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Abstract: In this paper, a new stability criterion for uncertain systems controlled over a communication
network is derived. Bounds on the network induced time-varying delays are assumed to be known, and
no restriction on the derivative of the time-varying delay is imposed allowing for fast time-varying delay
profiles. Both, L2-bounded disturbances and norm-bounded, possibly time-varying, uncertainties are
considered. Stability conditions are obtained based on the Lyapunov-Krasovskii approach, considering
a new treatment of time-varying delays resorting to a polytopic covering of the delay interval. Examples
are provided to demonstrate the reduced conservatism of the proposed conditions with respect to
available works in the literature.
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1. INTRODUCTION

With the development of network technologies, increasing in-
terest is being devoted to the analysis and design of networked
control systems. In these control applications, serial communi-
cation networks are used to exchange information between the
components, generally geographically distributed.

Although the notion of networked control systems (NCSs) is
relatively new, it has captured the attention of many researchers
due to the huge range of potential applications of these tech-
nologies and the challenging control problems it arises. NCSs
have opened up a whole new area of real-world applications,
namely, unmanned vehicles, telerobotics, e.g., long-distance te-
lesurgery applications, Conway et al. (1990), intelligent traffic
control, Varuya (1998), etc.

Nonetheless, closing a control loop over a communication net-
work has to deal with the problem of unreliable, bandwidth
limited communication links, see Zampieri (2008). Data trans-
missions in communication networks unavoidably introduce
time delays and packet losses in the control loops, see Canu-
das de Wit (2006). These problems have motivated the study
of stability and stabilization of systems with network induced
time-varying delay and packet dropouts.

Most of recent works employ delay-dependent conditions to en-
sure the stability of time-delay systems. These delay-dependent
conditions introduce the information of the bounds of the de-
lay in their formulation and get better results that the delay-
independent approaches. The first researches on this field sup-
posed that the delay was constant but unknown, Park (1999),
Moon et al. (2001).
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However, there are many applications, including NCSs, in
which the time delays are in general time-varying. In such
cases, some authors have proposed delay-dependent conditions
using the upper bound of the delay, Fridman and Shaked (2002),
Jiang and Han (2006), He et al. (2007), Shao (2009). Recently,
a growing number of works have proposed the use of the
information of the lower bound of the delay, Jiang and Han
(2006), Shao (2009). Also, the information of the derivative
of the time-varying delay has been introduced, Fridman and
Shaked (2002), He et al. (2007), Shao (2009). They show that
it is possible to improve the results if this information is added
to the functional.

In Fridman et al. (2004) is presented a novel input delay ap-
proach which allows to consider the effect of sampling as a
time delay. With this approach, the ideas and techniques of
time-delay system can be easily applied to NCS. In the afo-
rementioned work, the stability for uncertain systems is also
investigated via polytopic description. Yue et al. (2005) deve-
loped a new stability criteria and controller design method for
systems with parametric uncertainties, using the information of
the lower bound on the time delay to reduce the conservatism.
Moreover, in Naghshtabrizi et al. (2007), resorting to concepts
from infinite-dimensional impulsive systems, a new Lyapunov-
Krasovskii functional is derived obtaining similar results. More
recently, in Jiang et al. (2008), the upper bound of the delay
for which the system remains stable and the H∞ disturbance
rejection has been improved avoiding the use of slack matrices.
As shown in Peaucelle and Gouaisbaut (2005) the use of free
weighting matrices does reduce the conservatism only when
polytopic parameter-dependent Lyapunov functions are sought.

In this paper, we are concerned with the analysis and design of
robust H∞ controllers for uncertain networked control systems.
We present an improved stability criterion for NCS that makes
use of a Lyapunov-Krasovskii functional, providing stability
conditions in terms of a set of linear matrix inequalities (LMIs).
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We introduce a continuous-time domain model in which the
time-varying delays, sampling effects and packet dropouts are
considered via the input delay approach. We take into account
both the upper and lower bounds on the time delay in our delay-
dependent condition.

