
Sociedad de Estadistica e lnvestigaci6n Operativa 

Top (1998) Vol. 6, No. 2, pp. 287-311 

A Methodology for Modelling Travel 
Distances by Bias Estimation 

Francisco A. Ortega 
Departamento de Matemdtica Aplicada I. Universidad de Sevilla. 
e-mail: riejos@cica.es 

J u a n  A. M e s a  
Departamento de Matemdtica Aplicada H 
Escuela Superior de lngenieros. Universidad de Seviila. 
e-mail: jmesa@cica.es 

A b s t r a c t  

Round norms rip, p E (1, 2] and block norms have been utilised for modelling 
actual distances in transportation networks, A geometric setting will permit the 
establishment of a relationship between bias of the road network distance and tra- 
jectory deviations, which will be used to separate the set of origin-destination pairs 
into two samples and also to analyse each sample using regression, thus obtaining 
several types of estimators. What will be demonstrated in this paper is that these 
functions can be combined through either a weighted sum, or by means of the in- 
troduction of the expected distance concept applied to the bias, to obtain distance 
predicting functions for the region considered. 
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1 I n t r o d u c t i o n  

A con t inuous  fo rmula t ion  may  be an a p p r o p r i a t e  a p p r o x i m a t i o n  to  discre te  

fo rmula t ion  of  locat ion prob lems  when the  t r a n s p o r t a t i o n  ne twork  is bo th  

well-developed in the  region considered and free f rom barr iers .  Con t inuous  

model l ing d e m a n d s  a not ion of  p lanar  d is tance .  Which  o f  the  theore t ica l  

d is tances  should  be the  mos t  sui table  for a p p r o x i m a t i n g  shor t e s t  d is tances  

in the  ne twork?  

Given a set  o f  pairs Or ig in-Des t ina t ion  of  d a t a  belonging to  the  a rea  

considered and given a family of  metr ics  (in a b road  sense) d(pl, P2 , . . . ,  Pro), 
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depending on the parameters Pl, P2 , . . . ,  Pm, the problem, called estimation 
(Love and Morris [1988]), consists of calibrating the parameters so that a 
global function of the errors, which measures deviations with respect to 
actual distances, is minimised. 

In order to calibrate the parameters involved, the dimensionless ratio 

ri(x~y) _ dv(x, y) 
d2 (x, y) 

is used, in which dv(x ,y)  is the road distance between points x and y 
through the network G and d2(x, y) the corresponding Euclidean distance 
on the plane. This ratio, called directional bias function (Brimberg and Love 
[1993 a]), is just a function of the angle formed by the vector connecting 
points x and y and the positive X-axis if we suppose that dG(x,y) is a 
metric on the plane. 

Thus, being dG(qi, ri), i = 1 , . . . ,  M, the actual distances between pairs 
of points qi and ri through the network, let s (p l , . . . ,  Pm; ~i) be the bias of 
the considered metrics and let 

Af = {(r si) : i =  1 , . . . , M }  

be one sample set, randomly obtained, where ~p/is the angle between the 
da ri) 

vector connecting the i-th pair of points and the X-axis and si - d2(qi, ri) 

is the bias of  the road network distance with respect to the Euclidean 
distance; the problem will be to determine the parameters in order to obtain 
one of the following objectives 

M 

min A D k = E [ s ( p l , . . . , p m ; ~ i ) - s i ] k ;  k =  1,2. 
Pl ,...,pro 

i----1 

Let us note that for k = 2 and the family of metrics rlp, the objective AD2 
coincides with SNDz, introduced by Brimberg and Love [1993 b]. 

Two hypotheses have been employed to estimate: 

- supposing that the network has a predominant Euclidean pattern 
(then the actual travel distances can be estimated by using d2(x,y; r) = 
v 12(x~y)), and 

- supposing that the network has a predominant rectangular pattern 
after a rotation with angle 0. 
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Def in i t ion  1 (Brimberg and Love [1993 b]). Let r/(T; 9) be the directional 
bias relative to the angle ~ measured after rotating the original axes with 
orientation 0. The network has a predominant rectangular pattern when 
the following relation holds: r/(~; 9) = r2- 1 + fiR(T; 9) + ~(T; 9); where ~ is 
an independent error term with mean zero, T1 and T2 are parameters with 
ri > 0 and R(~; 9) denotes a function of ~ which holds: 

(a) periodicity of 7r/2, 

(b) unimodal cycle with a maximum at the halfway point of each peri- 
odic interval, and 

(c) symmetry property with respect to the maximum of each cycle. 

When this pattern is assumed a previous rotation of angle 9 is considered 
convenient (Love and Walker [19941) in order to improve the fitting and so 
the following functions (denoted as appear in Love, Morris and Wesolowsky 
[1988]) can be used for estimating: 

- dl(X, y; v) = T /i(x~y), when T > 0. 

