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We consider the space H(cesp) of all Dirichlet series whose coefficients belong to 
the Cesàro sequence space cesp, consisting of all complex sequences whose absolute 
Cesàro means are in �p, for 1 < p < ∞. It is a Banach space of analytic functions, 
for which we study the maximal domain of analyticity and the boundedness of point 
evaluations. We identify the algebra of analytic multipliers on H(cesp) as the Wiener 
algebra of Dirichlet series shifted to the vertical half-plane C1/q := {s ∈ C : �s >
1/q}, where 1/p + 1/q = 1.

1. Introduction

Several spaces of Dirichlet series have been studied in recent years. Hedenmalm, Lindqvist and Seip
introduced in [17] the Hilbert space of Dirichlet series H, consisting of all Dirichlet series

f(s) :=
∞∑

n=1
ann

−s, s ∈ C,

with square summable coefficients, (an)∞n=1 ∈ �2. They used it for solving a problem discussed by Beurling
on complete sequences in the space L2(0, 1). Due to the Cauchy-Schwarz inequality, each f ∈ H defines an 
analytic function on the vertical half-plane C1/2 := {s ∈ C : �(s) > 1/2}. The space H becomes a Banach
space of analytic functions on C1/2 when endowed with the norm
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‖f‖H := ‖(an)∞n=1‖�2 , f ∈ H.

The Hardy spaces of Dirichlet series Hp, for 1 ≤ p < ∞, were introduced by Bayart in [6]. They are given
by the completion of the space of Dirichlet polynomials P (s) :=

∑N
n=1 ann

−s for the norm

‖P‖Hp :=
(

lim
T→∞

1
2T

T∫
−T

|P (it)|pdt
)1/p

.

The space H corresponds to Hp for p = 2. In [19], McCarthy considered the weighted Hilbert spaces of 
Dirichlet series

Hα :=
{
f(s) =

∞∑
n=2

ann
−s :

∞∑
n=2

|an|2(logn)α < ∞
}
,

for α < 0, endowed with the norm

‖f‖Hα
:= ‖(an(logn)α/2)∞n=2‖�2 , f ∈ Hα.

More recently, Bailleul and Lefèvre have studied certain classes of Bergman-type spaces of Dirichlet series, 
A p

μ and Bp, for 1 ≤ p < ∞, [4]. Another type of weighted Hilbert spaces of Dirichlet series Dα, for α > 0,
has been considered by Bailleul and Brevig in [3]. It should be highlighted that the spaces H, Hp, Hα, A p

μ , 
Bp, Dα are all Banach spaces of analytic functions on the vertical half-plane C1/2.

A deep feature of Dirichlet series is their product. The pointwise product f(s) · g(s) of two Dirichlet
series f(s) =

∑∞
n=1 ann

−s and g(s) =
∑∞

n=1 bnn
−s is, in the appropriate domain, the Dirichlet series

h(s) =
∑∞

n=1 cnn
−s whose coefficients c = (cn)∞n=1 are given by the Dirichlet convolution c := a · b of the

sequences a = (an)∞n=1 and b = (bn)∞n=1, that is,

cn = (a · b)n :=
∑
k|n

akbn
k
, n ≥ 1,

where k|n denotes that k is a divisor of n.
Given a space E of Dirichlet series, a multiplier on E is an analytic function f with the property that 

fg ∈ E for every g ∈ E . The multiplier algebra of E is the set of all multipliers on E ; we denote it by M(E). 
Note that M(E) ⊆ E whenever 1 ∈ E . Neither of the spaces H, Hp, Hα, A p

μ , Bp, Dα is closed under
multiplication. Hence, a relevant question is to identify the multiplier algebra of these spaces. Hedenmalm, 
Lindqvist and Seip identified the multiplier algebra M of the Hilbert space of Dirichlet series H proving 
that

M = H∞,

where H∞ is the algebra of bounded analytic functions on C0 := {s ∈ C : �(s) > 0} which can be
represented as a Dirichlet series in some vertical half-plane, [17, Theorem 3.1]. This identification was a key 
step in solving Beurling’s question on complete sequences in L2(0, 1). It is noticeable that for all the spaces
Hp, Hα, A p

μ , Bp, Dα the multiplier algebra is also the algebra H∞; [6, Theorem 7], [19, Theorem 1.11], [2,
Theorem 10.1 and Theorem 11.21], [3, Theorem 3].

In this paper we consider the space H(cesp), for 1 < p < ∞, of all Dirichlet series f(s) =
∑∞

n=1 ann
−s

such that the sequence of coefficients (an)∞n=1 belongs to the Cesàro sequence space cesp. The space cesp
consists of all complex sequences whose absolute Cesàro means are in �p, that is, complex sequences (an)∞n=1
satisfying



‖(an)∞n=1‖cesp :=
( ∞∑

n=1

(
1
n

n∑
k=1

|ak|
)p

) 1
p

< ∞.

It is a Banach space of sequences, that arises in a natural way from Hardy’s inequality,

∞∑
n=1

(
1
n

n∑
k=1

|ak|
)p

≤
(

p

p− 1

)p ∞∑
n=1

|an|p, (1.1)

which establishes the boundedness on �p of the Cesàro averaging operator, [15, Theorem 326]. It has been 
throughly studied by G. Bennett, [8] and Jagers, [18], see also [1] and the references therein.

We define, for f(s) =
∑∞

n=1 ann
−s ∈ H(cesp),

‖f‖H(cesp) := ‖(an)∞n=1‖cesp . (1.2)

With this definition, H(cesp) is linearly isometric to cesp. The aim of this paper is to study H(cesp) as
a Banach space of analytic functions, to find the maximal common domain of definition of its Dirichlet 
series, to study the boundedness and the norm of point evaluations, and to identify the algebra of analytic 
multipliers on H(cesp). As we will see, the situation will turn out to be rather different to that of the
previously studied spaces of Dirichlet series.

The paper is organized as follows. Section 2 contains preliminary facts on Dirichlet series and spaces of 
bounded Dirichlet series.

In Section 3 we study H(cesp) as a Banach space of analytic functions. From being isometrically isomor-
phic to cesp, it follows that the sequence of monomials {m−s : m ≥ 1} forms an unconditional, boundedly
complete and shrinking Schauder basis for H(cesp); in particular, H(cesp) is reflexive. We show that all
functions in H(cesp) are analytic on the vertical half-plane C1/q, where 1/p + 1/q = 1 (Theorem 3.3). We
also study the boundedness on H(cesp) of point evaluations: f 	→ f(s0) for s0 ∈ C1/q, giving sharp estimates
for their norm and the precise order of growth when �(s) approaches the critical value 1/q (Theorem 3.4).

Section 4 is devoted to identifying the multiplier algebra M(H(cesp)) of H(cesp). A first result shows
that

A1/q ⊆ M(H(cesp)) � H∞(C1/q),

where A1/q is the space of all Dirichlet series f(s) =
∑∞

n=1 ann
−s satisfying the condition 

∑∞
n=1 |an|n−1/q <

∞, and H∞(C1/q) is the algebra of bounded analytic functions on C1/q which can be represented as a Dirich-
let series (Theorem 4.5). The result shows that the situation concerning the multiplier algebra of H(cesp)
is completely different from that of other spaces of Dirichlet series studied previously in the literature: in 
this case, the multiplier algebra will not coincide with an algebra of bounded Dirichlet series.

The fact that the multiplier algebras of Hp, Hα, A p
μ , Bp, Dα coincide with H∞ is in accordance with–

actually, it follows from–the situation of multipliers for Hardy spaces on the unit disc D of C. More precisely, 
it follows from the classical result of Schur identifying the multiplier algebra of the Hardy space H2(D), of 
all Taylor series with square summable coefficients, with the space H∞(D) of bounded analytic functions
on D, [21, X p. 226].