The paper proposes a different treatment of the time-varying
delays, resorting to a polytopic covering of the time delay
interval, instead of overbounding it with the worst case. In
other words, in some terms that naturally arise in the derivation
of the Lyapunov-Krasovskii functionals as τ(t)xT (t)Z1x(t) or
(τ(t)− τm)xT (t)Z2x(t), (Z1,Z2 > 0), we retain τ(t) instead of
substitute it by its upper and lower bounds accordingly. Thus,
the obtained LMIs conditions depend explicitly on τ(t). The use
of slack matrices is here justified. To prove asymptotic stability,
the LMIs must be feasible simultaneously for the two vertices
of the polytopic covering of the time delay. To solve them, the
LMI toolbox presented in Gahinet et al. (1994) can be used.

The paper is organized as follows. Section 2 is devoted to the
description of the NCS model to be considered. Section 3 is
concerned with the main results. Section 3.1 contains a detailed
exposition of the stability result for the nominal system case.
Systems uncertainties and controller design are developed in
section 3.2 and 3.3 respectively. Section 4 presents the obtained
results. Conclusions are summarized in Section 5.

Notation. R
n denotes the n-dimensional Euclidean space, Rn×m

is the set of n × m real matrices, I is the identity matrix of
appropriate dimensions, ‖ · ‖ stands for the Euclidean vector
norm or the induced matrix 2-norm as appropriate. The notation
X > 0, for X ∈R

n×n means that the matrix X is a real symmetric
matrix positive definite. For an arbitrarily real matrix B and

two real symmetric matrices A and C,

[

A B

∗ C

]

denotes a real

symmetric matrix, where ∗ denotes the entries implied by
symmetry.

2. NCS MODEL AND PRELIMINARIES

Consider the following system with parametric uncertainties
given by:

ẋ(t) = [A + ∆A(t)]x(t)+ [B + ∆B(t)]u(t)+Bωω(t), (1)

z(t) = Cx(t)+ Du(t), (2)

x(t0) = x0, (3)

where x(t) ∈R
n, u(t) ∈R

m and z(t) ∈R
q are the state vector,

control input vector and controlled output, respectively; ω(t) ∈
L2[t0,∞) denotes the external perturbation; A, B, Bω , C and
D are some constant matrices of appropriate dimensions; x0

denotes the initial conditions; ∆A(t) and ∆B(t) denote the
parameter uncertainties, which satisfy the following conditions:

∆A(t) = G1F1(t)E1, (4)

∆B(t) = G2F2(t)E2, (5)

where Gi, Ei (i = 1,2) are known constant matrices of ap-
propriate dimensions and Fi(t) (i = 1,2) are unknown time-
varying matrices, which are Lebesque measurable in t and
satisfy F

T

i
(t)Fi(t) ≤ I.

Consider system (1)-(3) being controlled through a network.
The inclusion of such a network, under a linear control law,
allows the system to be expressed as a hybrid one, as in

Yue et al. (2005). In this approach, the system is modeled
in continuous time with a piecewise constant control input,
which is updated whenever a new control input reaches the
plant. Networked induced delays and packet dropouts are both
considered.

An alternative way, which is the one employed in this work,
is modeling the system as a continuous system with delayed
control input, as was firstly introduced in Mikheev et al. (1988).

Assume that the sensor nodes sample data from the plant in a
time-driven manner, at time instants t = jkh, with h being the
sampling time, and jk (k = 1,2,3, ..) are some integers such that
{ j1, j2, j3, ...} ⊂ {1,2,3, ...} and jk < jk+1.

Let us define t ∈ [tk,tk+1) as the time intervals where the control
input applied to the system is constant, where tk is the time
instant when the control signal, corresponding to the plant state
at t = jkh, reaches the plant.