- d2(x, y; v) = r/2(x~y), when r > 0. 

- d3(x, y; T, p) = T lv(x~y), when T > 0 and p E [1, cr 

-d4(x ,y ;  v,p,s)  r (/p(X~y)) p/~ = ,when r > 0 a n d p E [ 1 , c c ) , p ~ _ s .  

- d6(x,y;  rl ,  too) = rl ll(x'y) + v ~  too/oo(x'y), when r l ,  ro~ > 0. 

Another function used in the literature is d(x,y;  vl, T2) ---- T1 /I(x~y) 4- 
T2 /2(X-y), with vl, v2 :> 0 (Brimberg and Love [1992]). 

In all these cases, the parameters involved were determined from a single 
sample of origin-destination pairs and the usual solution technique does 
not employ regression due to the distance functions not being polynomial; 
hence, a specialised computer programme is required to fit the model. In 
order to eliminate this need, Brimberg, Dowling and Love [1994] have used a 
linear regression analysis to determine parameters rl and r2 in d(x, y; Vl, r2) 
and then to substitute a weighted lp norm in place of the earlier weighted 
one-two norm as distance predictor (Brimberg, Dowling and Love [1996]). 

The aim of this study is to establish a methodology for the estimation 
process consisting of separating the initial set of origin-destination pairs 
into two samples before determining the parameters using regression, and 
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to show that the estimators obtained can be combined through either a 
weighted sum, or by using a density function according to the subsample 
weights, which permits the global expected bias for each direction to be 
obtained. 

In section 2, a relationship between bias and trajectory deviations is 
established giving rise to a new hypothesis for estimation. Sections 3 and 
4 are devoted to the determination of the parameters to fit the respective 
subsamples. In section 5, the different weighted sums which globally permit 
distances to be estimated are summarised. Numerical results belonging to 
three networks are provided in section 6. Finally, in section 7, a densi ty 
function for distributing the bias in fixed direction ~ for the network is 
calculated and some conclusions are stated in section 8. 

2 A n e w  h y p o t h e s i s  

For all values 7/> 1 of the bias, it is possible to find an angle, which will 
be called the least deflection of trajectory, characterized by the following 
lemma. 

L e m m a  2. Let F and F '  be two points in the plane and d c ( F , F ' )  the 
actual distance between them. The least trajectory deflection r between any 
pair of edges P F  and P F '  connecting F and F '  and such that d2(F, P) + 
d2(P, F')  = de(F, F') holds, is given by: 

d 2 ( F , F ' ) ' ~ 2  2 _ 1). 
r = arccos (2 ( d G ( r , v ' ) ]  - 1) = arccos (~-5 

In Order to give a brief summary of the proof, which can be found in 
Ortega [1997], let us consider the ellipse with focus F and F '  and sum of 
distances dG(F, F'),  i.e. the set of points P holding: 

d2(F, P) + d~(P, F')  = dc(F ,  F') .  

A non-difficult calculation leads us to the analytical expression of trajectory 
deflection O as a function of the bias r/associated with vector FF ' .  Points 
in the ellipse providing least trajectory deflection are obtained considering 
the intersections of mediatrix line of segment F F '  with this ellipse (see 

Figure 1), following that r = arccos - 1). 
rfl 
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F igure  1: Least deflection of trajectory 

Def in i t ion  3 (Mesa and Ortega [1996]). A 0-inclined block norm is defined 
as that whose unit ball B is the polytope with four vertices: 

{+(1, O),+(cosr162 where O E (0,7r/2]. 

The C-inclined block norm, denoted by l[ liB, can be used in order 
to measure the length of the total trip on the dense 0-inclined network 
(Widmayer, Yu and Wang [1987]), and the explicit expression of the corre- 
sponding bias can be found in Mesa and Ortega [1996]: 

cos(~ - r  
rB(~) = cos(r  ; V~ E [0, r 

LFrom now on, the bias functions corresponding to the distances induced 
by the r and 0-inclined block norms will be called C-bias and 8-bias re- 
spectively, being denoted by rs(.) and rB(o)(. ) in each case. The following 
result is obtained taking into account that the inclination of line F F '  in 
the previous figure was r 

T h e o r e m  4. The distance in the planar network between two points F and 
F '  can be expressed in terms of C-bias by: dG(F, F') =11 F~ '  112 rB(r 

/ d2(F, F'! ~2 
where r = arccos(2 \ d e ( F ,  F ) ] - 1). Moreover, by using 8-bias, with 8 6 

[r lr) and an inflating factor rB(0) _> 1 it is possible to obtain: 

dG(F, F') =ll F~" 112 rB(o) rs(o)(O/2) �9 
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A one-to-one correspondence between values of p E [1, 2) and angles 
C E (0,7r/2] and a further correspondence between values of p E (0, 1) 
and angles C E (7r/2, 7r) were established (in Mesa and Ortega [1996]) by 
using interpolation in order to fit the points where the respective bias reach 
the maximum. Namely, rB(C/2)= rp(Tr/4). Therefore, the relationship 
between actual bias, least deflection angle and C-bias or p-bias has been 
completed. 