In the search of a conjecture to pursue, it is relevant to recall the situation regarding multipliers of the 
space H(D, cesp) of all Taylor series on D with coefficients belonging to cesp. It was proven by Curbera and
Ricker that the multiplier algebra of H(D, cesp)) is not H∞(D) but a rather smaller algebra, namely, the
Wiener algebra of all absolutely convergent Taylor series, which is the smallest algebra inside H(D, cesp)
which contains the polynomials, [12, Theorem 3.1], [13, Theorem 4.1].



The main result of this paper is that

M(H(cesp)) = A1/q,

with equality of norms (Theorem 4.8). We attempt an explanation of this unexpected result. Hardy’s 
inequality (1.1) shows that �p is continuously included in cesp; in fact, the inclusion is proper. Even more,
cesp contains sequences with arbitrarily large terms. Indeed, given any sequence (ak)∞k=1 of complex numbers,
there exists a subsequence (emk)∞k=1 of the canonical vectors {em : m ≥ 1} in CN such that 

∑∞
k=1 ake

mk

belongs to cesp. This is an important feature of cesp. Thus, the space H(cesp) contains Dirichlet series
whose coefficients can be arbitrarily large. This feature of H(cesp) may explain the multiplier algebra being
the smallest possible algebra which contains the Dirichlet polynomials.

We end in Section 5 with two further results about multipliers on H(cesp): regarding compact multipliers
(Theorem 5.1) and on the Schur point-wise multipliers from H(cesp) to A1/q (Theorem 5.2).

2. Preliminaries

We collect some general facts on Dirichlet series. Recall that if a Dirichlet series is convergent (or abso-
lutely convergent) at a point s0 ∈ C, then it is convergent (or absolutely convergent) at any point s ∈ C

such that �(s) > �(s0). As a consequence, convergence regions for Dirichlet series are vertical half-planes
Cσ := {s ∈ C : �(s) > σ} for σ ∈ R. Given a Dirichlet series f(s) =

∑∞
n=1 ann

−s, its abscissa of con-
vergence, denoted by σc(f), is the infimum of all σ ∈ R such that the series converges on the vertical
half-plane Cσ; its abscissa of absolute convergence σa(f) is the infimum of all σ ∈ R such that the series
converges absolutely on Cσ; and its abscissa of uniform convergence σu(f) is the infimum of all σ ∈ R

such that the series converges uniformly on Cσ. It follows that −∞ ≤ σc(f) ≤ σu(f) ≤ σa(f) ≤ +∞, and
σa(f) − σc(f) ≤ 1 if both values are finite. Bohr proved that σa(f) − σu(f) ≤ 1/2 (the sharpness of this
inequality is a celebrated theorem of Bohnenblust and Hille, see [20, Theorem 5.4.2]). There is a further 
abscissa associated to a Dirichlet series, the abscissa of regularity and boundedness, σb(f), which is the
infimum of all σ ∈ R such that the function f(s) =

∑∞
n=1 ann

−s (possibly by analytic continuation from
a smaller vertical half-plane) is analytic and bounded on Cσ. Bohr’s theorem assures that σu(f) = σb(f);
[10], see also [20, Theorem 6.2.3].

We denote by D the set of all Dirichlet series which are convergent at some point; this can be equivalently 
defined as the set of all Dirichlet series such that the sequence of its coefficients has, at most, polynomial 
growth rate. Given a Banach space of Dirichlet series E ⊆ D, the abscissa of convergence of E is defined by 
σc(E) := sup{σc(f) : f ∈ E}, and the abscissa of absolute convergence of E is σa(E) := sup{σa(f) : f ∈ E}.
In the case when σc(E) < ∞, for every s0 ∈ Cσc(E) it is meaningful to consider the linear functional δs0 on
E given by point evaluation at s0, that is, f ∈ E 	→ δs0(f) := f(s0) ∈ C.

Throughout the paper we will consider 1 < p < ∞, and q will denote the conjugate exponent of p, that 
is, 1/p + 1/q = 1.

Further notation used in the paper follows. We denote the set of natural numbers {1, 2, . . .} by N. As 
usual, R and C denote the fields of real and complex numbers, respectively. Given a complex number s ∈ C, 
its real part is written as �(s) and its imaginary part as �(s). For θ ∈ R, the vertical half-plane at the abscissa 
θ is denoted by Cθ := {s ∈ C : �(s) > θ}. The unit disc of the complex plane is D := {z ∈ C : |z| < 1}. For
Ω a region in C, the space of all analytic functions on Ω will be denoted by H(Ω). For k, n ∈ N we write 
k|n whenever k is a divisor of n. The integer part of x ∈ R, the largest integer which does not exceed x, 
will be denoted by �x
.

We write ζ for the Riemann zeta-function, ζ(s) :=
∑∞

n=1 n
−s, for �(s) > 1. The constant function with

value one is denoted by 1.



Spaces of bounded Dirichlet series play an important role. We collect some relevant facts on them. For 
r ∈ R, the space H∞(Cr) consists of all bounded analytic functions on Cr which can be represented as a
Dirichlet series in some vertical half-plane, that is,

H∞(Cr) := D ∩H∞(Cr).

Regarding the abscissa of convergence, we have

σc(H∞(C0)) = 0 and σa(H∞(C0)) = 1/2.

The first statement follows from Bohr’s theorem, and the second from a Bohnenblust and Hille’s theorem; 
see, for example, [5, Theorem 1.1.2)]. For H∞(Cr) with r �= 0, consider the translation map τr : D → D
given by τr(f)(s) := f(s + r), that is,

τr

( ∞∑
n=1

ann
−s

)
=

∞∑
n=1

ann
−(s+r) =

∞∑
n=1

(ann−r)n−s.

The translation τr establishes an isometric isomorphism between H∞(Cr) and H∞(C0) from which it follows
that

σc(H∞(Cr)) = r and σa(H∞(Cr)) = r + 1/2. (2.1)

The space H∞(Cr) is a linear space which will be endowed with the supremum norm

‖f‖H∞(Cr) := sup
s∈Cr

|f(s)|, f ∈ H∞(Cr).

The isometric isomorphism between H∞(Cr) and H∞(C0) allows showing the completeness of H∞(Cr) for
the supremum norm. The result of Hedenmalm, Lindqvist and Seip states that H∞(C0) is isometrically
isomorphic to the multiplier algebra M of the Hilbert space of Dirichlet series H, [17, Theorem 3.1]. Since 
this last space is complete (for the operator norm) it follows that H∞(C0) is complete for the supremum
norm. Hence, H∞(Cr) endowed with the supremum norm is a Banach space.

For issues related to Dirichlet’s series we refer the reader to [9], [16], [20], [22, Ch. IX].

3. The space of Dirichlet series H(cesp)

The space H(cesp), endowed with the norm (1.2), is a Banach space of Dirichlet series that inherits its
functional properties from the sequence space cesp, as H(cesp) and cesp are linearly isometric. In particular,
we have the following result; see [18] and [13, Proposition 2.1].

Proposition 3.1. The following statements hold:

(a) For every f(s) =
∑∞

n=1 ann
−s ∈ H(cesp) the Dirichlet polynomials 

∑N
n=1 ann

−s converge (as N → ∞)
to f in the norm of H(cesp). Moreover, from the monotonicity of the norm of cesp,

‖f‖H(cesp) = sup
N∈N

∥∥∥∥
N∑

n=1
ann

−s

∥∥∥∥
H(cesp)

.

(b) The sequence of monomials {m−s : m ≥ 1} is an unconditional, boundedly complete and shrinking
Schauder basis for H(cesp). In particular, H(cesp) is reflexive.



A further approximation for functions in H(cesp) is possible. Let (pk)∞k=1 denote the sequence of the
prime numbers written in increasing order. For r ∈ N, let

Nr :=
{
n ∈ N : n =

r∏
i=1

ptii , t1, . . . , tr ≥ 0
}
.

