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Abstract

Limit cycles occurring in oil well drillstrings result frorthe interaction between the drill bit and the rock during
drilling operations. In this paper we propose to use the hte@n the bit WoB) force as an additional control
variable to extinguish limit cycles when they occur. An apfimate analysis based on the bias describing function
and completed with some simulations, provides good eviel¢hat the rotational dynamics of the oil well drillstring
displays such a behavior. In particular, we propose an ataptlaw for theWoB named D-OKILL mechanisms,
which results from a variant of thescillation killer (OSKIL) mechanism studied in detail in [6].

In opposition to the heuristic control structure propogefi7i, we show that the new Weight on Biii{,z) control
law results in a globally asymptotically stable closed lsygtem. Simulations applying the D-OSKIL mechanism
show that the stick-slip oscillations can be eliminatechaitt requiring a re-design of the velocity rotary-tabletcohn

I. INTRODUCTION

Oil well drillstrings (see Figure 1) are systems which preseteresting features from the dynamical and control
viewpoints as they pose many challenging technologicablpros [26], [34]. The application of dynamic analysis
and control techniques in a drilling system can lead to agsichs that allow us to propose new recommendations
for drilling operations, drillstring design and controbatithm, which would produce economic benefits through a
mix of lower development costs, higher production rates iamatoved recovery. Particularly, the presence of stick-
slip self-excited oscillations at the bottom part of thellsitings as well as decreasing service life of drillstsng

and downhole equipment, has drawn the attention of the @obotrmmunity in the last decade. The elimination
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Fig. 1. Qil drilling system in the field (a). Basic scheme ofextical drilling system.(b)

of this kind of oscillations is a challenge for drillers ancientists since it can provide important cost savings in
drilling operations, in terms on money and exploitationdif21].

Different oscillations affecting the drillstring behaviare unavoidable. The occurrence of self-excited stigk-sl
vibrations (i.e., the top of the drillstring rotates with anstant rotary speed, whereas the bit (cutting device)yota
speed varies between zero and up to six times the rotary speasured at the surface) as a common and damaging
phenomena in drillstring systems has been highly descrmeidanalyzed in recent years, drawing the attention of
the control community. For more information about drilisty oscillations and stick-slip phenomenon in oil well
drillstrings, please see [14], [21], [24], [31].

Some causes of stick-slip oscillations are backlash betwemtacting parts, hysteresis, nonlinear damping
and geometrical imperfections which are very difficult todab However, the main cause of such vibrations in
drillstrings is the friction appearing by contact with theck formation [3], [17]. Consequently, a model describing
the drillstring behavior should include a bit-rock friatidorque model adequate enough to properly reproduce this
effect.

Many ways of reducing these vibrations have been propossH,ftom practical and theoretical viewpoints.

Historically, the experience of drillers has revealed thatmanipulation of different drilling parameters (incsea
ing the rotary speed, decreasing the weight-oniv{3), modifying the drilling mud characteristics, introdugin
an additional friction at the bit [25], etc) is an effectivigategy to suppress stick-slip motion [28]. However, this

strategy depends too much on the personal skills of eadindrtechnician to be really effective.
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Usually, drilling systems are velocity-controlled to makem rotate at a constant velocity, but no specifications
about vibration suppression or damping are consideredth®naontrol option would be introducing new regulation
methodologies (active, passive) in the loop, specificattyeal to compensate for drillstring vibrations. Among those

the following examples can be pointed out:

« The so-calledsoft Torque Rotary Systef8TRS) [13] [28], that is a torque feedback at the top of thisthing
which makes the system behave in a “softer” way rather tham fased heavy flywheel, so that the torsional
waves arriving at the surface are absorbed, breaking thafliacycling motion.

« Introducing a vibration absorber at the top of the drillegri15] which follows the same approach given in
[13] and [28].

« Introducing a PID controller structure at the surface inesrth control the rotary speed [1], [23], [24], [25].

« Using robust controllers, like the linedf., control proposed in [29], to suppress stick-slip motionre bit.

« Using a controller based on an input-state feedback linaeton of the nonlinear friction torque [2].

However, few works have provided a formal stability anadysf their proposed control strategies. For instance,
analysis of the dynamical behavior of drillstring underraitions has been explored in [1] and linear approximations
to stability of controlled drillstring has been studied 2¥].

The value of the system weight measured at the bottom pdiedcé/leight on Bit {¥,5), has been proved to
be an important parameter in the occurrence and possibldamae of stick-slip oscillations (see [23] and [28]).

Efficient drilling operation requires a certain amount afc® (¥, z) that may be incompatible with the low force
range which may avoid stick-slip oscillations. This trafidmtween force magnitudes, provides a first indication
that a regulation strategy ¥,z seems to be necessary to maintain a good drilling operatiors, avoiding such
oscillations (see [7] and [24]).

This paper is focused on the problem of stick-slip oscifiasi produced at the bottom-hole assembly (BHA). The
main idea is to use the weight on the Wi ¢B) force as an additional control variable. In particular vaajt the
oscillation killer (OSKIL) mechanism studied in [6], to the oil well drillstdnsystems (named here D-OSK)L
which has been shown to be particularly adapted for nonlisgstems displaying a local stable region with a stable
limit set outside this local domain.

An approximate analysis based on the bias describing fumptiovides good evidence that the rotational dynamics
of the oil well drillstring display a similar behavior patte This analysis, although approximate, also gives a good
intuition in the way that thé¥oB needs to be modified to suppress oscillations. An importamperty of the
proposed D-OSKIL mechanism is that it allows recoveringribeninal operation condition (thB/oB recovers its
nominal drilling value) while oscillations are suppressed

In opposition to the heuristic control structure proposedi], we show that the new proposed Weight on
Bit (W,g) control law results in aglobally asymptotically stablelosed loop-system. Therefore, the D-OSKIL

mechanism eliminates the stick-slip oscillations withoequiring a re-design of the velocity rotary-table control

1D-OSKIL stands for Drilling oscillation killer mechanism.
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The paper is organized as follows. In Section Il the basieuafrillstring dynamics and vibrations are briefly
introduced. In Section I, the drillstring model used iretpaper is presented. The control loop used to regulate
rotational velocity of the set and the a priori behavior of ttlosed loop system are shown in Sections IV and V,
respectively. In Section VI, a Describing Function basealysis is made in order to obtain some information about
stick-slip oscillations in the system, and next, in Sectidh the control mechanism named D-OSKIL obtained
from the conclusions of the previous analysis is presente&ection VI, some simulations are shown. Section
IX proposes an observed-based version of the same contvdiiere only field existing measures are used. In the
same section, we show also some simulations. And finallyti®eX submits the conclusions and future research

lines.

Il. BASICS ONDRILLSTRING DYNAMICS AND VIBRATIONS

Standard rotatory drilling equipment, as shown in Figur® Hepict what is commonly used by oil companies
to extract gas and oil from the earth surface, uses a dil{ebifledbit) to crush the rock and make the hole in the
ground. As the hole becomes deeper, some pipe sectionsddaill pipes) are added, leaving the bit coupled at
the bottom part of the set. These pipes, together with tHekdtj form the so-calleddrillstring . This drillstring
is moved by means of a motor or system of motors in the surfaset has been shown in the previous Section,
operation of the drillstring looks just like that of a hous&helectric drill, where a motor makes the bit rotate, and
enough weight is applied to maintain the contact betweerbihand the object to be drilled.

