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Abstract: In this paper the nonlinear H ,  control for robot manipulators introduced 
in (Feng, W., Postlethwaite, I., 1994) is extended. An additional integral term is 
included to cope with persistent disturbances, such as constant weights at the end- 
efecctor. The extended controller is interpreted like a computed torque control with 
and external PID, whose gain matrices vary with the position and velocity of the robot 
joints. A particular case of the cost variable weighting matrix is studied in which the 
resulting external nonlinear PID does not depend on the attenuation level y of the 
H ,  formulation. Finally, experimental results are presented for the RM-10 industrial 
robot. 
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1. INTRODUCTION 

In automatic control, despite considerable effort 
to minimize system modeling errors, uncertain- 
ties are usually present and sometimes are sig- 
nificant. Research on the motion control of rigid 
robot manipulators has known significant progress 
over the last few years. An interesting question is 
whether control laws possess desirable rejection 
properties even if perfect models are assumed to 
be available. In this paper, a vector of disturbance 
signals acting on the input channels (torques) of 
the robot is used to represent the combined effect 
of modeling errors and external disturbances. The 
control system ability to reject these disturbances 
and maintain small tracking error (without exces- 
sive control effort) is measured in a L2 gain sense. 
A control design --formulated into a nonlinear H ,  
optimization problem -is proposed to achieve op- 
timal disturbance rejection. Based on this formu- 
lation, a nonlinear H ,  suboptimal control law is 
derived which consists of a feedforward/feedback 
structure. 

The remainder of the paper is organized as fol- 
lows: An approach upon the concepts of L2 gain 
and H ,  optimization in the context of nonlinear 
systems are introduced in Section 2. In Section 
3 a suboptimal nonlinear controller is derived to 
maximize the robot manipulator ability to reject 
external disturbances acting on the input channel, 
assuming a perfect system model. In Section 4, 
the nonlinear H ,  controller is expressed in the 
form of a computed torque control with an ex- 
ternal nonlinear PID controller. A nonlinear H ,  
controller for the RM-10 robot manipulator is 
designed and experimental results are shown in 
Section 5. Finally, the major conclusions to be 
drawn are given in Section 6. 

2. NONLINEAR H ,  CONTROL APPROACH 

The dynamical equation of a nth order smooth 
nonlinear system which is affected by an unknown 
disturbance can be expressed as follows 

3 = f (5 ,  t )  + G (z, t )  u + K (z, t )  d (1) 
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where TL E SRP is the vector of control inputs, d E 
8 g  is the vector of external disturbances and x E 
Xn is the vector of states. Performance can be 
defined using the cost variable z E ?J?(m+p) given 
by the expression . = w [ h!;)] 

where h ( x )  E SRm is the error vector to be con- 
trolled and W E SR(m+p) (m+p)  is a weighting ma- 
trix. If we assume that the states x are available 
for measurement then the optimal H ,  problem 
can be posed as follows (van der Schaft, A., 1992): 

Find the smallest value y* 2 0 such that for any 
y 2 y* there exists a state feedback TL = u (x, t )  
such that the L 2  gain from d to z is less than or 
equal to  y, that is 

The integral expression on the left-hand side of 
expression (3) can be written as 

11z11; = zTz = [ h'(x) u'] WTW [ 
and matrix WTW can be partitioned as follows 

where 

Qi Q i 2  Q i 3  

Q i 3  Q23 Q3 

Q = [ Q12 Q2 Q23]  C'= [ 21 
The matrices Q and R are symmetric positive 
definite and such that Q - C'R"C'' > 0. 

