
Catalytic P Systems with Weak Priority of
Catalytic Over Non-catalytic Rules

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Vladimir Andrunachievici Institute of Mathematics and Computer Science
Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria
rudi@emcc.at

3 IBISC, Univ Évry, Paris-Saclay University
23, boulevard de France 91034 Évry, France
sergiu.ivanov@ibisc.univ-evry.fr

Summary. Catalytic P systems are among the first variants of membrane systems ever
considered in this area. This variant of systems also features some prominent computa-
tional complexity questions, and in particularly the problem of using only one catalyst: is
one catalyst enough to allow for generating all recursively enumerable sets of multisets?
Several additional ingredients have been shown to be sufficient for obtaining even com-
putational completeness with only one catalyst. In this paper we show that one catalyst
is sufficient for obtaining even computational completeness if catalytic rules have weak
priority over the non-catalytic rules.

1 Introduction

Membrane systems were introduced in [8] as a multiset-rewriting model of com-
puting inspired by the structure and the functioning of the living cell. During two
decades now membrane computing has attracted the interest of many researchers,
and its development is documented in two textbooks, see [9] and [10]. For ac-
tual information see the P systems webpage [12] and the issues of the Bulletin of
the International Membrane Computing Society and of the Journal of Membrane
Computing.

One basic feature of P systems already presented in [8] is the maximally parallel
derivation mode, i.e., using non-extendable multisets of rules in every derivation
step. The result of a computation can be extracted when the system halts, i.e.,
when no rule is applicable any more. Catalysts are special symbols which allow
only one object to evolve in its context (in contrast to promoters) and in their

22 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

basic variant never evolve themselves, i.e., a catalytic rule is of the form ca→ cv,
where c is a catalyst, a is a single object and v is a multiset of objects. In contrast,
non-catalytic rules in catalytic P systems are non-cooperative rules of the form
a→ v.

From the beginning, the question how many catalysts are needed for obtaining
computational completeness has been one of the most intriguing challenges regard-
ing (catalytic) P systems. In [3] it has already been shown that two catalysts are
enough for generating any recursively enumerable set of multisets, without any
additional ingredients like a priority relation on the rules as used in the original
definition. As already known from the beginning, without catalysts only regular
(semi-linear) sets can be generated when using the standard halting mode, i.e., a
result is extracted when the system halts with no rule being applicable any more.
As shown, for example, in [5], using various additional ingredients, i.e., additional
control mechanisms, one catalyst can be sufficient: in P systems with label selec-
tion, only rules from one set of a finite number of sets of rules in each computation
step are used; in time-varying P systems, the available sets of rules change pe-
riodically with time. On the other hand, for catalytic P systems with only one
catalyst a lower bound has been established in [6]: P systems with one catalyst
can simulate partially blind register machines, i.e., they can generate more than
just semi-linear sets.

In this paper we now return to the idea of using a priority relation on the rules,
but take only a very weak form of such a priority relation: we only require that
overall in the system catalytic rules have weak priority over non-catalytic rules.
This means that the catalyst c must not stay idle if the current configuration
contains an object a with which it may cooperate in a rule ca→ cv; all remaining
objects evolve in the maximally parallel way with non-cooperative rules. On the
other hand, if the current configuration does not contain an object a with which
the catalyst c may cooperate in a rule ca → cv, c may stay idle and all objects
evolve in the maximally parallel way with non-cooperative rules. Even without
using more than this weak priority of catalytic rules over the non-catalytic (non-
cooperative) rules, computational completeness can be established for catalytic P
systems with only one catalyst, which is the main result of our paper.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation, i.e., containing all possible strings over V. The empty
string is denoted by λ. A multiset M with underlying set A is a pair (A, f) where
f : A → N is a mapping. If M = (A, f) is a multiset then its support is defined
as supp(M) = {x ∈ A | f(x) > 0}. A multiset is empty (respectively finite) if its
support is the empty set (respectively a finite set). If M = (A, f) is a finite multiset
over A and supp(M) = {a1, . . . , ak}, then it can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}, and, moreover, all permutations of

Catalytic P Systems with Weak Priority of Catalytic Rules 23

this string precisely identify the same multiset M . For further notions and results
in formal language theory we refer to textbooks like [2] and [11].

2.1 Register Machines

Register machines are well-known universal devices for computing (or generating
or accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P)

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed.