We must note that ~2 = 0 and z 2 = C represent the first unbiased 
directions for the C-inclined block norm (rB(0) = rB(C) = 1). An actual 
bias r/(~p) estimated by the bias function corresponding to the C-inclined 
block norm, where C E (n/2, 7r), cannot hold the periodicity of rr/2. 

On the other hand, periodicity of rr is a necessary property for the bias 
with central symmetry, derived from distance functions as block norms in 
general or as lp functions p E (0, oc]. In this geometric setting based on the 
use of C-inclined block norms as estimators, the following hypothesis can 
be formulated. 

Def in i t ion  5. The network has a predominant rectangular-wide-angled 
pattern when the following relationship holds: 

r/(~2; #) = r0m(~; 8) + ri R(~2;/~) + '(~2; 8) 

where R(~; 8), ~(~; 8) remain as in Definition 1 and A(~2;/~) represents the 
family of functions which holds: 

(a) periodicity of rr~ and, as previously, 

(b) unimodal cycle with a maximum at the halfway point of each peri- 
odic interval and 

(c) symmetry property with respect to the maximum of each cycle. 

The properties of the C-bias were studied in Mesa and Ortega [1996], 
showing that properties (a), (b) and (c) are satisfied by the bias function 
of II-IIs. 

3 F i t t i n g  s u b s a m p l e  7:> 

The correspondences between values of p E [1, 2) and angles r E (0, 7r/2] 
and that between values of p E (0, 1) and angles C E (~r/2, 7r), suggest 



A Methodology for Modelling Travel Distances by Bias Estimation 293 

decomposing the sample to be analysed into two subsamples. 

zFrom initial sample A / -  {(~2i, s~) : i -  1 , . . . ,  M}, the partition Af = 
JV'poAfq is generated by comparing each least deflection angle corresponding 

2 _ 1), with 7r/2. Therefore, two subsamples Alp and to si, r = arccos ( 

Afq, whose lengths are denoted by Iv and 77q respectively, are obtained in 
this way: 

Xp = {(~ ,  s~) ~ X : r < ~/2}; Xq = {(~ ,  s:) ~ X : r > ~/2}. 

Since the correspondence between values of p E [1, 2) and angles ~b E 
(0, rr/2] was obtained by imposing rB (</)/2) = rv(Tr/4), the first components 
of pairs belonging to set A/'p are transferred so that  they remain in the 
interval [0, 7r/2] centred at rr/4. With the new set obtained 

79 = {(ti, si): ti = mod(qoi, re/2) - rr/4, and (r si) E A/v} 

the following regression problem is solved: 

zp 

min E 
/ 2 '~ 2 

:= , + - o < 1  + 
a,5 \ 

i =1  

The behaviour of functions try(. ) and rrB( ')  in a neighbourhood of rr/2 
is the reason for which a quadratic regression as the one described above is 
considered. The proof of the following lemmas is detailed in Ortega [1997]. 

L e m m a  6. The function H(a; b;t) = a(1 + bt 2) which approximates the 
data set 79 in the sense of least squares is obtained by: 

(~'~ s i ) ( ~ - ~  t4) - (~-~ t~) (~-~ sity) 
i =1  i=1  i=1  i=1  a - -  

Zv Zp 

i=1  i=1  

b = i=1  i=1  i=1  

i=1  i=1  i=1  i=1  



294 F. Ortega and J. Mesa 

whenever: (1) Zp >_ 2; (2) si E [1, vf2], Vi; (3) there exist at least two 
different values of ti. 

Condition (2) is not restrictive since it is a logical consequence of the 
definition of subsample 7): si >_ 1, V(ti, si) E 79, and since arccos(z) is a 
decreasing function for z E [0, 7r], we have that 

~b(si) = arccos( 2 _ 1) < rr/2 arccos(0) 
s i 

2 
implies s-~. 2 - 1 > 0, and so si <_ V/2. 

Lemma 7. Whenever the previous conditions (1), (2) and (3) hold, the 
coefficient a belongs to the interval [1, x/~]. 

We must note that Vi = 1, . . . ,Zp, ti E [-rr/4,1r/4] C ( -1 ,1) ,  and 
so t~ E [0, 1). Property b E ( -1 ,0)  is desirable in order to obtain, by 
theorem 9, a value of p E (0, 2). The conditions (4) and (5) of the following 
lemma establish a sufficient condition to place b in the interval ( -1 ,0) ,  
by using three weighted sums of t~ with coefficients 1, si E [1, v~] and 
(1 -t~)  E (0, 1]. When conditions (4) and (5) are not satisfied in subsample 
79, the polynomial approximating function a(1 + bt 2) cannot determine, in 
the sense of least squares, other estimators in terms of rrp(-) or rrB(-). In 
all the examples included in this paper and in all the networks considered so 
far by the authors, conditions (4) and (5) have always been accomplished. 