Therefore, the control input can be written as:

u(t) = Kx(tk − τsc(k)− τca(k)), t ∈ [tk,tk+1), (6)

where τsc(k) and τca(k) are the network induced delays of
the data corresponding to the measured plant state at t =
jkh, from sensor to controller and from controller to actuator,
respectively. The round-trip delay τsa(k) can also be defined as
τsa(k) = τsc(k)+ τca(k).

Thus the controlled system (1)-(3) can be rewritten as:

ẋ(t) = [A + ∆A(t)]x(t)+ [B + ∆B(t)]Kx(t− τ(t))+ Bωω(t), (7)

z(t) = Cx(t)+ DKx(t − τ(t)), ∀t ∈ [tk,tk+1), (8)

x(t) = φ(t), t ∈ [t0 − τM,t0], (9)

where τ(t) = t − tk + τsc(k) + τca(k) and τM is the maximum
allowable delay (see Definition 4). This is the actual model that
will be considered throughout the paper. It is easy to check that
τ(t) is piecewise linear in t, as it represents the time difference
between the k−th sampling time, jkh, and current time t. Figure
1 illustrates a possible evolution of τ(t).

Fig. 1. Qualitative evolution of τ(t)

The following assumptions and definitions will be needed th-
roughout the paper.

Assumption 1. The sensor is clock-driven. The controller and
actuator are event-driven.

Assumption 2. Two constants τsa,τsa ≥ 0, exist such that the
following inequality holds:

τsa ≤ τsa(k) ≤ τ sa,∀k ∈N. (10)

Assumption 3. The maximum number of consecutive data dro-
pouts from sensor to actuator is bounded by np ∈N.
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Furthermore, the following definitions are used throughout the
paper.

Definition 4. Regarding Assumptions 2 and 3, it is possible to
define two constants τm ≥ 0 and τM > τm such that:

τ(t)≥ τ sa = τm, (11)

τ(t)≤ (1 + np)h + τsa = τM . (12)

Definition 5. System (7)-(9) is said to be robustly asymptotica-
lly stable with an H∞ norm bound γ if the following hold:

(1) System (7)-(9) with ω(t) ≡ 0 is robustly asymptotically
stable for all admissible uncertainties ∆A(t) and ∆B(t).

(2) Under the assumption of zero initial condition, the con-
trolled output z(t) satisfies ‖z(t)‖2 ≤ γ‖ω(t)‖2 for any
nonzero ω(t) ∈ L2[0,∞).

3. MAIN RESULTS.

This section applies stability analysis techniques from time-
delay systems to the NCS framework. However, some differen-
ces are introduced. In recent works, in terms as τ(t)xT (t)Z1x(t)
or (τ(t)− τm)xT (t)Z2x(t), (Z1,Z2 > 0), the time delay τ(t) was
substituted by its upper and lower bounds, depending on the
worst case. These bounding techniques bring conservatism to
the developed criteria. Next, a different way to deal with the
time-varying delay is proposed, based on a polytopic descrip-
tion.

First, an LMI-based stability criterion for the nominal system
is derived. Additionally, the H∞ performance of the closed loop
system is considered. Finally, the analysis method is extended
to uncertain systems and an H∞ controller synthesis method is
developed.

3.1 Stability and H∞ performance analysis. Nominal case

Consider the problem of analyzing the stability and H∞ per-
formance of an LTI system subject to time-varying network
induced delays and package dropouts. Focusing our attention
on the following perturbed system:

ẋ(t) = Ax(t)+ BKx(t− τ(t))+ Bωω(t), t ∈ [tk,tk+1), (13)

z(t) = Cx(t)+ Du(t), t ∈ [tk,tk+1), (14)

x(t0) = x0, (15)

we define a Lyapunov-Krasovskii functional inspired on the
functional in He et al. (2007) and conclude the following result:

Lemma 6. Given scalars τm,τM,γ,ε > 0, if there exist matrices
P,Q1,Q2,Z1,Z2 > 0 and any matrices Ni,Mi,Si, i = 1,2, of
appropriate dimensions such that the following LMI is satisfied
for the two vertices of τ(t), given by (11)-(12),

