In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled with l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of a l-vector of
natural numbers in its first l registers and by executing the first instruction of

24 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

P (labeled with l0); it terminates with reaching the HALT -instruction and the
output of a k-vector of natural numbers in its last k registers. Without loss of
generality, we may assume all registers except the last k output registers to be
empty at the end of the computation.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
to be executed. M is called deterministic if the ADD-instructions all are of the
form p : (ADD (r) , q).

For useful results on the computational power of register machines, we refer to
[7]; for example, to prove our main theorem, we need the following formulation of
results for register machines generating or accepting recursively enumerable sets
of vectors of natural numbers with k components or computing partial recursive
relations on vectors of natural numbers:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of an accepting computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+ 2 + k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+ 2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Partially Blind Register Machines

We now consider one-way nondeterministic machines which have registers allowed
to hold positive or negative integers and which accept by final state with all reg-
isters being zero. Such machines are called blind if their actions depend on state
and input alone and not on the register configuration. They are called partially
blind if they block when any register is negative (i.e., only non-negative register
contents is allowed) but do not know whether or not any of the registers contains
zero.

Catalytic P Systems with Weak Priority of Catalytic Rules 25

Definition 2. A partially blind register machine is a construct

M = (m,B, l0, lh, P)

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB (r) , q), with p ∈ B \ {lh}, q ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
and jump to instruction l2, otherwise abort the computation.

• lh : HALT .
Stop the execution of the register machine.

Again, a configuration of a partially blind register machine is described by the
contents of each register and by the value of the current label, which indicates the
next instruction to be executed.

A computation works as for a register machine, yet with the restriction that a
computation is aborted if one tries to decrement a register which is zero. Moreover,
computing, accepting or generating now also requires all registers (except output
registers) to be empty at the end of the computation.

Example 1. In [6] it was shown that the vector set

S = {(n,m) | 0 ≤ n, n ≤ m ≤ 2n}

(which is not semi-linear) can be generated by a P system with only one catalyst
and 19 rules.

2.3 Catalytic P Systems

As in [6], the following definition cites Definition 4.1 in Chapter 4 of [10].

Definition 3. An extended catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is the alphabet of objects;

26 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

• C ⊆ O is the alphabet of catalysts;
• µ is a membrane structure of degree m with membranes labeled in a one-to-one

manner with the natural numbers 1, . . . ,m;
• w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the

regions 1, 2, . . . ,m of µ; these evolution rules are of the forms ca → cv or
a→ v, where c is a catalyst, a is an object from O \ C, and v is a string from
((O \ C)× {here, out, in})∗;

• i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evolution
rules, which is done in the maximally parallel way, i.e., only applicable multisets
of rules which cannot be extended by further rules are to be applied to the objects
in all membrane regions.

The application of a rule u→ v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes due
to the targets in and out. We refer to [10] for further details and examples.

The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then the
system halts. We consider the number of objects from O\C contained in the output
region i0 at the moment when the system halts as the result of the underlying
computation of Π. The system is called extended since the catalytic objects in C
are not counted to the result of a computation. Yet as often done in the literature,
in the following we will omit the term extended and just speak of catalytic P
systems, especially as we will restrict ourselves to P systems with only one catalyst.

The set of results of all computations possible in Π is called the set of natural
numbers generated by Π and it is denoted by N(Π) if we only count the total
number of objects in the output membrane; if we distinguish between the multi-
plicities of different objects, we obtain a set of vectors of natural numbers denoted
by Ps(Π).

Remark 1. As in this paper we only consider catalytic P systems with only one
catalyst, without loss of generality, we can restrict ourselves to one-membrane
catalytic P systems with the single catalyst in the skin membrane, by taking into
account the well-known flattening process, e.g., see [4].

Remark 2. Finally, we make the convention that a one-membrane catalytic P sys-
tem with the single catalyst in the skin membrane and with internal output in
the skin membrane, not taking into account the single catalyst c for the results,
throughout the rest of the paper will be described without specifying the trivial
membrane structure or the output region (assumed to be the skin membrane), i.e.,
we will just write

Catalytic P Systems with Weak Priority of Catalytic Rules 27

Π = (O, {c}, w,R)

where O is the set of objects, c is the single catalyst, w is the initial input specifying
the initial configuration, and R is the set of rules.

As already mentioned earlier, the following result was shown in [6], establishing
a lower bound for the computational power of catalytic P systems with only one
catalyst:

Proposition 4. Catalytic P systems with only one catalyst have at least the com-
putational power of partially blind register machines.

3 Weak Priority of Catalytic Rules

In this paper we now study catalytic P systems with only one catalyst in which
the catalytic rules have weak priority over the non-catalytic rules.

