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1. Introduction

Let (Ω, Σ, µ) be a finite measure space and consider two continuous linear operators
T : X1 → Y1 and S : X2 → Y2 between Banach function spaces related to µ. The aim 
of this paper is to study when it is possible to factorize T through S as
T = Mg ◦ S ◦ Mf where Mf : X1 → X2 and Mg : Y2 → Y1 are multiplication operators 
defined by measurable functions f and g. This type of factorization is called strong 
factorization for T , see for instance [16, Section III.H.§9]. There are many classical 
results relating inequalities for operators and factorizations,
as the well known ones coming from the Maurey-Rosenthal cycle of ideas which 
allow to associate some convexity/concavity inequalities for operators with strong
factorizations through Lp-spaces, see for instance [16, Proposition III.H.10] and
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[5, 6, 7]. In these results, the operator S appearing in the factorization of T 
is constructed from the inequality satisfied by T . In the present paper we are 
interested in analyzing the factorization of T through a specifically given operator
S. Our main results establish that, under some lattice type requirements on the
spaces involved, mainly order continuity, a factorization for T as Mg ◦ S ◦ Mf is
equivalent to a domination of T by S (Theorem 4.1) or by its transpose operator
S ′ (Theorem 4.2). Section 5 is devoted to one of these requirements, namely we
give conditions under which a product space is order continuous (Proposition 5.2).
The proof of Theorem 4.2 uses a Radon-Nikodým Theorem for vector measures
which characterizes when, for two vector measures n,m : Σ → E with values in a
Banach space E, there exists a bounded function h such that n(A) =

∫
A
h dm for

all A ∈ Σ. This Radon-Nikodým Theorem was proved by Musia l in [13, Theorem
1] by using a Ryll-Nardzewski lemma. In Section 3 we provide a simple proof of
this characterization which is based in a completely different fundamental tool, a
separation argument based on Ky Fan’s Lemma.

We end the paper by studying in Section 6 the particular cases when S is a com-
position operator or a kernel operator. In the first case, we added a new equivalent
condition for T to be strongly factorized through S (Theorem 6.1), which involves
a generalization of the concept of local operator (see for instance [1, Definition
2.2]).

2. Basic concepts and notation

We give in this section some basic definitions and results on Banach function spaces
and vector measures which will be used along this paper. Let (Ω,Σ, µ) be a finite

measure space and L0(µ) denote the space of all measurable real functions on Ω,
where functions which are equal µ-a.e. are identified. As usual, L∞(µ) will denote
the space of functions in L0(µ) which are bounded µ-a.e. By Banach function

space (briefly B.f.s.) we will mean a Banach space X ⊂ L0(µ) with norm ‖ · ‖X
such that if f ∈ L0(µ), g ∈ X and |f | ≤ |g| µ-a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X.
Note that every B.f.s. is a Banach lattice with the pointwise µ-a.e. order. A B.f.s.
X has the Fatou property if for every sequence (fn) ⊂ X such that 0 ≤ fn ↑ f
µ-a.e. and supn ‖fn‖X < ∞, it follows that f ∈ X and ‖fn‖X ↑ ‖f‖X . We will say
that X is order continuous if for every f, fn ∈ X such that 0 ≤ fn ↑ f µ-a.e., we
have that fn → f in norm. For issues related to B.f.s.’, see [17, Ch. 15] considering
the function norm ρ defined as ρ(f) = ‖f‖X if f ∈ X and ρ(f) = ∞ in other case.

Given two B.f.s.’ X and Y , the space of multipliers from X to Y is defined as

XY =
{
h ∈ L0(µ) : hf ∈ Y for all f ∈ X

}
.

The map ‖ · ‖XY given by ‖h‖XY = supf∈BX
‖hf‖Y for all h ∈ XY , where BX is

the open unit ball of X , defines a natural seminorm on XY which becomes a norm
only in the case when X is saturated, i.e. there is no A ∈ Σ with µ(A) > 0 such
that fχA = 0 µ-a.e. for all f ∈ X . Note that X is saturated if and only if it has
a weak unit (i.e. g ∈ X such that g > 0 µ-a.e.). In this case, XY is a B.f.s. The
particular multiplier space XL1

is just the classical Köthe dual of X which will be



denoted by X ′. For each h ∈ XY , we denote by Mh : X → Y the multiplication
operator defined as Mh(f) = hf for all f ∈ X . For more information on these
spaces see [12] and also [2].

The product space XπY of two B.f.s.’ X and Y is defined as the space of functions
f ∈ L0(µ) such that |f | ≤

∑
i≥1 |xiyi| µ-a.e. for some sequences (xi) ⊂ X and

(yi) ⊂ Y satisfying
∑

i≥1 ‖xi‖X‖yi‖Y < ∞. For f ∈ XπY , denote

‖f‖XπY = inf

{
∑

i≥1

‖xi‖X‖yi‖Y

}
,

where the infimum is taken over all sequences (xi) ⊂ X and (yi) ⊂ Y such that
|f | ≤

∑
i≥1 |xiyi| µ-a.e. and

∑
i≥1 ‖xi‖X‖yi‖Y < ∞. If X , Y and XY ′

are saturated
then XπY is a saturated B.f.s. with norm ‖ · ‖XπY . An study of these product
spaces can be found in [8].

Let m : Σ → E be a vector measure, that is, a countably additive set function,
where E is a real Banach space. A set A ∈ Σ is m-null if m(B) = 0 for every
B ∈ Σ with B ⊂ A. For each x∗ in the topological dual E∗ of E, we denote by
|x∗m| the variation of the real measure x∗m given by the composition of m with
x∗. There exists x∗

0 ∈ E∗ such that |x∗
0m| has the same null sets as m, see [9, Ch.