In order to make the study of a drilling system structure anfiitre comprehensive, the following parts can be
emphasized:

o Power System:A set of diesel and electric motors that provide the necgssaergy to perform all the tasks.

« Supporting Structure: This is used to move the pipes in and out of the oil well, andteaary the weight

applied during the process.

« TheRotatory Systemto make the system rotate. It is composed by:

SwivelandKelly: To connect the Supporting and Rotatory Systems.

Rotatory Table: Also calledturntable. It is a large disc-shaped inertia coupled to the drillgtrthat

drives the rotating motion using power from electric motors

— Dirillstring : As shown before, it is a sequence of tubes that connect tagorg table and the bit.

Bit: The cutting device.
« Circulation System: It consists of a set of pipes and pumps which create a flow mvittie hole bydrilling
mud into it. This substance is aimed to lubricate and refrigethe contact between the rock and the bit, and
so to lift the rock cuttings from the drill bit to the surface.
A more exhaustive description of the rotatory system canobed, in [21] and [31] among other papers.
One of the main problems is the appearance of oscillatorgets (limit cycles), that cause a decreasing of the
drilling performance from the viewpoints of different paraters (rate of penetration at the surface, rotationaldspee

of the bit, ...) and so provoking the mechanical failure & thillstring or the breakage of any of the elements [31].
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Fig. 2. Different types of vibrations in drillstring system

The vibrations appearing in the drillstring can be dividatbi3 different categories [14] [10], (see Figure 2):

« Longitudinal vibrationsare produced in a vertical direction from the drilling toweausing rebounds of the
bit at the bottom of the oil well, a phenomenon callgttbouncing.
« Lateral vibrationsare produced when the drillstring’s mass center is displdicam the rotation axis, causing
whirl-like movements and rebounds within the oil well wallsphenomenon calleghirling .
« Torsional vibrationsare produced when the rotational velocities at the surfadettae bottom of the drillstring
are different, causingtick-slip movements.
Each oscillation phenomenon appears both at differentstiamel different frequency ranges, and so, they can be
studied separately. This work is focused on stick-slip afiions.
The stick-slip oscillations are generally associated foicy dry friction profiles [19], i.e., when there is no
movement, the friction torque (static friction) is largérah in non zero velocity cases (dynamic friction). The
difference between those two magnitudes has been shown by awghors to be one of the most relevant variables

that characterizes stick-slip oscillations [22].

Ill. SYSTEM MODELLING

Multiple kind of models have been used in literature to diéscdrillstring systems (see for example [19] and
[31]). The type and the complexity of the model to be used #weety related to the aim pursued (modelling,
simulation, model for control, etc). However, lumped paetens models have been shown to be valid enough to
properly describe the stick-slip oscillation phenomend aasy enough to make the study not too complex [10].

The problem of modelling stick-slip phenomenon in a drilfgg by means of a lumped-parameter model has been
studied from several points of view. Most of them consider thillstring as a torsional pendulum with different

degrees of freedom, for instance: [17], [20], [27], [32] pose single-degree-of-freedom models, [1], [5], [22],][24
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Fig. 3. Drillstring two-coupled masses model.

propose two-degree-of-freedom models including a lineatroller, and [15], [29] present two-degree-of-freedom
models for the mechanical part of the system plus the modeho rotary table electric motor system.

As it will be seen in subsequent sections, the bit-rock ifsittmodel is fundamental for properly reproducing
stick-slip oscillations phenomenon. Many models have h@eposed in literature, some of them summarized in
[22]. The model used here (depicted in Figure 3) is a two-elegf-freedom model with two inertial massés
and J;, locally damped byi,. andd,. The inertias are coupled with each other by an elastic sifadtiffnessk
and damping:. The variablesp, and ¢, stand for the rotary and the bit angle. The rotary torquerobsignal v
used to regulate the rotary angular velocity. The ToB (Torque on Bit) represents the total friction torque over
the drill bit.

The model equations are the following:
Jr@r + c(Pr — o) + k(or — 1) +drpr = 1)
Jopp + c(pp — &) +E(pp — @r) +dppy, = —ToB (2
In constants above, the sub-script, and’t’ stands for rotary and bit, respectively.
A suitable model fofT'oB is essential, because the reproduction of stick-slip vitana will strongly depend on
the particular choice of the model f@toB. This torque represents the combined effects of reactigpigon the bit
and nonlinear frictional forces along the drillstring. laracase, thé'oB will be given by the product ofi(¢s, 2),

which describes the normalized (dimensionless) torsidiitalock friction (different bit-rock friction models are

presented in [22]), and the normal foreecalled Weight on Bit WoB), i.e.
ToB = (¢, 2) - u (3)

Several forms fop(¢s, 2) can be considered according the use of the model. Next, wezidethe model fofl 0B

used for simulations and for validating the control law,rtree simplified model is introduced for control analysis
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purposes.

A. Model for simulations

The state-space representation of the later model is thaniol:

& = Az+ Bv+ Hu(x,2)u (4)
with
0 1 -1 0 0
— —k — d7‘+c) c — —
A=| 3k —(drtc) L < , B=| L |, H=| 0
£ < —(etds) 0 =1
Jb Jb Jb Jb

where the state = [z 22 23]7 is defined as follows:

r1 = Yr— P
T2 = @r (6)
3 = ©p

In this description, the state € R represents the internal friction state, and Equation (Scdees the friction
dynamics. Various friction models have been shown to worpprly to capture the typical friction phenomena
(stiction, Stribeck effect, etc) which cause stick-sligitiations ( [12] and [18]). One possible model for Equation
(5) is theLuGre friction model [8]:

zZ = x3—o0yp 5] z
g9(x3) "’
—(x v 2
g(zs) = po+ (us — po)e” 7/ @)
wlx,z) = o0oz+ 012,

The functiong(v) it mainly affect the steady-state characteristics of thetitm model. In steady-state, the
model predict the following friction valugyss(zs) = g(zs3)sgnxs). In this model,oq, o1, vs, e, s are positive
constants characterizing the friction physical propsrtiglso note that the torsional linear friction at the driit b

side is already incorporated in the matrix of the representation (4).

B. Model for control

Note that the previous model for th€z, z) includes an additional friction dynamicswhich is suited to describe
motion at pre-sliding, and in particular to regularize thiffedential equation describing the system dynamics. An
alternative is to use static description fefx) (maps without memory), which may be simple for control asesly
The different between both models, may not be too signifi@ntong as computation issues are strongly simplified.

The model for control is then described by,

& = Axz+ Bv+ Hpu(zs)u (8)
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where hereu(x3) is a static map between the bit rotational velocity= ¢, and the normalized friction parameter

1, i.e. the steady-state form of the model (7), or any suitalpleroximation like the one shown in Figure 12.