Consider the map Qr defined by

f(s) =
∞∑

n=1
ann

−s 	→ Qr(f) :=
∑
n∈Nr

ann
−s.

The map Qr is in fact a projection Qr : H(cesp) → H(cesp). A remarkable property of the projection Qr is
its multiplicativity, namely, Qr(fg) = Qr(f)Qr(g), which holds for any pair of Dirichlet series f and g, see
[20, p. 157].

Similarly to Proposition 3.1.(a), the following result holds.

Proposition 3.2. For each f(s) =
∑∞

n=1 ann
−s in H(cesp) the Dirichlet series 

∑
n∈Nr

ann
−s converge (as

r → ∞) to f in the norm of H(cesp). Moreover,

‖f‖H(cesp) = sup
r∈N

∥∥∥∥ ∑
n∈Nr

ann
−s

∥∥∥∥
H(cesp)

.

Let us show that H(cesp) is a Banach space of analytic functions. For this, we determine the abscissa of
convergence and the abscissa of absolute convergence of H(cesp).

Theorem 3.3. Every Dirichlet series f ∈ H(cesp) converges, in fact absolutely, on the vertical half-plane
C1/q. Moreover, the value 1/q cannot be improved, that is,

σc(H(cesp)) = σa(H(cesp)) = 1/q.

Consequently, H(cesp) is a Banach space of analytic functions on C1/q, which is a maximal domain.

Proof. Let f(s) =
∑∞

n=1 ann
−s ∈ H(cesp) with (an)∞n=1 ∈ cesp. Set r > 1/q. It follows that

∞∑
n=1

|an|
nr

≤ r

∞∑
n=1

|an|
∞∑

k=n

1
kr+1 = r

∞∑
k=1

1
kr+1

k∑
n=1

|an|

≤ r

( ∞∑
k=1

1
krq

)1/q ( ∞∑
k=1

(
1
k

k∑
n=1

|an|
)p

)1/p

= rζ(rq)1/q ‖f‖H(cesp).

Then σa(f) ≤ 1/q for all f ∈ H(cesp) and so σa(H(cesp)) ≤ 1/q.
On the other hand, for r > 1/p set f(s) :=

∑∞
n=1 1/nr+s. Note that f ∈ H(cesp) as (n−r)∞n=1 ∈ �p ⊆ cesp.

Since f(s) = ζ(r+ s), it follows that σc(f) = 1 − r which tends to 1/q as r → 1/p. Thus, σc(H(cesp)) ≥ 1/q
and the conclusion follows since σc(H(cesp)) ≤ σa(H(cesp)). �

We study next boundedness of the linear functional δs0 on H(cesp) given by evaluation at a point
s0 ∈ C1/q:



f ∈ H(cesp) 	→ δs0(f) := f(s0) ∈ C.

Note, for s0 = σ + it ∈ C1/q and f(s) =
∑∞

n=1 ann
−s ∈ H(cesp), that the proof of Theorem 3.3 shows

|δs0(f)| =
∣∣∣∣

∞∑
n=1

ann
−s0

∣∣∣∣ ≤
∞∑

n=1
|an|n−σ ≤ σζ(σq)1/q‖f‖H(cesp).

Thus, δs0 belongs to the dual space H(cesp)∗ of H(cesp) with ‖δs0‖ ≤ σζ(σq)1/q.
We provide sharp estimates for the norm ‖δs0‖, the precise order of growth when the abscissa approaches

from the right the critical value 1/q, and the asymptotic value when the abscissa increases to ∞.
We require the dual Banach space of cesp. This space was isometrically identified by Jagers, [18]. A

simpler isomorphic identification was given by Bennett, [8, p. 61]. Following Bennett the dual space ces∗p
of cesp can be identified with the sequence space d(q), for 1/p + 1/q = 1, of all complex sequences (bn)∞n=1
satisfying

‖(bn)∞n=1‖d(q) :=
( ∞∑

n=1
sup
k≥n

|bk|q
)1/q

< ∞.

The action of a sequence (bn)∞n=1 ∈ d(q) as an element of ces∗p is given by the standard pairing

(an)∞n=1 ∈ cesp 	→
〈
(bn)∞n=1, (an)∞n=1

〉
:=

∞∑
n=1

anbn.

The equivalence between the norms of ces∗p and d(q) is given, for (bn)∞n=1 ∈ ces∗p, by

1
q
‖(bn)∞n=1‖d(q) ≤ ‖(bn)∞n=1‖ces∗p ≤ (p− 1)1/p‖(bn)∞n=1‖d(q). (3.1)

The sequence (b̃n)∞n=1 defined by b̃n := supk≥n |bk|, for n ≥ 1, is known as the least decreasing majorant of
the sequence (bn)∞n=1.

Theorem 3.4. For each s0 = σ + it ∈ C1/q the linear functional δs0 is bounded on H(cesp), and

1
q
ζ(σq)1/q ≤ ‖δs0‖ ≤ (p− 1)1/pζ(σq)1/q.

Moreover, there is a value σp, depending only on p, such that ‖δs0‖ = ζ(p)−1/p whenever σ ≥ σp.

Proof. Let s0 = σ + it ∈ C1/q. For f(s) =
∑∞

n=1 ann
−s ∈ H(cesp), since (n−s0)∞n=1 ∈ d(q), we can write

δs0(f) = f(s0) =
∞∑

n=1
ann

−s0 =
〈(

n−s0
)∞
n=1, (an)∞n=1

〉
.

Thus, δs0 acting on H(cesp) can be identified with the sequence (n−s0)∞n=1 acting on cesp. Since H(cesp)
and cesp are isometric, we have that the norms of δs0 as an element of H(cesp)∗ and of (n−s0)∞n=1 as an
element of ces∗p are equal. Using Bennett’s identification of ces∗p as the space d(q), from (3.1), it follows that

1‖(n−s0)∞n=1‖d(q) ≤ ‖δs0‖ ≤ (p− 1)1/p‖(n−s0)∞n=1‖d(q).
q



Note that for sequences (bn)∞n=1 such that the sequence (|bn|)∞n=1 is decreasing, we have that (bn)∞n=1 ∈ d(q)
if and only if (bn)∞n=1 ∈ �q, and in this case the norms coincide. Consequently,

‖(n−s0)∞n=1‖d(q) = ‖(n−s0)∞n=1‖�q =
( ∞∑

n=1

1
nσq

)1/q

= ζ(σq)1/q.

In order to prove that ‖δs0‖ becomes constant when σ = �(s0) is sufficiently large (only depending on p)
we require the isometric identification of ces∗p given by Jagers, [18]. Namely, for b = (bn)∞n=1 ∈ ces∗p we have

‖(bn)∞n=1‖ces∗p =⎛
⎝ ∑

n∈D(b)

( |bm(n)| − |bm(n+1)|
Bm(n) −Bm(n+1)

)q(
Bm(n) −Bm(n+1)

)⎞⎠
1/q

, (3.2)

where

Bk :=
∞∑
j=k

1/jp, k ≥ 1;

m(1) := max
{
k ∈ N ∪ {∞} : |bk| = max

j≥1
|bj |

}
,

and, for n ≥ 1,

m(n + 1) := max
{
k ∈ N ∪ {∞} : k > m(n),

|bm(n)| − |bk|
Bm(n) −Bk

= min
m(n)<j≤∞

|bm(n)| − |bj |
Bm(n) −Bj

}
,

provided m(n) is defined and finite, else m(n + 1) is not defined; and D(b) is the set of all k ≥ 1 such that 
m(k) is defined and finite. It is understood b∞ = B∞ = 0.