IX. 2]. We will call |x∗
0m| a Rybakov control measure for m.

A measurable function f : Ω → R is integrable with respect to m if:

(i)
∫
|f | d|x∗m| < ∞ for all x∗ ∈ E∗.

(ii) For each A ∈ Σ, there exists xA ∈ E such that

x∗(xA) =

∫

A

f dx∗m, for all x∗ ∈ E.

The element xA will be written as
∫
A
f dm. Denote by L1(m) the space of integrable

functions with respect to m, where functions which are equal m-a.e. are identified.
The space L1(m) is a Banach space endowed with the norm

‖f‖m = sup
x∗∈BE∗

∫
|f | d|x∗m|.

Note that L∞(|x∗
0m|) ⊂ L1(m). In particular every measure of the type |x∗m| is

finite as |x∗m|(Ω) ≤ ‖x∗‖ · ‖χΩ‖m.

Given f ∈ L1(m), the set function mf : Σ → E given by mf (A) =
∫
A
f dm for all

A ∈ Σ is a vector measure. Moreover, g ∈ L1(mf) if and only if gf ∈ L1(m) and
in this case

∫
g dmf =

∫
gf dm.

For a complete overview about integration with respect to vector measures we refer
to [4], [14, Ch. 3] and the references therein.

3. The Radon-Nikodým theorem for vector measures

In the next section we will use the following Radon-Nikodým theorem for vector
measures proved by Musia l in [13, Theorem 1]. We include here a totally different
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proof for the real Banach space case based on Ky Fan’s lemma (see for instance 
[15, E. 4]).

Theorem 3.1. Let m, n : Σ → E be two vector measures and take |x∗m| a Rybakov 
control measure for m. The following statements are equivalent.

(1) There exists a positive constant K such that

x∗n(A) ≤ K|x∗m|(A) for all A ∈ Σ and x∗ ∈ E∗.

(2) There exists a function g ∈ L∞(|x∗m|) such that

n(A) =

∫

A

g dm for all A ∈ Σ.

Proof. Let us show that (1) implies (2). Denote ξ = |x∗
0m|. For each x∗ ∈ E∗,

since the measure x∗m is absolutely continuous with respect to ξ, there exists
hx∗ ∈ L1(ξ) such that

x∗m(A) =

∫

A

hx∗ dξ

for all A ∈ Σ, i.e. hx∗ is the Radon-Nikodým derivative of x∗m with respect to
ξ. For every finite measurable partition {A1, ..., An} of Ω and every finite set of
vectors x∗

1, ..., x
∗
n ∈ E∗, we define the function φ : BL∞(ξ) → R by

φ(f) =
n∑

i=1

x∗
in(Ai) −K

n∑

i=1

∫

Ai

fhx∗

i
dξ

for all f ∈ BL∞(ξ). Note that φ is convex. Considering the weak* topology on
BL∞(ξ), we have that φ is a continuous function on a compact convex set. Let
F denote the family of the functions φ defined in this way. If φ1 and φ2 are two
functions in F and 0 < α < 1, since

αφ1(f) + (1 − α)φ2(f) =
n∑

i=1

αx∗
1,in(A1

i ) −K
n∑

i=1

∫

A1
i

fhαx∗

1,i
dξ

+

k∑

j=1

(1 − α)x∗
2,jn(A2

j ) −K

k∑

j=1

∫

A2
j

fh(1−α)x∗

2,j
dξ

=
n∑

i=1

k∑

j=1

(αx∗
1,i + (1 − α)x∗

2,j)n(A1
i ∩ A2

j )

−K

n∑

i=1

k∑

j=1

∫

A1
i∩A

2
j

f hαx∗

1,i
+(1−α)x∗

2,j
dξ,

we have that αφ1 + (1 − α)φ2 ∈ F as {A1
i ∩ A2

j : i = 1, ..., n, j = 1, ..., k} is a
partition of Ω. Then, it follows that F is a concave family of real functions. If (1)



holds, for each φ ∈ F , taking fφ =
∑n

i=1 sign(hx∗

i
)χAi

∈ BL∞(ξ), we have that

n∑

i=1

x∗
in(Ai) ≤ K

n∑

i=1

|x∗
im|(Ai) = K

n∑

i=1

∫

Ai

|hx∗

i
| dξ = K

n∑

i=1

∫

Ai

fφhx∗

i
dξ,

that is φ(fφ) ≤ 0. Therefore, by applying Ky Fan’s lemma, there exists a function
f0 ∈ BL∞(ξ) such that φ(f0) ≤ 0 for all φ ∈ F . Consequently, for every A ∈ Σ
and x∗ ∈ E∗, if we consider the partition {A,Ω \A} and the vectors x∗ and 0, we
obtain

x∗n(A) ≤ K

∫

A

f0hx∗ dξ

and

−x∗n(A) ≤ K

∫

A

f0h−x∗ dξ = −K

∫

A

f0hx∗ dξ,

that is x∗n(A) = K
∫
A
f0hx∗ dξ. Since this happens for every x∗ ∈ E∗, taking

into account that
∫
A
f0hx∗ dξ =

∫
A
f0 dx

∗m = x∗
(∫

A
f0 dm

)
, we have that n(A) =

K
∫
A
f0 dm for every A ∈ Σ and so (2) holds for g = Kf0.

The converse implication is obtained easily as follows. If (2) holds, for every A ∈ Σ
and x∗ ∈ E∗ we have that

x∗n(A) ≤ |x∗n(A)| =

∣∣∣∣x
∗

(∫

A

g dm

)∣∣∣∣ =

∣∣∣∣
∫

A

g dx∗m

∣∣∣∣

≤

∫

A

|g| d|x∗m| ≤ ‖g‖∞|x∗m|(A).