An optimal control signal u* may be computed 
for system (1) if there exists a smooth solution 
V ( x , t ) ,  with V ( x 0 , t )  0 for t 2 0, to the 
following Hamilton-Jacobi equation: 

av aTv iaTv 1 - + -f(x,t) + -- - -K(z , t )KT(z , t )  
at ax 2 ax [-p 

for each y > d q  2 0. In such case, the 
optimal state feedback control law -see (Feng, W., 
Postlethwaite, I., 1994)- is derived as 

U* = -R-I ( C T h ( x )  + GT (x ,  t )  ") ( 5 )  ax 

3. NONLINEAR H ,  OPTIMIZATION IN 
MANIPULATOR MOTION CONTROL 

The following Euler-Lagrange equations of motion 
are used to describe the behavior of a n degree- 
of-freedom (DOF) robot manipulator 

where q is the vector of joint variables (joint 
positions) and q is its temporal derivative (joint 
speeds). It is supposed that these two vectors 
are available for measurements. The vector 7 

(torques applied on the axis of the joints) is the 
signal input of the system and dT represents the 
total effect of system modelling errors and the 
external disturbances. The inertia matrix A4 ( q )  
is symmetric and positive definite, V ( q , q )  is the 
vector of centripetal and Coriolis terms and G ( q )  
is a vector which consists of the gravitational 
terms. 

Denoting by qT, qT and qT the desired position, 
speed and acceleration of the joints, respectively, 
the tracking error vector x and its derivative x are 
defined as follows: 

2 =  [ : ]  and .=[!I (7) 
Sedt 

where 

= q -  qT, 

e = q - q T ,  

Sedt = ) ( q  - q T )  dt. 

= q - q T ,  

0 

For system (6) a control law of the following 
structure is considered 

7 = M ( q ) G +  v (q,4) + G(q) - (8) 
1 1 -- (A4 ( q )  TX + C(q,Q)Tx)  + -U 
P P 

and the matrices A? ( q )  and N ( q , q )  
computed through the following expressions: 

must be 

Note that the N matrix is skew-symmetric. We will use 
this propriety in the Proofs. 
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It  can be shown that 

I t  should be noted how vector u in control law (8) 
represents the additional control effort necessary 
for attenuating the disturbances. 

Matrix T in equation ( 8 )  can be partitioned as 
follows: 

T =  [Ti T2 G ]  (11) 

with TI = P I ,  where p is a positive scalar and I is 
the nth-order identity matrix. 

On substituting the expression of the control law 
from (8) into the model equation of the robot and 
defining d = pd, yields 

MTx+ CTx = u + d (12) 

which is a 3nth order equation of the nonlinear dy- 
namics of the error. Thereby, the control problem 
is to minimize the tracking error z in the presence 
of d without excessive control effort u. 

Equation (12) can be rewritten into the standard 
form of equation (1) as follows: 

f (2, t )  = To-’ P Toz (13) 

where 

r-M-’C 0 0 1 

and 

r M-’ 1 

L : J  G (z, t )  = K (z, t )  = Tl’ 

where I is the identity matrix, 0 the zero matrix, 
both of n-th order and 

If function h (z) in expression (2) is chosen equal 
to the error vector z, then the following expres- 
sion constitutes a solution of the Hamilton-Jacobi 
equation (4): 

where the matrices Y,  S, 2 and T = [TI  T2 T3 ] 
can be obtained solving the equation 

- (CT + T ) T  R-’ (C’ + T )  = 0 

The proof of this result can be found in appendix 
A at the end of the paper. 

The algorithm to obtain matrix T is the following: 

(1) Compute TI and T3 solving the following 
Riccati algebraic equations: 

TF ( $ I  - R-‘) T3 - C3R-’T3- 

-T,TR-’CT - C 3 ~ - ’  C3 -T + Q 3  = O  
3 

( 2 )  Compute matrix S given by 

-TFR-’C; - el R-T; + Q~~ ) 
(3) Compute T2 solving the Riccati algebraic 

equation: 

TT (-$I - R-I) T2 - C2R-’T2- 

- T ~ R - ’ c ~ - e ~ R - ’ c ~ + Q 2 f 2 S = O  

Substituting for the value of V (2, t )  into equation 
( 5 ) ,  the control law u* which corresponds to the 
H ,  optimal index y is 

u* = (CT + T )  z 

4. THE CONTROL LAW LIKE A 
NONLINEAR PID 

There exists in the literature several control meth- 
ods in which robot controllers have been posed 
as PID control -see, for example, (Ramirez J.A., 
Cervantes I., Kelly R., 2000). In this section it 
is shown how the obtained control law may be 
interpreted like a computed torque control with 
an external nonlinear PID controller. Substituting 
for the expressions of T ,  x and u* in (8 ) ,  and after 
some computations the optimal control law can be 
written as: 

