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ABSTRACT A redundant fast prototyping autopilot solution for unmanned aerial systems has been
developed and successfully tested outdoors. While its low-level backbone is executed in a Raspberry Pi® 3 +
NAVIO2® with a backup autopilot, the computational power of an Intel® NUC mini-computer is employed
to implement complex functionalities directly in Simulink®, thus including in-flight debugging, tuning
and monitoring. Altogether, the presented tool provides a flexible and user-friendly high-level environment
with enhanced computational capabilities, which drastically reduces the prototyping timespans of complex
algorithms —between 50% and 75%, according to our long and proven experience in aerial robotics—, while
preventing incidents thanks to its redundant design with a human-in-the-loop pilot on the reliable PX4. Three
typical outdoor cases are carried out for validation in real-life scenarios, all mounted in a DJI© F550 platform.
Full integration results and telemetry for more than 50 hours of outdoor flight tests are provided.

INDEX TERMS Unmanned autonomous systems (UASs), acrospace systems and applications, applications

(robotics), middleware, redundancy, PX4, fast prototyping.

I. INTRODUCTION

The increasing complexity of new applications for small
Unmanned Aerial Systems (UAS) is demanding autopilots
with higher computational power and, more importantly,
faster prototyping timespans. The novel branch of Aerial
Robotics is pushing forward in this direction, mainly due to
its broad range of applications, such as contact inspection,
maintenance, and assembling at inaccessible and/or danger-
ous places. For a detailed literature review on this emerg-
ing area, we refer interested readers to cutting-edge projects
[1]-[3] and its ongoing follow-up in [4] (see survey
papers [5], [6]), the overview of aerial manipulation in [7],
the applications with multi-joint manipulators in [8], [9], [10]
and [11], the self-coordinated approach in [12] and [13],
and to the ad-hoc autopilot in [14]. In particular, in [2]
we challenged ourselves to complete complex missions
outdoors, being the inter-consortium integration and code
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customisation difficulties found while implementing new
complex algorithms the main motivation of this work.

To cope with these obstacles, most of the aerial platforms
depend whether on autopilots based on open-source software
compiled in target computer boards (e.g. PX4 in [15], [16]),
or on ad-hoc solutions made by research groups to fulfil their
needs, e.g. in [17]. Thus, advances in these complex func-
tionalities are implemented either modifying the open-source
code to specifically implement new challenging guidance
and/or control strategies, as in [18] for Model Predictive Con-
trol (MPC) or in [19] for backstepping sliding mode control
(SMC), or for general purpose applications, as in [20], [21]
and [22]; or linking it with previously built software, as in
the multi-layer approach in [23], the model-based design and
validation in [24] or the architecture for a nonlinear con-
troller in [25]. Although these open autopilot options provide
a wide range of well-polished features that are sufficient
in most outdoor' cases, their thorough internal integration

]Applications including wired appliances to support computations off-
board —as e.g. [26], [27]- are omitted due to the outdoor and autonomous
nature of our design, i.e. with a completely onboard implementation system.

223827


https://orcid.org/0000-0002-6080-3994
https://orcid.org/0000-0001-9791-4148
https://orcid.org/0000-0003-0040-338X
https://orcid.org/0000-0003-2155-2472
https://orcid.org/0000-0002-7952-0038

IEEE Access

C. R. de Cos et al.: High-Level Modular Autopilot Solution for Fast Prototyping of UASs

distorts the project schedules by expanding the time devoted
to the customisation of source code. To illustrate this point,
a comparison between widely used autopilots for UAVs? and
the proposed Modular Autopilot Solution MASP ,is shown
in Table 1. It is worth noting that this study is based on the
deep knowledge acquired by our research group after more
than 50 aerial projects along the last 10 years, allowing us to
identify common drawbacks in the early stages of prototyping

of these autopilot solutions:
o The implementation of customised functionalities gen-

erally demands offline ad-hoc modifications of the
native source code, resulting in longer debugging times
during the integration stages.

o The implementation of complex algorithms is not pos-
sible in the existing computer boards, mainly due
to the lack of computational power and/or to their
closed nature, which, in turn, might compromise their
feasibility.