4. Strongly factorized operators between B.f.s.’

Let (Ω,Σ, µ) be a fixed finite measure space and X1, X2, Y1, Y2 B.f.s.’ related to µ
such that L∞(µ) ⊂ X1 ⊂ X2 and L∞(µ) ⊂ Y2 ⊂ Y1. This guarantees that XX2

1

and Y Y1

2 are B.f.s.’ containing L∞(µ).

Consider two continuous linear operators T : X1 → Y1 and S : X2 → Y2. This
section is devoted to characterize when T factorizes strongly through S, that is,
the following diagram commutes

X1
T //

Mf

��

Y1

X2
S // Y2

Mg

OO (1)

for some f ∈ XX2

1 and g ∈ Y Y1

2 . We will give two different characterizations. In
the first one we will use the Ky Fan’s lemma ([15, E. 4]) and the product space
Y2πY

′
1 which under our conditions is a saturated B.f.s. (see [8, Proposition 2.2]).

Theorem 4.1. Suppose that Y1, Y2πY
′
1 are order continuous and moreover Y1 has

the Fatou property. The following statements are equivalent:



(i) There exists a function h ∈ X1
X2 such that

n∑

i=1

∫
T (xi)y

′
i dµ ≤

∥∥∥∥∥

n∑

i=1

S(hxi)y
′
i

∥∥∥∥∥
Y2πY

′

1

for every x1, ..., xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′

1 .

(ii) There exist functions f ∈ XX2

1 and g ∈ Y Y1

2 such that T (x) = gS(fx) for all

x ∈ X1, i.e. T factorizes strongly through S as in (1).

Proof. First note that since Y2πY
′
1 is order continuous, the Köthe dual (Y2πY

′
1)′

can be identified with the topological dual (Y2πY
′
1)∗ (see [10, p. 29]). On the

other hand, Y1 = Y ′′
1 as Y1 has the Fatou property (see [10, p. 30]), and so by

[8, Proposition 2.2] we have that (Y2πY
′
1)′ = Y

Y ′′

1

2 = Y Y1

2 . Then, applying the
Hahn-Banach theorem, for each ξ ∈ Y2πY

′
1 there exists ξ′ ∈ BY2

Y1 such that
‖ξ‖Y2πY

′

1
= 〈ξ′, ξ〉 =

∫
ξ ξ′ dµ.

Suppose (i) holds for some h ∈ XX2

1 . For every x1, ...xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′

1 ,
we define the convex function φ : BY2

Y1 → R by

φ(g) =
n∑

i=1

∫
T (xi)y

′
i dµ−

n∑

i=1

∫
gS(hxi)y

′
i dµ,

for all g ∈ BY2
Y1 . Since (Y2πY

′
1)∗ = Y2

Y1 , considering the weak* topology we have
that B

Y2
Y 1 is a compact convex set and φ is continuous. Denote by F the family

of all functions φ defined in this way, which is obviously concave. Let φ ∈ F
defined through x1, ...xn ∈ X1 and y′1, ..., y

′
n ∈ Y ′

1 . As we have noted before, for∑n

i=1 S(hxi)y
′
i ∈ Y2πY

′
1 there exists gφ ∈ BY2

Y1 such that

∥∥∥∥∥

n∑

i=1

S(hxi)y
′
i

∥∥∥∥∥
Y2πY

′

1

=

∫
gφ

n∑

i=1

S(hxi)y
′
i dµ.

Then, from (i) we have that φ(gφ) ≤ 0. By Ky Fan’s lemma, there exists a function
g ∈ BY2

Y1 such that φ(g) ≤ 0 for all φ ∈ F . In particular,

∫
T (x)y′ dµ ≤

∫
gS(hx)y′ dµ (2)

for every x ∈ X1 and y′ ∈ Y ′
1 . Since this holds for every y′ ∈ Y ′

1 , by taking −y′ we
obtain also

−

∫
T (x)y′ dµ ≤ −

∫
gS(hx)y′ dµ.

Then ∫
T (x)y′ dµ =

∫
gS(hx)y′ dµ



for every x ∈ X1 and y′ ∈ Y ′
1 . Since Y1 is order continuous it follows that T (x) =

gS(hx) for all x ∈ X1, that is, (ii) holds.

Suppose now that (ii) holds for f ∈ XX2

1 and g ∈ Y Y1

2 . For every x1, ..., xn ∈ X1

and y′1, ..., y
′
n ∈ Y ′

1 we have that

n∑

i=1

∫
T (xi)y

′
i dµ =

n∑

i=1

∫
gS(fxi)y

′
i dµ ≤ ‖g‖

Y
Y1
2

·

∥∥∥∥∥

n∑

i=1

S(fxi)y
′
i

∥∥∥∥∥
Y2πY

′

1

,

that is, (i) holds for h = ‖g‖
Y

Y1
2

f .

Note that the previous theorem requires conditions on the B.f.s.’ Y1, Y2 and the
operator S. The second characterization of when T factorizes strongly through S
is a dual result of Theorem 4.1 in the sense that the conditions are required on
X1, X2 and the transpose operator S ′ of S. For the proof we will use also the
Radon-Nikodým theorem proved in Section 3.

Theorem 4.2. Suppose that X1, Y1, X2 and X1πX
′
2 are order continuous and X2

has the Fatou property. The following statements are equivalent.

(i) There exists a function h ∈ Y Y1

2 such that

n∑

i=1

∫
T (xi)y

′
i dµ ≤

∥∥∥∥∥

n∑

i=1

|S ′(hy′i)xi|

∥∥∥∥∥
X1πX

′

2

for every x1, ..., xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′

1 .

