz. Esta onda de presión es generada por un movimiento mecánico que provoca una oscilación en las moléculas de un medio alrededor de su posición de reposo. Finalmente, las uniones que se producen entre las moléculas del medio permiten que la onda se transmita, creando compresiones y rarefacciones en dicho medio. En la siguiente figura, se puede observar la clasificación de ondas de presión en función de la frecuencia, además de algunas de las aplicaciones que se dan a éstas.

Ilustración 1: Clasificación de ondas de sonido

Fuente: (Escobar, 2012)

2.6.2 Funcionamiento del HIFU

El haz de energía producido por el dispositivo HIFU termina focalizándose en una región, denominada zona focal, que es el lugar donde las ondas de presión se concentran. Esta zona focal dependerá de la geometría y del material del transductor. A continuación, se muestra el funcionamiento básico de un dispositivo HIFU.

Ilustración 2: Esquema básico del funcionamiento del HIFU Fuente: (Díaz-Miguel, 2014)

El objetivo de esta técnica es lograr un recalentamiento lo suficientemente rápido y homogéneo para evitar la formación y crecimiento de cristales de hielo, asegurando así la viabilidad de la muestra. Una tasa entre 50-100°C por minuto sería suficiente para evitar este problema. Para lograr la otra condición del recalentamiento, la homogeneidad, se deberá aumentar el volumen focal, que se puede conseguir aumentando el área del transductor, modificando su geometría o mediante el uso de varios transductores simultáneamente (array de transductores).

Ilustración 3: Transductor de ultrasonidos.

Fuente: (Alibaba, s.f.)

Ilustración 4: Esquema básico de array de

transductores

Fuente: Elaboración propia

3. METODOLOGÍA

Cuando un haz de ultrasonidos incide sobre un tejido, parte de la energía es absorbida por el mismo, convirtiéndose en una fuente de calor. Esto provoca un aumento de la temperatura del tejido, que dependerá de las propiedades físicas del medio (densidad, calor específico y coeficiente de absorción), de las propiedades del dispositivo HIFU, de la frecuencia de las ondas de ultrasonidos y del tiempo al que el tejido es sometido a este haz de energía.

Para conseguir un calentamiento óptimo, se deben optimizar 2 parámetros clave:

- Potencia: Con el aumento de este parámetro se logra aumentar la velocidad de calentamiento, no pudiendo ser excesivamente grande, ya que el gradiente de temperaturas en el interior del tejido aumentaría, es decir, no se conseguiría la homogeneidad en el calentamiento. Se relaciona a la potencia con la intensidad de los ultrasonidos mediante la ecuación 9.
- Frecuencia: Debe ser el valor óptimo que permita la penetración de las ondas de sonido en el tejido.

Véase: (Focused ultrasound induced heating in tissue phantom)

3.1 Descripción del modelo en Comsol

Para comprobar como influyen la variación de una serie de parámetros en el calentamiento de una muestra, se han llevado a cabo diferentes simulaciones en el programa Comsol Multiphysics, que es un software de simulación de uso general para modelar diseños, dispositivos y procesos en todos los campos de la ciencia. En este proyecto, se han usado dos de los módulos que posee el software, transferencia de calor y presión acústica. (Comsol Multiphysics)

• El módulo de presión acústica está definido por la ecuación de Helmholtz, mostrada en la Ecuación 1.

Ecuación 1:

$$\nabla \cdot \left(-\frac{1}{\rho_c} \left(\nabla p_t - q_d \right) \right) - \frac{k_{eq}^2 \cdot p_t}{\rho_c} = Q_m$$

Ecuación 2:

$$\rho_c = \frac{\rho \cdot c^2}{c_c^2}$$

Ecuación 3

$$p_t = p + p_b$$

Ecuación 4

$$k_{eq}^2 = \left(\frac{\omega}{c_c}\right)^2$$

Ecuación 5

$$c_c = \frac{\omega}{k}$$

Ecuación 6

$k = \frac{\omega}{c} - i \cdot \ln(10) \cdot \frac{\alpha}{20}$

Dónde:

- Q_m Fuente acústica monopolar
- q_d Fuente acústica dipolar
- ρ Densidad del medio
- c Velocidad del sonido en el medio
- p_t Presión total ejercida por ondas acústicas
- p_b Campo de presión de fondo
- ω Frecuencia angular
- α Coeficiente de atenuación

En el software Comsol Multiphysics no se puede introducir el parámetro de potencia directamente, por lo que será necesario introducir el desplazamiento normal del transductor, el cual se relaciona con la potencia con las ecuaciones 7, 8 y 9.

Ecuación 7

 $u_0 = 2\pi f d_n$

Ecuación 8

$$I = \frac{1}{2}\rho c u_0^2$$

Ecuación 9

$$I = \frac{P}{A}$$

Dónde:

- u_0 : Velocidad instantánea de la partícula
- f: Frecuencia.
- I : Intensidad de los ultrasonidos
- dn: Desplazamiento normal del transductor
- ρ : Densidad del medio
- c: Velocidad del sonido en el medio
- A: Área del transductor

Se elegirá así el valor de la potencia deseado y mediante estas ecuaciones se obtendrán los valores del desplazamiento normal al transductor que habrá que introducir en Comsol Multiphysics.

• El modulo de la transferencia de calor se rige por las ecuaciones 10 y 11.

Ecuación 10

$$\rho c_p u \cdot \nabla T + \nabla \cdot q = Q + Q_{bio}$$

Ecuación 11

$$q = -k\nabla T$$

Dónde:

p: Densidad del medio

u Vector de velocidad del fluido

 c_p : capacidad calorífica a presión constante

- K: Conductividad térmica
- Q: Fuente de calor
- q: Flujo de calor conductivo
- Q_{bio}: Fuente de calor biológica(tejido)

Véase: (Comsol Multiphysics) y (Comsol Multiphysics)

La ilustración 5 muestra un esquema simplificado del modelo que se ha simulado. Tanto el transductor como la aorta se encuentran sumergidos en una solución de etilenglicol a una temperatura baja con el fin de que posea una viscosidad alta. Es muy importante que la viscosidad sea alta ya que esto facilitará la transmisión de las ondas de presión entre el medio y la muestra. Lo ideal sería que hubiese un gradiente de viscosidad en el medio y que, al llegar a la muestra, fuera lo más parecido posible a un sólido. Por otro lado, el transductor tendrá forma cóncava (casquete esférico) con un radio de curvatura de 44.5mm.

Ilustración 5: Esquema simplificado transductor-aorta

Fuente: (Focused ultrasound induced heating in tissue phantom)

A continuación, en la ilustración 6, se puede observar el modelo utilizado para este proyecto, el cual se ha obtenido modificando un ejemplo de la web de Comsol Multiphysics con el fin de obtener las condiciones necesarias para la realización de este proyecto. En el mismo, se pueden observar los diferentes elementos que lo componen.

El modelo se ha realizado en dos dimensiones y girará en torno a un eje de revolución cuando se realicen los estudios de ondas de presión y trasferencia de calor, obteniéndose así la geometría deseada (Ilustración 7).

Ilustración 6: Modelo en 2D.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Ilustración 7: Modelo en 3D.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Dicho modelo utiliza el módulo de presión acústica para modelar el campo acústico estacionario en la solución de etilenglicol y la aorta. La energía acústica absorbida calculada será posteriormente utilizada como fuente de calor en el módulo de transferencia de calor.

3.2 Descripción de las condiciones del modelo

Para la realización de este proyecto se han llevado a cabo una serie de suposiciones:

- La temperatura inicial de la solución de etilenglicol es de 220K
- Inicialmente, la temperatura de la aorta es de 190K
- La frecuencia utilizada será de 1 MHz
- El trozo de aorta está definido como un cilindro hueco de diámetro 1.6mm, con una pared de grosor 0.5mm y una altura de 0.5 mm .
4.RESULTADOS

Los parámetros a optimizar para obtener un calentamiento óptimo son la potencia y la frecuencia. Para este proyecto se ha fijado la frecuencia, con un valor constante de 1MHz, y se han realizado estudios para distintos valores de la potencia, con el objetivo de hayar el valor más que mejores resultados proporcione. Para tomar esta decisión se ha estudiado la velocidad de calentamiento y en el gradiente de temperatura de la aorta, definido como la mayor diferencia de temperatura entre dos puntos de la muestra, en los diferentes escenarios. Estas simulaciones se han llevado a cabo hasta que la muestra ha alcanzado una temperatura de alrededor de -20°C. Las simulaciones finalizaron cuando se alcanzó dicha temperatura, la cual marcaba el límite de crecimiento de hielo, periodo de interés de estos estudios.

A continuación, en la tabla 1 se puede ver el valor que toma el desplazamiento del piezoeléctrico para una determinada potencia, utilizando las ecuaciones 7, 8 y 9.

Tabla 1: Valores del despla	zamiento del trans	ductor para una pot	encia determinada	(Datos de la
	potencia en W y de	desplazamiento en n	m)	

POTENCIA (W)	DESPLAZAMIENTO DEL TRANSDUCTOR(nm)
20	9.534018
100	21.3187
500	47.67

Fuente: Elaboración propia

Los valores de los desplazamientos serán los parámetros que se han introducido para realizar la simulación. Para observar el gradiente de temperatura en la aorta y la velocidad de calentamiento se han escogido cuatro puntos del contorno de esta.

4.1 Análisis de las simulaciones

Para el caso en el que la potencia del transductor sea de 20W, se puede observar en la gráfica 2 que la muestra ha alcanzado los -20°C en 17 segundos aproximadamente, que la velocidad de calentamiento está en torno a 229°C/min y que la mayor diferencia de temperatura en el interior de la aorta es de 9°C.

Gráfico 2: Evolución de la temperatura para una potencia de 20 W.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

En la gráfica 3 se pueden observar los resultados obtenidos con una potencia de 100W: la temperatura deseada se ha obtenido en 3.5 segundos, con una velocidad de calentamiento de 1114°C/min y con una máxima diferencia de temperatura entre sus puntos de 12°C.

Gráfico 3: Evolución de la temperatura para una potencia de 100 W.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Por último, con una potencia de 500W, se puede observar en la grafica 4 que se alcanzan los -20°C en aproximadamente 1 segundo, con una velocidad de calentamiento de la aorta de 4100°C/min y con una máxima diferencia de temperatura entre sus puntos de 26°C.

Gráfico 4: Evolución de la temperatura para una potencia de 500 W.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

4.2 Elección del valor óptimo de la potencia

Entre las tres opciones, se ha elegido la 3^a simulación ya que es la que mayor velocidad de calentamiento tiene, siendo la diferencia máxima de temperatura entre sus puntos asumible. Se priorizará así la velocidad de calentamiento con el fin de evitar el crecimiento de los cristales de hielo formados anteriormente. Posteriormente se procedió a realizar un estudio en mayor profundidad para el caso en el que la potencia del transductor fuera de 500W.

4.3 Desarrollo en profundidad de la opción elegida

Como se ha comentado anteriormente, la 3ª simulación es la que presenta resultados más prometedores para llevar a cabo un recalentamiento satisfactorio, debido a que alcanza una velocidad de calentamiento de 4100°C, permitiendo así recalentar un órgano de tamaño reducido, siendo este un primer paso para poder llevar a cabo una criopreservación efectiva de órganos de mayor tamaño.

En este apartado se han desarrollado con mayor profundidad los resultados obtenidos en la simulación del modelo para una potencia de 500W, utilizando datos obtenidos del informe de simulación obtenido por Comsol Multyphysics, adjunto en el Anexo 1.

4.3.1 Presión acústica

A continuación, se muestran las gráficas más representativas del estudio de presión acústica que Comsol ofrece, para una potencia de 500W y una frecuencia de 1MHz.

Ilustración 8: Campo de presión acústica 2D.

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Ilustración 9: Campo de presión acústica 3D zona focal

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Ilustración 10: Nivel de presión sonora 2D

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Ilustración 11: Nivel de presión sonora 3D zona focal

Fuente: Elaboración propia a partir del software Comsol Multiphysics

Ilustración 12: Campo de intensidad acústica

Fuente: Elaboración propia a partir del software Comsol Multiphysics

En las ilustraciones 8, 9, 10, 11 y 12 se puede observar que el foco está claramente definido, lozalizandose en aquellos puntos donde el campo de presión acústica y niveles de presión sonora son mayores. En la figura 11 se puede apreciar que el foco tiene forma elipsoidal y que la ubicación de la muestra, el trozo de aorta, es correcta, ya que se encuentra dentro de la zona donde la presión es mayor, en las cuales se alcanzan valores de 30 MPa.

Se puede verificar que el tamaño de la muestra es idóneo para la zona focal obtenida, debido a que se encuentra totalmente contenido en él. Cabe destacar que en muchas otras aplicaciones de los ultrasonidos de alta intensidad (HIFU) se busca minimizar la zona focal para calentar regiones muy concretas, pero en este proyecto se desea que el foco sea del mayor tamaño posible para poder aplicar esta técnica a muestras de mayor volumen.

4.3.2 Transferencia de calor

Se muestran ahora los datos más significativos obtenidos de la simulación del estudio de transferencia de calor, que parten de las soluciones que se han obtenido del módulo de presión acústica.

llustración 13: Temperatura en superficie de modelo 3D

Fuente: Elaboración propia a partir del software Comsol Multiphysics

En la ilustración 13 se puede observar la temperatura que alcanza el sistema cuando se realiza una simulación de un segundo. En dicha ilustración se aprecia como la mayor parte de la solución de etilenglicol no se ve afectada, manteniendo constante su temperatura (220K). Por otro lado, podemos comprobar que la región donde la temperatura aumenta considerablemente coincide con la de mayores presiones acústicas obtenidas en el apartado anterior, incrementando de forma notable su temperatura tanto la aorta como parte de la solución de etilenglicol. En la ilustración 14 se puede observar con mayor detalle qué temperaturas se alcanzan en la región focal.

llustración 14: Temperatura de la zona focal del modelo 3D

Fuente: Elaboración propia a partir del software Comsol Multiphysics

En la ilustración 15 se representan los contornos isotérmicos en la zona focal, es decir, las curvas de nivel del sistema en las zonas cercanas a la ubicación de la aorta. Se puede ver que hay una zona que rodea al foco que también sufre cierto calentamiento.

Ilustración 15: Curva de nivel: Temperatura (K)

Fuente: Elaboración propia a partir del software Comsol Multiphysics

En la gráfica 4 se representa la evolución en el tiempo de simulación de la temperatura de cuatro puntos pertenecientes al contorno de la aorta para una potencia de 500W. Como se ha comentado con anterioridad, el calentamiento de la muestra bajo esta condiciones se considera óptimo ya que se tiene una elevada velocidad de recalentamiento, alrededor de 4100°C/min y con un calentamiento lo suficientemente homogéneo como para considerar que el proceso se produce de manera satisfactoria.

5.CONCLUSIÓN

En este TFG se ha llevado a cabo un estudio que simula como se comporta un sistema de ultrasonidos focalizados de alta intensidad aplicado al ámbito de la criopreservación. Este estudio se ha llevado a cabo utilizando un software de elementos finitos llamado Comsol Multiphysics.

El principal problema de la criopreservación reside en la etapa de recalentamiento, la cual hay que llevar a cabo de forma rápida y uniforme. En este proyecto, se ha estudiado como se comporta el sistema al variar el valor de la potencia, dejando el parámetro de la frecuencia fijo. Una vez se han realizado el estudio para unas potencias de 20W, 100W y 500W se ha llegado a la conclusión de que el valor que mejor cumple las condiciones de recalentamiento ha sido 500W.

Se ha estudiado en detalle el sistema para una potencia de 500W y se ha comprobado que el sistema HIFU permite calentar un órgano de un tamaño y composición similar a la aorta de un roeedor a una velocidad suficiente para evitar el crecimiento de cristales de hielo. Se concluye también que el foco obtenido se ajusta perfectamente al tamaño del tejido biológico a calentar. Con todo esto, se puede concluir que para un valor de la potencia igual a 500W, una frecuencia de 1 MHz y la geometría utilizado para el transductor el sistema de calentamiento funcioría adecuadamente para calentar una muestra biológica del tamaño utilizado en condiciones reales de laboratorio.

6. FUTURAS LÍNEAS DE INVESTIGACIÓN

En un principio, este proyecto buscaba determinar el foco de un aparato HIFU del que se dispone en el laboratorio (ilustración 18). Para ello, se desplazaría la muestra que se deseaba calentar dentro de un recipiente, que sería fabricado mediante impresión 3D (ilustración 16), con un paso de 100 micras. Para conseguir estos desplazamientos tan pequeños de forma precisa se utilizaría una impresora 3D, en este caso la Ender3 (ilustración 17). Se utilizaría el programa Arduino para poder darle instrucciones a la impresora mediante el lenguaje de programación G-code, colocando la muestra en el lugar deseado (pudiendo moverla en los tres ejes), barriendo de esta forma todo el volumen del recipiente. Posteriormente se aplicaría un haz de ultrasonidos en cada posición y se comprobaría si la muestra se ha calentado de forma considerable.

Ilustración 16: Diseño del recipiente en CAD

Fuente: Elaboración propia

Ilustración 17: Ender3 imprimiendo algunas partes del recipiente

Fuente: Elaboración propia

Ilustración 18: Transductor del que se dispone en el laboratorio

Para ver la curva de temperatura conectaríamos una serie de termopares a la muestra. Dichos termopares son circuitos que están formados por 2 hilos metálicos de diferentes materiales que están unidos en un extremo (junta caliente). El otro extremo se denomina junta fría (Ilustración 19). El calentamiento de la junta caliente provoca una tensión eléctrica, aproximadamente proporcional a la temperatura.

Ilustración 19: Esquema representativo de un termopar

Fuente: (Jalloul, 2014)

Estos termopares se encuentran conectados por la junta fría a la muestra que se desea estudiar y por el otro extremo, la junta caliente, a un módulo que recoge los datos, Picolog (ilustración 20), que puede tomar hasta 10 mediciones de temperatura por segundo y generando una gráfica (ilustración 21), permitiría ver como varía la temperatura en función del tiempo.

Ilustración 20: Módulo de recogida de datos (Picolog)

Fuente: (Pico Technology)

Ilustración 21: Gráfica generada por el software Picolog

Fuente: (Pico Technology)

De esta manera se podría determinar el foco del transductor estudiado, observando en qué puntos del recipiente la temperatura de la muestra aumenta considerablemente.

Desgraciadamente, debido a la necesidad de acudir al laboratorio para realizar este proyecto y a las circunstancias dadas por la COVID-19, se tomó la decisión de cambiar el tema del estudio. Es por ello, que se decidió hacer un estudio de simulación utilizando las dimensiones y geometría del transductor que se tiene en el laboratorio (ilustración 10), con el fin de que las simulaciones llevadas a cabo fuesen lo más cercanas posible a las que se podrían haber realizado en el laboratorio con el transductor del que se disponía.

Una futura línea de investigación sería concluir este proyecto ya iniciado y una vez localizada la zona focal, comprobar que los resultados obtenidos mediante la simulación realizada en este proyecto se corresponden con los resultados que se obtengan empíricamente, quedando demostrada la hipótesis realizada.