Note that if (|bn|)∞n=1 is strictly decreasing then m(1) = 1. Moreover, m(2) = ∞ if the condition

|b1| − |bn|
B1 −Bn

≥ |b1| − |b∞|
B1 −B∞

= |b1|
B1

(3.3)

is satisfied for all n ≥ 2. In this case D(b) = {1} and so ‖(bn)∞n=1‖ces∗p = |b1|ζ(p)−1/p.
For b = (n−s0)∞n=1 ∈ ces∗p, we claim that condition (3.3) holds provided that

σ ≥ σp := p− 1 + log(p− 1) + log ζ(p)
log 2 .

Write (3.3) for this particular sequence:

1 − 1
nσ∑n−1

j=1
1
jp

≥ 1∑∞
j=1

1
jp

,

which is equivalent to

∞∑ 1
jp

≥ 1
nσ

ζ(p).

j=n



Since

∞∑
j=n

1
jp

≥ 1
p− 1 · 1

np−1 ,

it suffices to prove that

1
p− 1 · 1

np−1 ≥ 1
nσ

ζ(p)

holds for all n ≥ 2. We rewrite this condition as

nσ−p+1 ≥ (p− 1)ζ(p).

It is clear that for the above inequality to hold, necessarily we must have σ ≥ p −1. In this case, the sequence 
(nσ−p+1)∞n=1 is increasing. Thus, it suffices to check the above inequality for n = 2:

2σ−p+1 ≥ (p− 1)ζ(p),

that is,

σ ≥ p− 1 + log(p− 1) + log ζ(p)
log 2 = σp.

Therefore, for b = (n−s0)∞n=1 with s0 ∈ Cσp
, we have that m(2) = ∞ and so D(b) = {1}. Hence the sum in

(3.2) has only one term and

‖δs0‖ = ‖(n−s0)∞n=1‖ces∗p = ζ(p)−1/p. �
Remark 3.5. From the proof of Theorem 3.3 and Theorem 3.4 actually we have, for s0 = σ+ it ∈ C1/q, that

‖δs0‖ ≤ min{σ, (p− 1)1/p}ζ(σq)1/q.

Since 1/q < (p − 1)1/p, as the function x 	→ xx is increasing on (1, ∞), we have that

min{σ, (p− 1)1/p} =
{

σ for 1/q < σ ≤ (p− 1)1/p,

(p− 1)1/p for σ > (p− 1)1/p.

The bounds on the norm of point evaluations in Theorem 3.4 and Remark 3.5 can be sharpened for 
H(ces2).

Proposition 3.6. Let 1/2 < �(s0) = σ ≤ 1 and δs0 : H(ces2) → C be the corresponding point evaluation
functional. Then its norm can be written as

‖δs0‖ =
( ∞∑

n=1
n2

(
1
nσ

− 1
(n + 1)σ

)2
)1/2

,

and the following bounds hold

(2σ − 1)
√

ζ(2σ) − 1 ≤ ‖δs0‖ ≤ σ
√

ζ(2σ) − 1.



Proof. We use the isometric identification of ces∗p by Jagers for p = 2.
Let b = (n−s0)∞n=1. We will prove that in this case, and for every m ∈ N, the sequence

(
|bm| − |bn|
Bm −Bn

)∞

n=m+1
(3.4)

is strictly increasing. This condition is precisely

1
mσ

− 1
nσ

∞∑
k=m

1
k2 −

∞∑
k=n

1
k2

<

1
mσ

− 1
(n + 1)σ

∞∑
k=m

1
k2 −

∞∑
k=n+1

1
k2

,

which is equivalent to

1
mσ

− 1
nσ

n2
(

1
nσ

− 1
(n + 1)σ

) <

n−1∑
k=m

1
k2 . (3.5)

By applying the mean value theorem to the function f(x) = xσ on (m, n) and (n, n + 1) we obtain, for 
1/2 < σ ≤ 1, that

1
mσ

− 1
nσ

n2
(

1
nσ

− 1
(n + 1)σ

) = (n + 1)σ(nσ −mσ)
n2mσ

(
(n + 1)σ − nσ

) ≤ n + 1
n2m

(n−m). (3.6)

In order to bound the right-hand side of (3.5) we use the following inequality:

n∫
m

dx

x2 + 1
2

(
1
m2 − 1

n2

)
≤

n−1∑
k=m

1
k2 ,

see for instance [14, p. 54]. Since

n∫
m

dx

x2 + 1
2

(
1
m2 − 1

n2

)
=

(
1
m

− 1
n

)(
1 + 1

2m + 1
2n

)
,

we have

(
n−m

mn

)(
1 + 1

2m + 1
2n

)
≤

n−1∑
k=m

1
k2 . (3.7)

Then, (3.6) and (3.7) reduce the validity of (3.5) to

n + 1
n2m

(n−m) <
(
n−m

mn

)(
1 + 1

2m + 1
2n

)
,

which is true since m < n. Thus, (3.5) holds and so, for every m ∈ N, the sequence (3.4) is strictly increasing.



Hence, for each n ∈ N we have that m(n) = n. This implies that D(b) = N for b = (n−s0)∞n=1 and so

‖δs0‖ = ‖(n−s0)∞n=1‖ces∗2 =
( ∞∑

n=1
n2

(
1
nσ

− 1
(n + 1)σ

)2
)1/2

.

Since

n

(
1
nσ

− 1
(n + 1)σ

)
= 1

(n + 1)σ g(n−1)

where g(x) = (1 + x)σ − 1
x

decreases in (0, ∞), we have

2σ − 1
(n + 1)σ ≤ n

(
1
nσ

− 1
(n + 1)σ

)
≤ σ

(n + 1)σ

and so the bounds for ‖δs0‖ follow. �
In the case p = 2, there are two equivalent expressions for the norm in ces2 (and so for the norm in

H(ces2)) which are of independent interest.

Proposition 3.7. Let a = (an)∞n=1 ∈ ces2. Define the functionals

M(a) :=
( ∞∑

i,j=1

|ai||aj |
max{i, j}

)1/2

,

N(a) :=
( ∞∑

n=1

|an|
n

n∑
k=1

|ak|
)1/2

.

Then

N(a) ≤ M(a) ≤ ‖a‖ces2 ≤
√

2M(a) ≤ 2N(a).

Proof. Rearranging the sums in the norm of a we obtain that

‖a‖2
ces2 =

∞∑
n=1

(
1
n

n∑
k=1

|ak|
)2

=
∞∑

n=1

1
n2

( ∑
1≤i,j≤n

|ai||aj |
)

=
∞∑

i,j=1
|ai||aj |

( ∑
n≥i,j

1
n2

)
.

Since 1/n ≤
∑∞

k=n k−2 ≤ 2/n for every n ≥ 1, it follows that

1
max{i, j} ≤

∑
n≥i,j

1
n2 ≤ 2

max{i, j} .

Hence, we deduce that M(a) ≤ ‖a‖ces2 ≤
√

2M(a).



On the other hand,

M(a)2 =
∞∑

i,j=1

|ai||aj |
max{i, j} =

∞∑
n=1

1
n

( ∑
max{i,j}=n

|ai||aj |
)

=
∞∑

n=1

|an|
n

(
|an| + 2

n−1∑
k=1

|ak|
)

≤ 2
∞∑

n=1

|an|
n

n∑
k=1

|ak| = 2N(a)2.

In a similar way

M(a)2 ≥
∞∑

n=1

|an|
n

n∑
k=1

|ak| = N(a)2.

Consequently, N(a) ≤ M(a) ≤
√

2N(a). �
4. The multiplier algebra of H(cesp)

Given a Banach space of Dirichlet series E ⊆ D with convergence abscissa σc(E), a multiplier on E is an
analytic function f on Cσc(E) with the property that fg ∈ E for every g ∈ E . The multiplier algebra of E is
the space of all multipliers on E , which will be denoted by M(E). Standard arguments give the following 
facts on M(E).