(ii) There exist functions f ∈ XX2

1 and g ∈ Y Y1

2 such that T (x) = gS(fx) for all

x ∈ X1.

Proof. Since X1πX
′
2 is order continuous and X2 has the Fatou property it follows

that (X1πX
′
2)

∗ = XX2

1 .

Suppose (i) holds for some h ∈ Y Y1

2 . It is direct to check that Y Y1

2 ⊂ Y
′Y ′

2

1 , then
since X2 is order continuous, we have that S ′(hy′) ∈ X ′

2 for all y′ ∈ Y ′
1 . For every

x1, ...xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′

1 , we define the convex function φ : BX1
X2 → R by

φ(f) =

n∑

i=1

∫
T (xi)y

′
i dµ−

n∑

i=1

∫
f |S ′(hy′i)xi| dµ,

for all f ∈ BX1
X2 . Considering the weak* topology, φ is continuous on a compact

convex set. Let F be the concave family of all functions φ defined in this way. If
φ ∈ F is defined through x1, ...xn ∈ X1 and y′1, ..., y

′
n ∈ Y ′

1 , taking fφ ∈ BX1
X2 such

that ∥∥∥∥∥

n∑

i=1

|S ′(hy′i)xi|

∥∥∥∥∥
X1πX

′

2

=

∫
fφ

n∑

i=1

|S ′(hy′i)xi| dµ,



from (i) we have that φ(fφ) ≤ 0. By Ky Fan’s lemma, there exists a function 
f ∈ BX1

X2 such that φ(f) ≤ 0 for all φ ∈ F . In particular,

∫
T (x)y′ dµ ≤

∫
f |S ′(hy′)x| dµ (3)

for every x ∈ X1 and y′ ∈ Y ′
1 . We can assume that f ≥ 0.

On the other hand, consider the continuous linear operator R : X1 → Y1 given by
R = Mh ◦ S ◦ Mf and the set function mR : Σ → Y1 defined as mR(A) = R(χA)
for all A ∈ Σ. Since X1 is order continuous we have that mR is a vector measure
and for every x ∈ X1 it follows that x ∈ L1(mR) with

∫
x dmR = R(x), see for

instance [3, Section 3]. For each y′ ∈ Y ′
1 and A ∈ Σ, we have that

y′mR(A) = 〈y′, R(χA)〉 =

∫
y′hS(fχA) dµ

= 〈y′h, S(fχA)〉 = 〈S ′(y′h), fχA〉 =

∫

A

S ′(y′h)f dµ,

where in the last inequality we have used that X2 is order continuous and so
S ′ : Y ∗

2 → X∗
2 = X ′

2. Then,

|y′mR|(A) =

∫

A

|S ′(y′h)|f dµ. (4)

Now, considering the vector measure mT : Σ → Y1 given by mT (A) = T (χA) for
all A ∈ Σ and applying (3) for x = χA and (4), we have that

y′mT (A) =

∫
T (χA)y′ dµ ≤

∫

A

f |S ′(hy′)| dµ = |y′mR|(A).

Hence, since Y1 is order continuous, Theorem 3.1 provides a function f1 ∈ L∞(ξ),
where ξ is a Rybakov control measure for mR, such that

mT (A) =

∫

A

f1 dmR

for all A ∈ Σ. Since X1 ⊂ L1(mT ) and the integration operator with respect
to mT restricted to X1 coincides with T , considering a mR-null set Z such that
f2 = f1χΩ\Z is bounded in all Ω, for each x ∈ X1 it follows that

T (x) =

∫
x dmT =

∫
xf1 dmR =

∫
xf2 dmR.

Noting that xf2 ∈ X1, we have that

T (x) = R(xf2) = hS(fxf2)

where ff2 ∈ XX2

1 . So (ii) holds.



Suppose now that (ii) holds for f ∈ XX2

1 and g ∈ Y Y1

2 . For every x1, ..., xn ∈ X1

and y′1, ..., y
′
n ∈ Y ′

1 we have that

n∑

i=1

∫
T (xi)y

′
i dµ =

n∑

i=1

∫
gS(fxi)y

′
i dµ

=
n∑

i=1

∫
fxiS

′(gy′i) dµ

≤

∫
|f |

n∑

i=1

|xiS
′(gy′i)| dµ

≤ ‖f‖
X

X2
1

∥∥∥∥∥

n∑

i=1

|xiS
′(gy′i)|

∥∥∥∥∥
X1πX

′

2

,

that is, (i) holds for h = g ‖f‖
X

X2
1

.

An easy example is given by the case when X1, X2, Y1, Y2 all coincide with an
order continuous B.f.s. X having the Fatou property and containing L∞(µ). By
a classical Lozanovskii’s result ([11, Theorem 6]) we have that XπX ′ = L1(µ)
(with equal norms) is order continuous. Also note that XX = L∞(µ) (with equal
norms), see [12, Theorem 1]. Then, Theorems 4.1 and 4.2 produce the following
result.

Corollary 4.3. The following statements are equivalent:

(i) T factorizes strongly through S, i.e.

X
T //

Mf

��

X

X S // X

Mg

OO

for some f, g ∈ L∞(µ).

(ii) There exists a function h ∈ L∞(µ) such that

n∑

i=1

∫
T (xi)x

′
i dµ ≤

∫ ∣∣∣∣∣

n∑

i=1

S(hxi)x
′
i

∣∣∣∣∣ dµ

for every x1, ..., xn ∈ X and x′
1, ..., x

′
n ∈ X ′.