7. REFERENCIAS

- Ávila-Portillo, L. M., Madero, J., López, C., León, M. F., Delgado, L. G., Gómez, C., . . . Reguero, M. (2006). Fundamento de criopreservación. *Revista Colombiana de Obstetricia y Ginecología*.
- *Alibaba*. (s.f.). Obtenido de https://spanish.alibaba.com/product-detail/ultrasonic-piezo-element-hifupiezoelectric-transducer-for-pzt8-4mhz-60543782726.html
- Comsol Multiphysics. (s.f.). *Comsol Multiphysics*. Obtenido de Comsol Multiphysics: https://doc.comsol.com/5.4/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf
- Comsol Multiphysics. (s.f.). *Comsol Multiphysics*. Obtenido de Comsol Multiphysics: https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf
- Díaz-Miguel, Á. (2014). Algo pasa con el HIFU.
- Escobar, S. (6 de 05 de 2012). Infrasonido y ultrasonido. Infrasonido y ultrasonido.
- Focused ultrasound induced heating in tissue phantom. (s.f.). *Comsol Multiphysics*. Obtenido de Comsol Multiphysics.
- Grupo Criopreservacion. (13 de 5 de 2007). *Criopreservación de embriones*. Obtenido de Criopreservación de embriones: http://criopreservacion.blogspot.com/2007/05/historia-de-la-criopreservacin.html
- Grupo Criopreservación. (2007). *Criopreservación de embriones*. Obtenido de Criopreservación de embriones: http://criopreservacion.blogspot.com/2007/05/crioprotectores.html
- Jalloul, C. (26 de 8 de 2014). Blog de Wika. Obtenido de Blog de Wika: https://www.bloginstrumentacion.com/productos/temperatura/cmo-funciona-termopar/
- Mínguez, Y., & García Velasco, J. (s.f.). Estado Actual de la Criopreservación. Revista fertilidad.
- Pico Technology. (s.f.). *Pico Technology*. Obtenido de Pico Technology: https://www.picotech.com/data-logger/tc-08/thermocouple-data-logger

Risco Delgado, R. d., Morris, J., Dumont, E., & Amorim, C. (2019). Ultraorgan.

ANEXO 1

1 FOCUSED ULTRASOUND INDUCED HEATING IN TISSUE PHANTOM

Autor	Carlos Moñino Hormigo
Fecha del informe	10-jul-2020 9:24:36

1.Definiciones globales

Autor	Carlos Moñino Hormigo
Fecha	Jun 4, 2020 11:29:37 AM

AJUSTES GLOBALES

Nombre	Ultima version.mph
Ruta	C:\Users\jammo\Downloads\ultima version.mph
Versión	COMSOL Multiphysics 5.5 (Construcción: 292)
Sistema de unidades	SI

UTILIZAR PRODUCTOS

COMSOL Multiphysics
Acoustics Module
Heat Transfer Module

1.1.PARÁMETROS

PARAMETERS 1

Nombre	Expresión	Valor	Descripción
d0	47.67[nm]	4.767E-8 m	Displacement amplitude of transducer
Tetilenglicol	220[K]	220 K	Initial temperature value

Nombre	Expresión	Valor	Descripción
alpha_water	0.025[1/m]	0.025 1/m	Absorption coefficient of water
alpha_tissue	8.55[1/m]	8.55 1/m	Absorption coefficient of tissue phantom
f0	1[MHz]	1E6 Hz	Source frequency
Ttissue	190[K]	190 K	
time	1[s]	1 s	
Tamb	293[K]		
		293	

1.2.FUNCIONES

1.2.1.Step 1

Nombre de función	step1
Tipo de función	Paso

PARÁMETROS

Descripción	Valor
Ubicación	0
Desde	1
para	0

SUAVIZADO

Descripción	Valor
Tamaño de la zona de transición	0.005

2.Component 1

Autor	COMSOL
Fecha	Oct 5, 2019 8:52:21 AM

AJUSTES

Descripción	Valor
Sistema de unidades	Igual a sistema global
Orden de forma geométrica	Automático

COORDENADAS DEL MARCO ESPACIAL

Primero	Segunda	Tercera
r	phi	Z

COORDENADAS DE MARCO DE MATERIAL

Primero	Segunda	Tercera
R	PHI	Ζ

COORDENADA DE MARCO DE GEOMETRÍA

Primero	Segunda	Tercera
Rg	PHIg	Zg

COORDENADAS DEL MARCO DE MALLA

Primero	Segunda	Tercera
Rm	PHIm	Zm

2.1.DEFINICIONES

2.1.1.Sistemas de coordenadas

2.1.1.1.Boundary System 1

Tipo de sistema de coordenadas	Sistema de contornos

Etiqueta	sys1
----------	------

NOMBRES DE COORDENADAS

Primero	Segunda	Tercera
t1	to	n

2.1.2.Dominios artificiales

2.1.1.2.Perfectly Matched Layer 1

Etiqueta	pml1
----------	------

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 5, 7–8

Selección

GEOMETRÍA

Descripción	Valor
Nombres de coordenadas	$\{r, phi, z\}$
Tipo	Cilíndrico

ESCALANDO

Descripción	Valor
Tipo de coordenada para prolongación	Racional
Longitud de onda típico de	Interfaz de física
Física	Pressure Acoustics, Frequency Domain

2.1.1.3.Perfectly Matched Layer 2

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: No hay dominios

Selección

GEOMETRÍA

Descripción	Valor
Nombres de coordenadas	$\{r, phi, z\}$
Tipo	Esférico
Coordenada central	0.8034[mm]

ESCALANDO

Descripción	Valor
Tipo de coordenada para prolongación	Racional
Longitud de onda típico de	Interfaz de física
Física	Pressure Acoustics, Frequency Domain

2.2.GEOMETRY 1

Geometry 1

UNIDADES

Unidad de longitud	mm	
Unidad angular	deg	

ESTADÍSTICAS DE GEOMETRÍA

Descripción	Valor
Dimensión de espacio	2
Número de dominios	8
Número de contornos	26
Número de vértices	20

2.2.1.Circle 1 (c1)

POSICIÓN

Descripción	Valor
Posición	{0, 50.6}

TAMAÑO Y FORMA

Descripción	Valor
Radio	50.6

2.2.2.Rectangle 1 (r1)

POSICIÓN

Descripción	Valor	
Posición	{0, 0}	

TAMAÑO

Descripción	Valor
Ancho	50
Altura	15

2.2.3.Rectangle 2 (r2)

POSICIÓN

Descripción	Valor
Posición	{0, 15}
Capas a la derecha	Encendido
Capas en la parte inferior	Apagado
Capas en la parte superior	Encendido

POSICIÓN

Nombre de capa	Grosor (mm)
Layer 1	5

TAMAÑO

Descripción	Valor
Ancho	48.6
Altura	75.5

2.2.4.Circle 2 (c2)

POSICIÓN

Descripción	Valor
Posición	{0, 0.80336}

ÁNGULO DE ROTACIÓN

Descripción	Valor	
Rotación	-90	

POSICIÓN

Nombre de capa	Grosor (mm)
Layer 1	5

TAMAÑO Y FORMA

Descripción	Valor
Radio	15
Ángulo de sector	90

2.2.5.Circle 2.1 (c3)

POSICIÓN

Descripción	Valor
Posición	{0, 0.80336}

ÁNGULO DE ROTACIÓN

Descripción	Valor	
Rotación	-90	

POSICIÓN

Nombre de capa	Grosor (mm)
Layer 1	5

TAMAÑO Y FORMA

Descripción	Valor
Radio	15
Ángulo de sector	90

2.2.6Rectángulo 4 (r4)

POSICIÓN

Descripción	Valor
Posición	{0.3, 49}
Base	Centro

ÁNGULO DE ROTACIÓN

Descripción	Valor
Rotación	90

TAMAÑO

Descripción	Valor
Ancho	0.5
Altura	0.5

2.2.7.Ellipse 1 (e1)

POSICIÓN

Descripción	Valor
Posición	{0, z_tissue+35}

ÁNGULO DE ROTACIÓN

Descripción	Valor
Rotación	270

TIPO DE OBJETO

Descripción	Valor	
Tipo	Curva	

TAMAÑO Y FORMA

Descripción	Valor
semieje a	7.5
semieje b	1.5
Ángulo de sector	180

2.3.MATERIALES

2.3.1.Water, liquid

Water, liquid

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: No hay dominios

BASIC AJUSTES

Description	Value
Coeficiente de expansión térmica	$\{\{alpha_p(T), 0, 0\}, \{0, alpha_p(T), 0\}, \{0, 0, alpha_p(T)\}\}$
Viscosidad volumétrica	muB(T)
thermalexpansioncoefficient_symmetry	3
bulkviscosity_symmetry	0
Viscosidad dinámica	eta(T)
dynamicviscosity_symmetry	0
Coeficiente de dilatación adiabática	gamma_w(T)
ratioofspecificheat_symmetry	0
Conductividad eléctrica	{{5.5e-6[S/m], 0, 0}, {0, 5.5e-6[S/m], 0}, {0, 0, 5.5e- 6[S/m]}}
electricconductivity_symmetry	3
Capacidad térmica con presión constante	Cp(T)
heatcapacity_symmetry	0
Densidad	rho(T)
density_symmetry	0
Conductividad térmica	$\{\{k(T), 0, 0\}, \{0, k(T), 0\}, \{0, 0, k(T)\}\}$
thermalconductivity_symmetry	3
Velocidad del sonido	cs(T)
soundspeed_symmetry	0

FUNCTIONS

Nombre de función	Туре
eta	Piecewise
Ср	Piecewise
rho	Piecewise
k	Piecewise
cs	Interpolation
alpha_p	Analytic
gamma_w	Analytic
muB	Analytic

eta

rho

cs

gamma_w

тиВ

Tissue phantom

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominio 6

PARÁMETROS DE MATERIAL

Nombre	Valor	Unidad
Densidad	1044	kg/m³
Velocidad del sonido	1568	m/s
Conductividad térmica	0.59	W/(m·K)
Capacidad térmica con presión constante	3710	J/(kg·K)

BASIC AJUSTES

Description	Value
Densidad	1044
density_symmetry	0
Velocidad del sonido	1568
soundspeed_symmetry	0
Conductividad térmica	$\{\{0.59, 0, 0\}, \{0, 0.59, 0\}, \{0, 0, 0.59\}\}$
thermalconductivity_symmetry	0
Capacidad térmica con presión constante	3710
heatcapacity_symmetry	0
2.3.3.Ethylene glycol

Ethylene glycol

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 1–4

PARÁMETROS DE MATERIAL

Nombre	Valor	Unidad
Capacidad térmica con presión constante	Cp(T)	J/(kg·K)
Densidad	rho(T)	kg/m³
Conductividad térmica	k(T)	W/(m·K)
Velocidad del sonido	3200	m/s

BASIC AJUSTES

Description	Value
Viscosidad dinámica	eta(T)

Description	Value
dynamicviscosity_symmetry	0
Capacidad térmica con presión constante	Cp(T)
heatcapacity_symmetry	0
Densidad	rho(T)
density_symmetry	0
Conductividad térmica	$\{\{k(T), 0, 0\}, \{0, k(T), 0\}, \{0, 0, k(T)\}\}$
thermalconductivity_symmetry	3
Velocidad del sonido	3200
soundspeed_symmetry	0
Coeficiente de dilatación adiabática	1
ratioofspecificheat_symmetry	0

Nombre de función	Туре
eta	Piecewise
Ср	Piecewise
rho	Piecewise
k	Piecewise

eta

Ср

k

2.3.4.Corning 7740 (Pyrex) [solid,1.05 mm thick]

Corning 7740 (Pyrex) [solid, 1.05 mm thick]

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 5, 7–8

PARÁMETROS DE MATERIAL

Nombre	Valor	Unidad
Densidad	rho(T[1/K])[kg/m^3]	kg/m³
Velocidad del sonido	4500	m/s

BÁSICO AJUSTES

Description	Value			
Conductividad térmica	{{k(T[1/K])[W/(m*K)], k(T[1/K])[W/(m*K)], k(T[1/K])[W/(m*K)]}}	0, 0},	0}, {0,	{0, 0,
thermalconductivity_symmetry	0			

Description	Value
Resistividad	$ \{ \{ res(T[1/K])[ohm*m], 0, 0 \}, \{ 0, res(T[1/K])[ohm*m], 0 \}, \{ 0, 0, res(T[1/K])[ohm*m] \} \} $
resistivity_symmetry	0
Coeficiente de expansión térmica	$ \{ \{ (alpha(T[1/K])[1/K] + (Tempref - 293[K]) * if(abs(T - Tempref) > 1e-3, (alpha(T[1/K])[1/K] - alpha(Tempref[1/K])[1/K])/(T - Tempref), d(alpha(T[1/K])[1/K], T)))/(1 + alpha(Tempref[1/K])[1/K] * (Tempref - 293[K])), 0, 0 \}, \\ \{ 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0, 0 \}, \\ \{ 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 1/K] + (1/K))(1/K - Tempref), d(alpha(T[1/K])[1/K], T)))/(1 + alpha(Tempref[1/K])[1/K] + (1/K))(1/K - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, (alpha(T[1/K])[1/K] + (Tempref - 293[K])), 0 \}, \\ \{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $
thermalexpansioncoefficient_symmetry	0
Capacidad térmica con presión constante	C(T[1/K])[J/(kg*K)]
heatcapacity_symmetry	0
Conductividad eléctrica	{{sigma(T[1/K])[S/m], 0, 0}, {0, sigma(T[1/K])[S/m], 0}, {0, sigma(T[1/K])[S/m]}}
electricconductivity_symmetry	0
Emisividad de superficie	epsilon_solid_1_05_mm_thick_1(T[1/K])
emissivity_symmetry	0

Description	Value
Densidad	rho(T[1/K])[kg/m^3]
density_symmetry	0
TD	TD(T[1/K])[m^2/s]
TD_symmetry	0
nemiss	nemiss(T[1/K])
nemiss_symmetry	0
Velocidad del sonido	4500
soundspeed_symmetry	0

Nombre de función	Туре
k	Piecewise
res	Piecewise
alpha	Piecewise
С	Piecewise
sigma	Piecewise
epsilon_solid_1_05_mm_thick_1	Piecewise
rho	Piecewise
TD	Piecewise
nemiss	Piecewise

alpha

С

epsilon_solid_1_05_mm_thick_1

nemiss

EXPANSIÓN TÉRMICA AJUSTES

Description	Value
Coeficiente tangencial de expansión térmica	$\{\{, 0, 0\}, \{0, , 0\}, \{0, 0, \}\}$
Deformación térmica	$ \{ \{ (dL(T[1/K]) - dL(Tempref[1/K]))/(1 + dL(Tempref[1/K])), 0, 0 \}, \{0, (dL(T[1/K]) - dL(Tempref[1/K]))/(1 + dL(Tempref[1/K])), 0 \}, \{0, 0, (dL(T[1/K]) - dL(Tempref[1/K]))/(1 + dL(Tempref[1/K]))/(1 + dL(Tempref[1/K]))/(1 + dL(Tempref[1/K])) \} $
Coeficiente tangencial isotrópico de expansión térmica	
Deformación térmica isotrópica	(dL(T[1/K]) - dL(Tempref[1/K]))/(1 + dL(Tempref[1/K]))
alphatan_symmetry	0
dL_symmetry	0
alphatanIso_symmetry	0
dLIso_symmetry	0

Nombre de función	Туре
dL	Piecewise

dL

MÓDULO DE YOUNG Y COEFICIENTE DE POISSON AJUSTES

Description	Value
Módulo de Young	E(T[1/K])[Pa]
youngsmodulus_symmetry	0
Coeficiente de Poisson	nu(T[1/K])
poissonsratio_symmetry	0

FUNCTIONS

Nombre de función	Туре
Е	Piecewise
nu	Piecewise

пи

MÓDULO DE COMPRESIBILIDAD Y MÓDULO DE RIGIDEZ AJUSTES

Description	Value
Módulo de compresibilidad	kappa(T[1/K])[Pa]
Módulo de cizalladura	mu(T[1/K])[Pa]

Description	Value
K_symmetry	0
G_symmetry	0

Nombre de función	Туре
mu	Piecewise
kappa	Piecewise

ти

2.4.PRESSURE ACOUSTICS, FREQUENCY DOMAIN

UTILIZAR PRODUCTOS

COMSOL Multiphysics
Acoustics Module

Pressure Acoustics, Frequency Domain

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

EQUATIONS

$$\nabla \cdot \left(-\frac{1}{\rho_{\rm c}} (\nabla \rho_{\rm t} - \mathbf{q}_{\rm d}) \right) - \frac{k_{\rm eq}^2 \rho_{\rm t}}{\rho_{\rm c}} = Q_{\rm m}$$
$$\rho_{\rm t} = \rho + \rho_{\rm b}$$
$$k_{\rm eq}^2 = \left(\frac{\omega}{c_{\rm c}} \right)^2 - k_m^2$$

2.4.1.Ajustes de interfaz de física

2.1.1.4Símbolos de física

SETTINGS

Description	Value
Habilitar símbolos físicos	Encendido

2.1.1.5.Discretización

SETTINGS

Description	Value
Orden del elemento	Lagrange cuadrático

2.1.1.6Ajuste de ecuación de presión acústica

SETTINGS

Description	Value
Número de modo azimutal	0

2.1.1.7Puerto, configuración de barrido

SETTINGS

Description	Value
Activar barrido de puertos	Apagado

2.1.1.8Ajustes de nivel de presión de sonido

SETTINGS

Description	Value
Presión de referencia para nivel de sonido	Usar presión de referencia para el agua

2.1.1.9. Velocidad de onda típica para PMLs

SETTINGS

Description	Value
Velocidad de onda típica para PMLs	1483[m/s]

2.4.2.Variables

Nombre	Expresión	Unidad	Descripción	Selección
acpr.freq	freq	Hz	Frecuencia	Global
acpr.omega	2*pi*acpr.freq	rad/s	Frecuencia angular	Global
acpr.m	0	1	Número de modo azimutal	Global
acpr.km	acpr.m/r	rad/m	Número de onda azimutal	Dominios 1– 4, 6

Nombre	Expresión	Unidad	Descripción	Selección
acpr.km	acpr.m/pml1.r	rad/m	Número de onda azimutal	Dominios 5, 7–8
acpr.ikm	i*acpr.m/r	rad/m	Phase-shifted azimuthal wave number	Dominios 1– 4, 6
acpr.ikm	i*acpr.m/pml1.r	rad/m	Phase-shifted azimuthal wave number	Dominios 5, 7–8
acpr.delta	1/acpr.omega^2	S ²	Factor de escala	Dominios 1– 4, 6
acpr.delta	1/acpr.omega^2	S ²	Factor de escala	Dominios 5, 7–8
acpr.pref_SPL	1.0E-6[Pa]	Ра	Presión de referencia	Global
acpr.Iref_SIL	1.0E-12[W/m^2]	W/m ²	Intensidad de referencia	Global
acpr.Pref_SWL	1.0E-12[W]	W	Potencia de referencia	Global
acpr.cref	1483[m/s]	m/s	Velocidad de onda típica para PMLs	Dominios 1– 4, 6
acpr.cref	1483[m/s]	m/s	Velocidad de onda típica para PMLs	Dominios 5, 7–8
acpr.nr	nr	1	Vector normal, componente r	Contornos 4, 6, 8, 10–13, 17, 25

Nombre	Expresión	Unidad	Descripción	Selección
acpr.nphi	0	1	Vector normal, componente phi	Contornos 4, 6, 8, 10–13, 17, 25
acpr.nz	nz	1	Vector normal, componente z	Contornos 4, 6, 8, 10–13, 17, 25
acpr.nr	dnr	1	Vector normal, componente r	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nphi	0	1	Vector normal, componente phi	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nz	dnz	1	Vector normal, componente z	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nr	nr	1	Vector normal, componente r	Contornos 19–20
acpr.nphi	0	1	Vector normal, componente phi	Contornos 19–20
acpr.nz	nz	1	Vector normal, componente z	Contornos 19–20
acpr.nr	dnr	1	Vector normal, componente r	Contornos 7, 9, 18, 21–23
acpr.nphi	0	1	Vector normal, componente phi	Contornos 7, 9, 18, 21–23

