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Abstract: This paper considers the problem of designing explicit measurement
feedback H∞ control laws for a class of Euler-Lagrange systems. For these systems
the joint positions are assumed as outputs of the system, while velocity measures
are to be estimated from an observer+controller structure. The main contribution
of this work lies in the explicit formulation of the dynamic structure of a
joined observer+controller that guarantees local asymptotic stability as well as
attenuation of disturbances according to an H∞ framework. In order to illustrate
this methodology, experimental results are shown on a 2 dof gyrostabilized
platform. Copyright c©2005 IFAC.
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1. INTRODUCTION

The vast majority of current control techniques
for electromechanical systems are based on com-
plete feedback of the system variables. Actually,
even simple control laws as PD control, require
measurement of all the state variables, positions
and velocities.

Nonetheless, most practical electromechanical sys-
tems frequently omit velocity sensor due to sav-
ings in costs, volume or weight that can be ob-
tained in this way. As a consequence, only mea-
sures of the joint displacements are usually avail-
able. This fact typically yields high-precision low-
noise position signals, and by contrast, the ve-
locity must be obtained from numerical estima-
tion from these position signals. This results in a
noisy velocity signal that must be carefully filtered

1 The authors wish to thank CICYT for funding this work

under grant DPI2004-06419.

to be used as feedback to the controller. More-
over, even in the case where velocity sensors are
present (tachometers), these often provide low-
quality noisy signals because of its manufactur-
ing technology. Typically, discontinuities in the
magnetic field of the tachometer stator at low
frequencies and other high frequency phenomena
reduce the quality of the measured velocity signal.

In practice, this circumstances may degrade the
dynamic performance of the controlled system
since noisy signals impose limits on the maximum
attainable bandwidth of the controlled systems,
hence reducing the values of the maximum con-
troller gains that can be used.

Thus, this paper addresses the problem of de-
signing a combined observer+controller structure
for a class of Euler-Lagrange systems, such that
the L2-gain of the mapping from the exogenous
input noise to the penalty output is minimized, or
guaranteed to be less than or equal to a prescribed

Copyright (c) 2005 IFAC. All rights reserved
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value, γ. As it is well known, this problem can ex-
pressed according to a nonlinear H∞ framework.

The design of observers for electromechanical sys-
tems is very complex, due to the nonlinear and
coupled structure of the associated dynamic mod-
els. So far in the literature, there have been a
number of approaches to this problem. Some rel-
evant results can be found in (Krener, A.J. and
Isidori, A., 1983; Walcott, B.A.; Corless, M.J. and
Zak, S.H., 1987). Most of these methods provide
conditions under which the original system can be
transformed, via nonlinear change of coordinates,
into special canonical forms where the observer
can be designed. Nonetheless, these conditions are
somehow restrictive and are not met by many
physical systems, as is the case of electromechan-
ical systems.

It is possible to obtain less restrictive condi-
tions when local estimation of the state vec-
tor is considered (Baumann, W.T. and Rugh,
W.J., 1986; Nicosia, S. and Tomei, P. and Tor-
nambe, A., 1989). The main drawback of these
approaches is that the estimator can be used only
in the neighborhood of the design operating point,
and moreover, complex inverse transformations
are required to get the state vector expressed in
physical variables. These observers are somehow
universal in the sense that are designed regardless
of the underlying control strategy implemented.
This often causes that the estimated state, when
used in conjunction with a conventional state feed-
back controller, does not guarantee stability of the
overall controlled system.

This fact motivated the development of com-
bined control-observer design strategies, such that
the stability of the system is guaranteed. Re-
markable result on this respect are, for example,
(Canudas de Wit, C. and Fixot, N. and Åström,
K.J., 1992), where a modified computed torque
technique with an embedded observer structure
is proposed, or (Tomei, P., 1989; Nicosia, S. and
Tomei, P., 1990), where a control structure for
flexible joints robot is proposed, taking into ac-
count the dynamics of the observer, such that
the joined controller+observer system guarantees
stability assuming the observer gains satisfy cer-
tain restrictions. Nonetheless, these results do not
take performance of the system into consideration,
and assume a perfect knowledge of the system
dynamics, so robustness is not considered either.