Lemma 8. In addition to the previous conditions (1), (2) and (3), if the 
following inequalities also hold 

z~ z~ z~ zp 

(4) ~=1 < ;=l---L--; (5) i=1 < ~=IL____ 

si Z ( 1 - t ~ )  Z si 
i = l  i=1 i=1 

then the coefficient b is located in the interval ( -1 ,  0). 

In order to reach a well-defined fitting of subsample 7 9 for one future 
application, the conditions (4) and (5), included in the previous lemma, 
must be added. 
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By using the Taylor series of the function vrp(.), where 

rp(Tr/4 + tl = 21/'x/2 ( 1 +  (-~ - p ll t2) + o(t2); Vt e (-Tr/4, Tr/4) 

and identifying the early homogeneous coefficients, we obtain the parameter 
values which approximate the data set 79 in the sense of least squares, as 
the following theorem indicates (the proof can be found in Ortega [1997]). 

T h e o r e m  9. The function vrp(.) which approximates the data set 79 in 

the sense of least squares is obtained by: p -- 2(1 + b); r = a2-~ ,  where 

79 must satisfy the conditions of lemma 8 and where a and b are the values 
deduced in lemma 6. 

Similarly, the function rrB(-) which approximates the data set 79 in the 
sense of least squares is obtained by the following result (again in Ortega 

cos(  - 4 ) / 2 )  
[1997]) which uses the Taylor series for the function r s (~)  = cos(4)/2) 

A . t  

when ~ = 4)/2 + 2 ~t;  Vt E [-7r/4, r/4].  
71" 

T h e o r e m  10. Let B be the polytope with vertices {-4-(1,0),-I-(cosr sin r 
where r E (0,~r/2]. The function r r s ( . )  which approximates the data set 

1 " ' " 7 - .  

79 in the sense of least squares is obtained by: r = 1fiZZ-; T = acos(~),  

where P must satisfy the conditions of lemma 8 and a and b are the values 
deduced in lemma 6. 

4 Fitting subsample Q 

A similar procedure is employed with the complementary subsample Afq. 
The first components are transferred to the interval [0, ~r] centred in 7r/2, 
obtaining in this way subsample Q to be fitted: 

Q = {(ti, si): ti = mod(~i, Tr)- lr/2, (r si) E Afq.} 

If we assume conditions: (1) Iq > 2; (2) si > v~, Vi = 1,...,/7q 
(condition si > v/2 being a direct consequence of (ti, si) E Q); (3) there 
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exist at least two different values of ti; then the corresponding regression 
problem 

zq 

rain E~(a,b;t):= ~ ( s i - a ( l + b t ~ ) )  2 
a,b 

i=1 

is solved when coefficients a and b are expressed as indicated in lemma 6, 
substituting Zq insteM of/;p. 

Here, the condition b �9 ( -1 /4 ,  0) will be necessary in order to allow 
fitting by functions rrp(-) and rrB(.) .  This property is guaranteed if the 
following relationships hold (see Ortega [1997]): 

zq z~ zq 
Z ( 4 - - t ~ 2  2)t~ ~ sit~ Z t~2 
i=1 i=1 i=1 < - < - -  

z. z. Zq 

i=1 i=1 

These inequalities have always been satisfied in the examples included in 
this paper and in all the networks considered to date by the authors. 

Now, Vi = 1 , . . . , Iq ,  ti e [-rc/2, rc/2] C ( -2 ,2) ,  and so t~ e [0,4). 
Hence, the coefficients used in the weighted sums are 1, si E [x/~, oc] and 
(4 - t~) �9 (0, 4]. 

By repeating the identification process for the coefficients in the Tay- 
Ct lor series corresponding to rrp(rC/2 + t) and r rB(r  + ~ ) ,  the following 

theorems are obtained (more details can be found in Ortega [1997]). 

Theorem 11. The function rrp(.) which approximates the data set Q in 

the sense of least squares is obtained by: p = 2(1 + 4b) ; r = a 21/p" 

T h e o r e m  12. Let B be the polytope with vertices {+(1, 0), +(cosr sin r 
where r E (0, 7r/2]. The function rrB(.) which approximates the data set Q 
in the sense of least squares is obtained by: 

r = ; T = a c o s ( r  
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5 C o m b i n i n g  t h e  p a r t i a l  f i t t i n g  f u n c t i o n s  

The polynomial functions Hv(ap, bp;t) = %(1 + bvt 2) and Hq(%,bq;t) = 
aq(1 + bat2), which partially fit subsamples P and Q respectively, can be 
combined according to the size of each subsample in order to obtain a 
global estimator. Therefore, the network distance corresponding to the 
trip represented by the vector x (argument ~0) can be estimated by using 