(iii) There exists a function h ∈ L∞(µ) such that

∫
T (x)x′ dµ ≤

∫
|S ′(hx′)x| dµ

for every x ∈ X and x′ ∈ X ′.



Note that condition (iii) in Corollary 4.3 holds if there exists a constant K > 0
such that ∫

T (x)x′ dµ ≤ K

∫
|S ′(x′)x| dµ

for every x ∈ X and x′ ∈ X ′.

5. Order continuity for product spaces

For convenient use of Theorem 4.1 and Theorem 4.2, it is desirable to know when a
product space is order continuous. For particular cases, we can check this property
through direct computations.

Example 5.1. (See for instance [8, p. 202]).

(a) If 1 ≤ p, q < ∞ are such that 1
p

+ 1
q

= 1
r
≤ 1, then Lp(µ)πLq(µ) = Lr(µ) is

order continuous.

(b) For any B.f.s. X it follows that L∞(µ)πX = X and so the order continuity
depends on X .

(c) For any B.f.s. X , Lozanovskii’s theorem ensures that XπX ′ = L1(µ) is order
continuous.

The next result provides conditions under which a product space is order contin-
uous.

Proposition 5.2. Let X and Y be two B.f.s.’ containing L∞(µ) such that X is

order continuous, the simple functions are dense in Y and XY ′

is saturated. Then

XπY is order continuous.

Proof. Note that from [8, Proposition 2.2], the product space XπY is a saturated
B.f.s. Let us prove that (XπY )∗ = (XπY )′ and so we will have that XπY is order
continuous, see for instance [10, p. 29].

Let 0 ≤ φ ∈ (XπY )∗ and consider the finitely additive set function µφ : Σ → [0,∞)
defined by µφ(A) = φ(χA) for all A ∈ Σ. Note that µφ is well defined as for every
A ∈ Σ we have that χA = χAχΩ ∈ XπY . Moreover, since

µφ(A) ≤ ‖φ‖(XπY )∗‖χA‖XπY ≤ ‖φ‖(XπY )∗‖χA‖X‖χΩ‖Y ,

and X is order continuous, it follows that µφ is countably additive. If µ(A) = 0
then ‖χA‖X = 0 and so µφ(A) = 0, that is, µφ is absolutely continuous with respect
to µ. The scalar Radon-Nikodým theorem gives a function 0 ≤ g ∈ L1(µ) such
that µφ(A) =

∫
A
g dµ for all A ∈ Σ. Note that every simple function h satisfies

φ(h) =

∫
h dµφ =

∫
hg dµ.

Let f ∈ XπY and take a sequence of simple functions (hn) such that 0 ≤ hn ↑ |f |
µ-a.e. Then, since 0 ≤ hng ↑ |f |g µ-a.e., applying the monotone convergence



theorem, it follows that

∫
|f |g dµ = lim

n

∫
hng dµ = lim

n
φ(hn)

≤ ‖φ‖(XπY )∗ lim
n

‖hn‖XπY ≤ ‖φ‖(XπY )∗‖f‖XπY .

Hence, g ∈ (XπY )′. Denote by φg the functional on XπY defined via g as φg(f) =∫
fg dµ. We will finish the proof if we show that φ = φg. We have already seen

that φ(h) = φg(h) for all simple function h.

Note that X ⊂ XπY as f = fχΩ ∈ XπY for all f ∈ X . Let us see that φ = φg on
X . Take 0 ≤ f ∈ X and a sequence of simple functions (hn) such that 0 ≤ hn ↑ f .
Since X is order continuous, (hn) also converges to f in X and so in XπY , as the
inclusion between Banach lattices is always continuous (see [10, p. 2]). Then,

φ(f) = lim
n

φ(hn) = lim
n

φg(hn) = lim
n

∫
hng dµ =

∫
fg dµ = φg(f).

For a general f ∈ X , we only have to consider the positive and negative parts of
f .

Let now f ∈ XπY . Given ε > 0, there are two sequences (xi) ⊂ X and (yi) ⊂ Y
such that f =

∑∞
i=1 xiyi and

∑∞
i=1 ‖xi‖X‖yi‖Y ≤ ‖f‖XπY + ε, see [8, Remark 2.3].

Take nε such that
∑

i>nε
‖xi‖X‖yi‖Y ≤ ε

2
and for each i take a simple function

yi,ε ∈ Y such that ‖yi − yi,ε‖Y ≤ ε
2i+1‖xi‖X

. Noting that
∑nε

i=1 xiyi,ε ∈ X , we have
that

|φ(f) − φg(f)| ≤

∣∣∣∣∣φ(f) − φ
nε∑

i=1

xiyi,ε

)∣∣∣∣∣ +

∣∣∣∣∣φg

nε∑

i=1

xiyi,ε

)
− φg(f)

∣∣∣∣∣

≤ K

∥∥∥∥∥

nε∑

i=1

xi(yi − yi,ε) +
∑

i>nε

xiyi

∥∥∥∥∥
XπY

≤ K

nε∑

i=1

‖xi‖X‖yi − yi,ε‖Y +
∑

i>nε

‖xi‖X‖yi‖Y

)
≤ Kε

where K = ‖φ‖(XπY )∗ + ‖φg‖(XπY )∗ . Since ε is arbitrary, it follows that φ(f) =
φg(f).

Taking into account that the simple functions are dense in every order continuous
B.f.s. and that L∞(µ) ⊂ XY whenever X ⊂ Y , we obtain the following corollary.

Corollary 5.3. If X and Y are two order continuous B.f.s.’ containing L∞(µ)
such that X ⊂ Y ′, then XπY is order continuous.

