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Abstract: In this paper, a Robust Networked Control System (RNCS) subject to data losses
constraints is considered. These data losses are modelled as an independent sequence of i.i.d.
Bernoulli random variable. This random variable is replaced by an additive noise plus a gain,
which is equal to the successful transmission probability in the feedback loop. Also, structural
uncertainties in the model of the plant are considered.
To cope with this problem, a mixed H2/H∞ control technique is proposed in this work. In this
way, the H2 approach is used to stabilize the NCS taking into account the probability of data
dropouts, while the H∞ approach is in charge of making the closed-loop system robust enough
against structural uncertainties of the nominal model.

Keywords: Control under communication constraints, control and estimation with data loss
and networked embedded control systems.

1. INTRODUCTION

Nowadays, control systems wherein a communication net-
work exits are getting importance more and more. Usually,
the communication network connects some elements of the
control system. This kind of systems and their character-
istics are widely described in Hespanha et al. (2007) and
Zhang et al. (2001).

There are a lot of studies in the literature about the main
problems associated with Networked Control Systems.
One of these problems is the related with the variable
delays in the data transmission (see, for example, Gu and
Chen (2003)). One way to approach this issue is to resort
Lyapunov-Krasovskii functionals (see, for example, Millan
et al. (2010) and Yue et al. (2005)).

Another important topic to be studied in NCSs is the
network-induced data loss. This kind of problem occurs
when the communication channel is not able to transmit
the data and it get lost. This may occurs, for instance,
due to colissions or low SNR (signal to noise ratio). There
are differents ways to deal with these kind of NCSs. One
way is the use of predictive control, which makes possible
to calculate future model-based data and to use them to
compute the control actions. Some examples of network
control based on MPC for linear and non-linear systems
can be found in Zhang et al. (2006), Millan et al. (2008)
and in Muñoz and Christofides (2008).

A different way to deal with NCS subject to data dropouts
constraints consists in modeling the dropouts by means
of a switched system, i.e., a Markov jump linear system
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19154.), and the European Commission(EC) (FeedNetBack Project,
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(MJLS). Related with this approach, Ling and Lemmon
(2004) presents a result which shows that, for a specific
NCS architecture subject to data dropouts constraints, the
resulting MJLS is equivalent to a linear system with an
external noise source. This noise has the particularity of
having a variance that is proportional to the variance of
another signal within the initial control loop. This result is
used in Silva et al. (2009) to show that there exits a second
order moments equivalence between the considered NCS
and an auxiliary control system. In this auxiliary control
system, the unreliable control channel has been replace by
an additive i.i.d. noise channel that has a Signal to Noise
Ratio (SNR) constraint. In that paper, the probability of
data losses is a fixed value that is used in the control
synthesis. The objective in Silva et al. (2009) is to minimize
the error covariance designing the controller via Youla
parametrization. However, in that work only a perfect
LTI nominal model is considered, and therefore robust
properties are not guaranteed.

In this paper, an NCS wherein a communication channel
with a data dropouts source exists is considered, as well
as structural uncertainties in the plant. Therefore, the
main goal of this work is to find a robust controller for
the plant with uncertainties and with data losses in the
transmission; also finding out the minimal probability of
success in the transmission such thatmean square stability
(MSS) and robustness properties can be guaranteed. A
mixed H2/H∞ control approach is proposed in such a way
that both structural uncertainties in the plant and data
losses can be tolerated.

The remainder of the paper is organized as follows: In
Section 2, a brief summary of the mixed H2/H∞ con-
trol problem theory is exposed. In Section 3 the control
problem to be solved is presented. Section 4 shows the
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architecture of the control scheme. Section 5 includes the
obtained results with an example. Finally, Section 6 draws
the main conclusions of the paper.

