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Abstract: This paper describes the application of an adaptive LQG/LTR controller to automatic steering 
of ships. The controller is based on Nomoto's model and on the innovation model to identify the discrete 
time system. The benefits of this controller are demonstrated by simulation. 
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1. INTRODUCTION 

A conventional autopilot for ship steering is based 
on the PID algorithm. In several cases manual ad­
justments of the regulator are necessary because 
the dynamics of a ship vary with speed, trim and 
loading. Also disturbances in term of wind, waves, 
currents , etc. , must be take into account . For all 
this, it is of interest to have adaptive autopilots. 
One of the possible solutions to controlling a plant 
with parameters which vary with time is by means 
of a self-tuning regulator . The basic self-tuning 
controller consists of a suitable combination of 
a recursive parameter estimation algorithm com­
bined with a linear controller whose parameters 
are computed from the process parameter esti­
mates. For this it is possible to implement a wide 
variety of self-tuning algorithms (Astrom 1983) . 
This article presents a self-tuning regulator in 
which the controller is an LQG/LTR. That is a 
LQG controller with a mechanism of Loop Transfer 
Recovery (LTR), to leads a more robust controller 
(Doyle 1979) . 
The control structure that we used is decribed in 
section 2. In section 3 we ilustrated the proposed 
method with an example by simulation and finally 
the major conclusions to be drawn are given . 

2. CONTROL STRUCTURE 

There are two different basic operations for con­
trolling a ship : course changing and course keeping 
and in general two different controller structures 
will be necessary. For the second structure (course 
keeping) with small variation about the operating 
point, it is possible to obtain a 3rd order model 
of the system and in most cases this model can 
be simplified to a second order system (Nomoto's 
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model) . It make the relation between the heading 
('I/;), and the rudder (6). 
It is convenient to add a pure time delay to model 
the steering engine dynamics and unmodelled dy­
namics. With this , the transfer function of the 
system is , 

G(s) _ 'I/;(s) _ J( T6 

- 6(s) - s(s + l/T) e- (1) 

The sampled version of the system with the model 
of the disturbances due to wind, waves and mea­
surement errors, described as random process, 
corresponds to the following equations (Astrom 
1983) . 

with : A(z-l) 
B(z-l) 
C(z-l) 

1 + alz- 1 + a2z-2 + a3z-3 

b1z- 1 + b2 z- 2 + b3 z- 3 (2) 

1 + C1Z- 1 + C2Z-2 + C3Z-3 

This model of the system is used for control pro­
pose and it is identifier by ELS in each sampling 
period. It has been verified by extensive experi­
ments on many ships , that the model can indeed 
capture the essencial characteristics of ship steer­
ing dynamics (Astrom 1983) . 
The adaptive control structure used, as we can 
be seen in figure 1, corresponds to that of a self­
tuning regulator (STR) which, in brief, consists in 
calculating the parameters of the regulator sup­
posing that the plant parameters are those given 
by means of an identification algorithm. Recursive 
extended least square as identification algorithm 
has been used. In each sampling period the self­
tuning regulator consists of the following steps : a) 
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Figure 1: Diagram of the self-tuning controller 

An estimation of the parameters of a linear model 
by measuring the inlet and outlet values of the 
process. b) The adjustment of the parameters of 
the regulator. c) The calculation of the control 
signal. 
In this case, the regulator correspond to a 
LQG/LTR controller. The controller parameters 
are calculated on the basis that the estimated pa­
rameters are the true parameters . This implies 
that closed loop process behavior depends, to a 
great extent, on the accuracy of the parameter es­
timate and on the robutness of the controller to 
changes in the parameters of the system. 
Linear Quadratic Gaussian Controller 
Considering the process model, 

It can be written (Astrom 1989), in state space 
form as, 

A= 

x(k + 1) 

y(k) 

( -a1 

-an 

1 

0 

Ax(k) + Bu(k) + Kope(k) ---­",(k) 

Cx(k) + e(k) 
'-v-" 
",(k) 

0 

C = ( 1 0 o ) 
K~ = ( Cl - a1 Cn - an ) 

(4) 

(5) 