Even though the prolongation of the timespans by the
former could be tolerated on paper, the solution commonly
given to adhere to the project deadlines when it occurs is
to limit the extension of the advances in complex function-
alities. In contrast, we found the latter a hard constraint
while executing dexterous manipulation tasks in the onboard
computer in [2], mainly due to the coverage of localisation,
vision, flight control and manipulation subtasks. Altogether it
ends up forcing a trade-off that downgrades the implementa-
tion, and hence, the overall performance. To overcome these
limitations, the main contributions of the MASX4 autopilot
solution are:

Cl. Drastic reduction of programming and debugging
times. The full use of the user-friendly and highly
modular Simulink® [35] environment expedites the
software development and implementation of complex
algorithms.

C2. High-level in-flight code debugging, tuning and moni-
toring, while preserving the autopilot redundancy for
unexpected incidents and/or learning capabilities.

C3. Enough computational power to implement and exe-
cute heavy and complex algorithms onboard, with no
need for downgrading the implementation.

C4. Nonetheless, selected functionalities of PX4 can be
kept running, thus providing a step-by-step way to
implement fast-prototyping functionalities as desired.
For instance, here we keep the EKF estimator and the
motor mixer and modify the planning and control core
algorithms.

Remark 1: We underscore that the fast prototyping poten-
tial relies on two novel specifications. First, the mainframe
Simulink® environment whose modularity and fast integra-
tion capabilities are widely known, facilitating the external
validation and/or cooperation between research groups. Sec-
ondly, to the best of the authors’ knowledge, MASpy,, is the

2Only solutions validated in flight are considered, thus excluding general
purpose and/or educational approaches, such as [28]-[34]. In any case,
the only redundant alternative is MASX 4
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TABLE 1. Comparison between MAS[, , and alternative autopilots.

Modularity & In flight ~ Need of full Redund
customisability® tuning compilation cdundancy
MASS, High Level® Yes Nof Yes
PX4 Low Level® Yes¢ Yes No
ROSAlight Low Level® Yes Yes No
ArduPilot Low Level Yes! Yes No
DIl No*® Yes Yes No
Paparazzi Low Level Yes Yes No

“Understood as the possibility of actively and directly modifying all the control
loops, from the ground operator inputs to the generalised force signals.

YHigh level means here i) implementing algorithms using an interface which
natively does not only depend on low-level code, and ii) not demanding the user to
get involved into the integration apart from the minimal interconnection variables.

¢Simulink external mode can be used with deprecated PX4 versions for Pixhawk,
not allowing complex algorithms.

dTuning available via MAVlink using tools such as Mission Planner or QGround-
Control (see [36] for further details).

¢The DIJI software in the board cannot be modified directly. References to some of
the control levels can be demanded via SDK using another computer board.

fSimulink® invokes a model interpreter. Nonetheless, this interpretation is sig-
nificantly faster than PX4 and more user-friendly than compiling a standalone
executable or a binary file. A detailed and thorough discussion about the differences
between compilation and interpretation in this graphical environment is included
in Appendix A.

first autopilot with in-flight human-in-the-loop redundancy
and debug capabilities, drastically reducing the implementa-
tion and tuning times.

Remark 2: It is also worth highlighting the flexibility of
the MASpy,, framework in terms of computational capabili-
ties. In here, we have proposed a particular hardware solu-
tion with an Intel® NUC computer board, but it could be
replaced by others. For example, sooner than later the All
Up Weight (AUW) is expected to be reduced, as it evinces
the arrival of lighter computers, such as [37] or the recent
release [38] with an NPU of 5 TOPS.3

The paper is structured as follows: Section II describes the
hardware and software architectures as well as a thorough
description of the autopilot low-level implementation, and
Section III is devoted to the experimental validation in three
separate cases of study. Finally, the paper is wrapped up with
a conclusion section.

Il. AUTOPILOT ARCHITECTURE

As aforementioned, the main goal of the proposed archi-
tecture is to obtain a safe autopilot that facilitates the fast-
prototyping implementation of complex algorithms onboard,
thus overcoming the previously presented limitations and
allowing their full experimental demonstration.

This is achieved by making a reliable environment that
integrates: i) the customised algorithms in Simulink® —more
complex and optimised over a wider range of conditions—;
and ii) the flight stack PX4 (see [15], [16]) —simpler, more
reliable, and well-known for having been used for more
than 10 years in the majority of our prototypes of different
projects—. A detailed discussion of similar types of software

3TOPS stands for Tera Operations Per Second.
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FIGURE 1. Validation platform in flight with the hardware solution used
as an exploded detail view highlighting the setup.
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FIGURE 2. Redundant MASX 4 solution as a schematic diagram (similar
to a transit map) with the modifications in aquamarine bypassing the
backup PX4 autopilot in purple via the operator switch in orange.

architectures in commercial flight control systems is pro-
vided in [39], of course despite the apparent differences. The
actual hardware implementation of this solution is shown
in Fig. 1 and a sketch of its global software functional-
ity —highlighting the backup and bypass lines— is depicted
in Fig. 2.