Γ (τ(t)+ ε)N̄ (τ(t)+ ε− τm)M̄ (τM + ε − τ(t))S̄ ĀU C̄

∗ −(τ(t)+ ε)Z1 0 0 0 0

∗ ∗ −(τ(t)+ ε− τm)Z2 0 0 0

∗ ∗ ∗ −(τM + ε − τ(t))(Z1 +Z2) 0 0

∗ ∗ ∗ ∗ −U 0

∗ ∗ ∗ ∗ ∗ −I

















<0, (16)

where

Γ =











θ11 θ12 M1 −S1 PBω

∗ θ22 M2 −S2 0
∗ ∗ −Q1 0 0
∗ ∗ ∗ −Q2 0

∗ ∗ ∗ ∗ −γ2
I











,

θ11 = PA + A
T

P+ Q1 + Q2 + N1 + N
T

1 ,

θ12 = PBK −N1 + S1 −M1 + N
T

2 ,

θ22 =−N2 −N
T

2 + S2 + S
T

2 −M2 −M
T

2 ,

∆τ = τM − τm,

U = τMZ1 + ∆τZ2,

C̄
T = [C DK 0 0 0 ] ,

Ā
T = [ A BK 0 0 Bω ] ,

N̄
T =

[

N
T

1 N
T

2 0 0 0
]

,

M̄
T =

[

M
T

1 M
T

2 0 0 0
]

,

S̄
T =

[

S
T

1 S
T

2 0 0 0
]

,

then system (13)-(15) with a control network satisfying Assum-
ptions 1-3 is asymptotically stable with an H∞ norm bound γ .

Proof. Construct the following Lyapunov-Krasovskii functio-
nal:

V(t) = x
T (t)Px(t)+

∫

t

t−τm

x
T (s)Q1x(s)ds+

∫

t

t−τM

x
T (s)Q2x(s)ds

+
∫ 0

−τM

∫

t

t+θ
ẋ

T (s)Z1ẋ(s)dsdθ +
∫ −τm

−τM

∫

t

t+θ
ẋ

T (s)Z2ẋ(s)dsdθ . (17)

Taking the time derivative of V (t) along the trajectory of (13)
yields that, for t ∈ [tk,tk+1):

V̇ (t) = 2x
T (t)Pẋ(t)+ x

T (t)(Q1 +Q2)x(t)− x
T (t − τm)Q1x(t − τm)

− x
T (t − τM)Q2x(t − τM)+ ẋ

T (t)(τMZ1 +∆τZ2)ẋ(t)

−
∫

t

t−τM

ẋ
T (s)Z1ẋ(s)ds−

∫

t−τm

t−τM

ẋ
T (s)Z2ẋ(s)ds. (18)

Integral terms in (18) can be rewritten as follows:

∫

t

t−τM

ẋ
T (s)Z1ẋ(s)ds =

∫

t−τ(t)

t−τM

ẋ
T (s)Z1ẋ(s)ds+

∫

t

t−τ(t)
ẋ

T (s)Z1ẋ(s)ds,

∫

t−τm

t−τM

ẋ
T (s)Z2ẋ(s)ds =

∫

t−τ(t)

t−τM

ẋ
T (s)Z2ẋ(s)ds+

∫

t−τm

t−τ(t)
ẋ

T (s)Z2ẋ(s)ds.(19)

The following null terms are added to the right hand side of
(18):

0 = 2[xT (t)N1 + x
T (t − τ(t))N2]

[

x(t)− x(t − τ(t))−
∫

t

t−τ(t)
ẋ(s)ds

]

, (20)

0 = 2[xT (t)S1 + x
T (t − τ(t))S2]

[

x(t − τ(t))− x(t − τM)−
∫

t−τ(t)

t−τM

ẋ(s)ds

]

,

0 = 2[xT (t)M1 + x
T (t − τ(t))M2]

[

x(t − τm)− x(t − τ(t))−
∫

t−τm

t−τ(t)
ẋ(s)ds

]

,

0 = γ2ωT (t)ω(t)− γ2ωT (t)ω(t),

0 = [Cx(t)+DKx(t − τ(t))]T [Cx(t)+DKx(t − τ(t))]− z
T (t)z(t).