More recently, the so-called passivity-based ap-
proach, (Ortega and Spong, 1989), has gained
much attention. This methodology exploits the
system’s physical structure to reshape its natural
energy function, such that the control objective
is achieved. This control philosophy is adopted in
(Berguis, H. and Nijmeijer, H., 1994), where a pas-

sivity based approach that embeds the observer
dynamics in the control structure is proposed .

The design of observer structures within the non-
linear H∞ framework was initiated in (Isidori and
Astolfi, 1992; Van der Schaft, 1991) with later de-
velopments in (Reif et al., 1999; Kiriakidis, 2002).
The main drawback of this approach lies in the
difficulty of finding explicit solutions to the set
of coupled PDE Hamilton-Jacobi-Isaacs equations
(HJIE) inherent to the problem formulation. This
has motivated few applications of this methodol-
ogy to real problems, despite its potential good
properties in terms of disturbance rejection or
robustness.

In this paper the problem of designing explicit
measurement feedback H∞ control laws for a class
of Euler-Lagrange systems is considered. For these
systems the joint positions are assumed acces-
sible as outputs of the system, while velocity
measures are to be estimated from a combined
observer+controller structure. This work extends
previous results (Isidori and Astolfi, 1992) on the
topic to the case of time-varying systems, with
applications to reference tracking problems for
Euler-Lagrange systems. For these systems, an
explicit formulation of the dynamic structure of a
combined observer+controller is given, while at-
tenuation of disturbances is guaranteed according
to the H∞ formalism.

2. GENERAL FORMULATION

Consider a dynamical system in the form

ẋ = f(x, t) + g1(x, t)ω + g2(x, t)u (1)

z = h1(x, t) + k12(x, t)u (2)

y = h2(x, t) (3)

where the equation (1) describes the nonlinear
plant dynamics in R

n with state vector x(t).
u(t) ∈ R

mu represents the control action and
ω ∈ R

mω is an exogenous disturbance acting on
the system.

Additionally, equation (2) defines a penalizing
function z ∈ R

mz , and y ∈ R
mp in (3), is con-

sidered the accessible output of the system. Ad-
ditionally, x = 0 is assumed to be an equilibrium
point of the unperturbed unactuated system (1),
which implies f(0, t) = 0, h1(0, t) = 0 y h2(0, t) =
0. Similarly, the functions f(x, t), g1(x, t), g2(x, t),
h1(x, t), h2(x, t) y k12(x, t) are assumed to be
sufficiently smooth.

The dynamic control structure considered in this
paper takes the form
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ξ̇ = η(ξ, y) (4)

u = θ(ξ)

where ξ is the controller state in a neighborhood
Ξ of the origin of the system in R

v and η : Ξ ×
R

mp → R
mv , θ : Ξ → R

mu are smooth functions.
Additionally, η(0, 0) = 0 and θ(0) = 0 is satisfied
to guarantee that the origin is an equilibrium
point of the system as required.

In order to simplify the expressions of the con-
troller the following hypothesis are also assumed

• (H1) hT
1 (x, t)k12(x, t) = 0

• (H2) kT
12(x, t)k12(x, t) = R = RT ≥ 0

With these definitions, the control objective can
be expressed as:given a dynamical system in the

form (1)-(3), obtain a dynamic output feedback

control law, or equivalently, the functions η y θ in

(4), that locally asymptotically stabilize the origin,

satisfying an L2-gain attenuation less than γ for

the mapping ω 7→ z.

That is, the control law u must satisfy the dissi-
pativity inequality

J
∞

(u, γ) =
1

2

∫
∞

0

‖z(x, u, t)‖2dt−
γ2

2

∫
∞

0

‖ω(t)‖2dt ≤ 0

(5)

3. SOLUTION FOR THE GENERAL CASE

In order to formulate a general solution to the
proposed problem, first a standard result (Van der
Schaft, 1991) on the full state feedback solution is
summarized.

3.1 The state feedback case

Theorem 1: Assume there exist a positive definite
function V (x, t), defined in a neighborhood of
x = 0, such that satisfies de HJIE

∂V

∂t
+

∂V

∂x
f −

1

2
u
∗T

Ru
∗ +

γ2

2
ω
∗T

ω
∗ +

1

2
h

T
1 h1 ≤ 0 (6)

where

ω
∗(x, t) =

1

γ2
g

T
1

∂V T

∂x
u
∗(x, t) = −R

−1
g

T
2

∂V T

∂x
(7)

then, the state feedback control law u(x, t) =
u∗(x, t) locally asymptotically stabilizes system
(1), verifying the L2-gain attenuation (5) for the
mapping ω 7→ z.