IV. ROTATIONAL VELOCITY REGULATION LOOP

The first task to confront is designing a proper control lawrfmtor torquev. This signal will be aimed mainly
at regulating the rotational velocity of the rotatory talileto a certain desired value; (a typical value forw, is
5rad/s). As we have shown in Section |, many architectures have pegposed for that purpose, from classic PID
structures to a lineafl ., robust control, although oil well drillstrings usually apée with reduced-order simple

control laws.

A. Rotary table velocity control loop

In this work, the structure of the velocity controller is jiied by the one presented in [10], as shown by:

o=+ 2] a0 - k(o - 0 ©
or equivalent
v = ki(wq—w2)+ koxy — k3(z2 — x3)
g4 = (wg—w2)

then the closed-loop equations take the form for the modesifaulation,
Aqx + Bawq + Hap(z, 2)u (10)

2 = flx,2) (11)

T

and the following one for the model for control analysis,
T = Aqr+ Bawa + Hap(zs)u (12)

with the obvious observation thatis now of dimension four (due to the introduction of an intgerm in the

rotary table control), i.ex = [x1, 29, x3, x4], and with theA.;, B, and H., given as:

0 1 —1 0 0 0

—k —(dr+ct+ki+ks) (c+k3) ko k1 0

Acl = i; Ir ({ﬁid ) Ir ; Bcl = Ir ) Hcl = 1

C —(C b —

T T — 0 0 T

0 —1 0 0 1 0

The steady-state value af consideringu* = u(z3), is:
*+d
ot = Uppt” + dpwq (13)
k
Ty = wq (14)
T3 = w4 (15)
dp + d, *
o = (dp + )]:fd + @ ug (16)
2
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Fig. 4. Stick-slip measured in the field (a) (taken from [281)d simulation profiles obtained with the closed-loop mddg!

Therefore, rotatory table and bit velocities stabilizerad tlesired rotational velocity, revealing a proper featare
our feedback control law.

There are many possible ways of adjusting the g&insk. and k3. One possible option is to use a classic
two-time-scales separation method to accomplish this fse@xample [9]). Further details are given in Appendix

A.

B. Closed-loop system model validation

Once the control torque has been designed and tuned, thal gietiormance of the model in terms of reproducing
the behavior of real drilling equipment, particularly thbildy of reproducing stick-slip oscillations, must be
validated.

In Figure 4, a comparison between stick- slip oscillatioreasured in the field (Figure obtained with permission
from [29]) and the ones produced by simulating the closeg-lgystem (10)-(11) can be seen. Note that, although
the model does not include the lateral and vertical motionadyics, it is able to reproduce trajectories that are
qualitatively close to the ones reported from field data imgeon frequency, amplitude, and shape. Irregularities in
the oscillation amplitudes of the field measures are prgbdbé to the vertical bouncing oscillations not included

in our model.

V. PRELIMINARY ANALYSIS OF STICK-SLIP OSCILLATIONS BEHAVIOR

With regards to the oscillatory behavior of drillstring 8, it is assumed that, depending on certain working
parameters like the instantaneous valudiobB, the rotatory speed of the set, the velocity control gainses
and so forth, the drillstring system can enter into osaédlat

There will be cases in which the controller can suppress ssachiation, and so, the system recovers its nominal
working regime, and other cases in which the system ent&rssirstained oscillation. This behavior is observed in

real drillstring equipment, as seen in Figure 4.
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10

A particular feature of the model presented here (for sitiua) is that it succeeds in reproducing such behavior,
as it can be seen in Figure 5, where th&B parameter is perturbed away from its nominal operationejailu
the left (upper) corner of Figure 5, tH& oB changes froml0000N to 45000N and the controller is still able to
correctly regulate the rotatory speed, whereas in the llefigf) corner of Figure 5 th&/ 0B is perturbed enough
(from 40000N to 50000N) so that the velocity controller cannot compensate theupaation and the system enters

into stick-slip oscillation.

Unstable limit cycle produced by perturbation on WoB

15 T T T T T
surface
- downhole
3
[
=10+ i
e
8;;_ Change on WoB
%)
e
2 5
1
S
4
0 1 1 1 1 1 1 1 1 1
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Time [s]
Stick—Slip cycle produced by perturbation on WoB
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=]
[
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) \
2
2 5
8
=}
x
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1 1
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Fig. 5. Different behaviors obtained by perturbifigoB. Figures show the time-profiles of the table and bit speed.

A. Intuitive behaviour

Although the system at hand is more complex, the followinglaxation of the system behaviour gives some
intuition on how the system may operated. The system t@jiest can intuited to behave like the ones in Figure 6.
From this figure, we expect that the behavior of a nonlineatesy will display a local stable region with a stable
limit set outside this local attraction domain (some monerfal statements will be given latter). This is the pattern
display with our system whemn is assumed to be constant. Indeed, the system behaviorismmwe complex when
u can take on different values. For instance, a saddle-nddechtion of periodic orbits may be exhibited if the
value ofu is decreased enough. In that case, two limit cycles emergfgedbifurcation point, one of them being
stable while the other is unstable. As the system has anileduih point, its local stability is not affected by the
emergence of such limit cycles. Furthermore, for values efmaller than the one corresponding to the bifurcation

point, limit cycles disappear and the equilibrium becomiebajly stable.
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Fig. 6. Figure presents the general idea of a local equilibrencircled by a stable limit cycle. When the perturbat®mat too large system

trajectories return to equilibrium. When the perturbatisriarge enough, the trajectory converge to a limit cycle.

VI. STICK-SLIP OSCILLATIONS PREDICTION BASED ONDF-ANALYSIS

The oscillation pattern shown by Figure 4 reflects two maiarabteristics: first oscillations will present a bias
term, and second they are dominated by a main harmonic witkatively well-defined period. Therefore, the SBDF
(Sinusoid plus bias describing function) method can thendssl as a first approximation to predict possible limit
cycle and to study its stability. To further simplify the cpuotation of the SBDF corresponding to the nonlinear
dynamic friction map (7), we would rather use a simpler agpnation of the resulting steady-state characteristic
of (7), see Figure 7. This approximation is valid becauseftiztion dynamics are much faster than the ones of

the drillstring mechanism.

W W(s) 4 G(s) Y= ¢

v

ToB

Fig. 7. System block diagram and static friction torque.

The setup for this study is shown in Figure@(s) is the linear map frontG(s) : (wq — ToB) — y = ¢, and
wq is the resulting bias due to the constant referenge
Applying harmonic balance, the necessary condition to pcednaintained oscillations in the system is:
-1

Gljwo) = N1(Ag,wo,¥0) an
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Fig. 8. Describing functionV(A) (a), and evolution ofﬁ (b). |po| is two or three magnitude orders lower thian |, depending on value
of WoB.

Yo [1+ G(0)No(Ao,y0)] = W(0)wa (18)

Ag andw are the particular values satisfying both equalities. Tiegyresent the amplitude and frequency of the
predicted oscillations, if anyy is the output bias, and/; and N, are given in the Appendix B.