P 
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1 

P 
+ CTx)  - -R-' (C' + T )  x 

Keeping in mind the definition of x ,  the control 
law can be rewritten as follows 

1 
P 

7 * = M & + V + G - - ( M [ T z  T3 O]+ 

+CT + R-' (C' + T ) )  x 

or in a more compact expression: 

T* = M ( q )  & + V (q ,  4) + G (4) - 

- ( K D ~  + Kpe + KIJedt) 
where 

1 

P 
K D  = - ( M T ~  + ( i~ + N )  T~ + R- 1 ( c ~  + T, ) ) 
K p  = (MT.  + (f iI+ N )  T2 + R-I (CF + 

P 
1 

P 
'4, = - ((+ + N )  T3 + R-1 ((7; +q) 

A particular case is obtained if components of the 
weighting matrix W'W satisfy Q1 = w:I, Q2 = 
wZI, Q3 = w ~ I ,  R = w ~ I ,  Q i 2  = Qi3 = Q23 = 0, 
and C1 = C2 = C 3  = 0. In this case the gain 
matrices take the form 

These expressions have an important property: 
they do not depend on the parameter y. Thereby 
we have algebraic expressions to compute the 
general optimal solution for this particular case. 

5. EXPERIMENTAL RESULTS FOR THE 
RM-10 INDUSTRIAL ROBOT 

The RM-10, shown in Figure 1, is a six-degree-of- 
freedom revolute joint manipulator arm. 

All the six joints are driven by DC-brushless low- 
inertia electric motors which provide a uniform 
torque for all joint positions, and enables high 
control torque peaks. Torque is delivered to the 
joint axis through gear reductions, thus RM-10 
is an indirect-drive manipulator. The joints also 
provide an electric brake to block the manipulator 
arm in any position -see (System Robot, 1991). 

Coupled to each motor axis there is a two- 
pole resolver device which provides an accurate 
measurement of the correspondent joint position. 

qz (3 
d 

I 

Fig. 1. The RM-10 Robot Manipulator 

These measures will allow, as usual, the closed- 
loop control of the system. The RM-10 system 
employs a VME bus based architecture, provid- 
ing independent control boards for every joint. 
Particularly, the real-time DS1103 control board, 
dSPACE trade, was employed (Implementation 
Guide, 1999), (MOO, 1998), (MOO, 1990). The 
control board was plugged into the expansion bus 
of a commercial PC, holding a 333MHz PowerPC 
as a main processor and an additional DSP as an 
input/output processor. 

Before accomplishing the design of a controller 
it is necessary to obtain a dynamic model of 
the robot manipulator. According to the Euler- 
Lagrange formulation (Craig, J.J., 1989), the dy- 
namic model of a general n-link rigid-body robot 
is a second order nonlinear equation, as shown in 
Equation 6. 

In this case, the motion equation is complex and 
contains a number of hard-to-handle nonlinear 
terms (Perez, C., 1999). In order to simplify 
the controller design, friction terms in equation 
(6) have been neglected, and included as model 
uncertainty. This yields a very simplified model 
that only takes into account diagonal terms. 

A number of additional parameters are required 
to characterize the dynamic model of the robot 
manipulator, such as link masses and inertias. 
These parameters have been estimated by geomet- 
ric measurements and dynamical experiments of 
the robot arm. In Table 1, the estimated masses 
of the different links of the robot are shown. These 
values may help to make an idea of the character- 
istics of the robot. 

link mass (Kg) 
1 38.65 
2 51.80 
3 84.10 
4 33.89 
5 7.36 
6 5.00 

Table 1. Estimated masses of the links 
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A diagonal WTW weighting matrix has been 
considered to design the controller. Table 2 shows 
the values for the diagonal weighting submatrices 
used for the RM-10 control synthesis. 