3.2 Nonlinear H∞ measurement feedback

In this section, the previous result on state feed-
back H∞ control is used, as well as some addi-
tional results, to extend previous results (Isidori

and Astolfi, 1992) on the topic to the case of time-
varying systems.

First, let’s introduce some fairly standard nota-
tion in this context. Thus, ỹ = y − ŷ is the output

observation error, with y the measured output
according to (3), and ŷ the observer estimated
output. If the estimated system state is denoted
x̂, the observer error dynamics can be expressed
in terms of the variable ξ = x − x̂. With these
definitions, the following result can be stated

Theorem 2: Assume two positive definite func-
tions, V (x, t) and W (x, ξ, t), defined in a neigh-
borhood of x = 0 and (x, ξ) = (0, 0) respectively.
If the following conditions are satisfied

• (i) V (x, t) satisfies equation (6)
• (ii) W (x, ξ, t) satisfies

∂W

∂t
+

∂W

∂x
fe1+

∂W

∂ξ
fe2+

1

2
h

T
e he+

γ2

2
ΦT Φ ≤ 0 (8)

where

fe(x, ξ, t) =

(
fe1(x, ξ, t)
fe2(x, ξ, t)

)

= (9)

=

(
f(x, t) + g1(x, t)ω∗(x, t) + g2(x, t)υ∗(ξ, t)

fo(ξ, t) + go(ξ, ŷ, u, t, Γ)

)

he(x, ξ, t) = υ∗(ξ, t) − u∗(x, t) (10)

Φ(x, ξ, t) =
1

γ2

(
∂W (x, ξ, t)

∂x
g1(x, t)

)T

(11)

with ω∗(x, t) defined as in (7), and υ∗(ξ, t),
a realizable approximation to u∗(x, t) in (7),
and Γ a constant matrix value.

• (iii) The subsystem

ẋ = f(x, t)

ξ̇ = fo(ξ, t) + go(ξ, ŷ, 0, t,Γ)

is locally asymptotically stable.

Then, the control law u given by

ξ̇ = fo(ξ, t) + go(ξ, ŷ, u, t, Γ)

u = υ∗(ξ, t) (12)

locally asymptotically stabilizes system (1) veri-
fying the attenuation relation in (5).

Proof: Due to space limitations, the proof must
be unfortunately omitted here. This result can
nonetheless be proved following similar arguments
to those used in (Isidori and Astolfi, 1992) for time
invariant systems. For time-varying systems, as is
the present case, the key argument of the proof lies
on an appropriate application of the well known
Barbalat theorem.
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4. PARTICULARIZATION FOR
EULER-LAGRANGE SYSTEMS

The result in theorem 2 requires obtaining the
solutions to two coupled HJIE, or equivalently,
finding functions V (x, t) and W (x, ξ, t) that sat-
isfies partial differential inequalities (6) and (8).
This is a hard problem in the general case, so in
order to provide with explicit solutions, the prob-
lem is particularized to Euler-Lagrange systems
as is described in the following sections

4.1 Euler-Lagrange systems

Let’s consider in this section Euler-Lagrange sys-
tems that can be expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + ω(t) (13)

where, as is usual notation, M(q) is the posi-
tive definite inertia matrix, C(q, q̇) represents the
Coriolis-centrifugal terms, and G(q) is the poten-
tial energy term. The system is actuated by gen-
eralized force-torque vector τ , under the influence
of exogenous disturbances ω(t).

If the state vector is taken to be x̃ ∈ R
n as

x̃ =

(
q̇ − q̇r

q − qr

)

and assuming that qr(t) is a time varying reference
to be followed, it can be easily interpreted as
an stacked measure of the tracking position and
velocity errors.

Using the following transformation from (Johansson,
1990)

z = T0x̃ T0 =

(
ρI T12

0 I

)

(14)

and applying the control action change

τ = M(q)q̈r + C(q, ˙̂q)q̇r + G(q) −
1

ρ
M(q)T12

˙̂
q̃

−
1

ρ
C(q, ˙̂q)T12q̃ +

1

ρ
u (15)

where T1 = (ρI T12), system (13) can be ex-
pressed as

˙̃x = f(x̃, t) + g1(x̃, t)ω + g2(x̃, t)(u + ur) (16)

with

ur = (ρC(q, q̇r) − M(q)T12 − C(q, T12q̃)) ˙̃y (17)

It is worth to mention that this transformation
yields an applicable control law since (15) only
depends on accessible magnitudes, while nonacce-
sible components (q̇) are lumped on the ur term
in (17).