Kop is the optimal steady-state gain in the Kalman 
filter. This model is called the innovation model. 
This structure of the model has the advantage of 
obtaining Kop, directly, without having to solve 
the Riccati equation. Introducing the loss func­
tion, 

00 

:J = L (y2(k) + pu2(k)) (6) 
k=O 

the optimal regulator is given by, 

u(k) = -Kcx(k) 
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where Kc = (Rc + BT P B)-l BT PA and P is ob­
tained from the well known Riccati equation: 

AT PA-P-AT P B(Rc+BT P B)-l BT PA+Qc = 0 

with Qc = cTc and Rc = P 
Considering plant model equation 4, we have, 

Mo = var[v1(k), v2(k)] 

Qo = var[v1(k), v1(k)] 

Ro = var[v2(k), v2(k)] 

Kopu; 

Kopu;K~ (7) 

u 2 
e 

with e(k) = y(k) - fj(k) and u; = var[e(k), e(k)] 
The problem of finding optimal Kop brings about 
the so called discrete-time optimal observer prob­
lem or the KBF problem predictive version (Kwak­
ernaak 1972.) This problem is solved by a recur­
rancy. 
The filter version can be used with matrix Ko! 
being obtained from the relationship: Ko! = 
A -1 K op , so that the complete solution of the LQG 

problem, is given by, 

x(k + 1) 
y(k) 

{(k) 
u(k) 

Ax(k) + Bu(k) + Kop[y(k) - fj(k)] 

Cx(k) 

x(k) + Ko! [y(k) - fj(k)] (8) 
-Kc{(k) 

It has been observed that the Linear Quadratic 
Gaussian Controller (LQG) method worked well 
when very precise mathematical models were used, 
but the method was extremely sensitive to impre­
cisions in the parameters and to structural modi­
fications . 
The idea is to try to recuperate the open loop 
transfer function (LTR) which is provided by the 
application of the control law alone, because in 
this way stability is assured, there is little sen­
sitivity, and the temporary specifications are ful­
filled . This can be achieved, in theory, acting on 
the parameters of the Kalman filter so that the 
open loop transfer function, when the Kalman fil­
ter has been introduced, approximates the original 
open loop transfer function . 
For continuous time systems, this can be achieved 
by making the K alman filter gains depend on a 
determined parameter q and the open loop LQG 

asymptotically approximates the open loop LQR 

(Doyle 1979) . It is also possible to make the recu­
peration, in a dual form, by acting on the param­
eters of the loss function in the LQR problem in 
accordance with a sensitivity recovery procedure 
due to Kwakernaak (1972) . 
In the case of discrete systems (Maciejowski 1985), 
it can be shown that for minimum phase systems, 
det(CB) ::j:. 0 and using the filtered version of the 
Kalman filter as observer, perfect recuperation is 
obtained acting on the parameters of the LQR. 

In continuous systems there is a complete dual­
ity between the state vector feedback LQR and the 



state estimation KBF, which allows for the recu­
peration of the two options, given the duality of 
both problems. However in the case of discrete 
systems this duality is not complete. The state 
vector feedback scheme is the dual one of the pre­
dictive version of the observer . Therefore, it is not 
possible to achieve an exact recuperation in the 
case of the Kalman filter modifications. However 
the use of the Kalman filter recuperation option 
frequently yields useful results. 
Then the LQG/LTR method works well for min­
imum phase systems but cannot be relied on for 
non-minimum phase ones. In several cases it works 
well also for non-minimun phase systems, that has 
been proved by simulation studies (Maciejowski 
1985, Lopez 1992) . 
Based in this idea, we propose to modify the 
Kalman filter covariance matrices (that is, to 
change J( op and J( 0/ ), in order to obtain the recu­
peration . To do this the K alman filter is designed 
with some fictitious covariance matrices. The fol­
lowing are used : 

R= Ro 

where Qo and Ro (eq. 7), are nominal covariance 
matrices and q a parameter . 
The Kalman filter is calculated from the modified 
covariance matrix . In this way the greater value 
of the parameter q the nearer it is to the open 
loop transfer function of the LQR . By doing this, 
precision in the state estimation is lost because 
the K alman filter is calculated by fictitious covari­
ances . However robustness is gained . 
Self-tuning Controller 
An explicit self-tuning control algorithm was de­
veloped incorporating the LGQ/LTR design method 
of the previous section, the parameters of the sys­
tem model being determined on-line via recursive 
extended least squares estimation. 
For this, consider the process model of the equa­
tion 3, that for estimation purposes, it can be ex­
pressed as : 