Defining the augmented state as:

ξ T (t) =
[

x
T (t) x

T (t − τ(t)) x
T (t − τm) x

T (t − τM) ω(t)
]

,

equation (18) can be rewritten as:

V̇(t) = ξ T (t)(Γ+C̄C̄
T )ξ (t)+ ẋ

T (t)(τMZ1 +∆τZ2)ẋ(t)+

−
∫

t

t−τ(t)
ẋ

T (s)Z1ẋ(s)ds−2ξ T (t)N̄
∫

t

t−τ(t)
ẋ(s)ds

−
∫

t−τm

t−τ(t)
ẋ

T (s)Z2ẋ(s)ds−2ξ T (t)M̄
∫

t−τm

t−τ(t)
ẋ(s)ds

−
∫

t−τ(t)

t−τM

ẋ
T (s)(Z1 +Z2)ẋ(s)ds−2ξ T (t)S̄

∫

t−τ(t)

t−τM

ẋ(s)ds

+ γ2ωT (t)ω(t)− z
T (t)z(t). (21)
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Now, using the well-known upper bound for the inner product
of two vectors:

−2b
T

a−a
T

Xa ≤ b
T

X
−1

b, X > 0, (22)

and introducing a positive scalar ε > 0, the following upper
bounds for the integral terms in (21) can be found:

−
∫

t

t−τ(t)
ẋ

T (s)Z1ẋ(s)ds − 2z
T (t)N̄

∫

t

t−τ(t)
ẋ(s)ds (23)

≤ (τ(t)+ ε)zT (t)N̄Z
−1
1 N̄

T
z(t),

−
∫

t−τm

t−τ(t)
ẋ

T (s)Z2ẋ(s)ds − 2z
T (t)M̄

∫

t−τm

t−τ(t)
ẋ(s)ds (24)

≤ (τ(t)+ ε − τm)zT (t)M̄Z
−1
2 M̄

T
z(t),

−
∫

t−τ(t)

t−τM

ẋ
T (s)(Z1 +Z2)ẋ(s)ds − 2z

T (t)S̄
∫

t−τ(t)

t−τM

ẋ(s)ds (25)

≤ (τM + ε − τ(t))zT (t)S̄(Z1 +Z2)
−1

S̄
T

z(t).

Next, instead of substituting τ(t) by different bounds, we retain
it. Then, combining (21) with (23)-(25), we can show that, for
t ∈ [tk,tk+1),

V̇(t) ≤ ξ T (t)(Γ+(τ(t)+ ε)N̄Z
−1
1 N̄

T +(τ(t)+ ε − τm)M̄Z
−1
2 M̄

T

+ (τM + ε − τ(t))S̄(Z1 +Z2)
−1

S̄
T +C̄C̄

T + ĀUĀ
T )ξ (t)

+ γ2ωT (t)ω(t)− z
T (t)z(t), (26)

By Schur complement it is easy to see from (26) that if (16)
holds then

V̇ (t) ≤−z
T (t)z(t)+ γ2ωT (t)ω(t). (27)

To deduce asymptotic stability the external perturbation ω(t)
is assumed to be zero. From (27) one can obtain that V (t)
decreases for t ∈ [tk,tk+1). Since V (t) is continuous in [t0,∞),
due to the continuity of x(t) in t, then V̇ (xt) ≤ −ρ‖x(t)‖2 for
a sufficient small ρ > 0, which ensure asymptotic stability of
system (13)-(15), see e.g. Hale and Verduyn Lunel (1993).