In particular, the proposed solution is implemented with
custom daemon modules, located after the state estimator and
before the motor mixer?: i) the PX4 ecl/EKF state estimation
is sent to the customisation environment, making use of the
current reliable estimator, which is not the focus of this work;
and ii) both redundant controllers, i.e. the cascade-like of
PX4 and the customised one, join at the command switch (RC
Switch in Figs. 2 and 3).

In this second point, the roles of the two agents involved
in the experimentation phase come into action. On the one
hand, the ground operator, an expert engineer involved in
the development of the algorithm being validated, confirms
the correct behaviour of the new functionalities. On the
other hand, the backup pilot (or pilot in command) is in
charge of guaranteeing the safety conditions of aircraft
during the flight. If during their task, this pilot detects
any risk in the experiment, they would trigger the backup
switch, bypassing the prototyped algorithm to the backup
PX4 controller. It is worth noting that the latter has been
previously tested and tuned to be used as a safe reliable
controller.

4This PX4 version is available at https://github.com/grvcTeam/MASp.
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FIGURE 3. Architecture for MAS)S 4+ with both human agents included in
the ground systems and highlighting the RC switch.

A. HARDWARE ARCHITECTURE

The hardware implementation —schematically depicted
in Fig. 3— consists of a Raspberry Pi® 3 [40] equipped
with a NAVIO2® as carrier [41], used for both the backup
controller and the state estimation; and an Inte]l® NUC [42]
as the main computer. In this approach, the Raspberry Pi® 3 is
adopted as the interface board and delegated the backup
autopilot, and the Intel® NUC is dedicated to implementing
customised algorithms directly on Simulink® modules (e.g.
control, planning or navigation), maximising the computa-
tional capacity. All of these make the autopilot modular,
customisable and safe, due to the redundancy master backup
switch.

Remark 3: It is important to highlight that those modules
do not need to be compatible with the Simulink® external
mode, thus guaranteeing broader compatibility in normal
mode and full functionality. Additionally, accelerator mode
can be used if needed, with its implicit limitations (see
Appendix A).

For the sake of completeness, a comparison with other
environments is in order. On the one hand, the proposed
autopilot has in common with the Dronecode ecosystem [43]
—which includes PX4— the possibility of using the hard-
ware Raspberry Pi® 3 + NAVIO2®. However, none of the
projects fostered by Dronecode employs an external com-
puter board for the implementation of complex algorithms.
Additionally, the ROS capabilities could be enabled through
MAVLink/MAVROS (see [36]) —as in Dronecode— or via
the ROS toolbox in Simulink®, and hence, both providing
full connectivity. On the other hand, the proposed autopilot
significantly improves the technical specifications of another
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TABLE 2. UDP connection results from both sides (25 MB packages).

Intel® NUC Raspberry Pi® 3

BW Jitter Lost BW Jitter Lost

Port [Mb/s] [ms] Data [Mb/s] [ms] Data
8081 T/O 1.04 0.49  0/1785 1.04 0.488  0/1785
8082 I/O 1.04 0.54  0/1785 1.04 0.542  0/1785
8083 I/O 0.96 1.37  0/1785 0.96 1.366  0/1785
8888  O/1 0.96 0.56  0/1785 0.96 0.557 0/1785

common solution, Pixhawk [44], which is known for being
only valid in simple and slow tasks —due to its PID imple-
mentation and sample frequency—, and for not supporting
Ethernet communications, unlike the proposed approach.

Additionally, it is also worth mentioning ROSflight [45],
a recently appeared board with which the MASP,, envi-
ronment concurs on some characteristics. Both share, for
instance, the implementation of new algorithms on a
companion computer board, and their sensor and actu-
ator interfaces are similar to our Raspberry Pi® 3 +
NAVIO2® approach. Nonetheless, although ROSflight also
focuses on easing the development stages —in particular the
low-level coding—, it is based on ROS; while in MASX4,
this feature is optional and the prototyping interface is the
user-friendly graphical interface Simulink® . Additionally,
MASX 4 includes redundancy with the mature PX4 backup,
thus offering the possibility of progressively implementing
custom functionalities safely.