2. MIXED H2/H∞ CONTROL PROBLEM

In this section, a brief mixed H2/H∞ control approach
is described. Further information can be found in Zhou
et al. (1996) and Doyle et al. (1994). The control system
described in Figure 1 is considered, where the generalized
plant P (z) and the controller C(z) are both assumed
to be real-rational and proper. The signals involved in
the diagram are the following: w′ ∈ Rm1 represents the
disturbance vector, u ∈ Rm2 is the control input, z∞ ∈
Rp1 and z2 ∈ Rp2 are the error vectors, the first one for
the measurement of the H∞ performance, and the second
one for the H2 performance. The measurement supplied to
the controller is represented by m ∈ Rp3 .

P(z)

C(z)

Z

Z

mu

w  ∞

2

Fig. 1. Mixed H2/H∞ synthesis

The synthesis problem considered in this approach consists
in finding a suboptimal LTI controller C(z) that minimizes
the following mixed H2/H∞ criterion:

Min α ‖T∞‖
2

∞
+ β ‖T2‖

2

2
, (1)

subject to:

• ‖T∞‖
∞

< γ0
• ‖T2‖2 < ν0

where T∞(z) and T2(z) denote the closed-loop transfer
functions from w′ to z∞ and z2, respectively; and γ0,
ν0 ∈ R+.

As will be shown, the minimization of ‖T2‖2 implies the
minimization of the lower bound of the success probability
in the data transmission.

In order to find out a controller by means of this control
technique, it is necessary to put the original system into
the form of the block diagram shown in Figure 1. To do
this, the original system is changed with a lower linear
fractional transformation.

In this case, T∞ is chosen to represent a mixed-sensitivity
H∞ control problem, which is widely explained in Sko-
gestad and Postlethwaite (1996). So two weighting func-
tions are chosen: Ws(z) to weight the sensitivity function
S(z) and Wt(z) to weight the complementary sensitivity
function T (z). These weighting functions allow to specify
the range of frequencies of relevance for the corresponding
closed-loop transfer matrix. As it is known, an appropri-
ate shaping of T (z) is desirable for tracking problems,
noise attenuation and for robust stability with respect to
multiplicative output uncertainties. On the other hand,
a convenient shaping of S(z) will allow to improve the

performance of the system. So, this approach is useful to
have an appropriate performance on tracking problems, as
well as for the system robustification against noises and
uncertainties.

3. PROBLEM DEFINITION

This paper is focused on a RNCS wherein the main
problems are the uncertainties in the model of the plant
and the packets dropouts. So, the aim is to design a
controller that stabilize a system subject to these two
problems together.

The uncertainties under consideration will be represented
by the following equation:

G∗(z) = G(z)(I +Wm(z)∆(z)),

where G∗(z) represents all the possible plants, G(z) is
the nominal plant and Wm(z)∆(z) is the multiplicative
uncertainty, with ‖∆(z)‖

∞
< 1.

In the following the way to deal with the information losses
is presented. After that, a more realistic case is considered
including the plant uncertainties.

The packets dropouts imply that there is an unreliable
channel in the feedback path. This situation is illustrated
in Figure 2, where G∗(z) is the plant transfer function,
C(z) is the controller, r is the reference and y is the plant
output. The relation between the channel input v and the
channel output w is:

w(k)
.
= (1− dr(k))v(k), ∀k ∈ N0, ∀v(k) ∈ N, (2)

where dr models data losses, so dr(k) ∈ {0, 1} ∀k ∈ N0.

C(z) G(z)

Wm

∆

+
+

y

G*(z)

r m u

_

v

1-dr

Fig. 2. RNCS with packets dropouts

The notion of stability used for this kind of systems is
described in the following definition.

Definition 1 (Mean square stability) Silva et al.
(2009) Consider a system described by x(k + 1) =
f(x(k), w(k)), where k ∈ N0, f : Rn × Rm → Rn,
x(k) ∈ Rn is the system state at time instant k, x(0) = x0,
where x0 is a second order random variable, and the input
w is a second order wss process independent of x0. The
system is said to be mean square stable (MSS) if and only
if there exit finite µ ∈ Rn and finite M ∈ Rn×n, M ≥ 0,
such that

lim
k→∞

E{x(k)} = µ,

lim
k→∞

E{x(k)x(k)T } = M, (3)
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regardless of the initial state x0.