From the previous corollary and noting that X ⊂ X ′′ for every B.f.s. X , in Section
4 we get that Y2πY

′
1 is order continuous if Y2, Y

′
1 are order continuous and L∞(µ) ⊂

Y ′
1 (equivalently, Y1 ⊂ L1(µ)). Similarly for X1πX

′
2.



Remark 5.4. In Proposition 5.2 we have proved that φ = φg on X without using 
the condition of the density of the simple functions in Y . We obtain the same 
conclusion if we replace this condition by any of the following ones:

(i) X is dense in XπY .

(ii) X ∩ BXπY is norming for (XπY )∗, i.e. ‖φ‖(XπY )∗ = supf∈X∩BXπY
|φ(f)| for

every φ ∈ (XπY )∗.

6. Particular cases

As in Section 4, let X1, X2, Y1, Y2 be B.f.s.’ related to a finite measure space
(Ω,Σ, µ) such that L∞(µ) ⊂ X1 ⊂ X2 and L∞(µ) ⊂ Y2 ⊂ Y1 and let T : X1 → Y1

be a continuous linear operator. In this section we study the strong factorization of
T through two particular classes of operators, namely, the composition operators
and the kernel operators.

6.1. Strong factorization through a composition operator

Consider a measure-preserving transformation σ : Ω → Ω, that is, a measurable
function such that µ (σ−1(A)) = µ(A) for all A ∈ Σ. Then, the composition
operator Sσ : L0(µ) → L0(µ) given by Sσ(f) = f ◦ σ is well defined and positive.
Suppose that Sσ : X2 → Y2 is well defined and so automatically continuous as it is
a positive operator between Banach lattices.

Under conditions of Theorem 4.1 (or 4.2), statement (i) holds if and only if T
factorizes strongly through Sσ, that is, there exist f ∈ XX2

1 and g ∈ Y Y1

2 such that

T (x)(ω) = g(ω)f (σ(ω))x (σ(ω))

for all x ∈ X1 and µ-a.e. ω ∈ Ω.

We will give a new equivalent condition for T to be strongly factorized through Sσ,
in which the following concept is involved. Given Q : X → Y and R : X → Z two
continuous linear operators between B.f.s.’ related to µ, we will say that Q is R-local

if for each x ∈ X it follows that Q(x)(w) = 0 µ-a.e. on {w ∈ Ω : R(x)(w) = 0},
that is, Supp(Q(x)) ⊂ Supp(R(x)) ∪ N for some µ-null set N . In the case when
X = Y = Z and R is the identity map, Q will be said to be local.

Theorem 6.1. If the simple functions are dense in X1 and T (χΩ) ∈ Y Y1

2 , then

the following statements are equivalent:

(i) T factorizes strongly through Sσ.

(ii) There exists h ∈ XX2

1 such that T is Sσ ◦Mh-local.

Proof. If (i) holds for some f ∈ XX2

1 and g ∈ Y Y1

2 , since T (x) = Mg ◦ Sσ ◦Mf (x)
for all x ∈ X1, then T is clearly Sσ ◦Mf -local.

Suppose that (ii) holds. Then, for every A ∈ Σ we have that

Supp(T (χA)) ⊂ Supp(Sσ ◦Mh(χA)) ∪N ⊂ σ−1(A) ∪N



for some µ-null set N . So,

T (χA) = T (χA) · χσ−1(A) = T (χΩ) · χσ−1(A),

where in the last equality we use again that Supp(T (χΩ\A)) ⊂ σ−1(Ω\A) ∪ Ñ for

some µ-null set Ñ . Hence, for a simple function x =
∑n

i=1 αiχAi
it follows that

T (x) =
n∑

i=1

αiT (χAi
) = T (χΩ)

n∑

i=1

αiχσ−1(Ai)

)
= T (χΩ)Sσ(x).

Let x ∈ X1 and take a sequence (xn) of simple functions converging to x in X1.
Then,

T (x) = limT (xn) = limT (χΩ)Sσ(xn).

Since X1 is continuously included in X2, we have that Sσ(xn) → Sσ(x) in Y2,
and since T (χΩ) ∈ Y Y1

2 , it follows that T (χΩ)Sσ(xn) → T (χΩ)Sσ(x) in Y1. So,
T (x) = T (χΩ)Sσ(x) and (i) holds for g = T (χΩ) and f = χΩ.

Unfortunately, Theorem 6.1 works because of the particular composition operator
Sσ. For a general operator S, if there exist f ∈ XX2

1 and g ∈ Y Y1

2 such that
T (x) = Mg ◦ S ◦ Mf (x) for all x ∈ X1, then T is clearly S ◦ Mf -local, but the
converse may fail.

Example 6.2. Let X be a B.f.s.’ containing L∞(µ) and consider two functions
hT > 0 and hS > 0 in L∞(µ) such that hT

hS
/∈ L∞(µ). Take an element 0 6= x′ ∈ X ′

and define the operators T : X → X and S : X → X as T (x) = 〈x′, x〉hT and
S(x) = 〈x′, x〉hS. Then T is S-local. However, if there exist f, g ∈ L∞(µ) such
that T (x) = gS(fx) for all x ∈ X , by taking x ∈ X such that 〈x′, x〉 6= 0 we have

that hT

hS
= g 〈x′,fx〉

〈x′,x〉
∈ L∞(µ) which is a contradiction.

Consider now the case when X1, X2, Y1, Y2 all coincide with an order continuous
B.f.s. X having the Fatou property and containing L∞(µ). Suppose that σ is
bijective with measurable inverse σ−1. Note that in this case σ−1 is a measure-
preserving transformation and Sσ−1 : X ′ → X ′ is well defined. Indeed, Sσ−1 = S ′

σ,
since for every x′ ∈ X ′ and x ∈ X we have that

〈S ′
σ(x′), x〉 = 〈x′, Sσ(x)〉 =

∫
x′(ω) x (σ(ω)) dµ(ω)

=

∫
x′
(
σ−1(ω)

)
x(ω) dµ(ω) = 〈Sσ−1(x′), x〉.