Next, the H∞ disturbance rejection is proved. In this case the
external perturbations are not assumed to be zero. Integrating
both sides of (27) from tk to t ∈ [tk,tk+1), yields

V (t)−V(tk) ≤−
∫

t

tk

z
T (s)z(s)ds+

∫

t

tk

γ2ωT (s)ω(s)ds. (28)

Since
⋃∞

k=1[tk,tk+1) = [t0,∞) and V (t) is continuous in t since
x(t) is continuous in t, one can see that

V (t)−V(t0) ≤−
∫

t

t0

z
T (s)z(s)ds+

∫

t

t0

γ2ωT (s)ω(s)ds. (29)

Under zero initial condition, the following yields V (t0) ≡ 0.
Moreover, V (t) is always, by definition, greater or equal than
zero. Then, letting t → ∞ it can be shown that

∫ ∞

t0

z
T (s)z(s)ds ≤

∫ ∞

t0

γ2ωT (s)ω(s)ds, (30)

thus ‖z(t)‖2 ≤ γ‖ω(t)‖2.

2

Remark 7. It is necessary to solve the LMI in each vertex
of the polytopic covering of the time delay to guarantee the
asymptotic stability of the system. The scalar parameter ε > 0
needs to be introduced in order to make the LMIs feasible.
Otherwise, some null matrices appears in the diagonal of the
LMIs. It is worth to mention that this modification does not
introduce more conservatism, since ε > 0 can be chosen as
small as necessary, i.e., ε → 0+.

Given network conditions and an LTI system, Lemma 6 can
be used to check the asymptotic stability and H∞ disturbance
attenuation of the closed loop dynamics. However, it does
not offer any guarantees on the stability of uncertain systems.
Models of real systems are always affected by modeling errors.
Therefore, to provide robust analysis methods applicable to real
systems, uncertainties need to be considered. In the following,
the stability criterion is extended in order to consider uncertain
systems.

3.2 Robust stability and H∞ analysis of uncertain systems

Aiming at increasing the practical applicability of the previous
result, the method will be extended to uncertain systems. The-
refore, system (7)-(9) described in Section 2 will be considered.
The stability of this system can be studied by applying the
following theorem.

Theorem 8. Given scalars τm,τM ,γ,ε > 0, if there exist matri-
ces P,Q1,Q2,Z1,Z2 > 0, any matrices Ni,Mi,Si (i = 1,2) of
appropriate dimensions and scalars e1,e2 > 0 such that the
following LMI is satisfied for the two vertices of τ(t), given
by (11)-(12),











Π α1 β1 α2 β2

∗ −e1I 0 0 0
∗ ∗ −e1I 0 0
∗ ∗ ∗ −e2I 0
∗ ∗ ∗ ∗ −e2I











< 0, (31)

where Π is the matrix required to be negative definite by (16)
and

α1 = [GT

1 P 0 0 0 0 0 0 0 G
T

1 U ]T ;

α2 = [GT

2 P 0 0 0 0 0 0 0 G
T

2 U ]T ;

β1 = [e1E1 0 0 0 0 0 0 0 0]T ;

β2 = [0 e2E2 0 0 0 0 0 0 0]T ;

then, system (7)-(9) with a control network satisfying Assum-
ptions 1-3 is robustly asymptotically stable for all admisible
uncertainties ∆A(t),∆B(t), with an H∞ norm bound γ .

Proof. Substituting A and B for A + ∆A(t) and B + ∆B(t)
respectively in (16), taking into account equations (4) and (5),
Π < 0 in (16) can be written as

Π+α1F1(t)β
∗T

1 +β ∗
1 F

T

1 (t)αT

1 +α2F2(t)β
∗T

2 +β ∗
2 F

T

2 (t)αT

2 < 0, (32)

where

β ∗
i =

1

ei

βi, i = 1,2.

By Lemma 2.4 in Xie (1996), the conditions above hold if and
only if there exists some scalars λ1,λ2 > 0 such that
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Π + λ1α1αT

1 +
1

λ1

β ∗
1 β ∗T

1 + λ2α2αT

2 +
1

λ2

β ∗
2 β ∗T

2 < 0. (33)

Using Schur complements and naming ei = 1
λ i

, i = 1,2, yields
(31).