Proposition 4.1. Let E ⊆ D be a Banach space of Dirichlet series. Suppose that there exists σ ≥ σc(E) such
that the point evaluation functional δs0 is continuous on E for every s0 ∈ Cσ. Then the following holds:

(a) For every f ∈ M(E), the operator Mf : E → E, given by Mf (g) := fg for all g ∈ E, is linear and
bounded.

(b) If the constant function 1 ∈ E, then M(E) ⊆ E and for every f ∈ M(E) it follows that ‖f‖E ≤
‖1‖E‖f‖M(E), where ‖f‖M(E) denotes the operator norm of Mf . Moreover, in this case M(E) is a
closed subspace of the space B(E) of all bounded linear operators of E into itself, and, endowing M(E)
with the norm ‖ · ‖M(E), the inclusion M(E) ⊆ E is continuous with embedding constant equal to ‖1‖E .

The next proposition shows that, under minimal conditions which guarantee a good behavior of M(E), 
every multiplier on E is a bounded analytic function on the appropriate domain.

Proposition 4.2. Let E ⊆ D be a Banach space of Dirichlet series satisfying the condition of Proposition 4.1
for some σ ≥ σc(E) and such that 1 ∈ E. Then,

M(E) ⊆ H∞(Cσ),

where the inclusion is continuous with continuity constant equal to one.

Proof. Let f ∈ M(E). By Proposition 4.1, we have that M(E) ⊆ E and so f2 = ff ∈ E with

‖f2‖E ≤ ‖f‖E‖f‖M(E) ≤ ‖1‖E‖f‖2
M(E).

Iterating the above procedure, we obtain, for every n ≥ 1, that fn ∈ E and



‖fn‖E ≤ ‖1‖E‖f‖nM(E).

For each s0 ∈ Cσ, by hypothesis, the point evaluation functional δs0 is bounded on E . Then

|fn(s0)| = |δs0(fn)| ≤ ‖δs0‖ · ‖fn‖E ≤ ‖δs0‖ · ‖1‖E‖f‖nM(E).

Since |fn(s0)| = |f(s0)|n, it follows that

|f(s0)| ≤
(
‖δs0‖ · ‖1‖E

)1/n‖f‖M(E).

Making n → ∞ we have that |f(s0)| ≤ ‖f‖M(E). Hence, f ∈ H∞(Cσ) and ‖f‖H∞(Cσ) ≤ ‖f‖M(E). �
Furthermore, if the monomials n−s, for n ≥ 1, are multipliers on E , a certain natural weighted �1-space

of Dirichlet series is included in M(E).

Proposition 4.3. Let E ⊆ D be a Banach space of Dirichlet series satisfying the condition of Proposition 4.1
for some σ ≥ σc(E) and such that 1 ∈ E. Suppose that {n−s : n ≥ 1} ⊂ M(E) and denote μn := ‖n−s‖M(E)
for n ≥ 1. Then

A((μn)∞n=1) :=
{
f(s) =

∞∑
n=1

ann
−s :

∞∑
n=1

|an|μn < ∞
}

⊆ M(E)

and ‖f‖M(E) ≤
∑∞

n=1 |an|μn for all f ∈ A((μn)∞n=1).

Proof. Let f(s) =
∑∞

n=1 ann
−s ∈ A((μn)∞n=1). The series 

∑∞
n=1 ann

−s is absolutely convergent in M(E),
as

∞∑
n=1

‖ann−s‖M(E) =
∞∑

n=1
|an|μn < ∞,

and so it converges in norm to some h ∈ M(E). Since, M(E) ⊆ E continuously and so norm convergence 
in M(E) implies pointwise convergence on Cσ, it follows that f = h ∈ M(E). From the equality above it
follows that ‖f‖M(E) ≤

∑∞
n=1 |an|μn. �

Remark 4.4. The particular spaces A((μn)∞n=1) above obtained for r ∈ R and μn := n−r for all n ≥ 1, are
denoted by

Ar :=
{
f(s) =

∞∑
n=1

ann
−s :

∞∑
n=1

|an|n−r < ∞
}
.

They are Banach spaces when endowed with the norm ‖f‖Ar :=
∑∞

n=1 |an|n−r. When r = 0, the cor-
responding space is the well known Wiener-Dirichlet algebra A+, see [7]. Direct computation shows that 
σc(Ar) = σa(Ar) = r. Regarding the point evaluations on Ar, we have that ‖δs0‖ = 1, for every s0 ∈ Cr.
With respect to the multipliers, by Proposition 4.1, M(Ar) ⊆ Ar continuously with embedding constant 
equal to one. In fact, both spaces coincide with equality of norms. To see this, we check that monomi-
als are multiplier on Ar. For m ∈ N, consider m−s and let g(s) =

∑∞
n=1 ann

−s ∈ Ar. Noting that
m−sg(s) =

∑∞
n=1 cnn

−s with cn = a n
m

if m|n and cn = 0 in other case, it follows

∞∑
n=1

|cn|n−r =
∞∑
n=1

|a n
m
|n−r =

∞∑
k=1

|ak|(km)−r = m−r‖g‖Ar ,
m|n



and so m−sg ∈ Ar with ‖m−sg‖Ar = m−r‖g‖Ar . Hence, m−s ∈ M(Ar) and ‖m−s‖M(Ar) ≤ m−r. Actually
‖m−s‖M(Ar) = m−r, as 1 ∈ Ar with norm one and ‖m−s‖Ar = m−r. Therefore, from Proposition 4.3, the
inclusion Ar ⊆ M(Ar) holds continuously with embedding constant equal to one.

We now consider the space M(H(cesp)) of all multipliers on H(cesp). We have seen that σc(H(cesp)) =
1/q and that, for each s0 ∈ C1/q, the point evaluation functional δs0 is continuous on H(cesp), see Theo-
rem 3.3 and Theorem 3.4. With these conditions, Proposition 4.1 implies that every multiplier f on H(cesp)
defines a bounded multiplication operator Mf from H(cesp) into itself:

g ∈ H(cesp) 	→ Mf (g) = fg ∈ H(cesp).

Moreover, since the constant function 1 ∈ H(cesp) and ‖1‖H(cesp) = ζ(p)1/p, it also follows that

M(H(cesp)) ⊆ H(cesp)

continuously with embedding constant ζ(p)1/p, that is,

‖f‖H(cesp) ≤ ζ(p)1/p · ‖f‖M(H(cesp)), f ∈ M(H(cesp)).

So, a multiplier f on H(cesp) is actually a Dirichlet series f(s) =
∑∞

n=1 ann
−s belonging to H(cesp) and

the action of the multiplication operator Mf on g(s) =
∑∞

n=1 bnn
−s ∈ H(cesp) is given by

Mf (g)(s) = f(s)g(s) =
∞∑

n=1

(∑
k|n

akbn
k

)
n−s.

The boundedness of the operator Mf corresponds to the existence of some constant M > 0 such that

⎛
⎝ ∞∑

n=1

(
1
n

n∑
k=1

∣∣∣∣∑
j|k

ajb k
j

∣∣∣∣
)p

⎞
⎠

1/p

≤ M ·
( ∞∑

n=1

(
1
n

n∑
k=1

|bk|
)p

)1/p

for all g(s) =
∑∞

n=1 bnn
−s ∈ H(cesp). The least of such constants M is the operator norm ‖Mf‖ of Mf as

a bounded operator from H(cesp) into itself, which we denote by ‖f‖M(H(cesp)).

Theorem 4.5. The inclusions

A1/q ⊆ M(H(cesp)) � H∞(C1/q)

holds continuously with inclusion constants equal to one.

Proof. The first inclusion follows from Proposition 4.3 if we show, for m ≥ 1, that the monomial m−s is a 
multiplier on H(cesp), and

∥∥m−s
∥∥
M(H(cesp)) = m−1/q.