(z) da(x) ~11 x I1~ (~v +2qIP Hp(ap, bp; mod(~0, rr/2)- ~-/4)+ 

Hq(aq,bq; mod(~o, r r ) -  7r/2) ) 
:/:p + I q  

Theorems 9 and 11 permit the expression of the previous estimation in 
terms of Ip functions. If we denote 

then 

p =  2 (1+  bp); q = 2(1+ 4bq) 

v~ v~ 
r v =- av2-]-~/p; rq = aq21/q 

(H) dcCx) ~11 x Iiz ( 
Z~ 

Zp~Zq Tprp( mod(~,lr /2))+ 

z~ 
Tqrq( mod(~/2, r /2) )  ) + zv+z~ 

And, similarly, the expression in terms of C-inclined block norms is possible 
by way of Theorems 9 and 11. If we denote 

then 

(]II) dG(x) ~11 x I1~ 

7r ]-~-- bp 

' r aq COS(-~) r v = %cos(-~) ;  rq 

cos( 2r mod(r rr/2) - r 

�9 ~ T ~ ~ cosCr 
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zp + zq T~ 
cos( 6q 

7r 
mod(T, ~-) - r 
cos(r ) 

6 E x a m p l e s  

(1) We have tested this methodology in a typical t ranspor ta t ion network 
as in Figure 4 of the appendix (n = 9 nodes and M = 36 pairs origin- 
destination),  where the reference axes were orientated in order to match 
the directional bias of the distance function (weighted Ip) with tha t  of the 
network. By using a searching procedure b ~ e d  on the algorithm proposed 
by Brimberg and Love [1991] for Ap = 0.05, we obtain the minimum of the 
s u m :  

n - - 1  n 

AD(~-,p)= ~ ~ IT II vS"j lip -da(v~,vj) I 
i=l j=i+l  

The minimum of AD(r,p) occurs when r = 1.25792 and p = 1.45. In 
relation with the directional bias of caij = Arg(v/~cj), the deviation sum 
w a s  

n-1 n da(vi ,  vj) 
~ I ~rp(~,j) I= 4.04713, 

i=l j = i + i  II v~,j 112 
which represents a mean 4.04713/M equal to 0.11242. If the criterion ADk 
(for k = 1), described in section 1, had been used then the parameters  
minimizing the earl ier  deviation sum would have been r = 1.31324 and 
p = 1.65, and the total error would be 3.99409. 

Applying our methodology, the da ta  set 79 (Zp = 22) is fitted by the 
function Hp(t) = 1.30229(1 - 0.0928454 t2), t E [ - r r /4 ,  Tr/4]. The coem- 
cients a and b generate: 

p =  1.81431 

vp = 1.25691 

r = 0.67688 (38.78 degrees) 

re(p) = 1.22842 

and the partial error in the subsample P is: 

E I "rprp(ti + r r / 4 ) -  si I = 1.47505; mean 1.47505/Ip = 0.06704 
(t,,s,)~p 
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I 7-r  -- si l= 1.75294; mean 1.75294/~p = 0.079679. 

On the  other  hand,  the complementa ry  d a t a  set Q (Zq = 14) is fitted 
by Uq(t) = 1.53076(1 - 0.01616 t2), t E [ - r r /2 ,  Tr/2], and the respective 
coefficients a and b give rise to: 

q = 1.87072 { 

rq = 1.49453 

r = 0.56478 (32.36 degrees) 

re(q) = 1.47013 

The  partial  error in the subsample  Q is now: 

Z I rqrq(ti/2 + 7r/4) - si l= 0.844882; mean 0.844882/Zq = 0.060348 

~ ]  I 7-r162 - si I = 0.919363; mean 0.919363/Iq = 0.065667. 

Summaris ing,  the partial errors in subsamples  P and Q were smaller 
than  those obtained following the  previous methodology (when partial  
means and the  global mean are compared) ,  but  the total  error (being 
4.13848 when type 7-plp est imat ions  are combined by using approximat ion  
(II) and 4.08999 when type 7-6rB est imat ions  are used by means of (III)) 
was similar to the smallest error. 

(2) We have also tested this methodology in a network c i rcumnavigat ing 
a barrier, as in Figure 5 of the appendix  (n = 9 nodes and M = 36 pairs 
origin-dest ination again). 