2

3.3 Robust H∞ controller design

Since controller K appears in (31) multiplying variable matrices
of the LMI, Theorem 8 can not be directly used to controller
design. For this purpose, Theorem 8 is modified in order to
design the robust feedback controller K that makes the system
robustly asymptotically stable with an H∞ norm bound γ .

Theorem 9. Given scalars ρ1 > 0,ρ2 > 0 and scalars τm,τM ,γ ,
ε > 0. If there exist matrices X ,Q̃1,Q̃2 > 0, any matrices
Y, Ñi,M̃i, S̃i, i = 1,2, of appropriate dimensions and scalars
µ1,µ2 > 0, such that the LMI (34) is satisfied for the two verti-
ces of τ(t), given by (11)-(12), then, under the controller system

u(t) = Kx(t), with K = YX
−1, system (7)-(9) with a control

network satisfying Assumptions 1-3 is robustly asymptotically
stable for all admisible uncertainties ∆A(t),∆B(t) with an H∞

norm bound γ .

Proof. Define P = Z0,Z1 = ρ1Z0,Z2 = ρ2Z0,ρ1,ρ2 > 0 in
(31) and denote it (31)’. Obviously, Z0 > 0. Pre- and post-
multiplying both sides of (31)’ with diag[X ,X ,X ,X , I,X ,X ,X ,

X ,X , I, I, I, I, I] and its transpose, where X = Z
−1
0 > 0, and intro-

ducing new variables Q̃i = XQiX ,M̃i = XMiX , Ñi = XNiX , S̃i =
XSiX ,µi = 1/e1, i = 1,2, we can obtain (34) by Schur comple-
ment. It is easy to see that (34) implies (31)’. Therefore, from
Theorem 9, we can complete the proof.

2

Solving LMI (34), a feasible feedback controller can be ob-
tained. Using available computational software it is possible
to find the controller that minimizes the disturbance rejection
factor γ .

4. NUMERICAL EXAMPLES

4.1 Example 1

Consider the following system, from Zhang et al. (2001).

ẋ(t) =

[

0 1
0 −0.1

]

x(t)+

[

0
0.1

]

u(t). (35)

To compare our result with another works, we will employ
the same feedback controller as in Zhang et al. (2001), that is,
u(t) = [−3.75 −11.5 ]. The maximum delays τM that guaran-
tee the stability of system (35) controlled over a network are
given in Table 1 for different methods. It is assumed that τm = 0.

Table 1. Maximum delay for different methods

Method τM

Zhang et al. (2001) 4.5×10−4

Yue et al. (2005) 0.8871

Naghshtabrizi et al. (2007) < 0.8871

Jiang et al. (2008) 1.0081

Lemma 6 1.0432

In this example there are not disturbances, so the factor γ can
be chosen as big as necessary. One can observe that our method
is less conservative than others in the literature.

If we consider the effect of the external perturbation on the
system, (35) can be described by,

ẋ(t) =

[

0 1
0 −0.1

]

x(t)+

[

0
0.1

]

u(t)+

[

0.1
0.1

]

ω(t).

z(t) = [ 0 1 ]x(t)+ 0.1u(t). (36)

Next, we consider the H∞ performance of system (36) under the
given controller. For the case of τm = 0 and τM = 0.8695, the
value of γmin for different methods are given in Table 2.

Table 2. Disturbance attenuation obtained for dif-
ferent methods

Method γmin

Yue et al. (2005) 6.82

Jiang et al. (2008) 1.0005

Lemma 6 0.8724

We obtain better values of γmin than other methods existing in
the literature.