Nombre	Expresión	Unidad	Descripción	Selección
acpr.nz	dnz	1	Vector normal, componente z	Contornos 7, 9, 18, 21–23
acpr.nrmesh	nrmesh	1	Vector normal, (malla), componente r	Contornos 4, 6, 8, 10–13, 17, 25
acpr.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 4, 6, 8, 10–13, 17, 25
acpr.nzmesh	nzmesh	1	Vector normal, (malla), componente z	Contornos 4, 6, 8, 10–13, 17, 25
acpr.nrmesh	dnrmesh	1	Vector normal, (malla), componente r	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nzmesh	dnzmesh	1	Vector normal, (malla), componente z	Contornos 1– 3, 5, 14–16, 24, 26
acpr.nrmesh	nrmesh	1	Vector normal, (malla), componente r	Contornos 19–20
acpr.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 19–20

Nombre	Expresión	Unidad	Descripción	Selección
acpr.nzmesh	nzmesh	1	Vector normal, (malla), componente z	Contornos 19–20
acpr.nrmesh	dnrmesh	1	Vector normal, (malla), componente r	Contornos 7, 9, 18, 21–23
acpr.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 7, 9, 18, 21–23
acpr.nzmesh	dnzmesh	1	Vector normal, (malla), componente z	Contornos 7, 9, 18, 21–23
acpr.iomega	acpr.omega*i	rad/s	Frecuencia angular compleja	Global

2.4.3.Pressure Acoustics 1

Pressure Acoustics 1

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

ECUACIONES

$$\nabla \cdot \left(-\frac{1}{\rho_{\rm c}} (\nabla \rho_{\rm t} - \mathbf{q}_{\rm d}) \right) - \frac{k_{\rm eq}^2 \rho_{\rm t}}{\rho_{\rm c}} = Q_{\rm m}$$

$$p_{\rm t} = \rho + \rho_{\rm b}$$

$$k_{\rm eq}^2 = \left(\frac{\omega}{c_{\rm c}} \right)^2 - k_m^2$$

$$c_{\rm c} = \frac{\omega}{k}, \quad k = \frac{\omega}{c} - i\alpha, \quad \rho_{\rm c} = \frac{\rho c^2}{c_{\rm c}^2}$$

2.1.1.10.Modelo de presión acústica

SETTINGS

Description	Value
Modelo de fluido	User - defined attenuation
Velocidad del sonido	Del material
Densidad	Del material
Tipo de atenuación	Coeficiente de atenuación, Np por unidades de longitud
Coeficiente de atenuación	alpha_water

2.1.1.11.Entrada del modelo

SETTINGS

Description	Value
Temperatura	Definido por el usuario

Description	Value
Temperatura	ТО
Presión absoluta	Definido por el usuario
Presión absoluta	l[atm]
Volume reference temperature	Definido por el usuario
Volume reference temperature	293.15[K]

PROPIEDADES DESDE EL MATERIAL

Propiedad	Material	Grupo de propiedad
Densidad	Tissue phantom	Basic
Velocidad del sonido	Tissue phantom	Basic
Densidad	Ethylene glycol	Basic
Velocidad del sonido	Ethylene glycol	Basic

2.1.1.12Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.p_s	acpr.p_t-acpr.p_b	Ра	Campo de presión difractado	Dominios 1– 3, 6	
acpr.Lp_s	10*log10(0.5*acp r.p_s*conj(acpr.p_ s)/acpr.pref_SPL^ 2)	dB	Nivel de presión de sonido difractado	Dominios 1– 3, 6	
acpr.p_b	0	Pa	Campo de presión en	Dominios 1–	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			segundo plano	3, 6	
acpr.rho	material.rho	kg/m³	Densidad	Dominios 1– 3, 6	Meta
acpr.c	material.c	m/s	Velocidad del sonido	Dominios 1– 3, 6	Meta
acpr.alpha1	alpha_water	Np/m	Coeficiente de atenuación	Dominios 1– 3, 6	
acpr.q_totr	acpr.qr	N/m ³	Fuente de dipolo total, componente r	Dominios 1– 3, 6	Operación +
acpr.q_totphi	acpr.qphi	N/m ³	Fuente de dipolo total, componente phi	Dominios 1– 3, 6	Operación +
acpr.q_totz	acpr.qz	N/m ³	Fuente de dipolo total, componente z	Dominios 1– 3, 6	Operación +
acpr.nacc	0	m/s ²	Inward acceleration (source)	Contornos 1– 4, 6, 10–15, 24–26	Operación +
acpr.Q	0	1/s ²	Total monopole domain source	Dominios 1– 3, 6	Operación +
acpr.qr	0	N/m ³	Fuente de dipolo de dominio, componente r	Dominios 1– 3, 6	Operación +
acpr.qphi	0	N/m ³	Fuente de dipolo de dominio, componente phi	Dominios 1– 3, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.qz	0	N/m ³	Fuente de dipolo de dominio, componente z	Dominios 1– 3, 6	Operación +
acpr.FAcoPerAre ar	acpr.p_t*acpr.nr*d vol_spatial*r/(dvo l*R)	N/m ²	Carga acústica por unidad de área, componente r	Contornos 1– 4, 6, 10–15, 24–26	
acpr.FAcoPerAre aphi	acpr.p_t*acpr.nphi *dvol_spatial*r/(d vol*R)	N/m ²	Carga acústica por unidad de área, componente phi	Contornos 1– 4, 6, 10–15, 24–26	
acpr.FAcoPerAre az	acpr.p_t*acpr.nz* dvol_spatial*r/(dv ol*R)	N/m ²	Carga acústica por unidad de área, componente z	Contornos 1– 4, 6, 10–15, 24–26	
acpr.p_t	p+acpr.p_b	Pa	Campo total de presión acústica	Dominios 1– 3, 6	
acpr.c_c	acpr.iomega/acpr.i k	m/s	Velocidad del sonido compleja	Dominios 1– 3, 6	
acpr.rho_c	acpr.rho*(acpr.c/a cpr.c_c)^2	kg/m³	Densidad compleja	Dominios 1– 3, 6	
acpr.Z	acpr.rho_c*acpr.c _ ^c	Pa·s/m	Impedancia acústica característica	Dominios 1– 3, 6	
acpr.k	acpr.ik/i	rad/m	Número de onda	Dominios 1– 3, 6	
acpr.ik	acpr.iomega/acpr. c+acpr.alpha1	rad/m	Número de onda desfasado	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.delta_diff	2.0E-5[m^2/s]	m²/s	Sound diffusivity	Dominios 1– 3, 6	
acpr.K_eff	acpr.rho_c*acpr.c _c^2	Pa	Módulo de compresibilidad efectivo	Dominios 1– 3, 6	
acpr.gradpr	d(acpr.p_t,r)	N/m³	Gradiente de la presión total, componente r	Dominios 1– 3, 6	Operación +
acpr.gradpphi	- i*acpr.m*acpr.p_t/ r	N/m ³	Gradiente de la presión total, componente phi	Dominios 1– 3, 6	Operación +
acpr.gradpz	d(acpr.p_t,z)	N/m³	Gradiente de la presión total, componente z	Dominios 1– 3, 6	Operación +
acpr.gradtestpr	test(pr)	N/m³	Variable de ayuda, componente r	Dominios 1– 3, 6	Operación +
acpr.gradtestpphi	i*acpr.m*test(p)/r	N/m³	Variable de ayuda, componente phi	Dominios 1– 3, 6	Operación +
acpr.gradtestpz	test(pz)	N/m³	Variable de ayuda, componente z	Dominios 1– 3, 6	Operación +
acpr.hessianprr	d(d(acpr.p_t,r),r)	N/(m·m ³)	Hessiano de la presión total, componente rr	Dominios 1– 3, 6	Operación +
acpr.hessianpphir	- i*acpr.m*d(acpr.p	N/(m·m³)	Hessiano de la presión total,	Dominios 1– 3, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	_t,r)/r		componente phir		
acpr.hessianpzr	d(d(acpr.p_t,z),r)	N/(m·m³)	Hessiano de la presión total, componente zr	Dominios 1– 3, 6	Operación +
acpr.hessianprphi	- d(acpr.p_t,r)*i*ac pr.m/r	N/(m·m³)	Hessiano de la presión total, componente rphi	Dominios 1– 3, 6	Operación +
acpr.hessianpphip hi	acpr.p_t*(i*acpr. m)^2/r^2	N/(m·m³)	Hessiano de la presión total, componente phiphi	Dominios 1– 3, 6	Operación +
acpr.hessianpzphi	- d(acpr.p_t,z)*i*ac pr.m/r	N/(m·m³)	Hessiano de la presión total, componente zphi	Dominios 1– 3, 6	Operación +
acpr.hessianprz	d(d(acpr.p_t,r),z)	N/(m·m³)	Hessiano de la presión total, componente rz	Dominios 1– 3, 6	Operación +
acpr.hessianpphiz	- i*acpr.m*d(acpr.p _t,z)/r	N/(m·m³)	Hessiano de la presión total, componente phiz	Dominios 1– 3, 6	Operación +
acpr.hessianpzz	d(d(acpr.p_t,z),z)	N/(m·m³)	Hessiano de la presión total, componente zz	Dominios 1– 3, 6	Operación +
acpr.hessiantestprr	test(prr)	N/(m·m³)	Variable de ayuda, componente rr	Dominios 1– 3, 6	Operación +
acpr.hessiantestpp hir	i*acpr.m*test(pr)/r	N/(m·m³)	Variable de ayuda,	Dominios 1– 3, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente phir		
acpr.hessiantestpz r	test(pzr)	N/(m·m³)	Variable de ayuda, componente zr	Dominios 1– 3, 6	Operación +
acpr.hessiantestpr phi	test(pr)*i*acpr.m/r	N/(m·m³)	Variable de ayuda, componente rphi	Dominios 1– 3, 6	Operación +
acpr.hessiantestpp hiphi	test(p)*(i*acpr.m) ^2/r^2	N/(m·m³)	Variable de ayuda, componente phiphi	Dominios 1– 3, 6	Operación +
acpr.hessiantestpz phi	test(pz)*i*acpr.m/ r	N/(m·m³)	Variable de ayuda, componente zphi	Dominios 1– 3, 6	Operación +
acpr.hessiantestpr z	test(prz)	N/(m·m³)	Variable de ayuda, componente rz	Dominios 1– 3, 6	Operación +
acpr.hessiantestpp hiz	i*acpr.m*test(pz)/ r	N/(m·m³)	Variable de ayuda, componente phiz	Dominios 1– 3, 6	Operación +
acpr.hessiantestpz z	test(pzz)	N/(m·m³)	Variable de ayuda, componente zz	Dominios 1– 3, 6	Operación +
acpr.keq_sq	-acpr.ik^2- (acpr.m/r)^2	1/m ²	Número de onda al cuadrado para ecuaciones	Dominios 1– 3, 6	Operación +
acpr.keq	sqrt(acpr.keq_sq)	rad/m	Número de onda para ecuaciones	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.kip	sqrt(acpr.keq_sq)	rad/m	Número de onda en el plano	Dominios 1– 3, 6	
acpr.absp	sqrt(realdot(acpr.p _t,acpr.p_t))	Pa	Presión absoluta	Dominios 1– 3, 6	
acpr.ar	-(acpr.gradpr- acpr.q_totr)/acpr.r ho_c	m/s ²	Aceleración local, componente r	Dominios 1– 3, 6	
acpr.aphi	-(acpr.gradpphi- acpr.q_totphi)/acp r.rho_c	m/s²	Aceleración local, componente phi	Dominios 1– 3, 6	
acpr.az	-(acpr.gradpz- acpr.q_totz)/acpr.r ho_c	m/s ²	Aceleración local, componente z	Dominios 1– 3, 6	
acpr.a_inst	sqrt(real(acpr.ar)^ 2+real(acpr.aphi)^ 2+real(acpr.az)^2)	m/s ²	Aceleración local instantánea	Dominios 1– 3, 6	
acpr.aipr	acpr.ar	m/s ²	Aceleración en el plano, componente r	Dominios 1– 3, 6	
acpr.aipphi	0	m/s ²	Aceleración en el plano, componente phi	Dominios 1– 3, 6	
acpr.aipz	acpr.az	m/s²	Aceleración en el plano, componente z	Dominios 1– 3, 6	
acpr.aopr	0	m/s ²	Aceleración fuera del plano, componente r	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.aopphi	acpr.aphi	m/s ²	Aceleración fuera del plano, componente phi	Dominios 1– 3, 6	
acpr.aopz	0	m/s ²	Aceleración fuera del plano, componente z	Dominios 1– 3, 6	
acpr.a_rms	sqrt(0.5*(realdot(a cpr.ar,acpr.ar)+rea ldot(acpr.aphi,acpr .aphi)+realdot(acp r.az,acpr.az)))	m/s ²	Aceleración local, (RMS)	Dominios 1– 3, 6	
acpr.vr	-(acpr.gradpr- acpr.q_totr)/(acpr. rho_c*acpr.iomeg a)	m/s	Velocidad local, componente r	Dominios 1– 3, 6	
acpr.vphi	-(acpr.gradpphi- acpr.q_totphi)/(ac pr.rho_c*acpr.iom ega)	m/s	Velocidad local, componente phi	Dominios 1– 3, 6	
acpr.vz	-(acpr.gradpz- acpr.q_totz)/(acpr. rho_c*acpr.iomeg a)	m/s	Velocidad local, componente z	Dominios 1– 3, 6	
acpr.v_inst	sqrt(real(acpr.vr)^ 2+real(acpr.vphi)^ 2+real(acpr.vz)^2)	m/s	Velocidad local instantánea	Dominios 1– 3, 6	
acpr.v_rms	sqrt(0.5*(realdot(a cpr.vr,acpr.vr)+rea ldot(acpr.vphi,acp r.vphi)+realdot(ac	m/s	Velocidad local, componente (RMS)	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	pr.vz,acpr.vz)))				
acpr.Ir	0.5*realdot(acpr.p _t,acpr.vr)	W/m ²	Intensidad, componente r	Dominios 1– 3, 6	
acpr.Iphi	0.5*realdot(acpr.p _t,acpr.vphi)	W/m ²	Intensidad, componente phi	Dominios 1– 3, 6	
acpr.Iz	0.5*realdot(acpr.p _t,acpr.vz)	W/m ²	Intensidad, componente z	Dominios 1– 3, 6	
acpr.I_mag	sqrt(acpr.Ir^2+acp r.Iphi^2+acpr.Iz^2)	W/m ²	Magnitud de intensidad	Dominios 1– 3, 6	
acpr.Lp	10*log10(0.5*acp r.p_t*conj(acpr.p_ t)/acpr.pref_SPL^ 2)	dB	Nivel de presión sonora	Dominios 1– 3, 6	
acpr.vipr	acpr.vr	m/s	Velocidad en el plano, componente r	Dominios 1– 3, 6	
acpr.vipphi	0	m/s	Velocidad en el plano, componente phi	Dominios 1– 3, 6	
acpr.vipz	acpr.vz	m/s	Velocidad en el plano, componente z	Dominios 1– 3, 6	
acpr.vopr	0	m/s	Velocidad fuera del plano, componente r	Dominios 1– 3, 6	
acpr.vopphi	acpr.vphi	m/s	Velocidad fuera del plano,	Dominios 1–	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente phi	3, 6	
acpr.vopz	0	m/s	Velocidad fuera del plano, componente z	Dominios 1– 3, 6	
acpr.diss_visc	0	W/m ³	Densidad de disipación de potencia viscosa	Dominios 1– 3, 6	
acpr.diss_therm	0	W/m ³	Densidad de disipación de potencia térmica	Dominios 1– 3, 6	
acpr.diss_tot	acpr.diss_visc+ac pr.diss_therm	W/m ³	Densidad de disipación de potencia termo- viscosa total	Dominios 1– 3, 6	
acpr.Q_pw	- 2*imag(acpr.k)*ac pr.I_mag	W/m ³	Densidad de disipación total de onda plana	Dominios 1– 3, 6	
acpr.rho_eff_invrr	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invp hir	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invzr	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invr phi	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invp hiphi	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.rho_eff_invz phi	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invrz	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invp hiz	0	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_eff_invz z	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 1– 3, 6	
acpr.rho_effrr	acpr.rho_c	kg/m³	Densidad efectiva, componente rr	Dominios 1– 3, 6	
acpr.rho_effphir	0	kg/m³	Densidad efectiva, componente phir	Dominios 1– 3, 6	
acpr.rho_effzr	0	kg/m³	Densidad efectiva, componente zr	Dominios 1– 3, 6	
acpr.rho_effrphi	0	kg/m³	Densidad efectiva, componente rphi	Dominios 1– 3, 6	
acpr.rho_effphiphi	acpr.rho_c	kg/m³	Densidad efectiva, componente phiphi	Dominios 1– 3, 6	
acpr.rho_effzphi	0	kg/m³	Densidad efectiva, componente zphi	Dominios 1– 3, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.rho_effrz	0	kg/m³	Densidad efectiva, componente rz	Dominios 1– 3, 6	
acpr.rho_effphiz	0	kg/m³	Densidad efectiva, componente phiz	Dominios 1– 3, 6	
acpr.rho_effzz	acpr.rho_c	kg/m³	Densidad efectiva, componente zz	Dominios 1– 3, 6	

2.1.1.13.Funciones de forma

Nombre	Función de forma	Unidad	Descripción	Marco de forma	Selección
р	Lagrange (Cuadrático)	Ра	Presión	Marco espacial	Dominios 1– 3, 6

2.1.1.14.Expresiones débiles

Expresión débil	Orden de integración	Marco de integración	Selección
2*(-acpr.gradpr*acpr.gradtestpr- acpr.gradpphi*acpr.gradtestpphi- acpr.gradpz*acpr.gradtestpz- acpr.p_t*test(p)*acpr.ik^2)*acpr.delta*pi*r/acp r.rho_c	4	Marco espacial	Dominios 1–3, 6
2*acpr.delta*acpr.Q*test(p)*pi*r	4	Marco espacial	Dominios 1–3, 6
2*acpr.delta*(acpr.q_totr*acpr.gradtestpr+acpr. q_totphi*acpr.gradtestpphi+acpr.q_totz*acpr.gr	4	Marco espacial	Dominios 1–3, 6

Expresión débil	Orden integración	de	Marco integración	de	Selección
adtestpz)*pi*r/acpr.rho_c					

2.4.4.Axial Symmetry 1

Axial Symmetry 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Todos los contornos

UTILIZAR PRODUCTOS

COMSOL Multiphysics
2.4.5.Sound Hard Boundary (Wall) 1

Sound Hard Boundary (Wall) 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Todos los contornos

ECUACIONES

$$-\mathbf{n} \cdot \left(-\frac{1}{\rho_{\rm c}} \left(\nabla \rho_{\rm t} - \mathbf{q}_{\rm d} \right) \right) = 0$$