C(z) G*(z) y
r m u

_

v

q

p
vp

Fig. 3. RNCS with packets dropouts

The uncertainties will be included in the system given
by the following theorem. This result makes possible to
change the original system into another equivalent one.

Theorem 1. (Equivalence) Silva et al. (2009), Ling and
Lemmon (2004) Consider the feedback loop in Figures 2
and 3. It is supossed that p ∈ (0, 1) and Assumptions 1
and 2 from Silva et al. (2009) hold. Then:

(1) If the feedback system depicted in Figure 2 is MSS
and the feedback system in Figure 3 is internally
stable, then the stationary PSDs of the error (e

.
= r−

y) and of all the signals in the loops are the same in
both situations.

(2) The networked system in Figure 2 is MSS if and only
if the feedback loop in Figure 3 is asymptotically
stable and

p

1− p
> ‖Tp(z)‖

2

2
, (4)

where Tp(z) is the transfer function from q to vp in
Figure 3, namely

Tp(z)
.
= −pG∗(z)C(z)(1 + pG∗(z)C(z))−1. (5)

Proof. The proof goes as the same lines as the proofs in
Ling and Lemmon (2004).

As a consequence of Theorem 1, it is known that studying
the MSS of the system in Figure 2 is equivalent to achieve
the stability of the system in Figure 3 while condition (4)
holds. Thereby, the problem can be posed as to find a
controller C(z) that stabilizes the system in Figure 3 and
satisfies the equation (4), taking into account that the
plant G(z) is the nominal plant model and that the closed-
loop system must be robust against the uncertainties in the
plant model.

As before mentioned, structural uncertainties are going to
be considered in the model of the plant G∗(z). Due to
this fact, the mixed sensitivity approach within the H∞

scope allows to impose robust performance by means of
appropriate design of weighting functions. In particular,
it is well known that robust stability can be imposed
by weighting the complementary sensitivity function if
structural multiplicative uncertainty is considered (Ortega
and Rubio (2004), Ortega et al. (2006)), while performance
can be imposed by means of a reasonable weight on the
sensitivity function.

On the other hand, it is necessary that condition (4) holds.
Then, by solving an H2 control problem it is possible to

find the minimal probability of success in the transmission
(p). Therefore, by mixing these two techniques, a mixed
H2/H∞ control problem is formulated, with the follow-

ing cost function to minimize: α ‖T∞‖
2

∞
+ β ‖T2‖

2

2
, where

‖T∞‖
∞

includes some weighting functions to achieve the
system robustification and ‖T2‖2 will be ‖Tp(z)‖2, to im-
pose condition (4).

Problem 1 Consider the RNCS in Figure 2 where the
plant G(z) has bounded structural multiplicative uncer-
tainties. Then, the problem consists in finding a robust
controller C(z), using the RNCS in Figure 3, that achieves
the following conditions simultaneously:

• Minimize ‖T∞‖
∞

to achieve a good performance
on tracking problems and the system robustification
against the plant uncertainties.

• Minimize ‖T2‖2 to calculate the minimal successful
probability of data losses possible for the NCS, im-
posing condition (4), so the systems in the Figures 2
and 3 are equivalents.

4. CONTROLLER DESIGN

In this section the controller synthesis will be performed by
means of the described mixed H2/H∞ control technique.
Some weighting transfer functions will be introduced in
the system to deal with the uncertainties of the plant
model. The augmented system is represented in Figure 4.
The weighting transfer functions Ws(z) and Wt(z) weight
the sensitivity function (S(z)) and the complementary
sensitivity function (T (z)), respectively. The outputs of
these weighting transfer functions are the signals zs and
zt respectively, and they represent the components of the
vector z∞ in Figure 1.