4.2 Example 2

Consider the following uncertain system controlled over a
network, Yue et al. (2005),

ẋ(t) =









−1 0 −0.5
1 −0.5 0

0 0 0.5



+∆A(t)



x(t)+





0

0

1



u(t)+





1

1

1



ω(t).

z(t) =
[

0 1
]

x(t)+0.1u(t). (37)

where ‖∆A(t)‖ ≤ 0.01. With the controller given by u(t) =
[−0.5425 −0.0014 −1.3858 ]x(t) and τM = 0.5, τm = 0.1, in
Yue et al. (2005) is found a γmin = 1.9. For the same situation,
in Jiang et al. (2008) is found a γmin = 1.6242. Using Theorem
8 is found a γmin = 1.6246.

With a controller given by u(t)= [−0.6085 −0.0072 −1.4456 ]
x(t) , in Jiang et al. (2008) is found a γmin = 1.62. Using (31),
we find γmin = 1.6163. We obtain for this example a similar
disturbance rejection.

4.3 Example 3

Consider the following system,

ẋ(t) =

[

0 1
−1 −2

]

x(t)+

[

0
1

]

[−1 1 ]x(t). (38)

The admissible upper bound of the delay τM , which guarantee
the asymptotic stability of the system, are listed in Table 3
with given τm. Again, for this example the disturbance are not
considered, so the value of γ can be chosen freely.

From Table 3, it can be seen that our stability results are less
conservative than those in Jiang and Han (2006), He et al.
(2007) and Shao (2009).
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























ϒ (τ(t)+ ε)Ñ (τ(t)+ ε− τm)M̃ (τM + ε − τ(t))S̃ ᾱ C̃ Ē1 Ē2

∗ −(τ(t)+ ε)ρ1X 0 0 0 0 0 0

∗ ∗ −(τ(t)+ ε− τm)ρ2X 0 0 0 0 0

∗ ∗ ∗ −(τM + ε − τ(t))(ρ1 +ρ2)X 0 0 0 0

∗ ∗ ∗ ∗ α99 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −µ1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −µ2I

























< 0, (34)

where ϒ =















α11 α12 M̃1 −S̃1 Bω

∗ α22 M̃2 −S̃2 0

∗ ∗ −Q̃1 0 0

∗ ∗ ∗ −Q̃2 0

∗ ∗ ∗ ∗ −γ2
I















,

Ñ
T = [ÑT

1 Ñ
T

2 0 0 0];

M̃
T = [M̃T

1 M̃
T

2 0 0 0];

S̃
T = [S̃T

1 S̃
T

2 0 0 0];

ᾱT = [αT

19 αT

29 0 0 αT

59];

C̃
T = [CX

T
DY 0 0 0];

Ē
T

1 = [E1X
T 0 0 0 0];

Ē
T

2 = [0 E2Y 0 0 0];

α11 = AX +XA
T + Q̃1 + Q̃2 + Ñ1 + Ñ

T

1 + µ1D1D
T

1 + µ2D2D
T

2

α12 = BY − Ñ1 + S̃1 − M̃1 + Ñ
T

2

α19 = (τMρ1 +∆τρ2)(XA
T + µ1D1D

T

1 + µ2D2D
T

2 )

α22 = −Ñ2 − Ñ
T

2 + S̃2 + S̃
T

2 − M̃2 − M̃
T

2

α29 = (τMρ1 +∆τρ2)Y
T

B
T

α59 = (τMρ1 +∆τρ2)B
T

ω

α99 = −(τMρ1 +∆τρ2)X +(τMρ1 +∆τρ2)
2(µ1D1D

T

1 + µ2D2D
T

2 )

Table 3. Maximum delay for various τm

Method τm 0.3 0.5 0.8 1

Jiang and Han (2006) τM 0.91 1.07 1.33 1.50

He et al. (2007) τM 0.9431 1.0991 1.3476 1.5187

Shao (2009) τM 1.0715 1.2191 1.4539 1.6169

Lemma 6 τM 1.1986 1.3399 1.5697 1.7298

5. CONCLUSIONS

The stability and disturbance attenuation problem have been
investigated using a Lyapunov-Krasovskii functional. By cove-
ring time-varying delay with a polytope, less conservative LMI
criteria can be obtained. Some examples are given to illustrate
the reduced conservatism of this result.
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