Let g(s) =
∑∞

n=1 bnn
−s ∈ H(cesp). The coefficients of the Dirichlet series m−sg are given by

(m−s · g)k =
{

bi if k = im for some i ≥ 1
0 in other case

.



We estimate:

‖m−sg‖pH(cesp) =
∞∑

n=1

(
1
n

n∑
k=1

|(m−s · g)k|
)p

=
∞∑

n=m

(
1
n

�n/m	∑
i=1

|bi|
)p

=
∞∑
j=1

(j+1)m−1∑
n=jm

(
1
n

j∑
i=1

|bi|
)p

=
∞∑
j=1

( j∑
i=1

|bi|
)p (j+1)m−1∑

n=jm

1
np

≤
∞∑
j=1

( j∑
i=1

|bi|
)p

m

(jm)p = 1
mp−1 ‖g‖pH(cesp).

Then ‖m−sg‖H(cesp) ≤ m−1/q‖g‖H(cesp). Thus, m−s is a multiplier on H(cesp) and ‖m−s‖M(H(cesp)) ≤
m−1/q.

On the other hand, for g(s) = j−s, with j ≥ 2, we have

‖m−sj−s‖pH(cesp) =
∞∑

n=jm

1
np

≥ 1
p− 1

1
(jm)p−1

and

‖j−s‖pH(cesp) =
∞∑
n=j

1
np

≤ 1
p− 1

1
(j − 1)p−1 .

Hence,

‖m−s‖M(H(cesp)) ≥
‖m−s · j−s‖H(cesp)

‖j−s‖H(cesp)
≥ (j − 1)1/q

(jm)1/q
.

Making j → ∞, we arrive at ‖m−s‖M(H(cesp)) ≥ m−1/q.
The second inclusion follows from Proposition 4.2.
It only remains to prove that M(H(cesp)) �= H∞(C1/q). For this we calculate the abscissa of convergence

and absolute convergence of M(H(cesp)). From Theorem 3.3, Remark 4.4 and the inclusions

A1/q ⊆ M(H(cesp)) ⊆ H(cesp),

it follows that

1/q = σc(A1/q) ≤ σc

(
M(H(cesp))

)
≤ σa

(
M(H(cesp))

)
≤ σa(H(cesp)) = 1/q.

Then σc

(
M(H(cesp))

)
= σa

(
M(H(cesp))

)
= 1/q. Thus, M(H(cesp)) �= H∞(C1/q) as σa(H∞(C1/q)) =

1/q + 1/2 by (2.1). �
Theorem 4.5 already shows that the situation concerning the multiplier algebra of H(cesp) is certainly

different from that of other spaces of Dirichlet series studied previously in the literature. In this case, the 
multiplier algebra will not coincide with an algebra of bounded Dirichlet series. Next we will prove that

M(H(cesp)) = A1/q, (4.1)



with equality of norms. As explained in the Introduction, this fact is, to some extent, analogous to the case 
of the space H(D, cesp), of Taylor series on the unit disc D of the complex plane with coefficients belonging
to cesp, in which case its multiplier algebra is the Wiener algebra of absolutely convergent Taylor series,
which is the smallest algebra inside H(D, cesp) containing the polynomials.

The proof of (4.1), which will be given in Theorem 4.8, is rather technical. We first discuss the strategy of
the proof in order to help its better understanding. Given f(s) =

∑∞
n=1 ann

−s ∈ M(H(cesp)), for adequate
values of the parameter α, we find a sequence (gm,α)∞m=1 in H(cesp) such that

∞∑
n=1

|an|n−1/q = lim
α→1/q
m→∞

‖fgm,α‖H(cesp)

‖gm,α‖H(cesp)
≤ ‖f‖M(H(cesp)).

Estimating the norm of fgm,α in H(cesp) is complicated since it requires, apart from the Cesàro means,
dealing with the coefficients of the product of two Dirichlet series. With the aim of having these coefficients 
as simple as possible, we consider functions gm,α(s) =

∑∞
n=1 b

m,α
n n−s whose coefficients are supported on

certain subsets of the prime numbers (pr)∞r=1. For an adequate sequence (rm)∞m=2 ⊆ N, we require that
bm,α
n �= 0 only when n = pr for r ≥ rm. The key point is that, for coefficients having index of the form
k = ω pr with r ≥ rm and ω =

∏rm−1
i=1 ptii , t1, . . . , trm−1 ≥ 0, the corresponding coefficient of the product

fgm,α is reduced to one term
∑
j|k

ajb
m,α
k
j

= aωb
m,α
pr

.

In this way, estimating the norms ‖fgm,α‖H(cesp) and ‖gm,α‖H(cesp) is reduced to estimating sums of the
form

∑
r≥rm
pr≤γ

bm,α
pr

,

where γ ∈ [rm, ∞); note that the summation is taken over the set {r ∈ N : r ≥ rm and pr ≤ γ}. To
this end, we consider the function φ(x) := x log x on [1, ∞) and choose, via the Prime Number Theorem, 
(rm)∞m=2 ⊆ N such that pr is sufficiently close to φ(r) for r ≥ rm. The problem is then transformed into
estimating sums of the form

φ−1(γ)∑
r=rm

bm,α
pr

.

Finally, good estimates for the above sum are obtained by taking bm,α
pr

= (φα)′(r).
We require two lemmata.

Lemma 4.6. Let 0 < β < 1 and φ(x) = x log x for x ∈ [1, ∞). There exists xβ such that for every r0 ∈ N

with r0 ≥ xβ, C1 ≥ C2 ≥ φ(r0), and J satisfying
{
r ∈ N : r ≥ r0 and φ(r) ≤ C2

}
⊂ J ⊂

{
r ∈ N : r ≥ r0 and φ(r) ≤ C1

}
(4.2)

it follows that

Cα
2 − φ(r0)α ≤

∑
r∈J

(φα)′(r) ≤ Cα
1 − φ(r0 − 1)α (4.3)

for all α ≤ β.



Proof. We consider the Lambert function W on (0, ∞) defined by W (x)eW (x) = x; see [11]. Then

φ
( x

W (x)

)
= x. (4.4)

Let r0 ∈ N, C1 ≥ C2 ≥ φ(r0), and J satisfy (4.2). By (4.4) and since φ is increasing and injective on
[1, ∞), we have that r ≤ x

W (x) if and only if φ(r) ≤ φ
(

x
W (x)

)
= x. Then, it follows that

⌊ C2
W (C2)

⌋∑
r=r0

h(r) ≤
∑
r∈J

h(r) ≤

⌊ C1
W (C1)

⌋∑
r=r0

h(r) (4.5)

for every positive function h. For α ≤ β take h as the derivative of φα, that is,

h(x) = (φα)′(x) = α(x log x)α−1(log x + 1).

Let xβ be sufficiently large so that h is decreasing on [xβ − 1, ∞). Such value xβ exists as

h′(x) = α(α− 1)(x log x)α−2(log x + 1)2 + α(x log x)α−1 1
x

= α(x log x)α−2(log x + 1)2
(
α− 1 + log x

(log x + 1)2
)

≤ α(x log x)α−2(log x + 1)2
(
β − 1 + log x

(log x + 1)2
)
.

Since limx→∞ log x(log x + 1)−2 = 0 and β − 1 < 0, there exists xβ such that h′(x) ≤ 0 for all x ≥ xβ − 1.
Then, for every M ≥ N ≥ xβ it follows that

M∑
r=N

h(r) ≤
M∑

r=N

r∫
r−1

h(x) dx =
M∫

N−1

h(x) dx = φ(M)α − φ(N − 1)α

and

M∑
r=N

h(r) ≥
M∑

r=N

r+1∫
r

h(x) dx =
M+1∫
N

h(x) dx = φ(M + 1)α − φ(N)α.

