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Abstract. In this paper, using the theory of inverse integrating factor,
we provide a new simple proof for the Lum-Chua’s conjecture, which says
that a continuous planar piecewise linear differential system with two zones
separated by a straight line has at most one limit cycle. In addition, we
prove that if this limit cycle exists, then it is hyperbolic and its stability
is characterized in terms of the parameters. To the best of our knowledge,
the hyperbolicity of the limit cycle has not been pointed out before.

1. Introduction

The study of limit cycles in planar piecewise linear differential systems dates
back to Minorsky [13] in 1962, and Andronov et al. [1] in 1966. Since them,
these systems have received a lot of attention by the scientific community
mainly because of their wide range of application in applied science as ideal-
ization of nonlinear phenomenon. The following continuous planar piecewise
linear differential system with two zones separated by a straight line is the
simplest possible configuration for a piecewise linear differential system,

(1) ẋ =

 ALx + b, if x1 6 0,

ARx + b, if x1 > 0.

Here, x = (x1, x2) ∈ R2, AL,R = (aL,Rij )2×2, with aL12 = aR12 = a12 and aL22 =

aR22 = a22, and b = (b1, b2) ∈ R2. In 1991, after computer experimentations,
Lum and Chua [11] stated the following conjecture:

Lum-Chua’s Conjecture. ([11]) A continuous planar piecewise vector field
with two zones separated by a straight line has at most one limit cycle. The
limit cycle, if it exists, is either attracting or repelling.

This conjecture was proved in 1998 by Freire et al. [4]. Their proof is per-
formed on a large casuistic, which distinguishes every possible configurations
depending on the spectrums of the matrices AL and AR. In 2013, Llibre et
al. [10] made use of Massera’s approach [12] for proving a particular case of
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this conjecture. Our main goal in this paper is to provide a new and simple
proof for the Lum-Chua’s conjecture. Our proof is based on the Inverse Inte-
grating Factor for linear differential systems (see [2]), which provides a unified
way to deal with the problem, avoiding the large casuistic of the former proof.
In addition, we also prove that the limit cycle, if it exists, is hyperbolic and,
consequently, either attracting or repelling. To the best of our knowledge, the
hyperbolicity of the limit cycle has not been pointed out before.

Accordingly, the Lum-Chua’s Conjecture follows straightforwardly from the
next theorem, which is the main result of this paper.

Theorem 1. The continuous planar piecewise vector field (1) has at most one
limit cycle, which is hyperbolic if it exists. Moreover, in this case, (a12b2 −
a22b1)tr(AL) 6= 0 and the limit cycle is attracting (resp. repelling) provided
that (a12b2 − a22b1)tr(AL) < 0 (resp. (a12b2 − a22b1)tr(AL) > 0), where tr
stands for the trace of the matrix.

This paper is structured as follows. First, in Section 2 we introduce all the
preliminary results needed to prove Theorem 1. More specifically, in Section
2.1, we introduce the Liénard Normal Form for continuous piecewise linear
differential systems; and, in Section 2.2, we introduce an Inverse Integrating
Factor for linear differential systems in the Liénard form and we show how to
use it for describing the Poincaré half-maps. Finally, Section 3 is completly
devoted to the proof of Theorem 1.

2. Normal Form and Inverse Integrating Factor

This section is devoted to introduce some preliminary results. First, we
introduce the Liénard Normal Form for continuous piecewise linear differential
systems. Then, we discuss an application of the Inverse Integrating factor for
linear differential systems.

2.1. Liénard Normal Form. One can readily see that a12 6= 0 is a necessary
condition for the existence of periodic solutions of system (1). In this case, from
[3], the linear change of variables (x, y) = (x1, a22x1 − a12x2 − b1) transforms
system (1) into

(2)

 ẋ = TLx− y

ẏ = DLx− a
for x < 0,

 ẋ = TRx− y

ẏ = DRx− a
for x > 0,

where TL,R = tr(AL,R), DL,R = det(AL,R), and a = a12b2 − a22b1. Notice that
any limit cycle of system (2) is anti-clockwise oriented and crosses the switching
set Σ = {x = 0} twice.
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2.2. Inverse Integrating Factors and Poincaré Half-Maps. Inverse in-
tegrating factors have been used to study limit cycles of planar smooth differ-
ential systems. In [9, 8], the relationship between limit cycles and the zero set
of an inverse integrating factor is stablished. More information on this topic
can be found in the survey [5]. Here, inverse integrating factors are used to de-
scribe Poincaré half-maps of piecewise linear differential systems as performed
in [2].