The rest of terms in (16) can be easily proven to
take the form

f(x̃, t) = T
−1

0

(

−M
−1

(q)(
1

2
Ṁ(q, q̇) + N(q, q̇))) 0

1

ρ
I −

1

ρ
T12

)

T0x̃

(18)

and

g1(x̃, t) = g2(x̃, t) = T−1
0

(
M−1(q)

0

)

(19)

If additionally, equations (2) and (3) of the general
formulation are particularized as

z(x̃, u) =
1

2
x̃T Qx̃ +

1

2
uT Ru

with Q and R positive definite matrices of appro-
priate dimensions, and

y = q − qr =
(
0 I

)
x̃

the following observer structure can be stated

4.2 Observer structure

With these definitions, the generic observer struc-
ture in (4) can take the form

(
˙̂x1

˙̂x2

)

=







−M
−1

C(q, x̂1)x̂1 − M
−1

G + M
−1

�+

+
1

ρ
M

−1
C(q, x̂1)T12ỹ + Γ2ỹ

x̂1 −
1

ρ
T12ỹ + γ1ỹ







q̂ = x̂2 (20)

where functional dependencies on M(q) and G(q)
have been omitted for the sake of compactness,
and Γ1 = γ1In�n and Γ2 ∈ R

n�n is a positive
definite matrix.

Thus, if ξ̃ =
(

˙̃yT ỹT
)T

is defined, the observer

error dynamics can be expressed

˙̃
ξ = T

−1

0

(
−M

−1
(q)C(q, q̇) 0
1

ρ
−

1

ρ
T12

)

T0ξ̃ + (21)

+






1

ρ
M

−1
(q)C(q, ˙̃y)T12ỹ − M

−1
(q)Γ2ỹ − γ1

˙̃y−

−M
−1

(q)C(q, ˙̂q) ˙̃y

0






4.3 Observer explicit formulation

Expression (21) gives the dynamical structure of
system’s observer provided appropriate matrices
Γ2, T12 and scalars ρ ≥ 0, γ1 can be found. The
following result makes use of the generic structure
developed in theorems 1 and 2, to provide analyt-
ical conditions for this unknowns to be found.

Theorem 3 : Assume matrices K1 ≥ 0, T12 and
scalar ρ ≥ 0 can be found such that
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•

(
0 K1

K1 0

)

− TT
1 (R−1 −

1

γ2
I)T1 + Q ≤ 0

• A1 =






ρ2R̄I
1

2
K1 + ρR̄T12

1

2
K1 + ρR̄TT

12 R̄TT
12T12




 ≤ 0

• Γ2 >
T 2

12Mkc‖ ˙̃y‖

ρT12m

I; γ1 >
kckr

Mm

for ‖q̇r(t)‖ ≤

kr ∀t ≥ 0

with R̄ = 1
γ2 I − R−1 and kc satisfying, as is

inherent to Euler-Lagrange systems, the property
‖C(q, q̇)‖ ≤ kc‖q̇‖. Additionally, (·)M and (·)m

denote respectively the maximum and minimum
eigenvalue of the corresponding matrix.

If these conditions are satisfied, the control law

υ∗(ξ, t) = ρ
˙̂
ỹ + T12ỹ locally asymptotically stabi-

lizes the controller+observer system satisfying the
required L2-gain attenuation relation associated
to the H∞ problem.

Moreover, it is possible to give an estimation
of the attraction basin of the combined con-
troller+observer system as

S =

{

‖χ‖ < κmin{
1

kc

(ρ
2
(Mmγ1 − kckr)),

ρT12mkpm

T 2

12M
kc

}

with χ =
(

x̃T ξ̃T
)T

and � = 1
√

2

√
Lm

LM

Proof: Due to space limitations, only a brief
sketch of the proof is given. Theorem 3 is the
result of particularizing the functions V (x, t) and
W (x, ξ, t) in theorem 2, to the following expres-
sions

V (x̃, t) =
1

2
x̃

T
T

T
0

(

M(q) 0

0 K1

)

T0x̃ (22)

and

W (x̃, ξ̃, t) =
1

2
x̃

T
T

T
0

(

M(q) 0

0 K1

)

T0x̃ +

+
1

2
ξ̃

T
T

T
0

(

M(q) 0

0 K2

)

T0ξ̃ (23)

Thus, the first condition of the theorem is ob-
tained by direct substitution of (22) in (6).