Example 2. To illustrate this weak priority of catalytic rules over the non-catalytic
rules, consider the rules ca→ cb and a→ d. If the current configuration contains
k > 0 copies of a, then the catalytic rule ca → cb must be applied to one of the
copies, while the rest of objects a may be taken up by the non-catalytic rule a→ d.
In particular, if k = 1, only ca→ cb may be applied.

We would like to highlight the fact that weak priority of catalytic rules is much
weaker than the general weak priority, as the priority relation is only constrained
by the types of rules.

Remark 3. The reverse weak priority, i.e., non-catalytic rules having priority over
catalytic rules, is useless, since it is equivalent to removing all catalytic rules for
which there are non-catalytic rules with the same symbol on the left-hand side of
the rule. In that way we just end up with an even restricted variant of P systems
with only one catalyst.

3.1 Computational Completeness with Weak Priority

In this section, we show that catalytic P systems with one catalyst only and with
weak priority of catalytic rules are computationally complete.

Theorem 1. Catalytic P systems with only one catalyst and with weak priority of
catalytic rules over the non-cooperative rules are computationally complete.

Proof. Given an arbitrary register machine M = (m,B, l0, lh, P) we will con-
struct a corresponding catalytic P system with one membrane and one catalyst
Π = (O, {c}, w,R) simulating M . Without loss of generality, we may assume that,
depending on its use as an accepting or generating or computing device, the regis-
ter machine M , as stated in Proposition 1, Proposition 2, and Proposition 3, fulfills

28 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

the condition that on the output registers we never apply any SUB-instruction. The
following proof is given for the most general case of a register machine computing
any partial recursive relation on vectors of natural numbers with l components as
input and vectors of natural numbers with k components as output using precisely
l+2+k registers, where without loss of generality, we may assume that at the end
of a successful computation the first l + 2 registers are empty, and, moreover, on
the output registers, i.e., the last k registers, no SUB-instruction is ever used. In
fact, the proof works for any number n of decrementable registers, no matter how
many of them are the l input registers and the working registers, respectively.

The main idea behind our construction is that all the symbols except the cat-
alyst c and the output symbols (representing the contents of the output registers)
go through a cycle of length 2n where n is the number of decrementable registers of
the simulated register machine. When the symbols are traversing the r-th section
of the n sections of length 2, they “know” that they are to probably simulate a
SUB-instruction on register r of the register machine M .

The alphabet O of symbols includes register symbols (ar, 2i − 1), (ar, 2i) for
every decrementable register r of the register machine and only the register symbol
ar for each of the k output registers r, m − k + 1 ≤ r ≤ m, the state symbols
(p, 2i − 1), (p, 2i), 1 ≤ i ≤ n, for every ADD-instruction of the register machine
as well as, for p ∈ BSUB(r) the state symbols (p, 2i − 1), (p, 2i) for 1 ≤ i ≤ r
as well as (p, 2j − 1)− and (p, 2j)0 for r + 1 ≤ j ≤ n for every SUB-instruction
p : (SUB(r), q, s) of the register machine, i.e., p ∈ BSUB(r), where BSUB(r) denotes
the set of labels of all SUB-instruction p : (SUB(r), q, s) of decrementable registers
r. Moreover, we use decrement witness symbols λr for every decrementable register
r, as well as the catalyst c and the trap symbol #. Observing that n = m− k, in
total we get the following set of objects:

O = {ar | n+ 1 ≤ r ≤ m}
∪ {(ar, i) | 1 ≤ r ≤ n, 1 ≤ i ≤ 2n}
∪ {λr | 1 ≤ r ≤ n}
∪ {(p, i) | p ∈ BADD, 1 ≤ i ≤ 2n}
∪ {(p, i) | p ∈ BSUB(r), 1 ≤ i ≤ 2r}
∪ {(p, i)−, (p, i)0 | p ∈ BSUB(r), 2r + 1 ≤ i ≤ 2n}
∪ {c,#}.

BADD denotes the set of labels of ADD-instructions.

The starting configuration of Π is

w = c(l0, 1)α0,

where l0 is the starting label of the machine and α0 is the multiset encoding the
initial values of the registers.

Catalytic P Systems with Weak Priority of Catalytic Rules 29

All register symbols ar, 1 ≤ r ≤ n, representing the contents of decrementable
registers, are equipped with the rules evolving them throughout the whole cycle:

(ar, i)→ (ar, i+ 1), 1 ≤ r ≤ 2n− 1; (ar, 2n)→ (ar, 1). (1)

The construction also includes the trap rule # → #: once the trap symbol #
is introduced, it will always keep the system busy and prevent it from halting and
thus from producing a result.