UTILIZAR PRODUCTOS

COMSOL Multiphysics

2.4.6.Initial Values 1

Initial Values 1

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

SETTINGS

UTILIZAR PRODUCTOS

COMSOL Multiphysics

2.4.7.Pressure Acoustics 2

Pressure Acoustics 2

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 4–5, 7–8

ECUACIONES

$$\nabla \cdot \left(-\frac{1}{\rho_{c}} (\nabla \rho_{t} - \mathbf{q}_{d}) \right) - \frac{k_{eq}^{2} \rho_{t}}{\rho_{c}} = Q_{m}$$

$$p_{t} = \rho + \rho_{b}$$

$$k_{eq}^{2} = \left(\frac{\omega}{c_{c}} \right)^{2} - k_{m}^{2}$$

$$c_{c} = \frac{\omega}{k}, \quad k = \frac{\omega}{c} - i\alpha, \quad \rho_{c} = \frac{\rho c^{2}}{c_{c}^{2}}$$

2.1.1.15. Modelo de presión acústica

SETTINGS

Description	Value
Modelo de fluido	User - defined attenuation
Velocidad del sonido	Del material

Description	Value
Densidad	Del material
Tipo de atenuación	Coeficiente de atenuación, Np por unidades de longitud
Coeficiente de atenuación	alpha_tissue

2.1.1.16.Entrada del modelo

SETTINGS

Description	Value
Temperatura	Definido por el usuario
Temperatura	ТО
Presión absoluta	Definido por el usuario
Presión absoluta	l[atm]
Volume reference temperature	Definido por el usuario
Volume reference temperature	293.15[K]

PROPIEDADES DESDE EL MATERIAL

Propiedad	Material	Grupo de propiedad
Densidad	Ethylene glycol	Basic
Velocidad del sonido	Ethylene glycol	Basic
Densidad	Corning 7740 (Pyrex) [solid,1.05 mm thick]	Básico
Velocidad del sonido	Corning 7740 (Pyrex) [solid,1.05 mm thick]	Básico

2.1.1.17.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.p_s	acpr.p_t-acpr.p_b	Ра	Campo de presión difractado	Dominio 4	
acpr.p_s	acpr.p_t-acpr.p_b	Ра	Campo de presión difractado	Dominios 5, 7–8	
acpr.Lp_s	10*log10(0.5*acpr .p_s*conj(acpr.p_s)/acpr.pref_SPL^2)	dB	Nivel de presión de sonido difractado	Dominio 4	
acpr.Lp_s	10*log10(0.5*acpr .p_s*conj(acpr.p_s)/acpr.pref_SPL^2)	dB	Nivel de presión de sonido difractado	Dominios 5, 7–8	
acpr.p_b	0	Ра	Campo de presión en segundo plano	Dominio 4	Operación +
acpr.p_b	0	Ра	Campo de presión en segundo plano	Dominios 5, 7–8	Operación +
acpr.rho	material.rho	kg/m³	Densidad	Dominio 4	Meta
acpr.rho	material.rho	kg/m³	Densidad	Dominios 5, 7–8	Meta
acpr.c	material.c	m/s	Velocidad del sonido	Dominio 4	Meta
acpr.c	material.c	m/s	Velocidad del sonido	Dominios 5, 7–8	Meta
acpr.alpha1	alpha_tissue	Np/m	Coeficiente de	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			atenuación		
acpr.alpha1	alpha_tissue	Np/m	Coeficiente de atenuación	Dominios 5, 7–8	
acpr.q_totr	acpr.qr	N/m ³	Fuente de dipolo total, componente r	Dominio 4	Operación +
acpr.q_totphi	acpr.qphi	N/m ³	Fuente de dipolo total, componente phi	Dominio 4	Operación +
acpr.q_totz	acpr.qz	N/m ³	Fuente de dipolo total, componente z	Dominio 4	Operación +
acpr.q_totr	acpr.qr	N/m ³	Fuente de dipolo total, componente r	Dominios 5, 7–8	Operación +
acpr.q_totphi	acpr.qphi	N/m ³	Fuente de dipolo total, componente phi	Dominios 5, 7–8	Operación +
acpr.q_totz	acpr.qz	N/m ³	Fuente de dipolo total, componente z	Dominios 5, 7–8	Operación +
acpr.nacc	0	m/s ²	Inward acceleration (source)	Contornos 5– 6, 8, 10–13, 16–17	Operación +
acpr.nacc	0	m/s ²	Inward acceleration (source)	Contornos 7, 9, 18–23	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.Q	0	1/s ²	Total monopole domain source	Dominio 4	Operación +
acpr.Q	0	1/s ²	Total monopole domain source	Dominios 5, 7–8	Operación +
acpr.qr	0	N/m ³	Fuente de dipolo de dominio, componente r	Dominio 4	Operación +
acpr.qphi	0	N/m ³	Fuente de dipolo de dominio, componente phi	Dominio 4	Operación +
acpr.qz	0	N/m ³	Fuente de dipolo de dominio, componente z	Dominio 4	Operación +
acpr.qr	0	N/m ³	Fuente de dipolo de dominio, componente r	Dominios 5, 7–8	Operación +
acpr.qphi	0	N/m ³	Fuente de dipolo de dominio, componente phi	Dominios 5, 7–8	Operación +
acpr.qz	0	N/m ³	Fuente de dipolo de dominio, componente z	Dominios 5, 7–8	Operación +
acpr.FAcoPerAre ar	acpr.p_t*acpr.nr*d vol_spatial*r/(dvol *R)	N/m ²	Carga acústica por unidad de área, componente r	Contornos 5– 6, 8, 10–13, 16–17	
acpr.FAcoPerAre aphi	acpr.p_t*acpr.nphi *dvol_spatial*r/(d	N/m ²	Carga acústica por unidad de	Contornos 5– 6, 8, 10–13,	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	vol*R)		área, componente phi	16–17	
acpr.FAcoPerAre az	acpr.p_t*acpr.nz*d vol_spatial*r/(dvol *R)	N/m ²	Carga acústica por unidad de área, componente z	Contornos 5– 6, 8, 10–13, 16–17	
acpr.FAcoPerAre ar	acpr.p_t*acpr.nr*d vol_spatial*pml1.r /(dvol*pml1.R)	N/m ²	Carga acústica por unidad de área, componente r	Contornos 7, 9, 18–23	
acpr.FAcoPerAre aphi	acpr.p_t*acpr.nphi *dvol_spatial*pml 1.r/(dvol*pml1.R)	N/m ²	Carga acústica por unidad de área, componente phi	Contornos 7, 9, 18–23	
acpr.FAcoPerAre az	acpr.p_t*acpr.nz*d vol_spatial*pml1.r /(dvol*pml1.R)	N/m ²	Carga acústica por unidad de área, componente z	Contornos 7, 9, 18–23	
acpr.p_t	p+acpr.p_b	Pa	Campo total de presión acústica	Dominio 4	
acpr.p_t	p+acpr.p_b	Ра	Campo total de presión acústica	Dominios 5, 7–8	
acpr.c_c	acpr.iomega/acpr.i k	m/s	Velocidad del sonido compleja	Dominio 4	
acpr.c_c	acpr.iomega/acpr.i k	m/s	Velocidad del sonido compleja	Dominios 5, 7–8	
acpr.rho_c	acpr.rho*(acpr.c/ac pr.c_c)^2	kg/m³	Densidad compleja	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.rho_c	acpr.rho*(acpr.c/ac pr.c_c)^2	kg/m³	Densidad compleja	Dominios 5, 7–8	
acpr.Z	acpr.rho_c*acpr.c_ c	Pa·s/m	Impedancia acústica característica	Dominio 4	
acpr.Z	acpr.rho_c*acpr.c_ c	Pa·s/m	Impedancia acústica característica	Dominios 5, 7–8	
acpr.k	acpr.ik/i	rad/m	Número de onda	Dominio 4	
acpr.k	acpr.ik/i	rad/m	Número de onda	Dominios 5, 7–8	
acpr.ik	acpr.iomega/acpr.c +acpr.alpha1	rad/m	Número de onda desfasado	Dominio 4	
acpr.ik	acpr.iomega/acpr.c +acpr.alpha1	rad/m	Número de onda desfasado	Dominios 5, 7–8	
acpr.delta_diff	2.0E-5[m^2/s]	m²/s	Sound diffusivity	Dominio 4	
acpr.delta_diff	2.0E-5[m^2/s]	m²/s	Sound diffusivity	Dominios 5, 7–8	
acpr.K_eff	acpr.rho_c*acpr.c_ c^2	Ра	Módulo de compresibilidad efectivo	Dominio 4	
acpr.K_eff	acpr.rho_c*acpr.c_ c^2	Ра	Módulo de compresibilidad efectivo	Dominios 5, 7–8	
acpr.gradpr	d(acpr.p_t,r)	N/m ³	Gradiente de la presión total, componente r	Dominio 4	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.gradpphi	- i*acpr.m*acpr.p_t/ r	N/m ³	Gradiente de la presión total, componente phi	Dominio 4	Operación +
acpr.gradpz	d(acpr.p_t,z)	N/m ³	Gradiente de la presión total, componente z	Dominio 4	Operación +
acpr.gradpr	pml1.T11*d(acpr.p _t,r)+pml1.T13*d(acpr.p_t,z)	N/m ³	Gradiente de la presión total, componente r	Dominios 5, 7–8	Operación +
acpr.gradpphi	- i*acpr.m*acpr.p_t/ pml1.r	N/m ³	Gradiente de la presión total, componente phi	Dominios 5, 7–8	Operación +
acpr.gradpz	pml1.T31*d(acpr.p _t,r)+pml1.T33*d(acpr.p_t,z)	N/m ³	Gradiente de la presión total, componente z	Dominios 5, 7–8	Operación +
acpr.gradtestpr	test(pr)	N/m ³	Variable de ayuda, componente r	Dominio 4	Operación +
acpr.gradtestpphi	i*acpr.m*test(p)/r	N/m³	Variable de ayuda, componente phi	Dominio 4	Operación +
acpr.gradtestpz	test(pz)	N/m³	Variable de ayuda, componente z	Dominio 4	Operación +
acpr.gradtestpr	pml1.T11*test(pr) +pml1.T13*test(pz)	N/m ³	Variable de ayuda, componente r	Dominios 5, 7–8	Operación +
acpr.gradtestpphi	i*acpr.m*test(p)/p	N/m ³	Variable de	Dominios 5,	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	ml1.r		ayuda, componente phi	7–8	
acpr.gradtestpz	pml1.T31*test(pr) +pml1.T33*test(pz)	N/m³	Variable de ayuda, componente z	Dominios 5, 7–8	Operación +
acpr.hessianprr	d(d(acpr.p_t,r),r)	N/(m·m³)	Hessiano de la presión total, componente rr	Dominio 4	Operación +
acpr.hessianpphir	- i*acpr.m*d(acpr.p _t,r)/r	N/(m·m³)	Hessiano de la presión total, componente phir	Dominio 4	Operación +
acpr.hessianpzr	d(d(acpr.p_t,z),r)	N/(m·m³)	Hessiano de la presión total, componente zr	Dominio 4	Operación +
acpr.hessianprphi	- d(acpr.p_t,r)*i*acp r.m/r	N/(m·m³)	Hessiano de la presión total, componente rphi	Dominio 4	Operación +
acpr.hessianpphip hi	acpr.p_t*(i*acpr.m)^2/r^2	N/(m·m³)	Hessiano de la presión total, componente phiphi	Dominio 4	Operación +
acpr.hessianpzphi	- d(acpr.p_t,z)*i*acp r.m/r	N/(m·m³)	Hessiano de la presión total, componente zphi	Dominio 4	Operación +
acpr.hessianprz	d(d(acpr.p_t,r),z)	N/(m·m³)	Hessiano de la presión total, componente rz	Dominio 4	Operación +
acpr.hessianpphiz	- i*acpr.m*d(acpr.p	N/(m·m³)	Hessiano de la presión total,	Dominio 4	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	_t,z)/r		componente phiz		
acpr.hessianpzz	d(d(acpr.p_t,z),z)	N/(m·m³)	Hessiano de la presión total, componente zz	Dominio 4	Operación +
acpr.hessianprr	pml1.T11*d(pml1. T11*d(acpr.p_t,r)+ pml1.T13*d(acpr.p _t,z),r)- pml1.T12*if(abs(r) <0.001*h_spatial,d (pml1.T21*d(acpr. p_t,r)+pml1.T23*d (acpr.p_t,z),r),(pml 1.T21*d(acpr.p_t,r)+pml1.T23*d(acp r.p_t,z))/pml1.r)+p ml1.T13*d(acpr.p_ t,z),z)	N/(m·m ³)	Hessiano de la presión total, componente rr	Dominios 5, 7–8	Operación +
acpr.hessianpphir	- i*acpr.m*(pml1.T 11*d(acpr.p_t,r)+p ml1.T13*d(acpr.p_ t,z))/pml1.r	N/(m·m³)	Hessiano de la presión total, componente phir	Dominios 5, 7–8	Operación +
acpr.hessianpzr	pml1.T11*d(pml1. T31*d(acpr.p_t,r)+ pml1.T33*d(acpr.p _t,z),r)+pml1.T13* d(pml1.T31*d(acp r.p_t,r)+pml1.T33*	N/(m·m³)	Hessiano de la presión total, componente zr	Dominios 5, 7–8	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	d(acpr.p_t,z),z)				
acpr.hessianprphi	- (pml1.T11*d(acpr. p_t,r)+pml1.T13*d (acpr.p_t,z))*i*acp r.m/pml1.r	N/(m·m³)	Hessiano de la presión total, componente rphi	Dominios 5, 7–8	Operación +
acpr.hessianpphip hi	acpr.p_t*(i*acpr.m)^2/pml1.r^2	N/(m·m³)	Hessiano de la presión total, componente phiphi	Dominios 5, 7–8	Operación +
acpr.hessianpzphi	- (pml1.T31*d(acpr. p_t,r)+pml1.T33*d (acpr.p_t,z))*i*acp r.m/pml1.r	N/(m·m³)	Hessiano de la presión total, componente zphi	Dominios 5, 7–8	Operación +
acpr.hessianprz	pml1.T31*d(pml1. T11*d(acpr.p_t,r)+ pml1.T13*d(acpr.p _t,z),r)- pml1.T32*if(abs(r) <0.001*h_spatial,d (pml1.T21*d(acpr. p_t,r)+pml1.T23*d (acpr.p_t,z),r),(pml 1.T21*d(acpr.p_t,r)+pml1.T23*d(acp r.p_t,z))/pml1.r)+p ml1.T33*d(pml1.T 11*d(acpr.p_t,r)+p ml1.T13*d(acpr.p_ t,z),z)	N/(m·m³)	Hessiano de la presión total, componente rz	Dominios 5, 7–8	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.hessianpphiz	- i*acpr.m*(pml1.T 31*d(acpr.p_t,r)+p ml1.T33*d(acpr.p_ t,z))/pml1.r	N/(m·m³)	Hessiano de la presión total, componente phiz	Dominios 5, 7–8	Operación +
acpr.hessianpzz	pml1.T31*d(pml1. T31*d(acpr.p_t,r)+ pml1.T33*d(acpr.p _t,z),r)+pml1.T33* d(pml1.T31*d(acp r.p_t,r)+pml1.T33* d(acpr.p_t,z),z)	N/(m·m³)	Hessiano de la presión total, componente zz	Dominios 5, 7–8	Operación +
acpr.hessiantestpr r	test(prr)	N/(m·m³)	Variable de ayuda, componente rr	Dominio 4	Operación +
acpr.hessiantestpp hir	i*acpr.m*test(pr)/r	N/(m·m³)	Variable de ayuda, componente phir	Dominio 4	Operación +
acpr.hessiantestpz r	test(pzr)	N/(m·m³)	Variable de ayuda, componente zr	Dominio 4	Operación +
acpr.hessiantestpr phi	test(pr)*i*acpr.m/r	N/(m·m³)	Variable de ayuda, componente rphi	Dominio 4	Operación +
acpr.hessiantestpp hiphi	test(p)*(i*acpr.m)^ 2/r^2	N/(m·m³)	Variable de ayuda, componente phiphi	Dominio 4	Operación +
acpr.hessiantestpz	test(pz)*i*acpr.m/r	N/(m·m³)	Variable de	Dominio 4	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
phi			ayuda, componente zphi		
acpr.hessiantestpr z	test(prz)	N/(m·m³)	Variable de ayuda, componente rz	Dominio 4	Operación +
acpr.hessiantestpp hiz	i*acpr.m*test(pz)/r	N/(m·m³)	Variable de ayuda, componente phiz	Dominio 4	Operación +
acpr.hessiantestpz z	test(pzz)	N/(m·m³)	Variable de ayuda, componente zz	Dominio 4	Operación +
acpr.hessiantestpr r	pml1.T11*d(pml1. T11*test(pr)+pml1 .T13*test(pz),r)- pml1.T12*if(abs(r) <0.001*h_spatial,d (pml1.T21*test(pr) +pml1.T23*test(pz),r),(pml1.T21*test (pr)+pml1.T23*tes t(pz))/pml1.r)+pml 1.T13*d(pml1.T11 *test(pr)+pml1.T1 3*test(pz),z)	N/(m·m ³)	Variable de ayuda, componente rr	Dominios 5, 7–8	Operación +
acpr.hessiantestpp hir	i*acpr.m*(pml1.T 11*test(pr)+pml1. T13*test(pz))/pml1 .r	N/(m·m³)	Variable de ayuda, componente phir	Dominios 5, 7–8	Operación +
acpr.hessiantestpz r	pml1.T11*d(pml1. T31*test(pr)+pml1 .T33*test(pz),r)+p	N/(m·m³)	Variable de ayuda,	Dominios 5, 7–8	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	ml1.T13*d(pml1.T 31*test(pr)+pml1. T33*test(pz),z)		componente zr		
acpr.hessiantestpr phi	(pml1.T11*test(pr) +pml1.T13*test(pz))*i*acpr.m/pml1.r	N/(m·m³)	Variable de ayuda, componente rphi	Dominios 5, 7–8	Operación +
acpr.hessiantestpp hiphi	test(p)*(i*acpr.m)^ 2/pml1.r^2	N/(m·m³)	Variable de ayuda, componente phiphi	Dominios 5, 7–8	Operación +
acpr.hessiantestpz phi	(pml1.T31*test(pr) +pml1.T33*test(pz))*i*acpr.m/pml1.r	N/(m·m³)	Variable de ayuda, componente zphi	Dominios 5, 7–8	Operación +
acpr.hessiantestpr z	pml1.T31*d(pml1. T11*test(pr)+pml1 .T13*test(pz),r)- pml1.T32*if(abs(r) <0.001*h_spatial,d (pml1.T21*test(pr) +pml1.T23*test(pz),r),(pml1.T21*test (pr)+pml1.T23*tes t(pz))/pml1.r)+pml 1.T33*d(pml1.T11 *test(pr)+pml1.T1 3*test(pz),z)	N/(m·m³)	Variable de ayuda, componente rz	Dominios 5, 7–8	Operación +
acpr.hessiantestpp hiz	i*acpr.m*(pml1.T 31*test(pr)+pml1. T33*test(pz))/pml1 .r	N/(m·m³)	Variable de ayuda, componente phiz	Dominios 5, 7–8	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.hessiantestpz z	pml1.T31*d(pml1. T31*test(pr)+pml1 .T33*test(pz),r)+p ml1.T33*d(pml1.T 31*test(pr)+pml1. T33*test(pz),z)	N/(m·m³)	Variable de ayuda, componente zz	Dominios 5, 7–8	Operación +
acpr.keq_sq	-acpr.ik^2- (acpr.m/r)^2	1/m ²	Número de onda al cuadrado para ecuaciones	Dominio 4	Operación +
acpr.keq_sq	-acpr.ik^2- (acpr.m/pml1.r)^2	1/m ²	Número de onda al cuadrado para ecuaciones	Dominios 5, 7–8	Operación +
acpr.keq	sqrt(acpr.keq_sq)	rad/m	Número de onda para ecuaciones	Dominio 4	
acpr.keq	sqrt(acpr.keq_sq)	rad/m	Número de onda para ecuaciones	Dominios 5, 7–8	
acpr.kip	sqrt(acpr.keq_sq)	rad/m	Número de onda en el plano	Dominio 4	
acpr.kip	sqrt(acpr.keq_sq)	rad/m	Número de onda en el plano	Dominios 5, 7–8	
acpr.absp	sqrt(realdot(acpr.p _t,acpr.p_t))	Ра	Presión absoluta	Dominio 4	
acpr.absp	sqrt(realdot(acpr.p _t,acpr.p_t))	Pa	Presión absoluta	Dominios 5, 7–8	
acpr.ar	-(acpr.gradpr- acpr.q_totr)/acpr.rh o_c	m/s ²	Aceleración local, componente r	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.aphi	-(acpr.gradpphi- acpr.q_totphi)/acpr .rho_c	m/s ²	Aceleración local, componente phi	Dominio 4	
acpr.az	-(acpr.gradpz- acpr.q_totz)/acpr.r ho_c	m/s ²	Aceleración local, componente z	Dominio 4	
acpr.ar	-(acpr.gradpr- acpr.q_totr)/acpr.rh o_c	m/s ²	Aceleración local, componente r	Dominios 5, 7–8	
acpr.aphi	-(acpr.gradpphi- acpr.q_totphi)/acpr .rho_c	m/s ²	Aceleración local, componente phi	Dominios 5, 7–8	
acpr.az	-(acpr.gradpz- acpr.q_totz)/acpr.r ho_c	m/s ²	Aceleración local, componente z	Dominios 5, 7–8	
acpr.a_inst	sqrt(real(acpr.ar)^2 +real(acpr.aphi)^2 +real(acpr.az)^2)	m/s ²	Aceleración local instantánea	Dominio 4	
acpr.a_inst	sqrt(real(acpr.ar)^2 +real(acpr.aphi)^2 +real(acpr.az)^2)	m/s ²	Aceleración local instantánea	Dominios 5, 7–8	
acpr.aipr	acpr.ar	m/s ²	Aceleración en el plano, componente r	Dominio 4	
acpr.aipphi	0	m/s²	Aceleración en el plano, componente phi	Dominio 4	
acpr.aipz	acpr.az	m/s ²	Aceleración en el	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			plano, componente z		
acpr.aipr	acpr.ar	m/s ²	Aceleración en el plano, componente r	Dominios 5, 7–8	
acpr.aipphi	0	m/s ²	Aceleración en el plano, componente phi	Dominios 5, 7–8	
acpr.aipz	acpr.az	m/s ²	Aceleración en el plano, componente z	Dominios 5, 7–8	
acpr.aopr	0	m/s ²	Aceleración fuera del plano, componente r	Dominio 4	
acpr.aopphi	acpr.aphi	m/s ²	Aceleración fuera del plano, componente phi	Dominio 4	
acpr.aopz	0	m/s ²	Aceleración fuera del plano, componente z	Dominio 4	
acpr.aopr	0	m/s ²	Aceleración fuera del plano, componente r	Dominios 5, 7–8	
acpr.aopphi	acpr.aphi	m/s ²	Aceleración fuera del plano, componente phi	Dominios 5, 7–8	
acpr.aopz	0	m/s ²	Aceleración fuera del plano,	Dominios 5, 7–8	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente z		
acpr.a_rms	sqrt(0.5*(realdot(a cpr.ar,acpr.ar)+real dot(acpr.aphi,acpr. aphi)+realdot(acpr. az,acpr.az)))	m/s²	Aceleración local, (RMS)	Dominio 4	
acpr.a_rms	sqrt(0.5*(realdot(a cpr.ar,acpr.ar)+real dot(acpr.aphi,acpr. aphi)+realdot(acpr. az,acpr.az)))	m/s ²	Aceleración local, (RMS)	Dominios 5, 7–8	
acpr.vr	-(acpr.gradpr- acpr.q_totr)/(acpr.r ho_c*acpr.iomega)	m/s	Velocidad local, componente r	Dominio 4	
acpr.vphi	-(acpr.gradpphi- acpr.q_totphi)/(acp r.rho_c*acpr.iome ga)	m/s	Velocidad local, componente phi	Dominio 4	
acpr.vz	-(acpr.gradpz- acpr.q_totz)/(acpr.r ho_c*acpr.iomega)	m/s	Velocidad local, componente z	Dominio 4	
acpr.vr	-(acpr.gradpr- acpr.q_totr)/(acpr.r ho_c*acpr.iomega)	m/s	Velocidad local, componente r	Dominios 5, 7–8	
acpr.vphi	-(acpr.gradpphi- acpr.q_totphi)/(acp r.rho_c*acpr.iome ga)	m/s	Velocidad local, componente phi	Dominios 5, 7–8	
acpr.vz	-(acpr.gradpz-	m/s	Velocidad local,	Dominios 5,	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	acpr.q_totz)/(acpr.r ho_c*acpr.iomega)		componente z	7–8	
acpr.v_inst	sqrt(real(acpr.vr)^2 +real(acpr.vphi)^2 +real(acpr.vz)^2)	m/s	Velocidad local instantánea	Dominio 4	
acpr.v_inst	sqrt(real(acpr.vr)^2 +real(acpr.vphi)^2 +real(acpr.vz)^2)	m/s	Velocidad local instantánea	Dominios 5, 7–8	
acpr.v_rms	sqrt(0.5*(realdot(a cpr.vr,acpr.vr)+real dot(acpr.vphi,acpr. vphi)+realdot(acpr. vz,acpr.vz)))	m/s	Velocidad local, componente (RMS)	Dominio 4	
acpr.v_rms	sqrt(0.5*(realdot(a cpr.vr,acpr.vr)+real dot(acpr.vphi,acpr. vphi)+realdot(acpr. vz,acpr.vz)))	m/s	Velocidad local, componente (RMS)	Dominios 5, 7–8	
acpr.Ir	0.5*realdot(acpr.p _t,acpr.vr)	W/m ²	Intensidad, componente r	Dominio 4	
acpr.Iphi	0.5*realdot(acpr.p _t,acpr.vphi)	W/m²	Intensidad, componente phi	Dominio 4	
acpr.Iz	0.5*realdot(acpr.p _t,acpr.vz)	W/m ²	Intensidad, componente z	Dominio 4	
acpr.Ir	0.5*realdot(acpr.p _t,acpr.vr)	W/m²	Intensidad, componente r	Dominios 5, 7–8	
acpr.Iphi	0.5*realdot(acpr.p _t,acpr.vphi)	W/m ²	Intensidad, componente phi	Dominios 5, 7–8	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.Iz	0.5*realdot(acpr.p _t,acpr.vz)	W/m ²	Intensidad, componente z	Dominios 5, 7–8	
acpr.I_mag	sqrt(acpr.Ir^2+acpr .Iphi^2+acpr.Iz^2)	W/m ²	Magnitud de intensidad	Dominio 4	
acpr.I_mag	sqrt(acpr.Ir^2+acpr .Iphi^2+acpr.Iz^2)	W/m²	Magnitud de intensidad	Dominios 5, 7–8	
acpr.Lp	10*log10(0.5*acpr .p_t*conj(acpr.p_t) /acpr.pref_SPL^2)	dB	Nivel de presión sonora	Dominio 4	
acpr.Lp	10*log10(0.5*acpr .p_t*conj(acpr.p_t) /acpr.pref_SPL^2)	dB	Nivel de presión sonora	Dominios 5, 7–8	
acpr.vipr	acpr.vr	m/s	Velocidad en el plano, componente r	Dominio 4	
acpr.vipphi	0	m/s	Velocidad en el plano, componente phi	Dominio 4	
acpr.vipz	acpr.vz	m/s	Velocidad en el plano, componente z	Dominio 4	
acpr.vipr	acpr.vr	m/s	Velocidad en el plano, componente r	Dominios 5, 7–8	
acpr.vipphi	0	m/s	Velocidad en el plano, componente phi	Dominios 5, 7–8	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.vipz	acpr.vz	m/s	Velocidad en el plano, componente z	Dominios 5, 7–8	
acpr.vopr	0	m/s	Velocidad fuera del plano, componente r	Dominio 4	
acpr.vopphi	acpr.vphi	m/s	Velocidad fuera del plano, componente phi	Dominio 4	
acpr.vopz	0	m/s	Velocidad fuera del plano, componente z	Dominio 4	
acpr.vopr	0	m/s	Velocidad fuera del plano, componente r	Dominios 5, 7–8	
acpr.vopphi	acpr.vphi	m/s	Velocidad fuera del plano, componente phi	Dominios 5, 7–8	
acpr.vopz	0	m/s	Velocidad fuera del plano, componente z	Dominios 5, 7–8	
acpr.diss_visc	0	W/m ³	Densidad de disipación de potencia viscosa	Dominio 4	
acpr.diss_visc	0	W/m ³	Densidad de disipación de potencia viscosa	Dominios 5, 7–8	
acpr.diss_therm	0	W/m ³	Densidad de	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			disipación de potencia térmica		
acpr.diss_therm	0	W/m³	Densidad de disipación de potencia térmica	Dominios 5, 7–8	
acpr.diss_tot	acpr.diss_visc+acp r.diss_therm	W/m ³	Densidad de disipación de potencia termo- viscosa total	Dominio 4	
acpr.diss_tot	acpr.diss_visc+acp r.diss_therm	W/m ³	Densidad de disipación de potencia termo- viscosa total	Dominios 5, 7–8	
acpr.Q_pw	- 2*imag(acpr.k)*ac pr.I_mag	W/m ³	Densidad de disipación total de onda plana	Dominio 4	
acpr.Q_pw	- 2*imag(acpr.k)*ac pr.I_mag	W/m ³	Densidad de disipación total de onda plana	Dominios 5, 7–8	
acpr.rho_eff_invr r	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invp hir	0	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invz r	0	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invr phi	0	m³/kg	Inverse of the effective density	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.rho_eff_invp hiphi	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invz phi	0	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invr z	0	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invp hiz	0	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invz z	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominio 4	
acpr.rho_eff_invr r	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invp hir	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invz r	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invr phi	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invp hiphi	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invz phi	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invr z	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_eff_invp hiz	0	m³/kg	Inverse of the effective density	Dominios 5, 7–8	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.rho_eff_invz z	1/acpr.rho_c	m³/kg	Inverse of the effective density	Dominios 5, 7–8	
acpr.rho_effrr	acpr.rho_c	kg/m³	Densidad efectiva, componente rr	Dominio 4	
acpr.rho_effphir	0	kg/m³	Densidad efectiva, componente phir	Dominio 4	
acpr.rho_effzr	0	kg/m³	Densidad efectiva, componente zr	Dominio 4	
acpr.rho_effrphi	0	kg/m³	Densidad efectiva, componente rphi	Dominio 4	
acpr.rho_effphiph i	acpr.rho_c	kg/m³	Densidad efectiva, componente phiphi	Dominio 4	
acpr.rho_effzphi	0	kg/m ³	Densidad Dominio 4 efectiva, componente zphi		
acpr.rho_effrz	0	kg/m³	Densidad efectiva, componente rz	Dominio 4	
acpr.rho_effphiz	0	kg/m³	Densidad efectiva, componente phiz	Dominio 4	
acpr.rho_effzz	acpr.rho_c	kg/m³	Densidad	Dominio 4	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			efectiva, componente zz		
acpr.rho_effrr	acpr.rho_c	kg/m³	Densidad efectiva, componente rr	Dominios 5, 7–8	
acpr.rho_effphir	0	kg/m³	Densidad efectiva, componente phir	Dominios 5, 7–8	
acpr.rho_effzr	0	kg/m³	Densidad efectiva, componente zr	Dominios 5, 7–8	
acpr.rho_effrphi	0	kg/m³	Densidad efectiva, componente rphi	Dominios 5, 7–8	
acpr.rho_effphiph i	acpr.rho_c	kg/m ³	Densidad efectiva, componente phiphi	Dominios 5, 7–8	
acpr.rho_effzphi	0	kg/m³	Densidad efectiva, componente zphi	Dominios 5, 7–8	
acpr.rho_effrz	0	kg/m³	Densidad efectiva, componente rz	Dominios 5, 7–8	
acpr.rho_effphiz	0	kg/m³	Densidad efectiva, componente phiz	Dominios 5, 7–8	
acpr.rho_effzz	acpr.rho_c	kg/m ³	Densidad efectiva,	Dominios 5,	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente zz	7–8	