Corollary 6.3. The following statements are equivalent:

(i) T factorizes strongly through Sσ.

(ii) There exists h ∈ L∞(µ) such that
∫

T (x)(ω)x′(ω) dµ(ω) ≤

∫
|h(ω)x′(ω)x (σ(ω))| dµ(ω)

for all x ∈ X and x′ ∈ X ′.



(iii) There exists h ∈ L∞(µ) such that

|T ′(x′)(ω)| ≤
∣∣h
(
σ−1(ω)

)
x′
(
σ−1(ω)

)∣∣ µ-a.e.(ω)

for all x′ ∈ X ′.

Proof. The equivalence between (i) and (ii) is just the equivalence between (i)
and (iii) in Corollary 4.3, as S ′

σ = Sσ−1 .

Suppose (ii) holds. Given x′ ∈ X ′ we take B+ = {ω ∈ Ω : T ′(x′)(ω) ≥ 0}
and B− = {ω ∈ Ω : T ′(x′)(ω) < 0}. For every A ∈ Σ, considering the element
x0 = χA(χB+ − χB−), we have that

∫

A

|T ′(x′)(ω)| dµ(ω) =

∫
T ′(x′)(ω)x0(ω) dµ(ω) = 〈T ′(x′), x0〉

= 〈x′, T (x0)〉 =

∫
T (x0)(ω)x′(ω) dµ(ω)

≤

∫
|h(ω)x′(ω)x0 (σ(ω))| dµ(ω)

=

∫ ∣∣h
(
σ−1(ω)

)
x′
(
σ−1(ω)

)
x0(ω)

∣∣ dµ(ω)

≤

∫

A

∣∣h
(
σ−1(ω)

)
x′
(
σ−1(ω)

)∣∣ dµ(ω),

so (iii) holds. Conversely, if (iii) holds, for every x ∈ X and x′ ∈ X ′, it follows
that
∫

T (x)(ω)x′(ω) dµ(ω) =

∫
T ′(x′)(ω)x(ω) dµ(ω) ≤

∫
|T ′(x′)(ω)x(ω)| dµ(ω)

≤

∫ ∣∣h
(
σ−1(ω)

)
x′
(
σ−1(ω)

)
x(ω)

∣∣ dµ(ω).

Moreover, if Sσ−1 : X → X is well defined, then conditions (i)–(iii) in Corollary
6.3 are equivalent to

(iv) There exists h ∈ L∞(µ) such that T is Sσ ◦Mh-local.

Indeed, if (iv) holds, in the same way as in the proof of Theorem 6.1 we obtain
that T (x) = T (χΩ)Sσ(x) for all simple function x. By taking x ◦ σ−1 which is also
a simple function, it follows that T (x ◦ σ−1) = T (χΩ) x. Note that T (χΩ) x ∈ X
for every simple function x. Let us prove that this holds for every x ∈ X , so we
will have that T (χΩ) ∈ XX and we can follow the proof of Theorem 6.1 to obtain
that (i) holds. Let 0 ≤ x ∈ X and take a sequence (xn) of simple functions such
that 0 ≤ xn ↑ x µ-a.e. Then, 0 ≤ |T (χΩ)| xn ↑ |T (χΩ)| x µ-a.e. and

sup
n

‖|T (χΩ)| xn‖X = sup
n

‖T (χΩ) xn‖X = sup
n

‖T (xn ◦ σ
−1)‖X

≤ ‖T‖ sup
n

‖xn ◦ σ
−1‖X ≤ ‖T‖ ‖x ◦ σ−1‖X < ∞.



Since X has the Fatou property, we have that |T (χΩ)| x ∈ X and so T (χΩ) x ∈ X .
For a general x ∈ X , considering x+ and x− the positive and negative parts of x,
we have that T (χΩ) x = T (χΩ) x+ − T (χΩ) x− ∈ X .

In the particular case when σ is the identity map, the equivalence between (i) and
(iv) in Corollary 6.3 is a known result saying that T is local if and only if it is a
multiplication operator, see [1, Proposition 1.7] and [18, Theorem 8].

Example 6.4. Let ([0, 1],B[0, 1], λ) be the measure space with B[0, 1] being the
Borel σ-algebra of [0, 1] and λ the Lebesgue measure. For the measure-preserving
transformation σ : [0, 1] → [0, 1] given by σ(s) = 1 − s for all s ∈ [0, 1], the
composition operator Sσ : Lp[0, 1] → Lp[0, 1] (1 ≤ p < ∞) is well defined. The
continuous linear operators T : Lp[0, 1] → Lp[0, 1] which factorize strongly through
Sσ are characterized by conditions (ii)–(iv) of Corollary 6.3.

6.2. Strong factorization through a kernel operator

Consider a measurable function K : Ω × Ω → [0,∞) such that the operator
SK : X2 → Y2 given by

SK(f)(s) =

∫
f(t)K(s, t) dµ(t)

for all f ∈ X2 and s ∈ Ω, is well defined and so continuous.

Under conditions of Theorem 4.1 (or 4.2), statement (i) holds if and only if T
factorizes strongly through SK , that is, there exist f ∈ XX2

1 and g ∈ Y Y1

2 such that

T (x)(s) = g(s)

∫
f(t)x(t)K(s, t) dµ(t)

for all x ∈ X1 and s ∈ Ω. In this case, T is also a kernel operator with kernel
K̃(s, t) = g(s)f(t)K(s, t).