Hence, from (4.5), if r0 ≥ xβ we have

φ

(⌊
C2

W (C2)

⌋
+ 1

)α

− φ(r0)α ≤
∑
r∈J

h(r) ≤ φ

(⌊
C1

W (C1)

⌋)α

− φ(r0 − 1)α.

From (4.4),

φ

(⌊
C1

W (C1)

⌋)
≤ φ

(
C1

W (C1)

)
= C1

and

φ

(⌊
C2

W (C2)

⌋
+ 1

)
≥ φ

(
C2

W (C2)

)
= C2,

and so (4.3) holds. �



Recall that pr denotes the r-th prime number. The Prime Number Theorem

lim
r→∞

pr
r log r = 1,

allows to find, for each 2 ≤ m ∈ N, an integer rm ∈ N, with rm > m and such that

1 − 1
m

≤ pr
r log r ≤ 1 + 1

m
, for all r ≥ rm.

Consequently, we have (rm)∞m=2 ⊆ N such that

mpr
m + 1 ≤ r log r ≤ mpr

m− 1 , for all r ≥ rm. (4.6)

Lemma 4.7. Let φ(x) = x log x for x ∈ [1, ∞) and consider the sequence (rm)∞m=2 given in (4.6). For
1 < q < ∞, there exists xq such that

max
{( mγ

m + 1

)α

− φ(rm)α, 0
}
≤

∑
r≥rm
pr≤γ

(φα)′(r) ≤
( mγ

m− 1

)α

− φ(rm − 1)α

whenever rm ≥ xq, γ ≥ prm and α ≤ 1
q .

Proof. Let γ ≥ prm and α ≤ 1
q . We apply Lemma 4.6 with β = 1

q , r0 = rm, C1 = mγ
m−1 , C2 = mγ

m+1 if
γ ≥ φ(rm)m+1

m , and C2 = φ(rm) in other case, and

J =
{
r ∈ N : r ≥ rm and pr ≤ γ

}
.

We verify that the hypothesis of Lemma 4.6 hold. By (4.6) we have φ(rm) ≤ mprm

m−1 ≤ C1 and so
C1 ≥ C2 ≥ φ(rm). The right-hand inclusion in (4.2) holds since for every r ∈ J , by (4.6), we have that
φ(r) ≤ mpr

m−1 ≤ C1. On the other hand, let r ≥ rm such that φ(r) ≤ C2. If C2 = mγ
m+1 , from (4.6) we have

that pr ≤ φ(r)m+1
m ≤ C2

m+1
m = γ and so r ∈ J . If C2 = φ(rm) then r = rm ∈ J . So, the left-hand inclusion

of (4.2) holds.
Noting that Cα

2 − φ(rm)α = max
{(

mγ
m+1

)α − φ(rm)α, 0
}
, the conclusion follows. �

Now we prove the main result.

Theorem 4.8. For 1 < p < ∞ and 1/p + 1/q = 1, we have

M(H(cesp)) = A1/q

with equality of norms.

Proof. Let f(s) =
∑∞

n=1 ann
−s ∈ M(H(cesp)) and set a := (an)∞n=1. Take φ(x) = x log x for x ∈ [1, ∞),

the sequence (rm)∞m=2 given in (4.6) and the value xq provided by Lemma 4.7. For fixed 2 ≤ m ∈ N with
rm ≥ xq and 1/(2q) < α < 1/q, consider the sequence bm,α = (bm,α

n )∞n=1 defined by

bm,α
n :=

{
(φα)′(r) if n = pr with r ≥ rm,

0 in other case.

Let gm,α(s) :=
∑∞

bm,α
n n−s. Then, from Lemma 4.7,
n=1



‖gm,α‖pH(cesp) = ‖bm,α‖pcesp =
∞∑

n=1

1
np

( n∑
k=1

|bm,α
k |

)p

=
∞∑

n=prm

1
np

( ∑
r≥rm
pr≤n

(φα)′(r)
)p

≤
∞∑

n=prm

1
np

( mn

m− 1

)αp

=
( m

m− 1

)αp ∞∑
n=prm

1
np(1−α)

≤
( m

m− 1

)αp 1
(p(1 − α) − 1)(prm − 1)p(1−α)−1 . (4.7)

We estimate ‖fgm,α‖pH(cesp) from below. Note that for each k = ω pr with r ≥ rm and ω =
∏rm−1

i=1 ptii , 
t1, . . . , trm−1 ≥ 0, it follows that

(a · bm,α)k =
∑
j|k

ajb
m,α
k
j

= aωb
m,α
pr

= aω(φα)′(r).

Indeed, if j|k and j �= ω we have that k/j �= pr̂ for all r̂ ≥ rm and so bm,α
k/j = 0. Consider the subset of N

given by

Pm :=
{
n ∈ N : n =

rm−1∏
i=1

ptii , 0 ≤ ti ≤ m for all 1 ≤ i ≤ rm − 1
}
.

Since ωpr = ω̂pr̂ with ω, ω̂ ∈ Pm and r, ̂r ≥ rm implies that ω = ω̂ and pr = pr̂, it follows that the set

O =
⋃

ω∈Pm

ω ·
{
pr : r ≥ rm

}

is a finite union of disjoint sets. Then, for any nm ≥ 3pmrm+1
rm , we have that

‖fgm,α‖pH(cesp) = ‖a · bm,α‖pcesp =
∞∑

n=1

1
np

( n∑
k=1

|(a · bm,α)k|
)p

≥
∞∑

n=nm

1
np

( n∑
k=1
k∈O

|(a · bm,α)k|
)p

=
∞∑

n=nm

1
np

( ∑
ω∈Pm

∑
r≥rm
pr≤ n

ω

|(a · bm,α)ω pr
|
)p

=
∞∑

n=nm

1
np

( ∑
ω∈Pm

|aω|
∑
r≥rm
pr≤ n

ω

(φα)′(r)
)p

.

Note that ω ≤ pmrm
rm whenever ω ∈ Pm and so n/ω ≥ 3prm for n ≥ nm. Hence, by (4.6),

φ(rm) ≤ mprm ≤ mn ≤ mn
m− 1 3(m− 1)ω (m + 1)ω



for every n ≥ nm and ω ∈ Pm. Applying Lemma 4.7, it follows that

‖fgm,α‖pH(cesp) ≥
∞∑

n=nm

1
np

( ∑
ω∈Pm

|aω|
(( mn

(m + 1)ω

)α

− φ(rm)α
))p

.

Note that if we restrict to nm ≥ 3pmrm+1+2q
rm we obtain

( mn

(m + 1)ω

)α

− φ(rm)α =
( mn

(m + 1)ω

)α
(

1 −
( (m + 1)ωφ(rm)

mn

)α
)

≥
( mn

(m + 1)ω

)α(
1 − 1

prm

)

for every ω ∈ Pm and n ≥ nm. Indeed, by (4.6),

(m + 1)ωφ(rm)
m

≤ (m + 1)ωmprm
m(m− 1)

≤
(m + 1)pmrm+1

rm

m− 1

≤ (m + 1)nm

3(m− 1)p2q
rm

≤ n

p1/α
rm

,

where we use that α > 1/(2q). Then,

‖fgm,α‖pH(cesp) ≥
∞∑

n=nm

1
np

( ∑
ω∈Pm

|aω|
( mn

(m + 1)ω

)α(
1 − 1

prm

))p

=
(
1 − 1

prm

)p( m

m + 1

)αp ∞∑
n=nm

1
np(1−α)

( ∑
ω∈Pm

|aω|
ωα

)p

≥
(
1 − 1

prm

)p( m

m + 1

)αp 1
(p(1 − α) − 1)np(1−α)−1

m

( ∑
ω∈Pm

|aω|
ωα

)p

. (4.8)

From (4.7) and (4.8) it follows that

‖f‖pM(H(cesp)) ≥
‖fgm,α‖pH(cesp)

‖gm,α‖pH(cesp)

≥

(
1 − 1

prm

)p( m

m + 1

)αp 1
(p(1 − α) − 1)np(1−α)−1

m

( ∑
ω∈Pm

|aω|
ωα

)p

( m

m− 1

)αp 1
(p(1 − α) − 1)(prm − 1)p(1−α)−1

= (prm − 1)p(2−α)−1

pprm

(m− 1
m + 1

)αp 1
n
p(1−α)−1
m

( ∑
ω∈Pm

|aω|
ωα

)p

.