2.1.1.18.Funciones de forma

Nombre	Función de forma	Unidad	Descripción	Marco de forma	Selección
р	Lagrange (Cuadrático)	Ра	Presión	Marco espacial	Dominio 4
р	Lagrange (Cuadrático)	Ра	Presión	Marco espacial	Dominios 5, 7–8

2.1.1.19.Expresiones débiles

Expresión débil	Orden d integración	e	Marco de integración	Selección
2*(-acpr.gradpr*acpr.gradtestpr- acpr.gradpphi*acpr.gradtestpphi- acpr.gradpz*acpr.gradtestpz- acpr.p_t*test(p)*acpr.ik^2)*acpr.delta*pi*r/acp r.rho_c	4		Marco espacial	Dominio 4
2*(-acpr.gradpr*acpr.gradtestpr- acpr.gradpphi*acpr.gradtestpphi- acpr.gradpz*acpr.gradtestpz- acpr.p_t*test(p)*acpr.ik^2)*acpr.delta*pi*pml1 .r*pml1.detInvT/acpr.rho_c	4		Marco espacial	Dominios 5, 7–8
2*acpr.delta*acpr.Q*test(p)*pi*r	4		Marco espacial	Dominio 4
2*acpr.delta*acpr.Q*test(p)*pi*pml1.r*pml1.d etInvT	4		Marco espacial	Dominios 5, 7–8

Expresión débil	Orden de integración	Marco de integración	Selección
2*acpr.delta*(acpr.q_totr*acpr.gradtestpr+acpr. q_totphi*acpr.gradtestpphi+acpr.q_totz*acpr.gr adtestpz)*pi*r/acpr.rho_c	4	Marco espacial	Dominio 4
2*acpr.delta*(acpr.q_totr*acpr.gradtestpr+acpr. q_totphi*acpr.gradtestpphi+acpr.q_totz*acpr.gr adtestpz)*pi*pml1.r*pml1.detInvT/acpr.rho_c	4	Marco espacial	Dominios 5, 7–8

2.4.8.Normal Displacement 1

Normal Displacement 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Contorno 26

ECUACIONES

$$-\mathbf{n}\cdot\left(-\frac{1}{\rho_{\rm c}}(\nabla\rho_{\rm t}-\mathbf{q}_{\rm d})\right)=(\mathrm{i}\omega)^{2}d_{n}$$

2.1.1.20.Desplazamiento normal

SETTINGS

Description	Value
Tipo	Desplazamiento hacia adentro
Desplazamiento hacia adentro	d0

2.1.1.21.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
acpr.nacc	acpr.iomega^2*acp r.ndisp1.ndisp	m/s ²	Inward acceleration (source)	Contorno 26	Operación +
acpr.ndisp1.ndis p	d0	m	Inward displacement (source)	Contorno 26	
acpr.ndisp1.area	2*pi*acpr.ndisp1.i nt(r)	m ²	Área de superficie	Contorno 26	
acpr.Zac	acpr.iomega*acpr.n disp1.int(acpr.p_t)/ (acpr.ndisp1.int(ac pr.nacc)*acpr.ndisp 1.area)	kg/(m ⁴ ·s)	Impedancia acústica	Contorno 26	
acpr.Zi	acpr.iomega*acpr.p _t/acpr.nacc	Pa·s/m	Impedancia específica	Contorno 26	

2.1.1.21.Expresiones débiles

Expresión débil	Orden de integración	Marco de integración	Selección
2*acpr.iomega^2*acpr.ndisp1.ndisp*test(p)*acpr.del ta*pi*treatasconst(r)	4	Marco espacial	Contorno 26

2.5.BIOHEAT TRANSFER

UTILIZAR PRODUCTOS

COMSOL Multiphysics Heat Transfer Module

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 1–4, 6

EQUATIONS

$$\rho C_{p} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{bio}}$$
$$\mathbf{q} = -k \nabla T$$

2.5.1. Ajustes de interfaz de física

2.1.1.23.Discretización

SETTINGS

Description	Value
Temperatura	Lagrange cuadrático

2.1.1.24.Modelo físico

SETTINGS

Description	Value
Dominio isotérmico	Apagado
Transferencia de calor en medios porosos	Apagado
Temperatura de referencia	Definido por el usuario
Temperatura de referencia	293.15[K]