C1(z) G*(z) y
r m1 u1

_

v

q

p

Wt(z)

Ws(z)

m2

u2

z2

zt

zs
C2(z)

Vp

_
e

Fig. 4. RNCS and the weighting transfer functions

It is important to note that the system under considera-
tion (Figure 3), is a non-unitary feedback system. So, in
order to eliminate the steady state errors, a two-degrees-
of-freedom controller is proposed. Therefore, the controller
will be formed by two transfer functions, C1(z) and C2(z).
Also, the sensitivity function (S(z)) and the complemen-
tary sensitivity function (T (z)) expressions will change.
These expressions will be:

S(z) =
1 + C1(z)G(z) (C2(z)p− 1)

1 + C1(z)G(z)C2(z)p
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T (z) =
C1(z)C2(z)G(z)p

1 + C1(z)C2(z)G(z)p

The sensitivity function (S(z)) represents the transfer
function from the reference to the error signal. The comple-
mentary sensitivity function (T (z)) depends on the open-
loop transfer function of the system, which is: L(z) =
C1(z)C2(z)G(z)p, so the control signal u2 should be the
input of the weighting transfer function Wt(z), as it is
represented in Figure 4.

The objectives of the controller are the following:

(1) Minimize the H∞ norm of the closed loop from the
exogenous disturbances vector to the vector z∞.

(2) Minimize the H2 norm of the closed loop signal from
that vector to the signal z2.

So, as mentioned before, the mixed H2/H∞ control prob-
lem will be solved to find a suboptimal controller which
achieves a trade-off between the minimum of the two
norms under consideration. To carry out the synthesis, the
system in Figure 4 has to be expressed, by means of a lower
linear fractional transformation, as in Figure 1. It is easy to
see that, by identifying the terms, the followings equations
hold:

z∞ = [zs zt]
T , w′ = [r q]T ,

P (z) =











Ws(z) 0 | −Ws(z)G(z) 0
0 0 | 0 Wks(z)
0 0 | pG(z) 0
I 0 | 0 −I
0 I | pG(z) 0











With respect to the minimization problem in (1), T∞(z)
and T2(z) are chosen as follows:

‖T2(z)‖2 = ‖Tp(z)‖2

‖T∞(z)‖
∞

=

∥

∥

∥

∥

[

Ws(z)S(z)
Wt(z)T (z)

]∥

∥

∥

∥

∞

The parameters will be chosen in such a way that the
condition (4) holds. This means that:

ν0 =
p

1− p

At this point, it’s worth mentioning some comments in
relation to the choice of the others parameters. It is inter-
esting to note that, if the priority is to achieve the minimal
possible p, it is important to obtain a controller that
provides an H2 norm of T2(z) very close to its minimum.
Then, for this case, the parameter β should be greater than
α. On the contrary, if the interest lies on achieving the best
performance and robustness against noises and uncertain-
ties, it is better to choose the parameter α greater than
β. This means that the resulting controller will provide a
very small H∞ norm of T∞(z).

The probability of success in the transmission p is assumed
to be fixed in the controller synthesis. This is possible if the
network requirements are well-known. In any case, if the

value of p changes, the stability of the closed-loop system
is guaranteed if p is greater than the minimal probability
of success in the transmission obtained.

5. NUMERICAL RESULTS

To illustrate the methodology proposed in this paper,
this section shows the obtained results when the control
strategy is applied to a particular example. In this example
the following unstable nominal plant will be considered:

G(z) =
z − 0.5

z(z − 1.1)

The sampling time will be tm = 0.05s.
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Fig. 5. Uncertainties and Wt

To take into account the uncertainties in the plant, two
non-nominal models have been also considered. To obtain
these two other models, the real plant is supposed to have
unmodelled dynamics, so, high frequency poles are include.
Also a percentage of uncertainty in the model gain has
been considered. From these two systems and the nominal
plant, the multiplicative uncertainties can be computed.
The frequency response of these uncertainties have been
plotted in Figure 5.

From this estimation of the uncertainty, the weighting
transfer function Wt(z) for the complementary sensitivity
function is designed in such way that its modulus must
be greater than the modulus of the uncertainties for all
frequency. The frequency response of Wt(z) has been also
represented in Figure 5.