Moving back to MASG,,, it is worth noting that a trade-off
between the computational power and the endurance has to be
a priori decided, as usual in electrically-powered UAS appli-
cations. As commented in Remark 2, for lower computational
missions, the external board Intel® NUC can be replaced by
any other that reduces the AUW of the benchmark platform
(3.2 Kg), and improves its endurance (about 8 min).

B. SOFTWARE INTEGRATION
The core of this reliable implementation is the integration of
PX4 with the prototyping environment. A thorough analysis
is therefore dedicated to the internal UDP communications,’
which over a robust Ethernet communication form the sine-
qua-non condition for the reliability of the whole solution.
On the one hand, the quality of the Ethernet UDP connec-
tion is studied in terms of bandwidth, jitter and lost datagrams
in a 20 seconds experiment with overestimated® packages
(25 MB) using iPerf [46]. This tool calculates jitter as the
difference between the receiving and sending times —via a
timestamp added to the package sent by the client—, correcting
any discrepancy due to the lack of clock synchronisation.
The results are then collected in Table 2, confirming that
no datagrams were lost during the test and that a bandwidth
of 1 Mb/s is more than enough for the application. In what

SFor the sake of completeness, the pseudocode for the UDP modules is
shown as an appendix.

OThis assures the possibility of future scalability.

223830

70

S e e s pi iy o, O o o5
T 1L T Tl Tl Tt T T]T
Accelator Mode

60 _

I e iy
&_[TLLLL*LI

T
T
50

40 8

TR

30 J

10|
/ Normal Mode

0 I . . . . .
0 1 2 3 4 5 6 7 8

toa 18]

real

FIGURE 4. Time ratio for 20 tests of 8 seconds, on normal and accelerator
modes, in an Intel® NUC 5i7RYH, where the solid lines correspond to
mean values and the error bars to most distant value of these tests.

respects to the jitter, it should be highlighted that, although
the package congestion in UDP protocols is lower than in
TCP, this fluctuation could also have an impact on UDP
applications. Nonetheless, the provided results evince that the
jitter in the proposed solution is negligible.

On the other hand, a preliminary study on the Round Trip
Time (RTT) —that includes the communication and the cus-
tomised code execution— is also conducted. For that purpose,
the time between a simple RC command is given and its
impact on the controller output is measured.” As a result,
we obtain a mean RTT estimation of 1235 ps using the
controller in Subsection III-A. In comparison, the PX4 output
runs at 250Hz (4000 ps), being the RTT of this application
below this sample time. Nonetheless, the influence of the
complexity of the customised algorithm on the execution
times should also be studied to complete this analysis. This
is done in part in Subsection II-C but more specifically in
the load test for a computational-demanding implementation
in Fig. 8, showing that the computational capabilities of
the solution are well above the current demands. Accord-
ingly, we can conclude that an increase in the complex-
ity of the algorithms implemented can be compensated by
the computational power margins of the proposed environ-
ment. Considering this, the RTT is not being significantly
affected.

C. SIMULATION VERSUS REAL-TIME OVERSAMPLING

The proposed solution is designed to use the full potential of
the Simulink® environment (i.e. avoiding incompatibilities),
and to reduce the simulation-to-experimentation times at the
expense of real-time. This results in two phenomena: time-
variant random disturbances and high-frequency spurious
signals. To study both of them, let us define the time ratio TR
as the rate between the clock time according to the simulation
records and its real value according to the PX4 board clock.®
A thorough batch of experimental tests was carried out and,

TWithout passing by the EKF estimator, being considered the contribu-
tions of this step to the RTT negligible for this analysis.

8Notice that the implementation of explicit time-variant terms, such as
integrals, will need the corresponding correction with this time ratio.
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customisation environment including the standard Simulink® communication modules (upper) with a detailed view of the main

module, highligﬁtmg the position (A) and attitude (B) controllers, together with the navigation module and the flight modes (lower).

as shown in Fig. 4, the TR is only altered during short initial
transients of about 2 seconds, thus being assimilable to the
time convergence of the ecl/EKF estimator in PX4. Con-
sequently, this time ratio can be considered constant in the
design of custom algorithms (but being recommended to re-
calculate its value after significant changes in the complexity
of the algorithms to re-adjust time-varying terms).
Moreover, the potential problems that may arise for high-
frequency residual signals were also analysed in depth. The
experimental tests evince that in all cases those spurious
signals were completely filtered by the propulsion system
dynamics and other common UAS filters, as well as for
the 200-250Hz sampling rate limitation of the PX4 motor
mixer uORB. In summary, no incidents were detected in more
than 50 hours of flight, and therefore the influence of signal
oversampling is considered negligible in UAS applications.