Note thatG(jw) depends on the control parameters, hence the assigned idémdyy.

Since the observed oscillations are clearly asymmetrtbal,SBDF is used to comput¥; (A, w, y0), see [4].

N (A, yo) will have only a real part because the friction torque chiergstic has an odd symmetry.

Note that the frequency locus @ (jwy) can only cross the real axis at one point, thencan be uniquely
computed fromZm{G(jwo)} = 0,V wo # 0, |wo| < oo, and hence it does not depend on the other two
unknown variablesiy andyy. The introduction of a integral action in the velocity caitresults inG(0) = 0, and
W (0) = 1. Therefore, the output bias can be straightforwardly camgbdrom equation (18). Yielding

B W (0)
Yo = [1+ G(0)No(Ao,y0)]

With yo = wg known and independent of frequency and amplitude, the gtiediof the limit cycle and its associated

Wq = Wq

amplitude Ay, can be obtained only from equation (17), i.e.

Re {G(]wo)} = _N(AQ)

with N(Ag) = N1(4, wy).

Figure 8 shows how]ﬁ changes as a function of. The main feature of this amplitude locus, pertinent to
oscillation predictions, is the location of pointg and p;. These points derive from the maximum and minimum
values of N(A). In particular, it is interesting to notice that these psihaive the following property:

1

and ~—_—
P~ 57oB

1po ~ —
Pol™~ woB

Then, low values oW 0B make these two points larger in magnitude (its sign remanthanged), reducing the

possibility to intersect the Nyquist a@¥(jw). Inversely, when the weight on bit force increases, the gibdlly of
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Fig. 9. Oscillations frequency domain. Border obtained ioyutations and border predicted from the SBDF analysis.

oscillation is higher.

It is also interesting to note, that for almost every remlishoice ofw,,, two sets of limit cycles will be predicted,;
one stable set and another unstable. The stable set araepbtudesd = A,, whereas the unstable one occurs for
A= A,.Inall casesA; > A,. This means that for all parameter combinati¢f$oB — w,,) where an intersection
of G(jw) and—1/N(A) takes place, there exists a local (attractive) stable domeiimited by A,,. This property
is further exploited in the proposed D-OSKIL mechanism.

It is also of interest to compute the set of possible cominatbetween system bandwidth and weight on bit
force for which stable limit cycles are predicted. Figureh®ws the area in théiWoB — w,,)-plane giving rise to
possible stable oscillations. This analysis allow us t@drine the range of proper values of controller closed-loop
bandwidth to avoid oscillations as a function of the opa@iii’oB. As the figure shows, and on the basis of this
analysis, oscillations may be eliminated either by chamgip, and/or by reducing th& 0B magnitude.

One possible control strategy could be then to modify tharyotable bandwidth to reduce the possibility of
entering into oscillation. From Figure 9, we can see thatable choices for,, are either small or large values.
Small values are not suited because they yield to poor pedoce, and large values are limited by noise. Typical
values forw,, are in the rang¢20, 30] rad/s.

Another alternative will be to keep the value BfoB below the oscillation zone. However, this will have two
drawbacks: first, high-performance drilling operationguiee magnitudes folVoB larger than the ones indicated
by the oscillation limits, and second, this strategy willjue&e a precise knowledge of this map, which in addition
will vary according to drilling depth. Keepind/oB low, will thus be a too conservative strategy, which may eaus
exploitation time to increase.

High-performance drilling operation takes place in a regiothe plan§WoB —w,, ), where potential oscillations
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may occur. Therefore, in this paper we account for this paldrity assuming that theominal system operation
parameters are taken within this zone. The design of the BiD8echanisms presented next, will be performed
in light of the following two observations:

« oscillation can be eliminated by decreasing the Weight drf@te, and

« if WoB is reduced from its nominal value, then after the oscillatims been eliminated, the value 16foB

needs to be brought back to its nominal value again to reatadfficient drilling operation.

VII. THE D-OSKIL MECHANISM DESIGN

This section presents the design of the D-OSKIL mechanishiciwstands forDrilling OScillation KlLler.
First we introduce some intuitive ideas completing the usi@dading on the system behaviors gained in previous
sections. Then we present the mathematical form for thisréilgn and the different steps involved in their stability

properties.

A. Basic Ideas

Let us first assume that the normal foreg(i.e. the weight on BitiW,z), is given as the sum of the nominal

weight of the drillstring () and the D-OSKIL control signala:
u=1uy+1u (29)

Figure 10 is a schematic description of what we expected tthédehavior of the system. Although it is not
formal, we may think of this Figure as a bifurcation diagravhere in the horizontal axis we have the “bifurcation
parameter’u, and in the vertical axis a measure of the oscillations the. Euclidian norm of the error vector,
to be defined later). As previously discusseg,is here the nominal value far of an efficient drilling operation.
The upper solid line describes a possible familystdble oscillations, whereas the lower dotted line is a family
of unstableones. The lines with arrows describe possible trajectarid¢be closed-loop system parameterized as a
function of u. These trajectories are extrapolated from the a priori Wiehaf the drillstring system.

There are two interesting cases to be analyzed:

a) Nominal behaviorAssume that. = ug, and the system trajectories are at equilibrium. Then ifreupleation
arrives:

« Either the perturbation is not large enough to divert theesystrajectories from their local attraction domain
(a curve in figure). Therefore the velocity controller succeéd regulating the trajectories back to their
equilibrium. Or,

o The perturbation is large enough to divert the system fromilibgium domain. In this caseb(curves in
figure), the trajectories are attracted by the correspagstiable limit cycle and the system enters into sustained

oscillation.
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Fig. 10. Possible drillstring system trajectories.

b) Behavior beyond nominal operation3p suppress such oscillations, the= WoB must be reduced by
means of the control signal, until its trajectory reaches the bifurcation point, and tbcal controller is able to
return the system trajectories to the equilibrium. Thesrathe nominal value of th&/ 0B must be recovered in
a proper slow manner, to continue with the drilling task, ue— wug. Significantly enough, the variation af
should be restricted to a valid domain, and in particulatricted to a positive values other than zero. Without this
restriction, it is clear that drilling may not be efficient, ib will be impractical.

The general structure of the variation law fer(or equivalent forz), will be here of the form:
=", {—otu+ ()}

wheres > 0, can be understood as a time-constant of the controller?%lgg is a projector operator ensuring that
solutions of the above equation makestay in the rangé—uy, 0], and®(-) is a nonlinear function which must

be designed to ensure system stability, that is:
Or —wg and . —0

In order to make the presentation simpler, we will trop thelieit use of the projection operatidh in the following
section. However, the reader should keep in mind th& a bounded signal in the prescribed range.

With this in mind, the complete closed-loop equations are:

T = Agxr+ Bogwg+ Hcl,u(:vg)(uo + ﬁ) (20)

m —ot + ®(") (21)

where matricesA.;, B, H.; have been defined previously.
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Fig. 11. Error system block diagram.