For simulating ADD-instructions we also need the following rules:

Increment p : (ADD(r), q, s):

The (variants of the) symbol p cycles together with all the other symbols,
always involving the catalyst:

c(p, i)→ c(p, i+ 1), 1 ≤ i ≤ 2n− 1. (2)

At the end of the cycle, the register is incremented and the non-deterministic
jump to q or s occurs: for r being a decrementable register, we take

c(p, 2n)→ c(q, 1)(ar, 1), c(p, 2n)→ c(s, 1)(ar, 1), (3)

whereas for r being a register never to be decremented, we take

c(p, 2n)→ c(q, 1)ar, c(p, 2n)→ c(s, 1)ar (4)

The output symbols need not undergo the cycle, in fact, they must not do that
because otherwise the computation would never stop. When the computation of
the register machine halts, only output symbols will be present, as we have assumed
that at the end of a computation all decrementable registers will be empty, i.e.,
no cycling symbols will be present any more in the P system. Finally, we have to
mention that if q or s is the final label lh, then we take λ instead, which means
that also the P system will halt, because, as already explained above, the only
symbols left in the configuration will be output symbols, for which no rules exist.

The state symbol is not allowed to evolve without the catalyst:

(p, i)→ #, 1 ≤ i ≤ 2n. (5)

Hence, in that way it is guaranteed that the catalyst cannot be used in another
way, i.e., affecting a symbol (ar, i) as explained below during the simulation of a
SUB-instruction on register r.

Decrement and zero-test p : (SUB(r), q, s):

The simulation of a SUB instruction is carried out in two steps of the cycle,
i.e., in steps 2r − 1 and 2r.

Before reaching simulation phase r, i.e., step 2r − 1, the state symbol goes
through the cycle, necessarily involving the catalyst:

30 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

c(p, i)→ c(p, i+ 1) > (p, i)→ #, 1 ≤ i < 2r − 1. (6)

Although by the definition of the P systems with priority of catalytic rules, the
catalytic rule has priority over the non-catalytic rule for (p, i), we indicate the
general priority relation by the sign < (or > for the reverse relation) in order to
make the situation even clearer.

In the first step of the simulation phase r, i.e., in step 2r− 1, the state symbol
releases the catalyst to try to perform the decrement and to produce a witness
symbol if register r is not empty:

(p, 2r − 1)→ (p, 2r), c(ar, 2r − 1)→ cλr. (7)

Note that due to the counters identifying the position of the register symbols
in the cycle, it is guaranteed that the catalytic rule transforming (ar, 2r− 1) picks
the correct register symbol. Furthermore, due to the priority of the catalytic rules,
one of the the register symbols (ar, 2r − 1) must be transformed by the catalytic
rule if present, instead of continuing along its cycle.

In the second step of simulation phase r, i.e., in step 2r, the detection of the
possible decrement happens. The outcome is stored in the state symbol:

cλr → c > λr → #,

(p, 2r)→ (p, 2r + 1)− < c(p, 2r)→ c(p, 2r + 1)0.
(8)

If in the first step of the simulation phase the catalyst did manage to decrement
the register, it produced λr. Thus, in the second step, the catalyst must erase λr,
because otherwise this symbol will trap the computation (and because catalytic
rules have priority). This means that the catalyst is not available to produce
(p, 2r+1)0, and the rule (p, 2r)→ (p, 2r+1)− must be applied due to the maximally
parallel mode. If, on the other hand, the decrement did not succeed in the previous
step, both rules (p, 2r)→ (p, 2r+ 1)− and c(p, 2r)→ c(p, 2r+ 1)0 can be applied,
but due to the priority of the catalytic rules, the second rule must be preferred,
thus producing (p, 2r+1)0. Therefore, the superscript of the state symbol correctly
reflects the outcome of the decrement: it is − if the decrement succeeded, and 0 if
it did not.