2.5.2.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.Tref	model.input.Tref	К	Temperatura de referencia	Global	Meta
ht.d	1	1	Grosor	Dominios 1– 4, 6	
ht.HRef	0	J/kg	Entalpía de referencia	Dominios 1– 4, 6	
ht.DeltaH	0	J/kg	Sensibilidad de	Dominios 1–	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			entalpía	4, 6	
ht.H	0	J/kg	Entalpía	Dominios 1– 4, 6	Operación +
ht.H0	ht.H+ht.Ek	J/kg	Entalpía total	Dominios 1– 4, 6	
ht.Ei	0	J/kg	Energía interna	Dominios 1– 4, 6	Operación +
ht.Ei0	ht.Ei+ht.Ek	J/kg	Energía total interna	Dominios 1– 4, 6	
ht.Ek	0	J/kg	Energía cinética	Dominios 1– 4, 6	Operación +
ht.dfluxr	0	W/m²	Flujo de calor conductivo, componente r	Dominios 1– 4, 6	Operación +
ht.dfluxphi	0	W/m ²	Flujo de calor conductivo, componente phi	Dominios 1– 4, 6	Operación +
ht.dfluxz	0	W/m ²	Flujo de calor conductivo, componente z	Dominios 1– 4, 6	Operación +
ht.dfluxr	mean(ht.dfluxr)	W/m ²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.dfluxphi	mean(ht.dfluxphi)	W/m²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.dfluxz	mean(ht.dfluxz)	W/m ²	Flujo de calor	Contornos 1–	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			conductivo, componente z	6, 8, 10–17, 24–26	
ht.dfluxtestr	0	W/m ²	Flujo de calor conductivo, componente r	Dominios 1– 4, 6	Operación +
ht.dfluxtestphi	0	W/m²	Flujo de calor conductivo, componente phi	Dominios 1– 4, 6	Operación +
ht.dfluxtestz	0	W/m²	Flujo de calor conductivo, componente z	Dominios 1– 4, 6	Operación +
ht.dfluxtestr	mean(ht.dfluxtestr)	W/m ²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.dfluxtestphi	mean(ht.dfluxtestp hi)	W/m ²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.dfluxtestz	mean(ht.dfluxtestz)	W/m²	Flujo de calor conductivo, componente z	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.dfluxMag	sqrt(ht.dfluxr^2+ht .dfluxphi^2+ht.dfl uxz^2)	W/m ²	Magnitud de flujo de calor conductivo	Dominios 1– 4, 6	
ht.cfluxr	0	W/m ²	Flujo de calor convectivo, componente r	Dominios 1– 4, 6	Operación +
ht.cfluxphi	0	W/m ²	Flujo de calor convectivo,	Dominios 1– 4, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente phi		
ht.cfluxz	0	W/m ²	Flujo de calor convectivo, componente z	Dominios 1– 4, 6	Operación +
ht.cfluxMag	sqrt(ht.cfluxr^2+ht .cfluxphi^2+ht.cfl uxz^2)	W/m²	Magnitud de flujo de calor convectivo	Dominios 1– 4, 6	
ht.tfluxr	ht.dfluxr+ht.cfluxr	W/m²	Flujo de calor total, componente r	Dominios 1– 4, 6	
ht.tfluxphi	ht.dfluxphi+ht.cflu xphi	W/m ²	Flujo de calor total, componente phi	Dominios 1– 4, 6	
ht.tfluxz	ht.dfluxz+ht.cflux z	W/m ²	Flujo de calor total, componente z	Dominios 1– 4, 6	
ht.tfluxMag	sqrt(ht.tfluxr^2+ht. tfluxphi^2+ht.tflux z^2)	W/m ²	Magnitud de flujo de calor total	Dominios 1– 4, 6	
ht.tefluxr	0	W/m ²	Flujo de energía total, componente r	Dominios 1– 4, 6	Operación +
ht.tefluxphi	0	W/m ²	Flujo de energía total, componente phi	Dominios 1– 4, 6	Operación +
ht.tefluxz	0	W/m ²	Flujo de energía total, componente z	Dominios 1– 4, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.tefluxMag	sqrt(ht.tefluxr^2+h t.tefluxphi^2+ht.te fluxz^2)	W/m ²	Magnitud de flujo de energía total	Dominios 1– 4, 6	
ht.dflux_ur	up(ht.dfluxr)	W/m ²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.dflux_uphi	up(ht.dfluxphi)	W/m ²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.dflux_uz	up(ht.dfluxz)	W/m ²	Flujo de calor conductivo, componente z	Contornos 1– 6, 8, 10–17, 24–26	
ht.dflux_dr	down(ht.dfluxr)	W/m²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.dflux_dphi	down(ht.dfluxphi)	W/m²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.dflux_dz	down(ht.dfluxz)	W/m ²	Flujo de calor conductivo, componente z	Contornos 1– 6, 8, 10–17, 24–26	
ht.dfluxtest_ur	up(ht.dfluxtestr)	W/m ²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.dfluxtest_uphi	up(ht.dfluxtestphi)	W/m ²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.dfluxtest_uz	up(ht.dfluxtestz)	W/m ²	Flujo de calor	Contornos 1-	
Nombre	Expresión	Unidad	Descripción	Selección	Detalles
-------------------	--	------------------	--	---------------------------------------	-------------
			conductivo, componente z	6, 8, 10–17, 24–26	
ht.dfluxtest_dr	down(ht.dfluxtestr)	W/m ²	Flujo de calor conductivo, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.dfluxtest_dphi	down(ht.dfluxtestp hi)	W/m ²	Flujo de calor conductivo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.dfluxtest_dz	down(ht.dfluxtestz)	W/m ²	Flujo de calor conductivo, componente z	Contornos 1– 6, 8, 10–17, 24–26	
ht.rflux	0	W/m ²	Flujo de calor radiativo	Contornos 1– 6, 8, 10–17, 24–26	Operación +
ht.ncflux	mean(ht.cfluxr)*ht .nr+mean(ht.cflux phi)*ht.nphi+mea n(ht.cfluxz)*ht.nz	W/m ²	Flujo de calor conductivo normal	Contornos 1– 6, 8, 10–17, 24–26	
ht.ncflux_u	up(ht.cfluxr)*ht.un r+up(ht.cfluxphi)* ht.unphi+up(ht.cfl uxz)*ht.unz	W/m ²	Flujo de calor convectivo normal interno, lado superior	Contornos 1– 6, 8, 10–17, 24–26	
ht.ncflux_d	down(ht.cfluxr)*ht .dnr+down(ht.cflu xphi)*ht.dnphi+do wn(ht.cfluxz)*ht.d nz	W/m ²	Flujo de calor convectivo normal interno, lado inferior	Contornos 1– 6, 8, 10–17, 24–26	
ht.ndflux	-0.5*(ht.ndflux_d- ht.ndflux_u)	W/m ²	Flujo de calor conductivo	Contorno 17	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			normal		
ht.ndflux	0.5*(ht.ndflux_d- ht.ndflux_u)	W/m²	Flujo de calor conductivo normal	Contornos 1– 6, 8, 10–16, 24–26	Operación +
ht.ndflux_u	-ht.ndflux_d	W/m ²	Flujo de calor conductivo normal interno, lado superior	Contornos 1– 3, 5, 8, 14– 16, 24, 26	Operación +
ht.ndflux_u	0	W/m ²	Flujo de calor conductivo normal interno, lado superior	Contornos 4, 6, 10–13, 17, 25	Operación +
ht.ndflux_d	-ht.ndflux_u	W/m ²	Flujo de calor conductivo normal interno, lado inferior	Contorno 17	Operación +
ht.ndflux_d	0	W/m ²	Flujo de calor conductivo normal interno, lado inferior	Contornos 1– 6, 8, 10–16, 24–26	Operación +
ht.ntflux	ht.ndflux+ht.ncflu x	W/m ²	Flujo de calor normal total	Contornos 1– 6, 8, 10–17, 24–26	
ht.ntflux_u	ht.ndflux_u+ht.ncf lux_u	W/m ²	Flujo total normal interno, lado superior	Contornos 1– 6, 8, 10–17, 24–26	
ht.ntflux_d	ht.ndflux_d+ht.ncf lux_d	W/m ²	Flujo total normal interno, lado inferior	Contornos 1– 6, 8, 10–17, 24–26	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.nteflux	mean(ht.tefluxr)*h t.nr+mean(ht.teflu xphi)*ht.nphi+me an(ht.tefluxz)*ht.n z- mean(ht.dfluxr)*ht .nr- mean(ht.dfluxphi) *ht.nphi- mean(ht.dfluxz)*h t.nz+ht.ndflux	W/m ²	Flujo de energía normal total	Contornos 1– 6, 8, 10–17, 24–26	
ht.nteflux_u	up(ht.tefluxr)*ht.u nr+up(ht.tefluxphi)*ht.unphi+up(ht.t efluxz)*ht.unz- up(ht.dfluxr)*ht.u nr- up(ht.dfluxphi)*ht. unphi- up(ht.dfluxz)*ht.u nz+ht.ndflux_u	W/m ²	Flujo de energía total normal interno, lado superior	Contornos 1– 6, 8, 10–17, 24–26	
ht.nteflux_d	down(ht.tefluxr)*h t.dnr+down(ht.tefl uxphi)*ht.dnphi+d own(ht.tefluxz)*ht .dnz- down(ht.dfluxr)*ht .dnr- down(ht.dfluxphi) *ht.dnphi- down(ht.dfluxz)*h t.dnz+ht.ndflux_d	W/m ²	Flujo de energía total normal interno, lado inferior	Contornos 1– 6, 8, 10–17, 24–26	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.Qm	0	kg/(m ³ ·s)	Fuente de masa	Dominios 1– 4,6	
ht.Q	0	W/m ³	Fuente de calor	Dominios 1– 4, 6	Operación +
ht.Qoop	0	W/m ³	Fuente de calor fuera del plano	Dominios 1– 4, 6	Operación +
ht.Qtot	0	W/m³	Fuente de calor total	Dominios 1– 4, 6	Operación +
ht.Qbtot	0	W/m ²	Fuente de calor total en contorno	Contornos 4, 6, 8, 10–17, 24–26	Operación +
ht.qs	0	W/(m ³ ·K)	Coeficiente de producción/absor ción	Dominios 1– 4, 6	Operación +
ht.qs_oop	0	W/(m ³ ·K)	Coeficiente de producción/absor ción fuera del plano	Dominios 1– 4, 6	Operación +
ht.Tvar	Т	К	Temperatura	Dominios 1– 4, 6	
ht.Tvar	Т	К	Temperatura	Contornos 1– 6, 8, 10–17, 24–26	
ht.Tvar	Т	К	Temperatura	Puntos 1–5, 7–16	
ht.Tu	up(T)	К	Temperatura	Contornos 4, 6, 10–13, 25	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.Tu	Т	К	Temperatura	Contornos 8, 14–17, 24, 26	
ht.Td	down(T)	К	Temperatura	Contornos 4, 6, 10–13, 25	
ht.Td	Т	К	Temperatura	Contornos 8, 14–17, 24, 26	
ht.q0	0	W/m ²	Flujo de calor entrante	Dominios 1– 4, 6	Operación +
ht.nr	nr	1	Vector normal, componente r	Contornos 4, 6, 10–13, 25	
ht.nphi	0	1	Vector normal, componente phi	Contornos 4, 6, 10–13, 25	
ht.nz	nz	1	Vector normal, componente z	Contornos 4, 6, 10–13, 25	
ht.nr	unr	1	Vector normal, componente r	Contorno 17	
ht.nphi	0	1	Vector normal, componente phi	Contorno 17	
ht.nz	unz	1	Vector normal, componente z	Contorno 17	
ht.nr	dnr	1	Vector normal, componente r	Contornos 1– 3, 5, 8, 14– 16, 24, 26	
ht.nphi	0	1	Vector normal, componente phi	Contornos 1– 3, 5, 8, 14– 16, 24, 26	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.nz	dnz	1	Vector normal, componente z	Contornos 1– 3, 5, 8, 14– 16, 24, 26	
ht.nrmesh	nrmesh	1	Vector normal, (malla), componente r	Contornos 4, 6, 10–13, 25	
ht.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 4, 6, 10–13, 25	
ht.nzmesh	nzmesh	1	Vector normal, (malla), componente z	Contornos 4, 6, 10–13, 25	
ht.nrmesh	unrmesh	1	Vector normal, (malla), componente r	Contorno 17	
ht.nphimesh	0	1	Vector normal, (malla), componente phi	Contorno 17	
ht.nzmesh	unzmesh	1	Vector normal, (malla), componente z	Contorno 17	
ht.nrmesh	dnrmesh	1	Vector normal, (malla), componente r	Contornos 1– 3, 5, 8, 14– 16, 24, 26	
ht.nphimesh	0	1	Vector normal, (malla), componente phi	Contornos 1– 3, 5, 8, 14– 16, 24, 26	
ht.nzmesh	dnzmesh	1	Vector normal,	Contornos 1–	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			(malla), componente z	3, 5, 8, 14– 16, 24, 26	
ht.dnr	dnr	1	Vector normal hacia abajo, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.dnphi	0	1	Vector normal hacia abajo, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.dnz	dnz	1	Vector normal hacia abajo, componente z	Contornos 1– 6, 8, 10–17, 24–26	
ht.unr	unr	1	Vector normal hacia arriba, componente r	Contornos 1– 6, 8, 10–17, 24–26	
ht.unphi	0	1	Vector normal hacia arriba, componente phi	Contornos 1– 6, 8, 10–17, 24–26	
ht.unz	unz	1	Vector normal hacia arriba, componente z	Contornos 1– 6, 8, 10–17, 24–26	
ht.dEiInt	0	W	Tasa de calor acumulado total	Global	Operación +
ht.dEi0Int	0	W	Tasa de energía total acumulada	Global	Operación +
ht.ntfluxInt	ht.intExtBnd(ht.ntf lux*ht.varIntSpa)	W	Tasa neta de calor total	Global	
ht.ntefluxInt	ht.intExtBnd(ht.nt eflux*ht.varIntSpa	W	Tasa neta de energía total	Global	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
)				
ht.QInt	ht.intDom(ht.Qtot *ht.varIntSpa)- ht.intIntBnd(ht.ndf lux_u*up(ht.varInt Spa)+ht.ndflux_d* down(ht.varIntSpa))	W	Fuente de calor total	Global	
ht.WnsInt	0	W	Fuente de trabajo total	Global	Operación +
ht.WInt	0	W	Fuente de trabajo total	Global	Operación +
ht.varIntSpa	2*ht.d*pi*r	m	Variable intermedia	Dominios 1– 4, 6	Meta

2.5.3.Biological Tissue 1

Biological Tissue 1

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

ECUACIONES

 $\rho C_{p} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{bio}}$ $\mathbf{q} = \underline{-k} \nabla T.$

2.1.1.25.Conducción de calor, sólido

SETTINGS

Description	Value
Conductividad térmica	Del material

2.1.1.26.Termodinámica, sólido

SETTINGS

Description	Value
Densidad	Del material
Capacidad térmica con presión constante	Del material

2.1.1.27. Selección de sistema de coordenadas

SETTINGS

Description	Value
Sistema de Coordenadas	Sistema de coordenadas global

2.1.1.28.Entrada del modelo

Description	Value
Volume reference temperature	Common model input

PROPIEDADES DESDE EL MATERIAL

Propiedad	Material	Grupo de propiedad
Conductividad térmica	Tissue phantom	Basic
Densidad	Tissue phantom	Basic
Capacidad térmica con presión constante	Tissue phantom	Basic
Conductividad térmica	Ethylene glycol	Basic
Densidad	Ethylene glycol	Basic
Capacidad térmica con presión constante	Ethylene glycol	Basic

2.1.1.29.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
domflux.Tr	2*ht.dfluxr*ht.d*pi *r	W/m	Flujo del dominio, Componente r	Dominios 1– 4, 6	
domflux.Tz	2*ht.dfluxz*ht.d*pi *r	W/m	Flujo del dominio, Componente z	Dominios 1– 4, 6	
ht.DeltaH	integrate(subst(ht.C p,ht.bt1.minput_pre ssure,ht.pref),T,ht.D eltaH_Tlow,T)+inte grate(ht.mujtT,ht.bt 1.minput_pressure,	J/kg	Sensibilidad de entalpía	Dominios 1– 4, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	ht.DeltaH_plow,ht. pA)				
ht.H	ht.HRef+ht.DeltaH	J/kg	Entalpía	Dominios 1– 4, 6	Operación +
ht.Ei	ht.H	J/kg	Energía interna	Dominios 1– 4, 6	Operación +
ht.Ek	0.5*(ht.ur^2+ht.uph i^2+ht.uz^2)	J/kg	Energía cinética	Dominios 1– 4, 6	Operación +
ht.dfluxr	-ht.k_effrr*Tr- ht.k_effrz*Tz	W/m ²	Flujo de calor conductivo, componente r	Dominios 1– 4, 6	Operación +
ht.dfluxphi	-ht.k_effphir*Tr- ht.k_effphiz*Tz	W/m ²	Flujo de calor conductivo, componente phi	Dominios 1– 4, 6	Operación +
ht.dfluxz	-ht.k_effzr*Tr- ht.k_effzz*Tz	W/m ²	Flujo de calor conductivo, componente z	Dominios 1– 4, 6	Operación +
ht.dfluxtestr	-ht.k_effrr*test(Tr)- ht.k_effrz*test(Tz)	W/m ²	Flujo de calor conductivo, componente r	Dominios 1– 4, 6	Operación +
ht.dfluxtestphi	- ht.k_effphir*test(Tr)- ht.k_effphiz*test(Tz)	W/m ²	Flujo de calor conductivo, componente phi	Dominios 1– 4, 6	Operación +
ht.dfluxtestz	-ht.k_effzr*test(Tr)- ht.k_effzz*test(Tz)	W/m ²	Flujo de calor conductivo, componente z	Dominios 1– 4, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.cfluxr	ht.rho*ht.ur*ht.Ei	W/m ²	Flujo de calor convectivo, componente r	Dominios 1– 4, 6	Operación +
ht.cfluxphi	ht.rho*ht.uphi*ht.Ei	W/m ²	Flujo de calor convectivo, componente phi	Dominios 1– 4, 6	Operación +
ht.cfluxz	ht.rho*ht.uz*ht.Ei	W/m ²	Flujo de calor convectivo, componente z	Dominios 1– 4, 6	Operación +
ht.tefluxr	ht.dfluxr+ht.rho*ht. ur*ht.H0	W/m ²	Flujo de energía total, componente r	Dominios 1– 4, 6	Operación +
ht.tefluxphi	ht.dfluxphi+ht.rho* ht.uphi*ht.H0	W/m ²	Flujo de energía total, componente phi	Dominios 1– 4, 6	Operación +
ht.tefluxz	ht.dfluxz+ht.rho*ht. uz*ht.H0	W/m ²	Flujo de energía total, componente z	Dominios 1– 4, 6	Operación +
ht.ndflux_u	if(r>0.001/sqrt(sqrt(mean(emetric2))),- 0.5*uflux_spatial(T)/(pi*r),NaN)/up(ht. d)	W/m ²	Flujo de calor conductivo normal interno, lado superior	Contornos 4, 6, 10–13, 25	Operación +
ht.ndflux_u	if(r>0.001/sqrt(sqrt(mean(emetric2))),- 0.5*uflux_spatial(T)/(pi*r),NaN)/up(ht. d)	W/m ²	Flujo de calor conductivo normal interno, lado superior	Contorno 17	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.ndflux_d	if(r>0.001/sqrt(sqrt(mean(emetric2))),- 0.5*dflux_spatial(T)/(pi*r),NaN)/down (ht.d)	W/m ²	Flujo de calor conductivo normal interno, lado inferior	Contornos 4, 6, 10–13, 25	Operación +
ht.ndflux_d	if(r>0.001/sqrt(sqrt(mean(emetric2))),- 0.5*dflux_spatial(T)/(pi*r),NaN)/down (ht.d)	W/m ²	Flujo de calor conductivo normal interno, lado inferior	Contornos 1– 3, 5, 8, 14– 16, 24, 26	Operación +
ht.dEiInt	ht.bt1.dEiInt	W	Tasa de calor acumulado total	Global	Operación +
ht.dEi0Int	ht.bt1.dEi0Int	W	Tasa de energía total acumulada	Global	Operación +
ht.WnsInt	ht.bt1.WnsInt	W	Fuente de trabajo total	Global	Operación +
ht.krr	material.k11	W/(m·K)	Conductividad térmica, componente rr	Dominios 1– 4, 6	Meta
ht.kphir	material.k21	W/(m·K)	Conductividad térmica, componente phir	Dominios 1– 4, 6	Meta
ht.kzr	material.k31	W/(m·K)	Conductividad térmica, componente zr	Dominios 1– 4, 6	Meta
ht.krphi	material.k12	W/(m·K)	Conductividad térmica, componente rphi	Dominios 1– 4, 6	Meta

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.kphiphi	material.k22	W/(m·K)	Conductividad térmica, componente phiphi	Dominios 1– 4, 6	Meta
ht.kzphi	material.k32	W/(m·K)	Conductividad térmica, componente zphi	Dominios 1– 4, 6	Meta
ht.krz	material.k13	W/(m·K)	Conductividad térmica, componente rz	Dominios 1– 4, 6	Meta
ht.kphiz	material.k23	W/(m·K)	Conductividad térmica, componente phiz	Dominios 1– 4, 6	Meta
ht.kzz	material.k33	W/(m·K)	Conductividad térmica, componente zz	Dominios 1– 4, 6	Meta
ht.k_iso	material.k_iso	W/(m·K)	Conductividad térmica, valor isotrópico	Dominios 1– 4, 6	Meta
ht.rho	material.rho	kg/m³	Densidad	Dominios 1– 4, 6	Meta
ht.Cp	material.Cp	J/(kg·K)	Capacidad térmica con presión constante	Dominios 1– 4, 6	Meta
ht.res_T	-ht.k_effrr*Trr- ht.k_effrz*Trz- ht.k_effzr*Tzr- ht.k_effzz*Tzz- (ht.qs+ht.qs_oop)*	W/m ³	Residuos de ecuación	Dominios 1– 4, 6	Operación +