Ill. EXPERIMENTAL VALIDATION (EV)

The validation of the autopilot is demonstrated through
three typical implementation cases, thus providing a general
overview of its possibilities in real-life scenarios, and show-
ing the friendly fast-prototyping implementation of simple
and complex algorithms. These experiments, in which a stan-
dard DJI® F550 frame [47] (see Fig. 1) is selected as the
platform to mount the autopilot, are:

EV1. The progressive development of a cascade PID con-

troller mimetic to the controller in PX4, to illustrate
the redundancy and reliability of MASFy, and to
serve as an example of the implementation of a
complete strategy.
A complex nonlinear control algorithm without
any simplification, to reveal the computational
capabilities of the autopilot as well as to demon-
strate its feasibility for more complex implemen-
tations. Additionally, since the algorithm runs in
faster-than-real-time, its implementation stability is
analysed.

EV2.

VOLUME 8, 2020

EV3. A navigation module, to illustrate the wide range
of possibilities MASP) , offers for fast prototyping
apart from control (not be confounded with a final
evaluation). Accordingly, the controller chosen to
run underneath this module is the cascade PID
in EV1, thus assuring that those researchers not
mainly interested in control can implement their
modules without getting discouraged by the com-
plexity and lack of intuitiveness of the controller.

The procedure followed to implement these cases —thought
to avoid incidents while changing the core algorithms— is
also worth mentioning. Firstly, the basic functionalities of
an initial solution in Simulink® progressively replace their
homologous in PX4, testing these changes in a confined
scenario with the platform suspending from a structure. When
all these basic changes are checked, the limitations of the sce-
nario are relaxed by removing the suspension of the platform,
thus allowing a realistic evaluation of the novel functional-
ities. Finally, the obtained control strategy is demonstrated
in a non-confined scenario equivalent to a fully autonomous
flight outdoors, testing the higher-level capabilities. As a
result, a reliable complete solution directly evolving from a
simulation-based development is obtained.

To ease understanding of the implementation of the algo-
rithms for EV1-EV3, in Fig. 5 we show the general modular
structure of the Simulink® environment. This includes the
inputs and outputs and the position (A) and attitude (B) sub-
systems, whose contents will be detailed in each experiment.

A. EV1: SIMPLE PID CONTROLLER MODULE

A standard PID cascade controller is implemented by pro-
gressively replacing parts of its PX4 counterpart and tuning
them from the inner to the outer loop, as follows: i) Attitude
rates; ii) Attitude; iii) Altitude; iv) Cartesian speed; and,
finally, v) Cartesian position, resulting in a semi-autonomous
controller. As previously mentioned, this cascade controller

223831
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is intended to be mimetic to the native controller in PX4, but
implemented in Simulink® using the Intel® NUC. This is
used both to validate the customisation environment and to
illustrate the redundancy capabilities of the solution.

In Fig. 6 we depict the Simulink® implementation for
subsystems (top), together with the results for both attitude
and position controllers (bottom), respectively. Moreover, all
references, including position, attitude and their associated
rates, are tracked with minimal steady-state error, similarly
to the error in PX4. Altogether, this demonstrates that both
controllers can be considered mimetic and corroborates the
whole reliability of the autopilot.

B. EV2: COMPLEX NONLINEAR CONTROLLER MODULE
To exemplify the computational capabilities, we implement a
cascade nonlinear controller based on feedback linearisation
and command-filtered backstepping. This type of controllers
—together with the cascade PIDs— are the most commonly
used in this kind of multi-rotor platform. Although standard
in aerial robotics, the one implemented here is an adapted
version of [48] —and references therein—, being briefly sum-
marised next. Thus, let U =col(Uy, Uy, U3) € R3 be
the virtual command in the Cartesian position outer loop
of the cascade, hence becoming the feedback-linearisation
controller

t
U zﬁref + Kp pe + Kp pe + K; (Pé’o +/ Pe d‘[) s
fo
with pr € RR? the cartesian position reference and p, € R3
its associated error; Kp, K, Kp € R3*3 the matrix control
gains; and p/-0 =col(0, 0, z-°) a feedforward integral action
counteracting the initial vertical forces, zé’o. This outer loop
provides the attitude reference commands for the inner and
nonlinear control loop reading

T'=m|U—gl,
Uycosy + U sinyr
tan Oy, = — ,
Us —ligll
. Uycosyr — Upsinyr
WO = T

where m € R is the UAV mass, g € R? the gravity accel-
eration vector, 7 € R the total thrust and ¢ € R the yaw
angle.