Taking now

U(x, ξ, t) = V (x, t) + W (x, ξ, t)

as joined Lyapunov function for the controller +
observer system, it is easy to show that

dU(x, ξ, t)

dt
≤ −

1

2
‖h1(x)‖2 −

1

2
υ
∗T (ξ, t)Rυ

∗(ξ, t)−

−
1

2
γ
2
‖ω

∗(x) + Φ‖2 +

(
∂V

∂x̃
+

∂W

∂x̃

)

g1ur +
∂W

∂ξ̃
go(24)

expression which has been conveniently simplified
by using the relations obtained from substituting
(22) and (23) in (6) and (8) respectively.

Expression (24) can be forced to be negative if the
rightmost terms satisfy

(
∂V

∂x̃
+

∂W

∂x̃

)

g1ur +
∂W

∂ξ̃
go ≤ 0 (25)

This expression can be expanded by using the defi-
nitions in (22) and (23) such that it is transformed
in an expression of the form

(

x̃T ξ̃T
)
(

A1 A3

0 A2

)(
x̃

ξ̃

)

≤ 0 (26)

where A1, A2, and A3 functional matrices of x̃,
ξ̃ and t. Applying at this point the well known
Schur complement result, it is possible to obtain
the second and third conditions of the theorem
from imposing A1 ≤ 0 and A2 ≤ 0 respectively.

The additional result on the attraction basin can
be obtained by computing an upper bound on
expression (26), and assuming bounded reference
velocity (‖q̇r(t)‖ ≤ kr ∀t ≥ 0).

5. EXPERIMENTAL RESULTS

To verify the theoretical analysis, a series of exper-
iments were performed on a gyrostabilized plat-
form. The platform has two degrees of freedom,
such that can orientate any attached device ac-
cording to a range of orientation and elevation co-
ordinates. The system has a couple of gyroscopic
devices to provide attitude relevant information
for feedback control.

Figure 1 shows the tracking performance on the
elevation axis of the platform, for a reference tra-
jectory consisting in a series of steps linked by
smooth fifth order polynomial interpolations. The
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0.2
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0.3

Reference              
Elevation axis position

Time (s)

q r
(t

),
q e

l(
t)

(r
ad

)

Tracking

Fig. 1. Tracking behavior of the controlled plat-
form

velocity estimator was given initially a perturbed
estimation of velocity. This causes the tracking to
be rather poor for the first few seconds. Nonethe-
less, it can be observed how the control structure
gradually corrects the initial error, driving the sys-
tem satisfactorily after the second step. It is worth
to mention that the slight residual tracking error
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that can be observed in the graphics is not a con-
sequence of the control technique employed, but of
the unmodeled friction phenomena. Interestingly,
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−0.5

−0.4
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,
(r
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/s

)
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Estimated velocity

Time (s)

˙̂ q e
l(

t)
(r

ad
/s

)

Fig. 2. Estimated velocity vs. measured velocity

figure 2 shows the behavior of both, the estimated
velocity obtained from the observer structure, and
the velocity obtained from first order derivation
of the position information of the system, which
results in more noisy signal.

6. CONCLUSIONS

This paper has presented an approach to de-
sign nonlinear measurement feedback H∞ con-
trol laws. The paper generalizes previous results
on the topic for the case of time-varying sys-
tems, such that a combined controller+observer

structure can be designed that guarantees local
asymptotic stability of the overall system while
keeping bounded effects of disturbances acting on
the system. More precisely, the control verifies an
L2-gain attenuation for the mapping ω(t) 7→ z less
than a given constant value, γ.

Additionally, a solution for the particular case of
the reference tracking problem in Euler-Lagrange
systems is provided. For this kind of systems the
above mentioned results are particularized, such

that explicit conditions for the existence of the
controller are given.

Finally, experimental results of the proposed tech-
nique are presented with application to a gy-
rostabilized platform, showing good results for the
tracking problem proposed.
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