B. Error equations

Error equations can be obtained by applying the change atlotatese = x—2*, and considering the steady-state

valuesyi(ez)ss = u* andis, = 0. This yields:

¢ = Aae+ Helpu(y)a+ iy)uol (22)
i = —oi+ d(y) (23)
y = Ce=ej (24)

where the ternji(y) is defined as follows:
i(y) = w(y) — p’ (25)

and we assume that the update ruledas designed on the basis of the outguiThe error system can be described

by the block diagram in Figure 11, with the following definits:

G(s) : ¥y (26)
L oy = py)u (27)
A oy a = (y)uo (28)

where¥ = — (1t + a2).

C. Error equation properties

1) PR condition onG(s): The mapG(s) is:

G(S) = —C(SI — Acl)Hcl (29)

2With an abuse of notation, we will uggy) to denote the expression pfz3), in the shift coordinatg+wg, i.e. u(x3) = p(y+wq) = u(y).

Note that aty = 0, we haveu(y = 0) = p(wq) = p*.
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with C = [001 0], or equivalently:

s(ags?® + as + aop)

G =
(S) b4S4 + b353 —|— b282 —|— blS + bo

(30)

The error equation and updating rule @fhave been designed in such a way that the resulting &) has
relative degree one. This condition is necessary to obtRirmRd SPR functions. The verification tha{s) is PR
can be done directly on the triplets of matridet.;, H.;, C') as demonstrated in [30] for SPR function. Adapting
this result to PR functions and using our notation at hangllte in the following relaxed conditions: consider the
transfer functionG(s) = —C(sI — A )Hy. G(s) is PR if and only if: 1)C A, H, > 0,2)A.; is stable, 3) the
matrix A (I — (1/CAqHa)AaHC) Ay has no eigenvalues on the open negative real @xis, 0).

The first condition is easy to compute in terms of model patarse This givesC A, H,, = (¢ +dy)/JE > 0,
and always holds from the physics of the system. The seconditoan is also verified sincel,; is designed to be
stable. The last condition is more involved, but it can belgakecked numerically. For typical values of drillstring
system model parameters andontrol gains considered in this paper, it is possible mnsthat condition 3) holds.
Note also that by continuity of the eigenvalues with respgedhe matrices parameters, there will exists a certain
degree of robustness of this condition with respect the iadeertainly.

Consequently we have thél(s) is a Positive Real (PR) function, and hence from iaéman-Yacubovich-Popov

Lemma[16], the following property holdsiP = P > 0, Q = LTL > 0 such that:
AP+ PA, = -Q=-LTL<0 (31)
PH, = -C (32)

Therefore, as a consequence we have the following two ptiepdor the linear ma=(s):

« G(s) is a passive relative t&'(e) = e Pe, and

» G(s) has a finiteL,-gain: v2(G) = sup,, |G(jw)| < oo

2) Boundedness of signa@i(t): From the definitions ofi; andas, in Equations (27) and (28), together with the
assumption that the adaptation mechanism yields valudseimangei € (—uy, 0], it follows that both signalsii;

and ., are bounded, that is:

[[@1lloc = supliz] < g < oo, (33)
>0

||ﬁ2||oo = Sup|ﬁ2|§2'UQ<oo. (34)
>0

Hence||¥ (¢)||oo < 3 - up.
3) Boundedness of the outpuft): SinceG(s) : ¥ — y is a lineal stable map, the output signalis also
bounded, i.e.
U €Lo = y€ Lo (35)

4) Sector condition om\: With regard to Figure 11, the output of the mapcan be seen as a disturbance
acting on the closed loop system resulting from the opesai@s) in feedback connection with nonlinear operator

T.
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Fig. 12. Normalized friction function (a)A(y) lies at the intervala, b] (b).

Figure 12-(a) shows the memoryless friction map used far ¢hudy. Note that as the steady-state rotatory bit
speed ;) is in general much larger than the Stribeck veloeify we can then assume that = u¢. Therefore,
taking into account thay = e3 = ¢, — wy, the output of blockA will have the profile shown in Figure 12-(b).
This operator belongs to the cone sediam] as displayed in the same Figure (see [33] for further disonssn
sector definitions). Formally this is stated as follows.

The nonlinear operataA(y) belongs to the sectdr, b] if the following holds true:

e« A(D) =0

o a < # <b,Vy > 0, or equivalently,

o ay® < yAy) <by?, vy € R

In our case, the values far andb are:

o = -BSTHC. (36)
wd

b= Ms-i-ucuO 37)
wq

and consequently, the map has also finitel.;-gain, which is bounded by:
72(A) < mazl|al, |b]] (38)

5) Block transformation:As it can be seen in Figure 12-(b), the mags almostpassive, sincalmostthe whole
diagram is within the first and third quadrants. This chamastic is generic, as the difference between break-away

and Coulomb friction levels is generally smadl i small when compared .
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Figure 13 shows a possible block transformation, where aleviing new operators)A*, andI'* are defined:
A" oy (G2 +ey)

r* : yw— (a1 —ey)

A

Fig. 13. Modified Block Diagram.

With this transformation, it can be easily proved that theom is passive if the value of is taken such that

e = |a|, as can be seen in Figure 14.
t
e=la| = / y(ts +ey)dt > 0 (39)
0

With this new feedback configuration, the problem of designa stable update law fai(¢) is equivalent to
finding a function®(y), and parameter conditions, such that the transformed twpdra defines a passive map.
This design strategy results from well known propertiesesfdback interconnected passive systems.

The next subsection uses such a result to demonstrate thitywtaroperties of one possible candidate update

rule.

D. D-OSKIL updating law

Under the premise that the complete form of the update lawldhalso include a suited projection operator
ensuring that the variation af is limited to the admissible parameters range, the follgnipdating rule will be

analyzed.
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<y

Fig. 14. Profile of mapA*.

Let us consider the nonlinear functid(y):

Q(y) = Aysgnu(y)) A=>0 (40)

Note that this choice is conditioned by the ability of compgtthe sign ofu(y). Considering the form of the
friction model for this study, the sign ¢f(y) = u(¥» — waq), can be computed ip, can be measured, or at least,

observed as shown in simulations later on. We proceed aiogptd this hypothesis in what follows.

E. Stability analysis

Lemma 1:Let p > 0 be an arbitrarily positive constant, and o be such that the following design inequality
holds,
§>(ﬁ—1>@+ip (42)
g
whereﬁ—g > 1. Then mapl™ : y — (u(y)t — ey) is strictly input passive, i.e.

t

t
I = /0 (u(y)i —ey)y > p /0 y* — Bo (42)

with Gy = ¥me22y4 > 0.

Proof: Let I define the integral of the input-output product of the oparat', i.e.