After the simulation of the decrement, the state symbols evolve to the end of
the cycle and produce the corresponding next state symbols:

(p, i)− → (p, i+ 1)−, r + 2 ≤ i ≤ n, (p, n+ 1)− → (q, 1),

(p, i)0 → (p, i+ 1)0, r + 2 ≤ i ≤ n, (p, n+ 1)0 → (s, 1).
(9)

If the register r is the last decrementable one, i.e., r = n, then equations 8
and 9 together read as follows:

cλn → c > λn → #,

(p, n+ 1)→ (q, 1) < c(p, n+ 1)→ c(s, 1).
(10)

Catalytic P Systems with Weak Priority of Catalytic Rules 31

Finally, we again mention that if q or s is the final label lh, then we take λ in-
stead, which means that not only the register machine but also the P system halts,
because, as already explained above, the only symbols left in the configuration will
be output symbols, for which no rules exist. ut

We would also like to emphasize that the simulation is what may be called
toxic/trap-deterministic: the only non-deterministic choice happens between a rule
producing a trap symbol # and another one which does not introduce #. This
means that the appearance of the trap symbol may immediately abort the com-
putation, which is the concept used for toxic P systems as introduced in [1]. Using
the trap symbol # as such a toxic object, the only successful computations are
simulating register machines in a quasi-deterministic way with a look-ahead of one,
i.e., considering all possible configurations computable from a given one, there is
at most one successful continuation of the computation.

For future research it remains a challenging question whether the length of the
cycle now being 2n can still be reduced.

4 Conclusion

In this paper we revisited a classic problem of computational complexity in mem-
brane computing: can catalytic P systems with only one catalyst already generate
all recursively enumerable sets of multisets? This problem has been standing tall
for many years, and nobody has yet managed to give it a positive or a negative
answer. In this paper, we come closer to showing computational completeness: we
give a construction that simulates an arbitrary register machine with a very weak
ingredient—the weak priority of catalytic rules over non-catalytic rules.

On the other hand, we still conjecture that P systems with one catalyst and no
additional control mechanisms cannot reach computational completeness. Finding
an answer to the question of characterizing the computational power of P systems
with one catalyst therefore still remains one of the biggest challenges in the theory
of P systems, although the result established in our paper has made the gap be-
tween the computational power of P systems with one catalyst and computational
completeness smaller again.

The result obtained in this paper can also be extended to P systems deal-
ing with strings, following the definitions and notions used in [6], thus showing
computational completeness for computing with strings.

Acknowledgements

The ideas, concepts, and results described in this paper have mainly been devel-
oped in the inspiring atmosphere of the 18th Brainstorming Week on Membrane
Computing during the first week of February 2020 in Sevilla.

Sergiu Ivanov is partially supported by the Paris region via the project DIM
RFSI n◦2018-03 “Modèles informatiques pour la reprogrammation cellulaire”.

32 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

References

1. Artiom Alhazov and Rudolf Freund. P systems with toxic objects. In Marian Gheo-
rghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio Zandron, editors,
Membrane Computing – 15th International Conference, CMC 2014, Prague, Czech
Republic, August 20–22, 2014, Revised Selected Papers, volume 8961 of Lecture Notes
in Computer Science, pages 99–125. Springer, 2014.

2. Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language The-
ory. Springer, 1989.

3. Rudolf Freund, Lila Kari, Marion Oswald, and Petr Sośık. Computationally univer-
sal P systems without priorities: two catalysts are sufficient. Theoretical Computer
Science, 330(2):251–266, 2005.

4. Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Ver-
lan, and Claudio Zandron. Flattening in (tissue) P systems. In Artiom Alhazov,
Svetlana Cojocaru, Marian Gheorghe, Yurii Rogozhin, Grzegorz Rozenberg, and Arto
Salomaa, editors, Membrane Computing, volume 8340 of Lecture Notes in Computer
Science, pages 173–188. Springer, 2014.

5. Rudolf Freund, Marion Oswald, and Gheorghe Păun. Catalytic and purely catalytic
P systems and P automata: Control mechanisms for obtaining computational com-
pleteness. Fundam. Inform., 136(1–2):59–84, 2015.

6. Rudolf Freund and Petr Sośık. On the power of catalytic P systems with one catalyst.
In Grzegorz Rozenberg, Arto Salomaa, José M. Sempere, and Claudio Zandron, ed-
itors, Membrane Computing – 16th International Conference, CMC 2015, Valencia,
Spain, August 17–21, 2015, Revised Selected Papers, volume 9504 of Lecture Notes
in Computer Science, pages 137–152. Springer, 2015.

7. Marvin L. Minsky. Computation. Finite and Infinite Machines. Prentice Hall, En-
glewood Cliffs, NJ, 1967.

8. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

9. Gheorghe Păun. Membrane Computing: An Introduction. Springer, 2002.
10. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Hand-

book of Membrane Computing. Oxford University Press, 2010.
11. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages.

Springer, 1997.
12. The P Systems Website. http://ppage.psystems.eu/.