[-y(k - 1), -y(k - 2),·· ., -y(k - n), 

u(k - 1), u(k - 2) , ... , u(k - n), 

e(k - 1),e(k - 2), ·· · ,e(k - n)] 

The parameters identifier is a very important part 
of the self-tuning controllers. There are various 
types of identifiers which are dealt with in the rel­
ative literature. Generally, the most used methods 
is the recursive extended least squares are, because 
of its simplicity and its good convergence charac­
teristics. The algorithm is performed by the fol­
lowing steps : 

1. Select the initial values of P(k) and O(k). 
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2. Read the new values of y(k + 1) and u(k + 1) . 

3. Calculate the a priori error: 

e(k + 1) = y(k + 1) -I{)T(k + I)O(k) 

4. Calculate L(k + 1) given by the expression: 

P(k)l{)(k + 1) 
L(k + 1) = c(k) + I{)T(k + I)P(k)l{)(k + 1) 

5. Calculate the new parameter estimated given 
by: 

O(k + 1) = O(k) + L(k + l)e(k + 1) 

6. Actualize the covariance matrix. 

P(k + 1) = (I - L(k + 1)I{)T (k + 1)) ~g; 

7. Calculate the new forgetting factor c(k + 1) . 

e(k+l)2 
c(k+ 1) = 1- (1_I{)T (k+ I)L(k+ 1)) So 

If c(k + 1) < Cmin Then c(k + 1) = Cmin 

8. Actualize the measurements vector I{)(k + 2) . 

9. Make k = k + 1 and return to step 2. 

In order to reduce the memory of the identifier we 
use a variable forgetting factor (c( k)) (Fortescou 
1981), as has been described previously. 
It is known that the adaptive control is nonlin­
ear and time varying. But it is desirable to make 
the system as linear time invariant as possible 
(Lamaire 1991), because in this way, the con­
trol system is more robust to disturbances than 
a highly nonlinear adaptive controller. 
If the controller is calculated infrequently, the 
adaptive controller reduces to a robust control law , 
that is, the adaptive controller becomes simply the 
best robust linear time invariant control law that 
one could design based only on a priori informa­
tion. 
For all this, the implementation of the method de­
scribed in the previous section, has been make in 
two time scales. Every sampling time, we calcu­
late the control law and the identifier is runnig, 
but the controller are redesigned only every N c 
sampling time. 

3. SIMULATION STUDIES 

In order to study the proposed method the theo­
retic model of a large ship, for two different con­
dition of speed, has been chosen, where for small 
deviations of the angle of the rudder it can be ap­
proximated by Nomoto's second order model so 
that : 

0.001880 -5. 

G1(s) = s(s + 0.006450) e (9) 



0.011085 
C 2 (s) = s(s + 0.01567) (10) 

These models corresponds to a cargo of 161 m with 
two different speeds and it is obtained from (As­
trom 1989) . They have been identified by ELS us­
ing a sampling time of 10 seconds. 
In the starting phase the system is identified by 
ELS algorithm, based on a non-recursive method 
(robust multistep algorithm), and with this, the 
controller is calculated. After then, the plant is 
identified by recursive ELS method and is changed 
from Cl to C2 . In figure 2, where the fixed con-
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Figure 2: System response with fixed regulator 

troller calculated in the starting phase is used, we 
can see that the control effort is high and the out­
put of the system is nearly unstable. Figure 3 
shows the results of applying the adaptive con­
troller explained in the previous section and, as 
can be seen, it is quite satisfactory. 

4. CONCLUSIONS 

A self-tuning regulator with a LQG/LTR controller 
for non-minimum phase systems with no prior 
knowlege of existing noise has been developed. 
The ELS identification method has been used and 
the innovations model has been considered to be 
the system model. The proposed method has been 
applied to the model of a ship and the advantages 
of said methods have been shown by the simula­
tions carried out. 
Acknowledgement: The authors would like to 
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Figure 3: System response with adaptive regulator 
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