By solving the mixed H2/H∞ control problem for this
case using some functions of the µ−Analysis and Synthesis
Toolbox for Matlab and considering a success probability
p = 0.7, a robust controller is obtained yielding the
following results:

‖T∞‖
∞

= 0.8441, ‖T2‖2 = 1.3615
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Fig. 6. S(z) of the nominal plant model and Ws(z)

This means that the system can afford a success probabil-
ity p equal to or greater than 0.65, to guarantee MSS and
to preserve the demanded robustness properties.
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In Figure 6 the sensitivity functions of the nominal and
non-nominal plants models and the inverse of the weight-
ing transfer function Ws(z) are represented. This graphic
shows how all the sensitivity functions, of the nominal sys-
tem and systems with uncertainties, are below the inverse
of the weighting function Ws(z). This fact indicates that
the output y can follow the reference r for all the plant
models under consideration, that is, a tracking problem
can be solved although the plant model is not exactly
known.

Figure 7 represents the complementary sensitivity func-
tions of the nominal and non-nominal plants models and
the inverse of the weighting transfer function Wt(z). From

this graphic it is possible to see that all the complementary
sensitivity functions, of the nominal system and systems
with uncertainties, are below the inverse of the weighting
functionWt(z), so the obtained controller is robust against
the uncertainties in the plant model.

To corroborate these results, some simulations have been
carried out with the proposed example. Figure 8 shows
how the system follows the reference with a successful
transmission probability p = 0.7, which is greater than the
minimal p that can provide MSS and robustness properties
for this system. This graphic represents the outputs of
the closed-loop system with the nominal plant, with the
plant with the uncertainties 1 and with the plant with
the uncertainties 2. The results are very similar because
the robustness of the system. However, there exist some
differences between the differents outputs. For example,
the output with the uncertainties 1 has an overshoot that
is greater than the overshoot when the nominal model is
used. With respect to the output with the uncertainties 2,
the overshoot is reduced with respect the other cases, but
the stationary performance is worse.

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

Time, t

P
l
a
n
t
 
o
u
t
p
u
t
,
 
y

 

 

Reference

Nominal plant

Plant 1

Plant 2

Fig. 8. Simulation results with p = 0.7

The outputs of the different systems for a value of p = 0.9
are shown in Figure 9. In this case, the probability of suc-
cess in the transmission has been increased, although the
controller used in these simulations is the one calculated
for p = 0.7. Obviously, the results are better than in the
ones presented in Figure 8, but the differences between
the performance with the different systems is the same
as in the case of p = 0.7. Also, there are steady state
errors because the controller is the calculated for p = 0.7
so the feedback is non-unitary. These steady state errors
might be avoid by calculating the controller using p = 0.9,
but the objective is to compare the results with the same
controller, supposing that p have changed in the network.

Finally, Figure 10 presents the outputs of all the systems
imposing p = 0.4, while using the same controller as in the
precedings simulations. Obviously, the performances get
worse for all the systems, and in the case of the plant with
the uncertainties 1 and 2, the closed-loop system becomes
unstable. So, with p = 0.4, the robust stability is lost.
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Fig. 9. Simulation results with p = 0.90
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6. CONCLUSIONS

The paper has focused on a NCS subject to data dropouts
constraints. In particular, control loops for SISO LTI
plants, where the feedback path comprises a communi-
cation channel that produces data losses, are considered.
This system has been studied as an equivalent one wherein
the unreliable channel has been replaced by an additive
i.i.d. noise channel, plus a gain.

The objective of this paper has been the synthesis of a
controller that avoid the model uncertainties and support
the failed transmissions. Also, the lower bound of the
success probability in the transmission has been found.
To perform this task, a mixed H2/H∞ control problem
has been proposed. To obtain a robust controller, some
functions have been chosen to weight some sensitivity func-
tions. Moreover, from this control problem, the minimal
successful transmission probability is obtained such that
MSS and robustness properties for the closed-loop system
are guaranteed.

Finally, an example has been exposed to obtain some
numerical results that illustrate the closed-loop system
performance. These simulation results corroborated that
robust performance is achieved if the successful probabil-
ity transmission is higher than the minimum computed,
while the differents systems performances get worse, until

the robust stability is lost, as the successful probability
transmission decreases.
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