I= /Ot(u(y)ﬂ—ay)y = /Otu(y)ﬂy—/olt ey’

Substitutingaz from Equation (23) in the above expression gives,

=2 [ wwewy -t [ e [ o

From sections VII-C.2, and VII-C.3, signajsand x:(y) have been shown to be bounded. Let note these bounds

as:|y| < Ymaz» |1(y)| < 1. Therefore,
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1 K K ym(l(l)
I> —/ u(y)y<1>(y)—/ ey? — 2
g Jo 0

g

t .
0

Taking now®(y) = Ay sgnu(y)), gives

1z [ Clut)l -2 - 22l - o)
> /Oelu(y)l — ey’ — Ity
> [ Cue=lal? - o

where the last inequality is obtained by using the lower lasban |u(y)|, i.e., |#(y)| > we, the definition of
€ = |a| (with  as given in Equation (36)) and the consta@gt= == 24,. Finally, introducing the condition (41)

in the above expression, gives the following lower bound/on

t)\ t
IZ/(—uc—lal)yQ—BOZp/ y* — Bo
0o O 0

which proves the lemma. ]

Remark 1:The condition (41) exhibits several interesting practfealtures. It relates the design parametets (
A) as a function of physical drillstring system characté&sstsuch as the nomindV,z (uo), the rock friction
features (s — pc), and the desired rotational velocity ). The parametep as shown latter, provides a measure
of the convergence rate of the outputo zero.

We are now in a position to establish the main stability resul

Theorem 7.1:Consider the closed-loop system of Figure 13 wtts), I'*, A* holding the following properties:
() G(s) is a PR operator satisfying (31)-(32)
(i) A* is a passive map satisfying (39)
(i) I'* is a strictly input passive map satisfying (42), i.e. degigmameters are such that the condition (41) holds.
Then, (e*,a*) = (0,0) is a globally asymptotically stable equilibrium of the cifesed closed-loop system.

Proof: Let us take the following scalar function:

Vie,a) = %eTPe + /Ot y(tz +ey) + {I(ﬁ, Y) + Bo — p/ot yz] (43)

From (39) and (42), we have th&i(e, @) is semi-positive definite.

Computing the time-derivative df (e, @), and using the propertigs) — (ii7) of the theorem, results in:
. 1
Vie,a) = —§eTLTLe —py? <0, Ve,i (44)

Therefore, from last Equation, we have that> 0 with a rate depending on the value @f The rest of the proof

follows from the application of the LaSalle’s invariancengiple. From Equation (23), we can see thayif- 0,
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Operation under DOSKIL
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Fig. 15. Simulation of D-OSKIL scheme with = 0.3 and A = 2.000.

together with the fact that is a positive constant andi(0) = 0, gives thata — 0. Finally, this implies that the

two last terms in Equation (22) also tends to zero, i.e.

lim [1u(y)i + fi(y)uo] = [1(0)0 + i(0)uo] = 0

t—o0

sincep(0) = u* = pe, and i@ (0) = p(0) — pu* = p* — pu* = 0. Therefore, this results in
é=Age+ Hy tlim H = A.e

So it can be concluded that— 0, and hence that* = 0, anda* = 0 are a globally asymptotically stable equilibria.

VIIl. SIMULATION EXAMPLE

In order to demonstrate the behavior of the proposed adalativ, simulations of the drillstring system controlled
under the D-OSKIL mechanism designed in Section VII-D amshin Figures 15 and 16. The valddsr system
model parameters used in the simulations are presentedbie Taln these Figures, the typical profiles in terms
on rotatory velocity, both in surface and downhole, andesysiti, 5 are shown.

As it can be observed, with the nominal weight = 40000N, the system is under a sustained oscillation
regime. The D-OSKIL mechanism is activatedtat 50s, and in both cases, the controller is able to extinguish

such oscillations, although tH& 0B profiles obtained are quite different.
3The numerical values of the drilling system parameters raiog to a2000m long drillstring have been taken from [29].

June 6, 2007 DRAFT



hal-00394990, version 1 - 13 Jun 2009

23

Operation under DOSKIL
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Fig. 16. Simulation of D-OSKIL scheme withh = 1.0 and A = 2.500.

In Figure 15 (with control parameteps= 2.000 ando = 0.3) the D-OSKIl mechanism is able to extinguish the
oscillations with a soft evolution in th&/,g control signal.

On the other hand, in Figure 16 (with control parametets 2.500 ando = 1.0), the transition from oscillation
regime to stabilization period is faster than the one oletim Figure 15. The stabilization time for the value of
WoB is also faster in Figure 16, but in this case some oscillatioccur during the transition.

This issue is due to th& value, when large values of theare chosen a shaiiy, 5z value transition is obtained
in the switching instant of time (in our simulations= 50s).

From a practical point of view, and in order to avoid oscitlat in the control signal, the parameter values

proposed in Figure 15 seem to be more appropriate.

IX. OBSERVERBASED DESIGN

In this section we present some extensions of the previonsalovhich has been studied and designed under
the hypothesis of the measure of the bit rotational velogityIn this section we first provide an alternative way

to get this measure trough a state observer.

A. Observer Design

The observer is designed on the basis of open-loop equajoiiat is on
& = Ax+ Bv+ (Hu) u (45)

Yo = Cox= ¢, (46)
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Following [35] we propose to use the following observer loase the observation of the rotary angular velocity

Yo = Qbr:
i = A+ Bv+ (Hu) i+ [K,+ BTTCY] (yo — Cot) (47)
po= BrTCT(yo — Coi) (48)
I' = [A-K,C,)T + (Hu) (49)

where:T" is a (3 x 1) time-varying vector/ > 0 is a positive scalarg, and i are the state and friction coefficient
estimates respectively,, is the measured outpul, is a (3 x 1) observer vector gain, and, = [0, 1, 0]. Note
thatC, # C.

The observer not only provides an estimate for the bit rotadi velocityZs, but also provide an estimate of the
friction coefficienti, which can be useful for other monitoring purposes. The oleseas indicated in [35], results
in a globally exponentially stable observer providing tb#dwing hypothesis hold:

e 4 is constant

« Exists a matrixK, such thatl A — K,C,) is strictly stable matrix, i.e. The constant péit, C,) is detectable.

« u(t) is persistently exciting, i.e30,T > 0 such that the following inequality is satisfied:
t+T
/ r(r)fcro,r(r)dr >6 >0
t

Let comment the practical implication of the previous hyasts.

The first hypothesis assumes that the friction coefficienbisstant, or eventually slow-time varidnt ~ 0. Note
that this approximation is often assumed in the context afeoler design with unknown inputs, but also in the
context of adaptive control. Here this hypothesis meantsthigarate of variation of the rock friction coefficient does
not exhibit substantial changes during the drill-operativen if the drilled surfaces may have different friction
characteristics, the rate of penetration (drilling-speednains small.

The second hypothesis correspond to the necessity ohserpabperty need to build the observed. By inspecting
this condition, we can see that the system observabilitpvariant with respect the matri¢ and C,,.

Finally, the last property is necessary to the observer tve&ge. Note that as the “adaptation” is done under
a single paramete, the required condition is weak and will be simple to fulfilio see this note that the pair
(A-K,C,, H) is controllable and the paiA — K,C,,C,) is observable, then the persistently exciting condition
is easily verified if the WoB force is not equal to zero, w€t) > 0. A detailed justification of this can be found

in [11].