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	T+ht.C_eff*(ht.ur* Tr+ht.uz*Tz)-ht.Q- ht.Qoop				
ht.alphap	- d(ht.rho,T)/(ht.rho+ eps)	1/K	Coeficiente de compresibilidad isobárico	Dominios 1– 4, 6	
ht.pA	ht.pref	Ра	Presión absoluta	Dominios 1– 4, 6	
ht.gradTmag	sqrt(ht.gradTr^2+ht .gradTphi^2+ht.gra dTz^2)	K/m	Magnitud de gradiente de la temperatura	Dominios 1– 4, 6	
ht.Qmet	0	W/m ³	Fuente de calor metabólica	Dominios 1– 4, 6	Operación +
ht.pref	ht.bt1.pref	Pa	Nivel de presión de referencia	Dominios 1– 4, 6	
ht.DeltaH_Tlow	ht.Tref	К	Límite inferior de temperatura para evaluación de entalpía	Dominios 1– 4, 6	
ht.DeltaH_plow	ht.pref	Ра	Límite inferior de presión para evaluación de entalpía	Dominios 1– 4, 6	
ht.rhoInit	subst(ht.rho,T,ht.Ti nit,minput.pA,ht.pr ef)	kg/m³	Densidad inicial	Dominios 1– 4, 6	
ht.rho_eff	ht.rho	kg/m³	Densidad efectiva	Dominios 1– 4, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.C_eff	ht.rho*ht.Cp	J/(m ³ ·K)	Capacidad térmica volumétrica efectiva	Dominios 1– 4, 6	
ht.mujtT	0	m³/kg	Coeficiente isotérmico de Joule-Thomson	Dominios 1– 4, 6	
ht.k_effrr	ht.krr	W/(m·K)	Conductividad térmica efectiva, componente rr	Dominios 1– 4, 6	
ht.k_effphir	ht.kphir	W/(m·K)	Conductividad térmica efectiva, componente phir	Dominios 1– 4, 6	
ht.k_effzr	ht.kzr	W/(m·K)	Conductividad térmica efectiva, componente zr	Dominios 1– 4, 6	
ht.k_effrphi	ht.krphi	W/(m·K)	Conductividad térmica efectiva, componente rphi	Dominios 1– 4, 6	
ht.k_effphiphi	ht.kphiphi	W/(m·K)	Conductividad térmica efectiva, componente phiphi	Dominios 1– 4, 6	
ht.k_effzphi	ht.kzphi	W/(m·K)	Conductividad térmica efectiva, componente zphi	Dominios 1– 4, 6	
ht.k_effrz	ht.krz	W/(m·K)	Conductividad térmica efectiva,	Dominios 1– 4, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente rz		
ht.k_effphiz	ht.kphiz	W/(m·K)	Conductividad térmica efectiva, componente phiz	Dominios 1– 4, 6	
ht.k_effzz	ht.kzz	W/(m·K)	Conductividad térmica efectiva, componente zz	Dominios 1– 4, 6	
ht.kappaTrr	0	W/(m·K)	Conductividad térmica turbulenta, componente rr	Dominios 1– 4, 6	
ht.kappaTphir	0	W/(m·K)	Conductividad térmica turbulenta, componente phir	Dominios 1– 4, 6	
ht.kappaTzr	0	W/(m·K)	Conductividad térmica turbulenta, componente zr	Dominios 1– 4, 6	
ht.kappaTrphi	0	W/(m·K)	Conductividad térmica turbulenta, componente rphi	Dominios 1– 4, 6	
ht.kappaTphiphi	0	W/(m·K)	Conductividad térmica turbulenta, componente phiphi	Dominios 1– 4, 6	
ht.kappaTzphi	0	W/(m·K)	Conductividad	Dominios 1–	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			térmica turbulenta, componente zphi	4, 6	
ht.kappaTrz	0	W/(m·K)	Conductividad térmica turbulenta, componente rz	Dominios 1– 4, 6	
ht.kappaTphiz	0	W/(m·K)	Conductividad térmica turbulenta, componente phiz	Dominios 1– 4, 6	
ht.kappaTzz	0	W/(m·K)	Conductividad térmica turbulenta, componente zz	Dominios 1– 4, 6	
ht.kmean	0.5*(ht.k_effirr+ht.k _effzz)	W/(m·K)	Conductividad térmica efectiva media	Dominios 1– 4, 6	
ht.ur	0	m/s	Campo de velocidad, componente r	Dominios 1– 4, 6	Operación +
ht.uphi	0	m/s	Campo de velocidad, componente phi	Dominios 1– 4, 6	Operación +
ht.uz	0	m/s	Campo de velocidad, componente z	Dominios 1– 4, 6	Operación +
ht.gradTr	Tr	K/m	Gradiente de temperatura,	Dominios 1– 4, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			componente r		
ht.gradTphi	0	K/m	Gradiente de temperatura, componente phi	Dominios 1– 4, 6	
ht.gradTz	Tz	K/m	Gradiente de temperatura, componente z	Dominios 1– 4, 6	
ht.cellPe	0.5*ht.rho*ht.Cp*h *sqrt(ht.ur^2+ht.up hi^2+ht.uz^2)/ht.k mean	1	Número Peclet de celda	Dominios 1– 4, 6	
ht.Qltot	0	W/m	Fuente de calor total de linea	Puntos 7–16	Operación +
ht.alphaTdrr	ht.k_effrr/ht.C_eff	m²/s	Difusividad térmica, componente rr	Dominios 1– 4, 6	
ht.alphaTdphir	ht.k_effphir/ht.C_ef	m²/s	Difusividad térmica, componente phir	Dominios 1– 4, 6	
ht.alphaTdzr	ht.k_effzr/ht.C_eff	m²/s	Difusividad térmica, componente zr	Dominios 1– 4, 6	
ht.alphaTdrphi	ht.k_effrphi/ht.C_ef	m²/s	Difusividad térmica, componente rphi	Dominios 1– 4, 6	
ht.alphaTdphiphi	ht.k_effphiphi/ht.C _eff	m²/s	Difusividad térmica, componente	Dominios 1– 4, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			phiphi		
ht.alphaTdzphi	ht.k_effzphi/ht.C_ef	m²/s	Difusividad térmica, componente zphi	Dominios 1– 4, 6	
ht.alphaTdrz	ht.k_effrz/ht.C_eff	m²/s	Difusividad térmica, componente rz	Dominios 1– 4, 6	
ht.alphaTdphiz	ht.k_effphiz/ht.C_ef	m²/s	Difusividad térmica, componente phiz	Dominios 1– 4, 6	
ht.alphaTdzz	ht.k_effzz/ht.C_eff	m²/s	Difusividad térmica, componente zz	Dominios 1– 4, 6	
ht.alphaTdMean	ht.kmean/ht.C_eff	m²/s	Difusividad térmica media	Dominios 1– 4, 6	
ht.Tradu	ht.Tu	К	Temperatura, lado superior	Dominios 1– 4, 6	
ht.Tradu	ht.Tu	К	Temperatura, lado superior	Contornos 1– 6, 8, 10–17, 24–26	
ht.Tradd	ht.Td	К	Temperatura en lado inferior	Dominios 1– 4, 6	
ht.Tradd	ht.Td	К	Temperatura en lado inferior	Contornos 1– 6, 8, 10–17, 24–26	
ht.dEi	0	W/m ³	Densidad de tasa de calor	Dominios 1– 4, 6	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
			acumulada total		
ht.dEi0	0	W/m ³	Densidad de tasa de energía total acumulada	Dominios 1– 4, 6	
ht.timeDerivative	0	K/s	Temperatura, primer derivada en el tiempo	Dominios 1– 4, 6	
ht.gamma	1	1	Coeficiente de dilatación adiabática	Dominios 1– 4, 6	
ht.Trho	ht.Tref	К	Temperature for density evaluation	Dominios 1– 4, 6	
ht.dfltopaque	1	1	Opacidad predeterminada	Dominios 1– 4, 6	
ht.bt1.pref	1[atm]	Ра	Nivel de presión de referencia	Dominios 1– 4, 6	
ht.bt1.dEiInt	ht.bt1.intDom((ht.d Ei- ht.Qm*ht.Ei)*ht.bt1 .varIntSpa)	W	Tasa de calor acumulado total	Global	
ht.bt1.dEi0Int	ht.bt1.intDom((ht.d Ei0- ht.Qm*ht.H)*ht.bt1 .varIntSpa)	W	Tasa de energía total acumulada	Global	
ht.bt1.ntfluxInt	ht.bt1.intExtBnd(ht. ntflux*ht.bt1.varInt Spa)+ht.bt1.intExtB ndUp(ht.ntflux_u*h	W	Tasa neta de calor total	Global	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	t.bt1.varIntSpa)+ht. bt1.intExtBndDown (ht.ntflux_d*ht.bt1. varIntSpa)				
ht.bt1.ntefluxInt	ht.bt1.intExtBnd(ht. nteflux*ht.bt1.varIn tSpa)+ht.bt1.intExt BndUp(ht.nteflux_u *ht.bt1.varIntSpa)+ ht.bt1.intExtBndDo wn(ht.nteflux_d*ht. bt1.varIntSpa)	W	Tasa neta de energía total	Global	
ht.bt1.QInt	ht.bt1.intDom(ht.Qt ot*ht.bt1.varIntSpa) - ht.bt1.intIntBnd(ht. ndflux_u*up(ht.bt1. varIntSpa)+ht.ndflu x_d*down(ht.bt1.va rIntSpa))	W	Fuente de calor total	Global	
ht.bt1.WnsInt	ht.bt1.intDom(ht.p A*(d(ht.ur,r)+if(abs (r)<0.001*h_spatial ,d(ht.ur,r),ht.ur/r)+d (ht.uz,z))*ht.bt1.var IntSpa)	W	Fuente de trabajo total	Global	
ht.bt1.WInt	0	W	Fuente de trabajo total	Global	
ht.bt1.varIntSpa	2*ht.d*pi*r	m	Variable intermedia	Dominios 1– 4, 6	Meta

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.helem	h_spatial	m	Tamaño de elemento	Dominios 1– 4, 6	

2.1.1.30.Funciones de forma

Nombre	Función de forma	Unidad	Descripción	Marco de forma	Selección
Т	Lagrange (Cuadrático)	K	Temperatura	Marco espacial	Dominios 1– 4, 6

2.1.1.31.Bioheat 1

Bioheat 1

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

ECUACIONES

$\rho C_{p} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{bio}}$ $Q_{\text{bio}} = \rho_{\text{b}} C_{p,\text{b}} \omega_{\text{b}} (T_{\text{b}} - T) + Q_{\text{met}}$

2.1.1.31.1.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.Q	ht.rhobl*ht.Cp_b*ht.ome gab*(ht.Tb-T)+ht.Qmet	W/m ³	Fuente de calor	Dominios 1– 4, 6	Operación +
ht.Qtot	ht.rhobl*ht.Cp_b*ht.ome gab*(ht.Tb-T)+ht.Qmet	W/m ³	Fuente de calor total	Dominios 1– 4, 6	Operación +
ht.Qmet	0	W/m ³	Fuente de calor metabólica	Dominios 1– 4, 6	Operación +
ht.Tb	Ttissue	К	Temperatura de sangre arterial	Dominios 1– 4, 6	
ht.Cp_b	0	J/(kg·K)	Calor específico, sangre	Dominios 1– 4, 6	
ht.omegab	0	1/s	Tasa de perfusión de la sangre	Dominios 1– 4, 6	
ht.rhobl	0	kg/m³	Densidad, sangre	Dominios 1– 4, 6	

2.5.4.Valores iniciales Resto

Valores iniciales Resto

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Todos los dominios

2.1.1.32.Valores iniciales

Description	Value
Temperatura	Definido por el usuario
Temperatura	Tamb

2.5.5.Axial Symmetry 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Todos los contornos

2.5.6.Thermal Insulation 1

Thermal Insulation 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Todos los contornos

ECUACIONES

 $-\mathbf{n} \cdot \mathbf{q} = 0$

2.1.1.33.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.ins1.ntfluxInt	ht.ins1.intExtBnd(ht.ntfl ux*ht.ins1.varIntSpa)	W	Tasa neta de calor total	Global	
ht.ins1.ntefluxInt	ht.ins1.intExtBnd(ht.ntef lux*ht.ins1.varIntSpa)	W	Tasa neta de energía total	Global	
ht.ins1.ntfluxInt_ u	ht.ins1.intIntBnd(ht.ntflu x_u*up(ht.ins1.varIntSp a))	W	Tasa neta de calor total, lado positiva	Global	
ht.ins1.ntefluxInt _u	ht.ins1.intIntBnd(ht.ntefl ux_u*up(ht.ins1.varIntS pa))	W	Tasa neta de energía total, lado positiva	Global	
ht.ins1.ntfluxInt_ d	ht.ins1.intIntBnd(ht.ntflu x_d*down(ht.ins1.varInt Spa))	W	Tasa neta de calor total, lado negativa	Global	
ht.ins1.ntefluxInt _d	ht.ins1.intIntBnd(ht.ntefl ux_d*down(ht.ins1.varI ntSpa))	W	Tasa neta de energía total, lado negativa	Global	
ht.ins1.Tave	nojac(ht.ins1.intBnd(ht.i ns1.varIntSpa*ht.rho*ht. Cp*T*max(abs(ht.ur*ht. nr+ht.uphi*ht.nphi+ht.uz	K	Temperatura promedio ponderada	Global	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	*ht.nz),eps)))/nojac(ht.in s1.intBnd(ht.ins1.varIntS pa*ht.rho*ht.Cp*max(ab s(ht.ur*ht.nr+ht.uphi*ht. nphi+ht.uz*ht.nz),eps)))				
ht.ins1.varIntSpa	2*ht.d*pi*r	m	Variable intermedia	Contornos 14–15, 24, 26	Meta

2.1.1.34. Funciones de forma

Nombre	Función de forma	Unidad	Descripción	Marco de forma	Selección	Detalles
Т	Lagrange (Cuadrático)	К	Temperatura	Marco espacial	No hay contornos	Abertura
Т	Lagrange (Cuadrático)	К	Temperatura	Material	No hay contornos	Abertura
Т	Lagrange (Cuadrático)	К	Temperatura	Geometría	No hay contornos	Abertura
Т	Lagrange (Cuadrático)	К	Temperatura	Malla	No hay contornos	Abertura

2.5.7.Heat Source 1

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominio 4

ECUACIONES

 $Q = Q_0$

2.1.1.35.Fuente de calor

Description	Value
Fuente de calor	Origen general
Fuente de calor	Definido por el usuario
Fuente de calor	acpr.Q_pw

2.1.1.36.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.Q	ht.hs1.Q*spatial.detInvF	W/m ³	Fuente de calor	Dominio 4	Operación +
ht.Qtot	ht.hs1.Q*spatial.detInvF	W/m ³	Fuente de calor total	Dominio 4	Operación +
ht.hs1.Q0	acpr.Q_pw	W/m ³	Fuente de calor	Dominio 4	
ht.hs1.Q	ht.hs1.Q0	W/m ³	Fuente de calor	Dominio 4	

2.5.8.Temperature 1

Temperature 1

SELECCIÓN

Nivel de entidad geométrico	Contorno
Selección	Geometría geom1: Dimensión 1: Contornos 6, 8, 16–17

ECUACIONES

 $T = T_0$

2.1.1.37.Temperatura

SETTINGS

Description	Value
Temperatura	Definido por el usuario
Temperatura	ТО

2.1.1.38.Variables

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
ht.T0	то	К	Temperatura	Contornos 6, 8, 16–17	Operación +
ht.temp1.ntfluxIn t	ht.temp1.intExtBnd(ht. ntflux*ht.temp1.varIntS pa)	W	Tasa neta de calor total	Global	
ht.temp1.ntefluxI nt	ht.temp1.intExtBnd(ht. nteflux*ht.temp1.varInt Spa)	W	Tasa neta de energía total	Global	
ht.temp1.ntfluxIn t_u	ht.temp1.intIntBnd(ht.nt flux_u*up(ht.temp1.var IntSpa))	W	Tasa neta de calor total, lado positiva	Global	
ht.temp1.ntefluxI nt_u	ht.temp1.intIntBnd(ht.nt eflux_u*up(ht.temp1.va rIntSpa))	W	Tasa neta de energía total, lado positiva	Global	
ht.temp1.ntfluxIn t_d	ht.temp1.intIntBnd(ht.nt flux_d*down(ht.temp1. varIntSpa))	W	Tasa neta de calor total, lado negativa	Global	
ht.temp1.ntefluxI nt_d	ht.temp1.intIntBnd(ht.nt eflux_d*down(ht.temp1	W	Tasa neta de energía total,	Global	

Nombre	Expresión	Unidad	Descripción	Selección	Detalles
	.varIntSpa))		lado negativa		
ht.temp1.Tave	nojac(ht.temp1.intBnd(K	Temperatura	Global	
	ht.temp1.varIntSpa*ht.r		promedio		
	ho*ht.Cp*T*max(abs(h		ponderada		
	t.ur*ht.nr+ht.uphi*ht.np				
	hi+ht.uz*ht.nz),eps)))/n				
	ojac(ht.temp1.intBnd(ht				
	.temp1.varIntSpa*ht.rh				
	o*ht.Cp*max(abs(ht.ur				
	*ht.nr+ht.uphi*ht.nphi+				
	ht.uz*ht.nz),eps)))				
ht.temp1.varIntS	2*ht.d*pi*r	m	Variable	Contornos 6,	Meta
ра			intermedia	8, 16–17	

2.5.9.Valores iniciales Tissue

Valores iniciales Tissue

2.1.1.39.Valores iniciales

SETTINGS

Description	Value
Temperatura	Definido por el usuario
Temperatura	Ttissue

2.1.1.40.Variables

Nombre	Expresión	Unidad	Descripción	Selección
ht.Tinit	Ttissue	K	Temperatura	Dominio 6

2.5.10.Valores iniciales etilenglicol

Valores iniciales etilenglicol

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 1–4

2.1.1.41.Valores iniciales

SETTINGS

Description	Value
Temperatura	Definido por el usuario
Temperatura	220

2.1.1.42.Variables

Nombre	Expresión	Unidad	Descripción	Selección
ht.Tinit	220	K	Temperatura	Dominios 1–4

2.5.11.Fluido 1

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: No hay dominios

ECUACIONES

 $\frac{\rho C_p \mathbf{u} \cdot \nabla T}{\mathbf{q} = -k \nabla T} + \frac{\nabla \cdot \mathbf{q}}{\nabla C_p} = Q + Q_p + Q_{\text{vd}}$

2.1.1.43.Convección de calor

SETTINGS

Description	Value
Campo de velocidad	Definido por el usuario
Campo de velocidad	{0, 0, 0}

2.1.1.44.Conducción de calor, fluido

SETTINGS

Description	Value
Conductividad térmica	Del material

2.1.1.45.Termodinámica, fluido

Description	Value
Tipo de fluido	Gas/líquido
Densidad	Del material
Capacidad térmica con presión constante	Del material
Coeficiente de dilatación adiabática	Del material

2.1.1.46.Selección de sistema de coordenadas

SETTINGS

Description	Value
Sistema de Coordenadas	Sistema de coordenadas global

2.1.1.47.Entrada del modelo

SETTINGS

Description	Value
Presión absoluta	Common model input
Volume reference temperature	Definido por el usuario
Volume reference temperature	293.15[K]

2.1.1.48.Funciones de forma

Nombre	Función de forma	Unidad	Descripción	Marco de forma	Selección
Т	Lagrange (Cuadrático)	К	Temperatura	Marco espacial	No hay dominios