Taking limit as α → 1/q we have

‖f‖pM(H(cesp)) ≥
(prm − 1)p

pprm

(m− 1
m + 1

)p/q
( ∑ |aω|

ω1/q

)p

.

ω∈Pm



Finally, making m → ∞ we conclude

‖f‖pM(H(cesp)) ≥
( ∑

ω∈N

|aω|
ω1/q

)p

. �

5. Further facts on multipliers on H(cesp)

First we study the compactness of the multipliers on H(cesp). It turns out that there is no other compact
multiplier than zero.

Theorem 5.1. Let f ∈ M(H(cesp)). Suppose that the associated operator

g ∈ H(cesp) 	→ Mf (g) := fg ∈ H(cesp)

is compact. Then f = 0.

Proof. Consider the sequence {m1/qm−s}∞m=1 in H(cesp). It is bounded as, for m ≥ 2, we have that

‖m1/qm−s‖H(cesp) = m1/q‖em‖cesp = m1/q
( ∞∑

n=m

1
np

)1/p
≤ 21/q

(p− 1)1/p
.

Then, by compactness of Mf , there exists a subsequence {m1/q
k m−s

k }∞k=1 such that {Mf (m1/q
k m−s

k )}∞k=1
converges in norm to some g ∈ H(cesp). For s0 ∈ C1/q, since the point evaluation δs0 is bounded on
H(cesp), we have

δs0

(
Mf (m1/q

k m−s
k )

)
−−−−→
k→∞

δs0(g) = g(s0).

On the other hand,

δs0

(
Mf (m1/q

k m−s
k )

)
= f(s0)m1/q−s0

k −−−−→
k→∞

0.

Thus, g = 0. Hence, {Mf (m1/q
k m−s

k )}∞k=1 converges to zero in the norm of H(cesp).
We estimate from below ‖Mf (m1/q

k m−s
k )‖H(cesp) = m

1/q
k ‖Mf (m−s

k )‖H(cesp). Let f(s) =
∑∞

n=1 ann
−s. We

have seen in the proof of Theorem 4.5 that

‖Mf (m−s)‖pH(cesp) = ‖m−sf‖pH(cesp) =
∞∑
j=1

( j∑
i=1

|ai|
)p

(j+1)m−1∑
n=jm

1
np

.

Since

(j+1)m−1∑
n=jm

1
np

≥ m(
(j + 1)m− 1

)p ≥ m

(2jm)p ,

it follows that

‖Mf (m−s)‖pH(cesp) ≥
m

(2m)p
∞∑ 1

jp

( j∑
|ai|

)p

= m

(2m)p ‖f‖
p
H(cesp).
j=1 i=1



Then,

‖Mf (m1/q
k m−s

k )‖H(cesp) ≥ m
1/q
k

m
1/p
k

2mk
‖f‖H(cesp) = 1

2‖f‖H(cesp).

Taking k → ∞ we have that ‖f‖H(cesp) ≤ 0 and so, f = 0. �
Next we discuss how “close” is the space H(cesp) to its multiplier algebra. Let us first note that

M(H(cesp)) = A1/q � H(cesp). Indeed, in other case the point evaluation δ1/q at the point s0 = 1/q,
which belongs to the dual space of A1/q, would belong to H(cesp)∗. But this is not true as δ1/q ∈ H(cesp)∗
is precisely (n−1/q)∞n=1 ∈ d(q) (see the proof of Theorem 3.4), which corresponds to (n−1/q)∞n=1 ∈ �q.

The multiplier algebra M(H(cesp)) is “close” to H(cesp) in the sense shown by the following example.
For f(s) =

∑∞
n=1 ann

−s ∈ H(cesp) and ε > 0, set

fε(s) :=
∞∑

n=1

ann
−ε

ns
.

Theorem 3.3 shows that σa(H(cesp)) = 1/q. Then

∞∑
n=1

|ann−ε|
n1/q =

∞∑
n=1

|an|
n1/q+ε

< ∞.

Consequently, fε ∈ A1/q = M(H(cesp)). The question arises: for which sequences (bn)∞n=1 it is the case that∑∞
n=1 anbnn

−s ∈ M(H(cesp)) whenever 
∑∞

n=1 ann
−s ∈ H(cesp)? Recall that these sequences are called the

Schur multipliers between H(cesp) and A1/q.

Theorem 5.2. A sequence (bn)∞n=1 satisfies that for every 
∑∞

n=1 ann
−s ∈ H(cesp) the series 

∑∞
n=1 anbnn

−s

is a multiplier on H(cesp) if and only if

(
bnn

−1/q)∞
n=1 ∈ d(q),

where d(q) is the dual space of cesp, that is, the following condition holds

∞∑
n=1

sup
k≥n

(
|bk|q
k

)
< ∞.

Proof. Denote by �1q the Banach space of complex sequences a = (an)∞n=1 such that ‖a‖�1q :=∑∞
n=1 |an|n−1/q < ∞. The sequence b = (bn)∞n=1 being a Schur multiplier between H(cesp) and A1/q

corresponds precisely to the operator Tb, defined by

a = (an)∞n=1 ∈ cesp 	→ Tb(a) := (anbn)∞n=1 ∈ �1q,

being well defined and, via the closed graph theorem, bounded.
Suppose that Tb is well defined. For every a = (an)∞n=1 ∈ cesp we have that

∣∣∣〈(bnn−1/q)∞
n=1, (an)∞n=1

〉∣∣∣ ≤ ∞∑
n=1

|anbn|
n1/q = ‖Tb(a)‖�1q ≤ ‖Tb‖ · ‖a‖cesp

and so 
(
bnn

−1/q)∞ ∈ ces∗p = d(q).

n=1



Conversely, suppose that 
(
bnn

−1/q)∞
n=1 ∈ ces∗p = d(q). For every a = (an)∞n=1 ∈ cesp we have that

∣∣∣∣
∞∑

n=1

anbn
n1/q

∣∣∣∣ =
∣∣∣〈(bnn−1/q)∞

n=1, (an)∞n=1

〉∣∣∣ ≤ ∥∥∥(bnn−1/q)∞
n=1

∥∥∥
ces∗p

· ‖a‖cesp .

Let c = (cn)∞n=1 with cn := |an|bn
|bn| if bn �= 0 and cn = 0 in other case. Then |cn| ≤ |an| for all n ≥ 1. Since

a ∈ cesp, it follows that c ∈ cesp and ‖c‖cesp ≤ ‖a‖cesp . Hence,

∞∑
n=1

|anbn|
n1/q =

∣∣∣∣
∞∑

n=1

cnbn
n1/q

∣∣∣∣ ≤ ∥∥∥(bnn−1/q)∞
n=1

∥∥∥
ces∗p

· ‖c‖cesp

≤
∥∥∥(bnn−1/q)∞

n=1

∥∥∥
ces∗p

· ‖a‖cesp .

So Tb(a) ∈ �1q. �
Example 5.3. For α > 1

q set bn = (log n)−α, for n ≥ 2. Then

∞∑
n=2

sup
k≥n

(
|(log k)−α|q

k

)
=

∞∑
n=2

1
n(logn)qα < ∞.

Thus, for every 
∑∞

n=1 ann
−s ∈ H(cesp) we have that

∞∑
n=2

an
ns logα n

is a multiplier on H(cesp).
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