Signal to minimize Weighting matrix 
Speed error C 
Position error e 

QI  = ( $ ) ' I  
Q2 = I 

Integral error Jedt 
Additional control effort u 

Q3 = 321 
R = 0.421 

Table 2. Weights for the controller 

In the experiments presented in this paper, the 
position references (which are computed by a 
trajectory generator) are fifth degree polynomials 
between the initial position [ql q 2  q 3  44 45 q 6 ]  = 
[O.O 0.0 0.0 0.0 0.0 0.0 ] rad to final position equal 
to [0.6 - 0.3 - 0.3 0.6 0.6 0.61 rad with initial 
and final speeds and accelerations equal to zero. 
The transition time is 4.3 seconds. 

The position errors and speed errors are shown 
in Figure 2 and 3 respectively, while the control 
signals generated by the controller are presented 
in Figure 4. It can be seen how the performance 
is aceptable for all axes, with small errors in both 
angular positions and velocities. In the same way, 
it should be noted how the position error does not 
tend to zero despite of the integral action. This 
effect is due to a dead zone because of friction in 
the actuators, which is not compensated in this 
work. This fact agrees with the evolution of some 
control signals, whose magnitudes increase until 
their respective actuators leave their dead zones. 

-0o tL  

Fig. 2. Position errors in the six axes of the RM-10 

6. SUMMARY 

In this paper a nonlinear H ,  control for robot ma- 
nipulators has been developed which copes with 
persistent disturbances due to the inclusion of an 
integral term. This controller can be interpreted 
like a computed torque control with an external 
nonlinear PID controller. A particular case has 
been obtained in which the nonlinear PID gains do 

Fig. 3. Speed errors in the six axes of the RM-10 

Fig. 4. Control signals generated by the controller 

not depend on the value of the attenuation level y. 
Finally, experimental results have been presented 
by using an industrial robot which proves the good 
performance supplied by this controller. 
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Appendix A. PROOF OF RESULTS IN 
SECTION 3 

1 1 1 
-Y S - -YT2 -5' - -Y (T3 - Tz) 
P P P 

Tox. 
S + Z -  - ( S + Z ) -  

1 

P P 

1 
P -(s - y ,  1 ( S  - Y)T* - (S - Y )  (T3 - Tz) - 

We will show that the scalar function V (x ,  t )  - 
equation (14)- is the solution for the Hamilton- 
Jacobi equation (4). The gradient of V ( x , t )  is 
given by 

1 
2 +- p i x n  w O i x n ]  

with w E %Ixn and 

d T M  0 0 
wi = x  To 1 Tox, i = l . . . n .  

It is easy to validate that 

[ O i x n  w O i x n ]  ( G ( x , t ) u + K ( x , t ) d )  = O .  

Making some computations we can obtain this 
expression 

1 
2 +- [ O I X ,  w O 1 x n ]  X. 

Using equation (13) the first term of the last 
expression can be written 

xTTT 0 Y S - Y  Tof = x ~ T T x  
[ : : g u y  Z Y Y ]  

X 

s+z-  - (S + Z) 
1 

- (S - Y )  TZ 
P P 

1 

P 
- ( S - Y )  1 - - ( S  - Y )  (T3 - T2) 

and for the second term we have 
1 1 
- [ O i x n  w O l x n ]  X = - x ~ T T x  2 2 

The derivative of V (x, t )  with respect to the time 
is 

Adding the previous expressions we arrive at 

r - N  0 0 1 

Since matrix N is skew-symmetric and due to the 
particular structure of To we can write 

f = -xT Y 2 s  z + 2 s  2. 

at d X  [" s z + 2 s  0 " 1  dV dVT(x , t )  1 -+ 

= T x ,  Also we can compute GT ( x ,  t )  ~ 

and since G (x, t )  = K ( x ,  t )  we have 

dV (2 ,  t )  
d X  

= -xTTT 1 ( $ I  - R-I) T x .  
2 

Using the computed expressions for the terms of 
the Hamilton-Jacobi equation given in (4) and the 
value of h ( x )  = x we have 

0 Y  

s z + 2 s  0 

+ i x ~ T ~  ($1 - R-1) T~ - x ~ ~ ~ ~ - ~ ~ ~ x +  
2 

1 +5xT (Q - CR-'CT) x = 0,  

TOG 
and by simplifying we obtain expression (15). 
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