Here, the  min imum of AD(v,p) occurs when r = 1.6736 and p = 1.7. 
The  global error, in relation with the directional bias, is: 

n-1 X-"* da(v .  vj) 
17-rp( ij) I= 13.1504, 

/--" II 112 i=1 j = i + l  

whose mean 13.1504/M is 0.365289. If the criterion ADk (for k = 1) had 
been applied then the  total  error would be 12.9419 by using the parameters  
7- = 1.71814 and p = 3. 
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Repeating the process for this network, we obtain 2"p = 14 and/Tq = 22 
and the polynomial fitting functions: 

Hp(t) = 1.36299(1- 0.185413 t2), t 6 [-rr/4, ~'/4]; 

Ilq(t) = 2.30711(1 - 0.133364 t2), t 6 [-7r/2, rr/2] 

The respective estimation coefficients for each type have been calculated 

p=1.62917 { 
subsample P 

rp -- 1.2596 

r = 0.95654 (54.80 degrees) 

rr = 1.21005 

subsample Q ( 
q : 0.933085 ; { r = 1.62249 (92.96 degrees) 

rq = 1.55227 re(q) = 1.58866 

and the partial errors are 

Z I rprp(ti -t- 71"/4) - -  si I - -  0.707134; mean 0.707134/Ip = 0 . 0 5 0 5 0 9 6 ,  

I rcrB(-7-~) - si l= 1.56913; mean 1.56913/Zp = 0.112081, 
(t,,s,)6~' 

17-qrq(ti/2 + 7r/4) - si l= 6.54733; mean 6.54733/Zq = 0.297606, 
(t,,s,)eQ 

I r c r s ( - ~ )  - si I= 11.4851; mean 11.4851/1q = 0.52205. 
(t,,sO~Q 

The final combination has involved an improvement upon the best estima- 
tion previously obtained in both cases, because the total error was 12.1989, 
using type %lp functions by means of (1I), and 12.2293, using type r6rB 
functions by employing ( I I I ) .  

(3) In order to test the new methodology in an actual network, as can 
be found in Figure 6 of the appendix, we have considered a geographical 
region in Southwestern Spain in which the road network consists of n = 44 
nodes and M = 946 pairs origin-destination, containing the main cities 



A Methodology for Modelling Travel Distances by Bias Estimation 301 

(as Sevilla, Ms C6rdoba, Cs and Huelva), and circumnavigates the 
protected area called the National Park of Dofiana. 

The reference axes have had to be rotated through an angle of 23 degrees 
with respect to North-South orientation so tha t  new axes and directional 
bias of the distance function derived from I v norm are in phase (this best 
orientation has been selected by using a grid search for A0 = 1 degree and 
Ap = 0.05 between p = 1 and p = 1.95). 

The best-fit values of r and p for AD criterion were r = 1.82078 and 
p = 1.95. In terms of directional bias, the deviation sum was: 

n--1 n 

i=1 j = i + l  

dG(vi, vj) 297.951/M 0.314959. II 112 I-  297.951; mean = 

On the other  hand, the best-fit values of r and p for AD1 criterion were 
r = 1.41898 and p - 2.2, and the deviation sum was 289.762. 

Data  set 79 (77p = 25) was fitted by the function: 

Hp(t) - 1.29714(1 - 0.135138 t2), t E [ - r r /4 ,  rr/4], 

following our methodology, and coefficients a = 1.29714 and b = -0.135138 
allow us to express the parameters  

p = 1.72972 { r = 46.7892 degrees 

vp = 1.22876 v6(p) = 1.1905 

necessary to build new estimations. Hence, the partial errors for these 
estimations were: 

E ] rprp(tl + ~'/4) - si [= 2.3989; mean 2.3989/Zp = 0.095956, 
(ti,si)ET~ 

9rbf: 
E [ T C r B ( : ~ )  -- si [= 2.50528; mean 2.50528//7, = 0.100211. 

(t,,si)E~, 

By repeating the process for da ta  set Q (Zq = 921), we obtain the polyno- 
mial fitting function 

Hq(t)-  2.20503(1-  0.120548 t2), t e [-~r/2, 7r/2] 
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The respective estimation coefficients were calculated, being 

q = 1.03561 { 

Vq = 1.5968 

r = 88.3829 degrees 

re(q) = 1.58104 

and the partial errors obtained were 

Z I rqrq(ti/2 § ~-/4) - si l= 277.948; mean 277.948/Iq ----- 0.301789, 

d#: 
I vcrB(-r-~ -) - si ]= 299.899; mean 299.899/Iq -- 0.325623. 

(ti,si)eQ 

The weighted combination, in accordance with the subsample sizes, in- 
volved an improvement with respect to value 297.951, because the total 
error was 289.426, using type 7"plp functions by means of (II), and 289.287, 
using type rcrB functions by applying (III). 

7 D i r e c t i o n a l  b i a s  d i s t r i b u t i o n  

The previous methodology generated two approximating formulas ep ---- 

ep(~) and eq ==_ eq(~) of average bias for each subsample depending on 
the fixed angle qa considered. In relation to the estimation in terms of lp 
functions, ep(C2) and eq(~) are given by: 

ep(~) = Tprp( mod(~2, 7r/2)); eq (~ )=  Vqrq( mod(~/2,  7r/2)). 