In the case when X1, X2, Y1, Y2 all coincide with an order continuous B.f.s. X
having the Fatou property and containing L∞(µ), using the equivalence between
(i) and (iii) in Corollary 4.3, we obtain that T factorizes strongly through SK if
and only if there exists h ∈ L∞(µ) such that

∫
T (x)(t)x′(t) dµ(t) ≤

∫ ∣∣∣∣x(t)

∫
h(s)x′(s)K(s, t) dµ(s)

∣∣∣∣ dµ(t) (5)

for all x ∈ X and x′ ∈ X ′. Indeed, S ′
K : X ′ → X ′ satisfies that

〈S ′
K(x′), x〉 = 〈x′, SK(x)〉 =

∫
x′(s)

∫
x(t)K(s, t) dµ(t) dµ(s)

=

∫
x(t)

∫
x′(s)K(s, t) dµ(s) dµ(t)

=

〈∫
x′(s)K(s, ·) dµ(s), x

〉

for all x′ ∈ X ′ and x ∈ X .



Example 6.5. Consider the measure space given by the interval [0, 1], its Borel 
σ-algebra and the Lebesgue measure. Let K be the kernel given by K(s, t) =
χ[0,s](t) for all s, t ∈ [0, 1]. Then, SK is just the Volterra operator. Suppose that
SK : X → X is well defined and continuous (e.g. X = Lp[0, 1] with 1 ≤ p < ∞).
The following statements are equivalent:

(i) There exist g, f ∈ L∞[0, 1] such that

T (x)(s) = g(s)

∫ s

0

f(t)x(t) dt a.e.(s)

for all x ∈ X .

(ii) There exists h ∈ L∞[0, 1] such that

∫ 1

0

T (x)(t)x′(t) dt ≤

∫ 1

0

∣∣∣∣x(t)

∫ 1

t

h(s)x′(s) ds

∣∣∣∣ dt

for all x ∈ X and x′ ∈ X ′.

(iii) There exists h ∈ L∞[0, 1] such that

|T ′(x′)(t)| ≤

∣∣∣∣
∫ 1

t

h(s)x′(s) ds

∣∣∣∣ a.e.(t)

for all x′ ∈ X ′.

Note that the equivalence between (i) and (ii) follows from applying (5). If (ii)
holds, given x′ ∈ X ′ we consider the sets B+ = {t ∈ [0, 1] : T ′(x′) ≥ 0} and B− =
{t ∈ [0, 1] : T ′(x′) < 0}. For each measurable set A, taking x = χA(χB+ − χB−),
we have that

∫

A

|T ′(x′)(t)|dt =

∫ 1

0

T ′(x′)(t)x(t)dt = 〈T ′(x′), x〉 = 〈x′, T (x)〉

=

∫ 1

0

T (x)(t)x′(t)dt ≤

∫ 1

0

∣∣∣∣x(t)

∫ 1

t

h(s)x′(s) ds

∣∣∣∣ dt

≤

∫

A

∣∣∣∣
∫ 1

t

h(s)x′(s) ds

∣∣∣∣ dt.

so (iii) holds. Conversely, if (iii) holds, for every x ∈ X and x′ ∈ X ′, it follows
that

∫ 1

0

T (x)(t)x′(t) dt =

∫ 1

0

T ′(x′)(t)x(t)dt ≤

∫ 1

0

|T ′(x′)(t)x(t)|dt

≤

∫ 1

0

∣∣∣∣x(t)

∫ 1

t

h(s)x′(s) ds

∣∣∣∣ dt.

If we consider now the Hardy operator which is given by the kernel K(s, t) =
1
s
χ[0,s](t) for all s, t ∈ [0, 1] and suppose that SK : X → X is well defined and

continuous (e.g. X = Lp[0, 1] with 1 < p < ∞), in a similar way we obtain that
the following statements are equivalent:



(i) There exist g, f ∈ L∞[0, 1] such that

T (x)(s) =
g(s)

s

∫ s

0

f(t)x(t) dt a.e.(s)

for all x ∈ X .

(ii) There exists h ∈ L∞[0, 1] such that

∫ 1

0

T (x)(t)x′(t) dt ≤

∫ 1

0

∣∣∣∣x(t)

∫ 1

t

h(s)x′(s)

s
ds

∣∣∣∣ dt

for all x ∈ X and x′ ∈ X ′.

(iii) There exists h ∈ L∞[0, 1] such that

|T ′(x′)(t)| ≤

∣∣∣∣
∫ 1

t

h(s)x′(s)

s
ds

∣∣∣∣ a.e.(t)

for all x′ ∈ X ′.
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[8] O. Delgado, E. A. Sánchez Pérez: Summability properties for multiplication opera-
tors on Banach function spaces, Integral Equations Oper. Theory 66 (2010) 197–214.

[9] J. Diestel, J. J. Uhl, Jr.: Vector Measures, Math. Surveys 15, Amer. Math. Soc.,
Providence (1977).

[10] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces II, Springer, Berlin (1979).

[11] G. Ya. Lozanovskii: On some Banach lattices, Sib. Math. J. 10 (1969) 419–430.

[12] L. Maligranda, L. E. Persson: Generalized duality of some Banach function spaces,
Indag. Math. 51 (1989) 323–338.



[13] K. Musia l: A Radon-Nikodým theorem for the Bartle-Dunford-Schwartz integral,
Atti Semin. Mat. Fis. Univ. Modena 41 (1993) 227–233.

[14] S. Okada, W. J. Ricker, E. A. Sánchez Pérez: Optimal Domain and Integral Ex-
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