On the other hand, the attitude controller of the inner
loop is formulated using the command-filtered backstepping
technique (see references therein [48]), yielding

Ta=QxIQ+T2Z +1IWTZ) + Qpp),
S.Zref = _l:(Qref — Qg),
€ = _Fle_W(Qref - Qq),
with 7, € R3 the control torque produced by the differential
thrust between the rotors (see [49] and references therein);
© =col(¢,0,y¥) € R3>and Q@ € R3 the attitude and

attitude rate, with W(®) € R3*3 their associated matrix;
I € R3*3 the inertia matrix of the UAV in the body frame;
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FIGURE 6. Cascade PID controller implemented in MASX with results
from the position and attitude control loops at constant a?titude.

7 = O — © — € the filtered attitude error; € € R3
a filter to counteract the mismatch of the tracking error;
Zy = SQpy — Q the attitude rate error, and I';, I'; and
I € R¥3 are control and filter matrix gains. Notice
that the gyroscopic terms have been neglected because
of their irrelevance for this platform, and that the high-
order implementation of this solution includes 9 nonlinear
integrators.
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FIGURE 7. Command-filtered backstepping controller implemented in
MASX4 with results for position and attitude at constant altitude.

In Fig. 7 we depict again the Simulink® implementation
of this much more involved nonlinear controller for the sub-
systems (top), together with the results at the bottom when
commanded to track a variable reference. It is worth noting
in this case that the attitude controller steady-state error does
not affect the position controller.

Additionally, a CPU load test for this algorithm —in which
aggressive RC commands and ad-hoc parameter tuning were
induced in its first half to estimate their maximum impact—
is shown in Fig. 8, becoming clear that the Inte]l® NUC is
capable of running significantly more demanding algorithms
even without turning to the accelerator mode of Simulink®,
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FIGURE 8. Stacked CPU load executing command-filtered backstepping
controller in MASX 4» being the RAM use consistently steady at 25%.
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FIGURE 9. Navigation module implemented in MASX4.

as expected. It is also worth noting that the variations due
to the aforementioned additional elements in the first half
of the experiment are perceptible. Nonetheless, consider-
ing the time ratio analysis in Fig. 4, in which significant
computational power margins were detected, we can con-
clude that their impact on the reliability of the solution is
negligible.

C. EV3: AUTONOMOUS NAVIGATION MODULE

Finally, a separate autonomous flight has been carried out in
an outdoor scenario with wind disturbances and GPS inac-
curacies including an additional navigation module depicted
(see Fig. 9). The flight path, as depicted on the left side
of Fig. 10, consists of an XY square followed by a verti-
cal rectangle sharing one of its sides, being this manoeuvre
chosen to show the response of the controller to changes in
all directions. To highlight the changing speed during the
flight, a set of time-equispaced points have been added to
the position plot. It can be concluded that the solution is
perfectly capable of tracking the proposed trajectory with a
good overall performance. As shown by both path tracking
and position subplots, the most important error peaks cor-
respond to the regions around the waypoints, as expected,
being the displayed overshoots at their typical range in aerial
robotics.
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FIGURE 10. Monitoring of the UAV using a PID cascade controller: path tracking (on the left, with position markers separated by 0.25 s and navigation
waypoint order ~where the initial and final positions are highlighted in green and red, respectively-), global position (top right) and attitude (bottom
right), where black lines represent the references (with speeds of up to 1 m/s) and the coloured lines/markers the UAV state.

IV. CONCLUSION

In the present work, a high-level modular autopilot solu-
tion for fast prototyping of custom algorithms in UAVs
is presented and demonstrated in an experimental setting.
The approach is proven to be safe and reliable in terms
of communication, integration and execution of new algo-
rithms due to its inherent redundancy. Moreover, the proposed
solution provides a user-friendly modular environment in
the well-known Simulink® software, making the theory-to-
implementation step easier and faster, and facilitating the
interchange and external validation of custom algorithms.
Finally, its feasibility for computation-intensive methods is
demonstrated by the implementation of a high-order nonlin-
ear controller, thus overcoming the prototyping issues gen-
erally arisen when applying complex algorithms on aerial
robotics.