B. Simulation with the observed-based controller

The original controller has the form

u = —ot+ AMas —wq) - sgNu(rs — wq)) (50)
4In this case, it can also be shown that stability (not asytiptéollows is preserved
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Operation with observer
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Fig. 17. Simulation of D-OSKIL scheme with observer. The B4OL mechanisms is activated at after 80 sec. The upper pbtav the
Surface and the downhole rotational speed. The middle plutsv the time-evolution of the weight on bit. It has been sd&d for efficiency

reasons afl000N. The lower plots shows the downhole velocity and its estmat

replacingzs by its estimatets, and noting that sdipu(z3 — wq)) = sgn(zs — wq), we get the final, quite simple,

control law structure to be implemented together with theeober,
U = —ol+ M@z —wg)l (51)

In Figure 17, we repeat the experiment shown previously gufg 15 (with the parameters given in Table 1) with
the observed-based control law instead. The additionalrpeter for the observer used in this simulation where:
B =0.05and K, = [—26.8125; 4.5928; —10.4562]. As the figure shows, the D-OSKIL mechanism works well in
this case. The behavior obtained in this figure and in Figbrargé quite similar. Note that the observer can tolerate
a certain amount of uncertainty on the knowledge of the mlaygiarameters as demonstrated by the authors in
[35]. The figure at the bottom shows the comparison betweemthvnhole rotatory speed and the signal provided

by the observer.

June 6, 2007 DRAFT



hal-00394990, version 1 - 13 Jun 2009

26

TABLE |

PARAMETER VALUES USED IN SIMULATION OF FIGURE 15.

Parameter| Value Unit
J 2122 [Kg.m?]
Ty 374 [K g.m?]
k 473 [Nm/rad]
c 23.2 [1/s%]
dr 425 [1/s]
dp 50 [1/s]
pe 0.3 []
Hs 0.35 []
Vs 0.01 [rad/s]
U 40000 | [Kg.m/s?]
wq 5 [rad/s]
k1 15725 | [Nm/rad/s]
ko 30576 [Nm/rad]
k3 194 | [Nm/rad/s]

X. CONCLUSIONS

We have proposed to use the weight on the BMoB) force as an additional control variable to extinguish
limit cycles when they occur. An adaptation law, named D-QSKf the oscillation killer (OSKIL) mechanism,
to oil well drillstring systems has been proposed. An apjpnate analysis based on the bias describing function
did provide a good insight of the slip-stick behavior andhe tontrol design.

We have then presented a stability analysis of a varianteDOSKIL control mechanism, introduced in [7], to
remove stick-slip oscillations in drillstring systems.éeTpresented stability analysis based on passivity has shown
that this algorithm is globally asymptotically stable. Siations applying such an algorithm showed that stick-slip
oscillations can be effectively eliminated.

The implementation of the proposed control algorithm reggithe sign of a friction torque on the bjt(y),
which can be computed if the sign of rotational velocity mead at the bit is known. It has also been shown in
the paper, that the measurement of this velocity can be taidar by the proper design of an nonlinear observer,

without jeopardizing the performance of the closed-loogtam.
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A. TUNING METHOD FORCONTROLLER GAINS

From the system model Equations (1) and (2), and defining avagiable> and constant in the way:

1
z=klpr—pp), €=
the ,. and z dynamics are:
Jrr + €3 + 2 + drpr = v (52)
2, _ _* o9, C @ .
€z = Ton e(Jeq—i—Jb)z—i—
dy d,. . v ToB
— — —=)¢r + — 53
+(Jb Tttt (53)
Since the torsional stiffnegsis usually very large, the assumptien= 0 can be made, and so:
Jr@r +2z+ dr‘;br = Us (54)
z dy d,. . ve ToB
0= — — — —=)¢r + — 55
Jeq+(Jb Jr)w Tt (55)
where the control signal is supposed to be split in sloy énd fast ¢;) modes:
V= Us + €Vy
Therefore, solving Equation (55):
dy dr,. vs ToB
= Jog[(— — = )or + — 56
@ = TG~ e+ 7+ 5] (56)
And so, Equation (54) results in:
db + dr . 1 1
“T r = s — ToB 57
LR AE L A A A A ©7)
By supposingvs = (k1 + ’“—j)(wd — ¢, ), and defining a new variable:
. . ~ wq — ¢r - .
(p'r:wd_(p’l“é(p?“: S y Pr = —Pr
We have (supposingd, + d,.) < (J, + Jp)):
L kl i kz - ToB
= 58

And so, by imposing some damping,] and natural frequency.) in the closed loop dynamicsoB — ¢,.,

the values oft; and ks can be computed from:

kl = (Jb + Jr) . 257«(4)" -

ko = (Jp + Jp)w?
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(60)

DRAFT



hal-00394990, version 1 - 13 Jun 2009

28

On the other hand, by substituting the controller structmréquation (53), the following expression is obtained:

c dp,. ,dy dy

2. z 2 ap @y Gr .
€z - Jeq € (Jeq + Jb )Z + (Jb JT)SO’I‘ +
Vg € ToB
4y, 61
+Jr + Jrvj + 7 (61)

Due to two-time scales separation, it can be assumed thatldhevariable has reached its steady state value

respecting to the variations of the fast variableand so, rewriting Equation (61) as:

d
522:_L_EQ(C +_b)'_|_
Jeq Jeg I

where the superscripgt means steady-state value, and:

€

Iy

ToB

Jp

v + + p(err) (62)

dy dv. .. vs(¢r,9r)  2*  ToB

.k * _ (20 _ T ZS\Fro r/) 63
p(érer) = ( 7 Jr)soﬂr 7 T h (63)

By rewriting Equation (62) in fast error coordinatés- z — z*, we have:

- c dp . : 1 1
% - 64
¢+ (Jeq 5 62Jeq< Jed (64)
Taking vy = —ks(: -
. c b 3 . 1 _
<+(Jeq jb‘f'ﬁ)C'i‘EgJeqﬁ—O (65)

and so, imposing certain damping value for torsion dynarfigs), the value ofts can be computed:

Jr c dp
ks = —= |20t0rVkJeg — — — — 66
3 Vk [ o vk q Jeq Jb] ©9

B. COMPUTATION OF THE FUNCTIONSNy, AND N;

1

No(Ao,yo) = T x(t)d(0) (67)
Na(do,n) = - [ alt)eos(8)a(6) (68)

o 2Fs Yo AO(FS_FC)

No(Ao,y0) = " Q(A—O) - W'
{2 - fo ) (69)

Nildoo) = mepi(tey - T,
() + (=) (70)
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with:

arcsin(x) | T |< 1

g(x) = 5 r<-1 (71)
% z>1
2 (zaresin(z) + V1 — 22 z|<1
folw) = { = (|>|+ ) : :il (72

2 (arcsin(z) + 2Vl —2?) |z |<1

fi(z) = ~1 r<—1 (73)
1 z>1
Vi—2a?2 |z|<1
Dy(z) = (74)
0 |z |>1
Ny(ByY,)
3000 \
25001 . \WoB = 100000 N i
2000 WoB = 75000 N i
1500 WoB = 50000 N i
WO0B = 25000 N
1000
500
0 L L L L L
0 5 10 15 20 25 30
Amplitude [AO]
N (A,
2000 T T
//
1500~ WoB = 100000 N
1000
WO0B = 75000 N
500
ot \
WoB = 25000 N WoB = 50000 N
_500 L L L L L
0 5 10 15 20 25 30
Amplitude [AO]

Fig. 18. No(Ao,yo) and N1 (Ao, yo) functions in the case thajy = 5rad/s.