Hence, the total directional bias in the network can be estimated by 

The expression Apep(~) T/~qeq(~O) c a n  be assumed to be the mean of a 
density function Apfp(~?(~)) + Aqfq(y(~2)), where ep(~) and eq(~) could be 
the respective means of density functions fp(~(~)) and fq(~(~)). There- 
fore, we have assumed the existence of two density functions, fp(T](~)) and 
fq(rl(~)), whilst conserving the property that both ep and eq (% <_ eq) are 
centralised measures for the bias distributions in the respective ranges. 
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The total range of bias (for each angle ~ considered) can be partitioned 
into three intervals ~ -- ~(~) E [1, co) --[1,ep)U[ep, eq)U[eq, oo). Although 
there exist other possibilities, we have considered a triangular function fp (~) 
in the range [1, c], for some c >_ 1, and a negative exponential function fq (~) 
in the range [c, oc), for the same c, in order to represent the behaviour 
of the second component of pairs (t, s) belonging to P and belonging to 
Q, respectively. The reason for this choice is the extreme simplicity for 
computing their corresponding indefinite integrals. 

Combining the shapes (triangular in the beginning and negative expo- 
nential at the end) of functions fp(~l) and fq(rl) , w e  have built one piecewise 
function f(r/) as follows: 

h• 
ep - 1(7/-  1) if 1 < 71 < ep 

f(~l)= h p + h q - h P  (~l-e~) i f e p < r / < e q  
eq --  ep 

hq Exp[eq - r/] if r] _> eq 

where the parameters hp and hq indicate the heights for the respective 
points whose abscises are ep and eq (see Figure 2). These parameters are 
determined by demanding that the function f(~/) is effectively a density 
function. 

The calculation of partial areas in the partition [1, ep) U [ep, eq) U [eq, or 
(denoted by A1, As and A3, respectively) is easy due to the linear and 
exponential shapes used in building f(r/). 

The respective values are 

A1 _ ~ ( e P  - 1) hp; A2 - (eq -2 ep) hp + (eq -2- ep) hq; A3 -~ hq. 

Since the mean of a typical density function g(x) = #e -~x, where x E 
[0, oo) and # > 0, is ~ = 1/p and the area proportion, with respect to the 
total f~o g(x)dx -- 1, outside the range [0,~] is f~o g(x)dx -= Exp[-1], 

we have weighted Exp[-1] by ,~q = -~ (the percentage of trips included 
in subsample Q) and by a new parameter k E (0, 1] whose meaning is the 
percentage in Q of bias values which escape from [1,eq). The result is 
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2.5 

2 

1.5 

1 

0.5 

, , , , , , . . . .  
1 2 

Figure  2: A density function for distributing r / 

assumed equal to A3, as the second equation indicates in the system 

A I + A 2 + A 3 = I  
k 

A3 = Exp[1] ~q 

The parameters hp and hq are calculated by imposing normalisation at 
function f(r/) (first equation in the previous system), and the results are 
sensitive to parameter k 6 (0, 1]: 

hq - 

hp = 

k 
Exp[1] Aq 

2 -  (2+eq  - ep)hq 
eq - 1 

The expected bias E[~]] can be assumed in a similar way to expected dis- 
tance (Mufioz and Puerto [1996]) from the origin to a value r/(~2) belonging 
to the interval [1, cx~) in fixed direction ~2, weighted by f(T/(~)): 

jfX ~176 
E [ y ] -  yf(r]) dy 

The average bias in fixed direction ~ for the network can be calculated 
by partitioning the integral expression into intervals, taking into account 
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that  

f i  ~p - -  (r/: - dr/ 
El(r/) = hp r/) _ hp(2e2p -- ep -- 1) 

ep -- 1 6 

~q hq  - e~ - ep hp+ 
E2(r/) = h p 4 - -  (r / -%) r /dr /=  ~ 

eq 

Z q 

/ \ 

Hence, the result E(r / (qo)) is  a quadratic expression (instead of the lin- 
k /  

ear expression Apep(Cp) + Aqeq(~)) which combines partial estimation func- 
tions ep(qa) and eq(qO): 

= ( 1 e~ eq ) 

E(r/) = El(r/) + E2(r/) + E3(r/) = 

( 6hq - h v - h p  h_2 q 
6 12 2 (1) 

- h p  -hq  h v - hq ev 
12 6 12 eq 

hq h p -  hq hp + 2hq 

2 12 6 

The estimation of network distances in terms of the expected bias corre- 
sponding to the trip expressed by the vector x (argument c2) which connects 
the origin and destination points, is obtained by 