Future work is underway to include additional modules
like estimator and mixer for other multi-rotor setups. All
these implementations and modules will be available in a
shared open repository,’ thus facilitating the aforementioned
interchange and validation of custom functionalities.

APPENDIX A

Simulink® RUNNING MODES

Since the need for compilation in Simulink® is not evi-
dent, in here we include a disambiguation of the differ-
ence between compilation and interpretation in this graph-
ical programming environment. According to the available
technical documentation, the model is interpreted in Nor-
mal mode during each simulation run (see 10-11 in [50]
and [51]), thus being this mode preferable when frequent
changes of the model are needed. Moreover, including only
Interpreted Function blocks —without using Math-Function
ones— forces the execution engine to be called at each
simulation time step, mimicking interpreters. Therefore,

9https:// github.com/grvcTeam/MASp

223834

some kind of compilation —in the sense of Simulink®,
i.e. the translation of the block diagram to an internal
representation that interacts with the Simulink® engine
(see 11-26 in [50])- is made in most applications, but it can
never be comparable to a full standalone solution with an
external compiler.

In what respects to the Accelerator mode [52], Simulink®
uses by default the Just-In-Time (JIT) compilation. This
generates an execution engine in memory for the top-level
model only, and not for referenced models. As a result, a C
compiler is not required during simulations. This is related to
another helpful prototyping tool for the interpreter/compiler,
the Model Reference. Wherever this Model-Reference block
is used, the simulation mode of a sub-system can be con-
trolled —i.e. by setting it to Accelerator mode, it is simu-
lated through code generation; and by setting it to Normal
mode this is done in interpreted mode—. Additionally, Accel-
erator mode does not support most runtime diagnostics
of Normal mode, which is also very important during
prototyping.

Finally, in Rapid Accelerator mode, Simulink® creates
a standalone executable including both the solver and the
models interacting with Simulink® via the external mode,
with the subsequent lack of debugging options (see [53]).

In summary, the interpretation made in Normal mode (and
in Accelerator mode via JIT) is not comparable to a full
compilation obtaining a standalone executable or a binary
file, as in Rapid Accelerator mode. The graphical program-
ming, the tools for diagnostics and the possibility of a mod-
ular compilation (if desired with Model Reference) make
this approach superior in prototyping stages. To provide a
quantitative measure, we made a comparison in terms of time
consumption. On average, our solution takes about 1-2 s to
interpret a modified model (Normal mode), while the com-
plete compilation of minimal changes in PX4 —our previous
implementation approach—last about 20-25 s, 10 times slower
in the least favourable case.
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Algorithm 1 UDP Module — SEND Data
1: > code simplified for brevity

[---] > init daemon module in px4

: thread_task(){

. create_udp_socket()

. subscribe_topic(topic_name)

: while thread_is_running do

if topic_update() then
struct_data < topic_data > read topic content
destination < udp_send (struct_data)

end if

: end while

: close_udp_socket()}

> data source

—_ =

Algorithm 2 UDP Module — RECEIVE Data
> code simplified for brevity
> init daemon module in px4

[--]
: thread_task(){
. create_udp_socket()
. advert_topic(topic_name)
: while thread_is_running do
if recv_data() then
struct_data < data_received
topic_name <— uorb_publish(struct_data)
end if
: end while
: close_udp_socket()}

R A A A S ol

—_ = =

APPENDIX B
PX4-Simulink® UDP COMMUNICATIONS
As mentioned in the Software Integration subsection, the pro-
posed solution is based on the UDP communications between
PX4 and a Simulink® environment. This is implemented via
two sockets, one after the ecl/EKF estimation and another one
just before the input to the motor mixer. The core of their
respective pseudocodes is shown in Algorithms 1 and 2.
Additionally, for those interested in the integration
between the basic PX4 functionalities and the customisable
MASX4 environment, we refer readers to our GitHub repos-
itory at https://github.com/grvcTeam/MASp, which is cur-
rently under construction. Apart from the code support, a wiki
of the Simulink® environment and the space to share custom
modules with the MASX4standard I/O connections will be
included.
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