REFERENCES

[1] Abbasssian, F., Dunayevsky, V.A. Application of StihilApproach to Torsional and Lateral Bit DynamicSPE Drilling and Completion
13(2):99-107, 1998

[2] Abdulgalil, F., Siguerdidjane, H. Nonlinear Control §lgn for Suppressing Stick-Slip in Oil Well DrillstringSth Asian Control Conference
pages 1276-1281, 2004.

[3] Armstrong-Heélouvry, B. Stick-Slip Arising from Strézk Friction. IEEE International Conference on Robotics and Automatia377—
1382, 1990.

June 6, 2007 DRAFT



hal-00394990, version 1 - 13 Jun 2009

(4]
(5]
(6]

(7]

(8]

El
[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]
(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

30

Atherton D.P.Nonlinear Control Engineering. Describing Function: Apsis and DesignVan Nostrand Reinhold, first edition, 1982.
Brett, J. F. The Genesis of Torsional Drillstring Vibimats. SPE Drilling Engineering September:168-174, 1992.

Canudas-de-Wit, C., Aracil, J., Gordillo, F., Salas,The oscillations killer: a mechanism to eliminate undesiliit cycles in nonlinear
systems.44th IEEE Conference on Decision and Control, and the Ewumap€ontrol Conference, CDC-ECC'05, Seville (Spai?)05.
Canudas-de-Wit, C., Corchero, M.A., Rubio, F.R., Nagdropez, E.M. D-OSKIL: A new mechanism for suppressinglsslip in olil
well drillstrings. 44th IEEE Conference on Decision and Control, and the Eumap€ontrol Conference, CDC-ECC’05, Seville (Spain)
2005.

Canudas-de-Wit C., Olsson H., Astrom K.J. and Lischyn8k A new model for control of systems with frictiohEEE Transactions on
Automatic Contral 40(3), 1995.

Canudas-de-Wit, C., Siciliano, B., Bastin, Gheory of Robot ControlSpringer, first edition, 1996.

Christoforou, A. P., Yigit, A. S. Fully coupled vibratis of actively controlled drilstringslournal of Sound and Vibratigr267:1029-1045,
2003.

Dolcini, P., Bechart, H., Canudas-de-Wit, C. Obseivased Optimal Control of Dry Clutch Engagememt4th IEEE Conference on
Decision and Control, and the European Control Conferef@®C-ECC’05, Seville (Spainpages 440-445, 2005.

Dupont P., Hayward V., Armstrong B. and Altpeter F. Singtate elastoplastic friction modelEEE Transactions on Automatic Contyol
47(5), 2002.

Halsey, G. W., Kyllingstad, A., Kylling, A. Torque Febdck Used to Cure Slip-stick Motiom the 63rd SPE Annual Technical Conference
and Exhibition pages 277-282, 1988.

Harris, C.M., Piersol, A.GHarris’s Shock and Vibration HandbooWMcGraw-Hill, 5th edition, 2002.

Jansen, J. D., van den Steen, L. Active Damping of Salfted Torsional Vibrations in Oil Well Drillstrings.Journal of Sound and
Vibration, 179(4):647-668, 1995.

Khalil, H.K. Nonlinear SystemsPrentice-Hall, 2nd edition, 1996.

Kyllingstad, A., Halsey, G. W. A Study of Slip/stick Mion of the Bit. SPE Drilling Engineering pages 369-373, 1988.

Lampaert V., Swevers J. and Al-Bender F. Modificatiorttaf Leuven integrated friction model structutEEE Transactions on Automatic
Control, 47(4), 2002.

Leine R.l., van Campen D.H., Keulties W.J.G. Sticlpsivhirl interaction in drillstring dynamics.Journal of Vibration and Acoustics
124:209-220, 2002.

Lin, Y.Q., Wang, Y.H. Stick-slip Vibration of Drill Sings. Journal of Engineering for Industry113:38-43, 1991.

Navarro-Lopez, E.MNotas acerca del modelado, analisis y control de las vitvaes mecanicas en una sarta de perforaciamstituto
Mexicano de Petroleo, programa de investigacion en mdiemsaaplicadas y computacion edition, 2003.

Navarro-Lopez, E.M. and Suarez-Cortez, R. Modellimgl analysis of stick-slip behaviour in a drillstring undey driction. Congress of
the Mexican Association of Automatic Contrphges 330-335, 2004.

Navarro-Lopez, E.M. and Suarez-Cortez, R. Practipgr@ach to modelling and controlling stick-slip oscilkats in oilwell drillstrings.
IEEE International Conference on Control Applicationmges 1454-1460, 2004.

Navarro-Lopez, E.M. and Suarez-Cortez, R. Vibracomecanicas en una sarta de perforacion: problemas delcd¥evista Iberoamerica
de Automatica e Informatica Industrja2(1), 2005.

Pavone D. R., Desplans J.P. Application of High SangppiRrate Downhole Measurements for Analysis and Cure of Sfiigkin Drilling.
in SPE Annual Technical Conference and Exhibiti&PE 28324:335-345, 1994.

Rabia, H.Oil Well Drilling Engineering: Principle and PracticeGraham & Trotman, 1985.

Richard T. Self-excited Stick-slip Oscillations of Drag BitBh.D. thesis, 2001.

Sananikone, P., Kamoshima, O., White, D.B. A Field MetHor Controlling Drillstring Torsional Vibrations.in IADC/SPE Dirilling
Conference IADC/SPE 23891:443-452, 1992.

Serrarens A.F.A, van de Molengraft M.J.G., Kok J.J. aad den Steen LH, control for suppressing stick-slip in oil well drillstrisg
IEEE Control Systems Magazing&8(2), 1998.

Shorten, R., C. King. Spectral conditions for positrealness of single-input-single-output systenlSEE Transactions on Automatic
Control, 49(10), 2004.

June 6, 2007 DRAFT



hal-00394990, version 1 - 13 Jun 2009

31

[31] Spanos, P.D., Chevallier, A.M., Politis N.P. and Payhé. Oil well drilling: A vibrations perspective.The Shock and Vibration Digest
35(2):81-99, 2003.

[32] van de Vrande, B.L., van Campen, D.H., de Kraker, A. AnpApximate Analysis of Dry-friction-induced Stick-slip Mations by a
Smoothing ProcedureNonlinear Dynamics19:157-169, 1999.

[33] Vidyasagar, M.Nonlinear Systems Analysi®rentice-Hall, second edition, 1993.

[34] William Ranney, M. Offshore Oil Technology Recent Developmexbyes Data Corporation, 1979.

[35] Zhang, Q. Adaptive observer for MIMO linear time vargisystems.INRIA report, N0.41112001.

June 6, 2007 DRAFT


https://www.researchgate.net/publication/224310574