( Iv )  da(x) ~11 x 115 E(0(~))  

where 

ep = vprp( mod(~p, Tr/2)); eq = vqrq(mod(~p/2,~r/2)) 

k 
h q -  Exp[1] Aq 

2 -  ( 2 + e q  - %)hq hp 
eq - 1 
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Finally, several values of parameter k were considered in order to reduce 
the minimal value obtained relative to the total error (4.13848) in example 
1 by means of approximation (IV),  when a combination of lp functions is 
considered as global estimator. 

values for k total error measured by AD 
1 

0.65 
0.5 

0 . 4 5  

6/14(~ 0.43) 
0.35 

4.7096 
4.1637 
4.1075 

4.08877 
4.09869 
4.23853 

We can note an improvement in the total error with respect to the usual 
convex combination when the expected bias is built by using k -- 0.45. 

i. 75~ 

1.7 

1.65 

1.6 

1.55 

- ~  -i -0.5 

�9 �9 1.45 

0.5 1 ~ 

F i g u r e  3: Fitting Q by polynomial function 

In example 1, subsample Q (Zq = 14) was fitted by polynomial function 
Hq(t) = 1.53076(1 - 0.01616 t2), t 6 [-7r/2, rr/2] and six points (ti, si) 6 Q 
satisfied condition Hq(ti) < si, i.e. they were outside [1, eq] (in Figure 3, 
the points above the curve). Hence, the percentage of bias which escapes 
from [1, eq] (according to the meaning of k) was 6/14 ~ 0.43, which is close 
to the best value of k (0.45) obtained in the table. 

In order to limit the search for a good value of k, inside the region [0, 1], 
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we can consider ko --I Q+ I/Zq as the initial point, where 

Q+ = {(ti, si) 6 Q: Hq(ti) < si}. 

Then the procedure is continued by taking points around ko. 

8 C o n c l u s i o n s  

A methodology for the estimation process has been presented and evaluated 
in three cases corresponding to different types of networks. After rotating 
coordinate axes so that the directional bias in the  transportation network 
is in phase with the new axes, the steps have been: 

- Separating the initial set of origin-destination pairs into two subsam- 
ples according to the observed bias value. 

- Using regression in order to determine the fitting parameters corre- 
sponding to polynomial functions. 

- The generation, using polynomial coefficients, of other estimators (lp 
functions or C-inclined block norms) which maintain the approximation 
reached in each part. 

The linear combination of partial estimators, according to the size of 
each subset, logically worsens the final result for the global estimation. 
However, a quadratic combination, based on the expected bias for network 
trips in each fixed direction, can improve the final estimation if a sensitivity 
coefficient is appropriately chosen. The consideration of the rotation angle 
of the axes as a further parameter in the process may give rise to better 
results. 
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A p p e n d i x  

E x a m p l e  h 

J 

5 

"o 
1 

4 
_ ~ r J / f  

2 

F i g u r e  4: A typ ica l  t r a n s p o r t a t i o n  n e t w o r k  

N o d e s  C o o r d i n a t e s  

1 (2,0) 

2 (5,0) 

3 (0, 1) 

4 (8,1) 

5 (2, 2.25) 

6 (1,3) 

7 (3,3) 

8 (5,4) 

9 (1,5) 

D i s t a n c e  m a t r i x  

0 3.5 3 7.5 3 4 . 5  4 . 5  7 .5  6 .5  

- 0 6 . 5  4 5 . 5  7 4 7 7 .5  

- - 0 10 .5  4 2 .5  5 . 5  8 .5  5 

- - - 0 9 . 5  11 8 6 11 .5  

. . . .  0 1.5 1 .5  4 .5  3.5 

- - - 0 3 6 2 .5  

. . . .  0 3 3.5 

. . . . .  0 6 

. . . . . .  
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E x a m p l e  I I :  

~D. / .~1(  

6 . ~  ~- 7 
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-. f J  
3 . . . . .  j r .  4 

1 2 

F i g u r e  5: A ne twork  c i rcumnaviga t ing  a barr ier  

N o d e s  

1 

2 

3 

4 

5 

6 

7 

8 

9 

C o o r d i n a t e s  

(2,0) 

(5,0) 

(0,1) 

(8, 1) 

(2,2.25) 

(1,3) 

(3,3) 

(7.5,3.5) 

(4.5,4.5) 

( 0 3.5 3 

- 0 6 . 5  

- -  - -  0 

Distance matrix 

7.5 6.5 5.5 8 11.5 11 

4 I0 9 11.5 8 12.5 

10.5 3.5 2.5 5 13 8 

0 13 13 11.5 4 9 

- 0 1 . 5  1 . 5  9.5 4.5 

- - 0 3 11  6 

- - - 0 8 3 

. . . .  0 5 

. . . . .  
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Example III: 

Figure 6: An actual network in Southwestern Spain 

I1 Abbreviations ]1 

II ca I c~ t "  ,t M I s t ~at.Park II C~idiz C6rdoba Huelva M~,laga. Sevilla P.N, Dofiana 
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