Consider the following linear differential system

(3)

 ẋ = Tx− y,

ẏ = Dx− a,

and take the section Σ = {x = 0}. Here, we are interested in characterizing
Poincaré half-maps of system (3) associated to Σ. Roughly speaking, given
y0 > 0, let y+1 (y0) 6 0 be defined as the y-coordinate of the first return to Σ of
the forward trajectory of system (3) starting at (0, y0). Analogously, we define
the map y−1 (y0) for the backward trajectory. We call y+1 and y−1 by Forward
Poincaré Half-Map and Backward Poincaré Half-Map, respectively.

It is easy to see that if a = D = 0, the Poincaré half-maps y±1 cannot be
defined. In [2], assuming that a2 + D2 6= 0, an Inverse Integrating Factor for
(3) is given by

(4) V (x, y) = D
(
Dx2 − Txy + y2

)
+ a
(
(T 2 − 2D)x− Ty + a

)
.

There, it is proved that

(5) PV

{∫ y0

y±1 (y0)

−y
V (0, y)

dy

}
= c±,

where PV {·} stands for the Cauchy Principal Value and contants c± depend
only on the parameters of system (3). Moreover, for a 6= 0, V (0, y) > 0 for
every y ∈ [y±1 (y0), y0], whenever y±1 (y0) are defined.

It is worthwhile to mention that the above integral diverges when a = 0.
Thus, in this case, the Cauchy principal value is necessary to overcome this
difficulty (see, for instance, [6, 7] for more applications of the Cauchy integral
value to planar vector fields). When a 6= 0, the above integral does not di-
verge and, consequently, the Cauchy principal value just takes the value of the
integral.

Computing the derivative of (5) with respect to y0, one can see that the
graph of each Poincaré half-map y±1 (y0) is an orbit the following vector field

(6) X(y0, y1) = −
(
y1V (0, y0), y0V (0, y1)

)
.
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3. Proof of Theorem 1

Consider system (1). As discussed in Section 2.1, assuming a12 6= 0, which
is a necessary condition for the existence of periodic solutions, system (1) is
transformed into system (2) through a linear change of variables. In this case,
we are denoting TL,R = tr(AL,R), DL,R = det(AL,R), and a = a12b2 − a22b1.

It is a simple consequence of the Green’s Theorem that no periodic orbit
exists when TLTR > 0 (see [4]). It is also easy to see that no limit cycle can
exist when either the system is homogeneous, i.e. a = 0, or TLTR = 0. Thus,
for the sake of our interest, it is sufficient to assume that a 6= 0 and TLTR < 0.

Now, from (4), we define the inverse integrating factor for the linear systems
defining the piecewise linear vector field (2) for x < 0 and x > 0, respectively,
as

(7)
VL(x, y) = DL

(
DLx

2 − TLxy + y2
)

+ a
(
(T 2

L − 2DL)x− TLy + a
)
,

VR(x, y) = DR

(
DRx

2 − TRxy + y2
)

+ a
(
(T 2

R − 2DR)x− TRy + a
)
.

Let yL(y0) (resp. yR(y0)) be the forward (resp. backward) Poincaré half-
map associated with the planar system (2) for x < 0 (resp. x > 0) and let
IL ⊂ R>0 (resp. IR ⊂ R>0) be its interval of definition. In addition, for
a 6= 0, VL,R(0, y) > 0 for every y ∈ [yL,R(y0), y0], y0 ∈ IL,R. Obviously, no
periodic solution can exist when IL ∩ IR = ∅. Thus, for y0 ∈ I := IL ∩ IR,
define the displacement function δ(y0) = yR(y0) − yL(y0). Clearly, δ(y∗0) = 0
if, and only if, there exists a periodic orbit passing through (0, y∗0) and (0, y∗1),
y∗1 = yR(y∗0) = yL(y∗0). Furthermore, it is a hyperbolic limit cycle if, and
only if, δ′(y∗0) 6= 0. In this case, the limit cycle is attracting (resp. repelling)
provided that δ′(y∗0) < 0 (resp. δ′(y∗0) > 0). Accordingly, assuming δ(y∗0) = 0,
the direction of the flow of system (2) along Σ implies that y∗0 > 0 and y∗1 < 0.
From (3),