2.6.MALLAS

2.6.1.Mesh 1 - Acoustics

ESTADÍSTICAS DE MALLA

Descripción	Valor	
Calidad mínima de elemento	0.7593	
Calidad media de elemento	0.9826	
Descripción	Valor	
---------------------	-------	
Triángulo	12842	
Elemento de arista	572	
Elemento de vértice	20	

2.1.1.49.Tamaño (size)

AJUSTES

Descripción	Valor
Tamaño máximo de elemento	1.05
Tamaño mínimo de elemento	0.00209
Factor de curvatura	0.2
Tamaño predefinido	Extremadamente fina

2.1.1.50.Triangular libre 1 (ftri1)

2.6.2.Mesh 2 - Bioheat Transfer

ESTADÍSTICAS DE MALLA

Descripción	Valor
Calidad mínima de elemento	0.2958
Calidad media de elemento	0.9541
Triángulo	2204
Elemento de arista	214
Elemento de vértice	15

Mesh 2 - Bioheat Transfer

2.1.1.51.Tamaño (size)

AJUSTES

Descripción	Valor
Tamaño máximo de elemento	3.87
Tamaño mínimo de elemento	0.0131
Factor de curvatura	0.25
Tasa de crecimiento máxima de elemento	1.25
Tamaño predefinido	Más fina

2.1.1.52.Triangular libre 1 (ftri1)

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 1–4, 6

3.Study 1 - Acoustics

INFORMACIÓN DE LA COMPUTACIÓN

Tiempo de computación	3 s
CPU	Intel64 Family 6 Model 61 Stepping 4, 2 núcleos
Sistema operativo	Windows 10

3.1.FREQUENCY DOMAIN

Frecuencias (Hz) f0

CONFIGURACIÓN DEL ESTUDIO

Descripción	Valor
Incluir no linealidad geometría	Apagado

AJUSTES

Descripción	Valor
Frecuencias	1000000

MALLA

Característica	Valor
Geometry 1	mesh1

SELECCIÓN DE FÍSICAS Y VARIABLES

Interfaz de física	Discretización
Pressure Acoustics, Frequency Domain (acpr)	physics

SELECCIÓN DE MALLAS

Geometría	Malla
Geometry 1 (geom1)	mesh1

3.2.CONFIGURACIONES DEL RESOLVEDOR

3.2.1.Solution 1

2.1.1.53.Compilar ecuaciones: Frequency Domain (st1)

ESTUDIO Y PASO

Descripción	Valor
Usar estudio	Study 1 - Acoustics
Usar paso de estudio	Frequency Domain

LOG

<---- Compilar ecuaciones: Frequency Domain en Study 1 - Acoustics/Solution 1 (sol1) -------Inició en 09-jul-2020 19:19:01. Orden de forma geométrica: Cuadrático Se ejecuta en Intel64 Family 6 Model 61 Stepping 4, GenuineIntel. Using 1 socket with 2 cores in total on DESKTOP-N5QVF99. Memoria disponible: 8.07 GB. Tiempo: 2. Memoria física: 1.64 GB Memoria virtual: 1.93 GB Terminó en 09-jul-2020 19:19:02. ----- Compilar ecuaciones: Frequency Domain en Study 1 - Acoustics/Solution 1 (sol1) ------>

2.1.1.54.Variables dependientes 1 (v1)

GENERAL

Descripción	Valor
Definido por paso estudio	Frequency Domain

CONSTANTES DE CÓMPUTO DE VALOR INICIAL

Nombre constante	\$Fuente de valor inicial
freq	f0

LOG

<---- Variables dependientes 1 en Study 1 - Acoustics/Solution 1 (sol1) ------Inició en 09-jul-2020 19:19:02. Tiempo de solución: 0 s. Memoria física: 1.63 GB Memoria virtual: 1.93 GB Terminó en 09-jul-2020 19:19:02.

----- Variables dependientes 1 en Study 1 - Acoustics/Solution 1 (sol1) ----->

2.1.1.54.1.Presión (comp1.p) (comp1_p)

GENERAL

Descripción	Valor
Variables de campo	comp1.p

2.1.1.54.2.Temperatura (comp1.T) (comp1_T)

GENERAL

Descripción	Valor
Variables de campo	comp1.T
Variables internas	{comp1.uflux.T, comp1.dflux.T}
Resolver para este campo	Apagado

2.1.1.55.Resolvedor estacionario 1 (s1)

GENERAL

Descripción	Valor
Definido por paso estudio	Frequency Domain

LOG

<---- Resolvedor estacionario 1 en Study 1 - Acoustics/Solution 1 (sol1) ------Inició en 09-jul-2020 19:19:03. Resolvedor lineal Número de grados de libertad resueltos para 26057 Se encontraron matrices simétricas. Escala para variables dependientes: Presión (comp1.p): 1 Empleada función de espacio nulo Ortonormal. SolEst Damping Stepsize #Res #Jac #Sol LinErr LinRes Iter 1 0.92 1.0000000 0.92 1 1 1 1.9e-14 4.2e-14 Tiempo de solución: 1 s. Memoria física: 1.65 GB Memoria virtual: 1.97 GB Terminó en 09-jul-2020 19:19:04. ----- Resolvedor estacionario 1 en Study 1 - Acoustics/Solution 1 (sol1) ----->

2.1.1.55.1.Avanzado (aDef)

AJUSTES DE ENSAMBLE

Descripción	Valor
Permitir resultados complejos de funciones con argumento real	Encendido

2.1.1.55.2.Paramétrico 1 (p1)

GENERAL

Descripción	Valor
Definido por paso estudio	Frequency Domain
Ejecutar la continuación de	Ningún parámetro
Reutilizar solución desde el paso anterior	Auto

PARÁMETROS

Nombre de parámetro	Lista de valores de parámetros	Unidad de los parámetros
freq	f0	Hz

2.1.1.55.3.Completamente acoplado 1 (fc1)

GENERAL

Descripción	Valor
Resolvedor lineal	<u>Directo</u>

4.Study 2 - Bioheat Transfer

INFORMACIÓN DE LA COMPUTACIÓN

Tiempo de computación	6 s
CPU	Intel64 Family 6 Model 61 Stepping 4, 2 núcleos
Sistema operativo	Windows 10

4.1.TIME DEPENDENT

Tiempos	Unidad
range(0,time/20,time)	S

CONFIGURACIÓN DEL ESTUDIO

Descripción	Valor
Incluir no linealidad geometría	Apagado

CONFIGURACIÓN DEL ESTUDIO

Descripción	Valor
Tiempos	{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120}

VALORES DE VARIABLES DEPENDIENTE

Descripción	Valor
Ajustes	Controlado por usuario
Método	Solución
Estudio	Study 1 - Acoustics

SELECCIÓN DE FÍSICAS Y VARIABLES

Interfaz de física	Discretización
Bioheat Transfer (ht)	physics

SELECCIÓN DE MALLAS

Geometría	Malla
Geometry 1 (geom1)	mesh2

4.2.CONFIGURACIONES DEL RESOLVEDOR

4.2.1.Solución 2

2.1.1.56.Compilar ecuaciones: Time Dependent (st1)

ESTUDIO Y PASO

Descripción	Valor
Usar estudio	Study 2 - Bioheat Transfer
Usar paso de estudio	Time Dependent

LOG

<---- Compilar ecuaciones: Time Dependent en Study 2 - Bioheat Transfer/Solución 2 (sol2) -------Inició en 09-jul-2020 19:19:18. Orden de forma geométrica: Cuadrático Se ejecuta en Intel64 Family 6 Model 61 Stepping 4, GenuineIntel. Using 1 socket with 2 cores in total on DESKTOP-N5QVF99. Memoria disponible: 8.07 GB. Tiempo: 2. Memoria física: 1.65 GB Memoria virtual: 1.95 GB Terminó en 09-jul-2020 19:19:19. ----- Compilar ecuaciones: Time Dependent en Study 2 - Bioheat Transfer/Solución

2 (SOL2) ------

----->

2.1.1.57.Variables dependientes 1 (v1)

GENERAL

Descripción	Valor
Definido por paso estudio	Time Dependent

ESCALA RESIDUAL

Descripción	Valor	
Método	Manual	

VALORES DE LAS VARIABLES NO COMPUTADAS

Descripción	Valor
Método	Solución
Solución	Solution 1

CONSTANTES DE CÓMPUTO DE VALOR INICIAL

Nombre constante	\$Fuente de valor inicial
t	range(0,time/20,time)
timestep	0.001[s]

LOG

<---- Variables dependientes 1 en Study 2 - Bioheat Transfer/Solución 2 (sol2) -Inició en 09-jul-2020 19:19:19. Valores de las variables no computadas: Solution 1 (sol1), freq=1E6 Hz [Automático]. Tiempo de solución: 0 s. Memoria física: 1.65 GB

Memoria virtual: 1.95 GB

Terminó en 09-jul-2020 19:19:20.

----- Variables dependientes 1 en Study 2 - Bioheat Transfer/Solución 2 (sol2) >

2.1.1.57.1.Presión (comp1.p) (comp1_p)

GENERAL

Descripción	Valor
Variables de campo	comp1.p
Resolver para este campo	Apagado

2.1.1.57.2.Temperatura (comp1.T) (comp1_T)

GENERAL

Descripción	Valor
Variables de campo	comp1.T
Variables internas	{comp1.uflux.T, comp1.dflux.T, comp1.ht.dt2Inv_T}

2.1.1.58.Resolvedor temporal 1 (t1)

GENERAL

Descripción	Valor
Definido por paso estudio	Time Dependent
Tiempos	{0,0.05,0.1,0.15000000000002,0.2,0.25,0.30000000000000000, 0.350000000000003,0.4,0.45,0.5,0.55,0.60000000000000, 0.65,0.7000000000001,0.75,0.8,0.85000000000001,0.9, 0.95000000000001,1}

ESCALADO DE TIEMPO

Descripción	Valor
Orden máximo de BDF	2
Estimación de errores	Excluir algebraico

LOG

<---- Resolvedor temporal 1 en Study 2 - Bioheat Transfer/Solución 2 (sol2) ----Inició en 09-jul-2020 19:19:20. Resolvedor temporal (BDF ida) Número de grados de libertad resueltos: 4585 (mas 2733 grados de libertad internos). Se encontraron matrices simétricas. Escala para variables dependientes: Temperatura (comp1.T): 2.2e+02 Step Time Stepsize Res Jac Sol Order Tfail NLfail LinErr LinRes 0 0 - out 2 3 2 0 3.9e-16 3e-16 1 0.00072404 0.00072404 4 4 1 0 0 3.4e-16 2.9e-16 4 2 0.0014481 0.00072404 5 6 6 1 0 0 3.5e-16 3.1e-16 3 0.0028961 0.0014481 8 6 8 2 0 0 3.3e-16 2.5e-16 4 0.0057923 0.0028961 10 7 10 1 0 0 4.2e-16 3.3e-16 5 0.0086884 0.0028961 12 8 12 0 0 3.2e-16 2.4e-16 1 0.014481 0.0057923 14 9 14 1 0 3.6e-16 2.9e-16 6 0 7 0.020273 0.0057923 16 10 16 1 0 0 4.1e-16 3.1e-16 8 0.031858 0.011585 18 11 18 1 0 0 4e-16 3.6e-16 9 0.043442 0.011585 20 12 20 0 0 3.4e-16 3.1e-16 1 0.05 - out 10 0.066611 0.023169 22 13 22 1 0 0 3.5e-16 3.5e-16 14 24 11 0.08978 0.023169 24 1 0 0 4.4e-16 4.4e-16 0.1 - out 12 0.13612 0.046338 26 15 26 1 0 0 5.3e-16 6.3e-16 Se encontró matrix no simétrica. 0.15 - out 0.2 - out 0.2288 13 0.092677 0 6.6e-16 1.2e-15 28 16 28 1 0 0.25 - out 0.3 - out 14 0.32147 0.092677 0 4.9e-16 1.3e-15 30 17 30 1 0 0.35 - out _ 0.4 - out 15 0.42147 0.1 32 18 32 1 0 0 4.4e-16 1.2e-15 0.45 - out 0.5 - out _ 0.52147 0 5e-16 1.1e-15 16 0.1 34 19 34 1 0 0.55 - out 0.6 - out 0.62147 17 0.1 36 20 36 1 0 0 4.4e-16 1e-15 0.65 - out 0.7 - out 18 0.72147 0.1 38 21 38 0 4.7e-16 9.9e-16 1 0 0.75 - out 0.8 - out 19 0.82147 0.1 40 22 40 2 0 0 4.2e-16 9.3e-16 0.85 - out -0.9 - out 20 0.92147 0.1 2 41 23 41 0 0 4.6e-16 6e-16 0.95 - out _ 1 - out 21 1.0215 0.1 42 24 42 2 0 0 5e-16 6.4e-16 Escalado de tiempo finalizado Tiempo de solución: 3 s. Memoria física: 1.66 GB Memoria virtual: 1.95 GB Terminó en 09-jul-2020 19:19:23. ----- Resolvedor temporal 1 en Study 2 - Bioheat Transfer/Solución 2 (sol2) --->

2.1.1.58.1.Completamente acoplado 1 (fc1)

GENERAL

Descripción	Valor
Resolvedor lineal	Directo, variables de transferencia de calor (ht)

MÉTODO Y TERMINACIÓN

Descripción	Valor
Factor de amortiguamiento	0.9
Actualizar Jacobiano	Una vez por cada paso temporal
Número máximo de iteraciones	5
Estabilización y aceleración	Aceleración de Anderson
Dimensión del espacio de iteraciones	5
Mixing parameter	0.9
Iteration delay	1

2.1.1.58.2.Directo, variables de transferencia de calor (ht) (d1)

GENERAL

Descripción	Valor
Resolvedor	PARDISO
Perturbación de pivote	1.0E-13

5.Results

5.1.DATASETS

5.1.1.Study 1 - Acoustics/Solution 1

SELECCIÓN

Nivel de entidad geométrico	Dominio
Selección	Geometría geom1: Dimensión 2: Dominios 3–4, 6

SOLUCIÓN

Descripción	Valor
Solución	Solution 1
Componente	Save Point Geometry 1

Conjunto de datos: Study 1 - Acoustics/Solution 1

5.1.2.Revolution 2D 1

DATOS

Descripción	Valor
Conjunto de datos	Study 1 - Acoustics/Solution 1

DATOS DE EJE

Descripción	Valor
Método de entrada de eje	Dos puntos
Puntos	$\{\{0,0\},\{0,1\}\}$

CAPAS DE REVOLUCIÓN

Descripción	Valor
Ángulo de inicio	-90
Ángulo de revolución	225

Conjunto de datos: Revolution 2D 1

5.1.3.Mirror 2D 1

DATOS

Descripción	Valor
Conjunto de datos	Study 1 - Acoustics/Solution 1

DATOS DE EJE

Descripción	Valor
Método de entrada de eje	Dos puntos
Puntos	$\{\{0,0\},\{0,1\}\}$

Conjunto de datos: Mirror 2D 1

5.1.4.Cut Line 2D 1

DATOS

Descripción	Valor
Conjunto de datos	Study 1 - Acoustics/Solution 1

DATOS DE LÍNEA

Descripción	Valor
Método de entrada de línea	Dos puntos
Puntos	{{0, 59.6}, {43.6, 59.6}}

AVANZADO

Descripción	Valor
Variable espacial	cln1x
Variables normales	{cln1nx, cln1ny}

Conjunto de datos: Cut Line 2D 1

5.1.5.Study 2 - Bioheat Transfer/Solución 2

SOLUCIÓN

Descripción	Valor
Solución	Solución 2
Componente	Save Point Geometry 1

Conjunto de datos: Study 2 - Bioheat Transfer/Solución 2

Revolución 2D

Datos

Descripción	Valor
Conjunto de datos	Study 2 - Bioheat Transfer/Solución 2

Datos de eje

Descripción	Valor
Método de entrada de eje	Dos puntos
Puntos	$\{\{0,0\},\{0,1\}\}$

Capas de revolución

Descripción	Valor
Ángulo de inicio	-90
Ángulo de revolución	225

Conjunto de datos: Revolución 2D

Linea de corte en 2D 2

Datos

Descripción	Valor
Conjunto de datos	Study 1 - Acoustics/Solution 1

Datos de línea

Descripción	Valor
Método de entrada de línea	Dos puntos
Puntos	{{1.43171, 110.059}, {4.39954, 110.059}}

Descripción	Valor
Variable espacial	cln2x
Variables normales	{cln2nx, cln2ny}

Linea de corte en 2D 3

Datos

Descripción	Valor
Conjunto de datos	Study 2 - Bioheat Transfer/Solución 2

Datos de línea

Descripción	Valor
Método de entrada de línea	Dos puntos
Puntos	{{2.02538, 110.081}, {3.76642, 110.081}}

Descripción	Valor
Variable espacial	cln3x
Variables normales	{cln3nx, cln3ny}

Linea de corte en 2D 4

Datos

Descripción	Valor
Conjunto de datos	Study 2 - Bioheat Transfer/Solución 2

Datos de línea

Descripción	Valor
Método de entrada de línea	Dos puntos
Puntos	{{31.1429, 35.1428}, {31.1429, 135.857}}

Descripción	Valor	
Variable espacial	cln4x	
Variables normales	{cln4nx, cln4ny}	

Linea de corte en 2D 5

Datos

Descripción	Valor
Conjunto de datos	Study 2 - Bioheat Transfer/Solución 2

Datos de línea

Descripción	Valor
Método de entrada de línea	Dos puntos
Puntos	{{2.94069, 50.5837}, {2.99725, 49.4332}}

Descripción	Valor	
Variable espacial	cln5x	
Variables normales	{cln5nx, cln5ny}	

Tables

Evaluation 3D

Valores interactivos 3D

X	У	Z	Value
-0.30588	0.30588	60.271	216.31
-0.34253	0.34253	59.827	216.30
-0.34253	0.34253	59.827	216.30
-0.34253	0.34253	59.827	216.30
0.0000	-0.23395	47.017	300.56
-0.053769	0.053769	68.998	26056
7.1054E-15	-5.5810	48.066	-6925.8
7.1054E-15	-5.5810	48.066	-6925.8
-0.53867	0.53867	49.255	220.00

Trazar grupos

Acoustic Pressure (acpr)

freq(1)=1E6 Hz Superficie: Total acoustic pressure field (Pa)

Superficie: Total acoustic pressure field (Pa)

Sound Pressure Level (acpr)

freq(1)=1E6 Hz Superficie: Sound pressure level (dB)

Superficie: Sound pressure level (dB)

Acoustic Pressure, 3D (acpr)

Superficie: Total acoustic pressure field (Pa)

Sound Pressure Level, 3D (acpr)

Superficie: Sound pressure level (dB)

Acoustic Intensity field

Superficie: Intensity magnitude (W/m²)

Pressure Amplitude Along Axial z-Axis

Gráfico lineal: Total acoustic pressure field (Pa)

Pressure Amplitude Along Radial Axis on the Focal Plane

Gráfico lineal: Total acoustic pressure field (Pa) Gráfico lineal: Total acoustic pressure field (Pa)

Temperature Profile Compared with Acoustic Intensity Profile

Temperature Profile Compared with Acoustic Intensity Profile Along R

Temperature Profile Compared with Acoustic Intensity Profile Along Radial Direction

Temperatura, 3D (ht)

Superficie: Temperatura (K)

Contornos isotérmicos (ht)

Curva de nivel: Temperatura (K)

Grupo gráfico 1D 16

Punto, gráfica: Temperatura (K)

Grupo gráfico 1D 18

Gráfico lineal: Temperatura (K)