δ′(y∗0) = C(y∗0, y
∗
1)F (y∗0, y

∗
1),

where the functions C and F are real functions defined as

C(y0, y1) =
−y0(y0 − y1)

y1VR(0, y0)VL(0, y0)

and

(8) F (y0, y1) =
VL(0, y1)VR(0, y0)− VL(0, y0)VR(0, y1)

y0 − y1
.

Substituting (7) into F (y0, y1), we get

F (y0, y1) = a3(TL − TR) + a(DLTR −DRTL)y0y1 + a2(DR −DL)(y0 + y1).
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Since C(y∗0, y
∗
1) > 0, one has the sign of δ′(y∗0) is determined by F. Notice that

the curve F−1(0) describes a hyperbola, possibly degenerate. Denote

Q = {(y0, y1) ∈ R2 : y0 > 0 and y1 6 0} and

R± = {(y0, y1) ∈ Q : sign(F (y0, y1)) = ±sign(aTL)}

Notice that F (0, 0) = a3(TL − TR). Since TLTR < 0, we get (0, 0) ∈ R+.
Now, consider the curves (y0, yL,R(y0)), with y0 ∈ IL,R, defined in Q. Clearly,

if a periodic solution contains the points (0, y0) and (0, y1), then the point
(y0, y1) is contained in both curves. Moreover, from (6), the graph of yL,R(y0)
is an orbit the following vector field

XL,R(y0, y1) = −
(
y1VL,R(0, y0), y0VL,R(0, y1)

)
.

In the sequel, we shall study the vector fields XL,R along the curve F−1(0)
for (y0, y1) ∈ int(Q). From (8), for (y0, y1) ∈ intQ, the equation F (y0, y1) = 0 is
equivalent to VL(0, y1)VR(0, y0) = VL(0, y0)VR(0, y1). So, substituting this last
equality into 〈∇F (y0, y1), XL,R(y0, y1)〉 and using expression (8) of F we get

GL,R(y0, y1) =
〈
∇F (y0, y1), XL,R(y0, y1)

〉∣∣
F−1(0)

= VL,R(0, y1)a
(
TLVR(0, y0)− TRVL(0, y0)

)
.

Since TLTR < 0, we conclude that sign(GL,R(y0, y1)) = sign(aTL), whenever
both yL,R are defined. This means that the curves y1 = yL,R(y0) intersects
F−1(0) in int(Q), at most once, from R− to R+. Since a 6= 0, the origin is a
quadratic contact point of the continuous piecewise linear system (2). Thus,
one of the Poincaré half-maps y1 = yL,R(y0) is defined for y0 > 0 sufficiently
small and can be continuously extended to y0 = 0 as y1 = 0. Consequently, the
graph of such a Poincaré half-map does not intersect the set F−1(0). Hence,
any point (y∗0, y

∗
1) ∈ Int(Q) corresponding to an existing limit cycle is contained

in R+, which implies that its stability is determined by sign(aTL). Namely, it is
attracting (resp. repelling) provided that aTL < 0 (resp. aTL > 0). Therefore,
if a limit cycle exists, it is unique and hyperbolic.
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[10] J. Llibre, M. Ordóñez, and E. Ponce. On the existence and uniqueness of limit cycles
in planar continuous piecewise linear systems without symmetry. Nonlinear Anal. Real
World Appl., 14(5):2002–2012, 2013.

[11] R. Lum and L. O. Chua. Global properties of continuous piecewise linear vector fields.
part i: Simplest case in R2. International Journal of Circuit Theory and Applications,
19(3):251–307, may 1991.
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