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Abstract

Limit cycles occurring in oil well drillstrings result fromthe interaction between the drill bit and the rock during

drilling operations. In this paper we propose to use the weight on the bit (WoB) force as an additional control

variable to extinguish limit cycles when they occur. An approximate analysis based on the bias describing function

and completed with some simulations, provides good evidence that the rotational dynamics of the oil well drillstring

displays such a behavior. In particular, we propose an adaptation law for theWoB named D-OKILL mechanisms,

which results from a variant of theoscillation killer (OSKIL) mechanism studied in detail in [6].

In opposition to the heuristic control structure proposed in [7], we show that the new Weight on Bit (WoB) control

law results in a globally asymptotically stable closed loop-system. Simulations applying the D-OSKIL mechanism

show that the stick-slip oscillations can be eliminated without requiring a re-design of the velocity rotary-table control.

I. I NTRODUCTION

Oil well drillstrings (see Figure 1) are systems which present interesting features from the dynamical and control

viewpoints as they pose many challenging technological problems [26], [34]. The application of dynamic analysis

and control techniques in a drilling system can lead to conclusions that allow us to propose new recommendations

for drilling operations, drillstring design and control algorithm, which would produce economic benefits through a

mix of lower development costs, higher production rates andimproved recovery. Particularly, the presence of stick-

slip self-excited oscillations at the bottom part of the drillstrings as well as decreasing service life of drillstrings

and downhole equipment, has drawn the attention of the control community in the last decade. The elimination
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a) b)

Fig. 1. Oil drilling system in the field (a). Basic scheme of a vertical drilling system.(b)

of this kind of oscillations is a challenge for drillers and scientists since it can provide important cost savings in

drilling operations, in terms on money and exploitation time [21].

Different oscillations affecting the drillstring behavior are unavoidable. The occurrence of self-excited stick-slip

vibrations (i.e., the top of the drillstring rotates with a constant rotary speed, whereas the bit (cutting device) rotary

speed varies between zero and up to six times the rotary speedmeasured at the surface) as a common and damaging

phenomena in drillstring systems has been highly describedand analyzed in recent years, drawing the attention of

the control community. For more information about drillstring oscillations and stick-slip phenomenon in oil well

drillstrings, please see [14], [21], [24], [31].

Some causes of stick-slip oscillations are backlash between contacting parts, hysteresis, nonlinear damping

and geometrical imperfections which are very difficult to model. However, the main cause of such vibrations in

drillstrings is the friction appearing by contact with the rock formation [3], [17]. Consequently, a model describing

the drillstring behavior should include a bit-rock friction torque model adequate enough to properly reproduce this

effect.

Many ways of reducing these vibrations have been proposed, both from practical and theoretical viewpoints.

Historically, the experience of drillers has revealed thatthe manipulation of different drilling parameters (increas-

ing the rotary speed, decreasing the weight-on-bit (WoB), modifying the drilling mud characteristics, introducing

an additional friction at the bit [25], etc) is an effective strategy to suppress stick-slip motion [28]. However, this

strategy depends too much on the personal skills of each drilling technician to be really effective.
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Usually, drilling systems are velocity-controlled to makethem rotate at a constant velocity, but no specifications

about vibration suppression or damping are considered. Another control option would be introducing new regulation

methodologies (active, passive) in the loop, specifically aimed to compensate for drillstring vibrations. Among those,

the following examples can be pointed out:

• The so-calledSoft Torque Rotary System(STRS) [13] [28], that is a torque feedback at the top of the drillstring

which makes the system behave in a “softer” way rather than asa fixed heavy flywheel, so that the torsional

waves arriving at the surface are absorbed, breaking the harmful cycling motion.

• Introducing a vibration absorber at the top of the drillstring [15] which follows the same approach given in

[13] and [28].

• Introducing a PID controller structure at the surface in order to control the rotary speed [1], [23], [24], [25].

• Using robust controllers, like the linearH∞ control proposed in [29], to suppress stick-slip motion at the bit.

• Using a controller based on an input-state feedback linearization of the nonlinear friction torque [2].

However, few works have provided a formal stability analysis of their proposed control strategies. For instance,

analysis of the dynamical behavior of drillstring under vibrations has been explored in [1] and linear approximations

to stability of controlled drillstring has been studied in [24].

The value of the system weight measured at the bottom part, called Weight on Bit (WoB), has been proved to

be an important parameter in the occurrence and possible avoidance of stick-slip oscillations (see [23] and [28]).

Efficient drilling operation requires a certain amount of force (WoB) that may be incompatible with the low force

range which may avoid stick-slip oscillations. This tradeoff between force magnitudes, provides a first indication

that a regulation strategy ofWoB seems to be necessary to maintain a good drilling operation,thus, avoiding such

oscillations (see [7] and [24]).

This paper is focused on the problem of stick-slip oscillations produced at the bottom-hole assembly (BHA). The

main idea is to use the weight on the bit (WoB) force as an additional control variable. In particular we adapt the

oscillation killer (OSKIL) mechanism studied in [6], to the oil well drillstring systems (named here D-OSKIL1)

which has been shown to be particularly adapted for nonlinear systems displaying a local stable region with a stable

limit set outside this local domain.

An approximate analysis based on the bias describing function provides good evidence that the rotational dynamics

of the oil well drillstring display a similar behavior pattern. This analysis, although approximate, also gives a good

intuition in the way that theWoB needs to be modified to suppress oscillations. An important property of the

proposed D-OSKIL mechanism is that it allows recovering thenominal operation condition (theWoB recovers its

nominal drilling value) while oscillations are suppressed.

In opposition to the heuristic control structure proposed in [7], we show that the new proposed Weight on

Bit (WoB) control law results in aglobally asymptotically stableclosed loop-system. Therefore, the D-OSKIL

mechanism eliminates the stick-slip oscillations withoutrequiring a re-design of the velocity rotary-table control.

1D-OSKIL stands for Drilling oscillation killer mechanism.
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The paper is organized as follows. In Section II the basics about drillstring dynamics and vibrations are briefly

introduced. In Section III, the drillstring model used in the paper is presented. The control loop used to regulate

rotational velocity of the set and the a priori behavior of the closed loop system are shown in Sections IV and V,

respectively. In Section VI, a Describing Function based analysis is made in order to obtain some information about

stick-slip oscillations in the system, and next, in SectionVII, the control mechanism named D-OSKIL obtained

from the conclusions of the previous analysis is presented.In Section VIII, some simulations are shown. Section

IX proposes an observed-based version of the same controller where only field existing measures are used. In the

same section, we show also some simulations. And finally, Section X submits the conclusions and future research

lines.

II. BASICS ONDRILLSTRING DYNAMICS AND VIBRATIONS

Standard rotatory drilling equipment, as shown in Figure 1 to depict what is commonly used by oil companies

to extract gas and oil from the earth surface, uses a dill-bit(calledbit ) to crush the rock and make the hole in the

ground. As the hole becomes deeper, some pipe sections (called drill pipes ) are added, leaving the bit coupled at

the bottom part of the set. These pipes, together with the drill bit, form the so-calleddrillstring . This drillstring

is moved by means of a motor or system of motors in the surface.As it has been shown in the previous Section,

operation of the drillstring looks just like that of a household electric drill, where a motor makes the bit rotate, and

enough weight is applied to maintain the contact between thebit and the object to be drilled.

In order to make the study of a drilling system structure a bitmore comprehensive, the following parts can be

emphasized:

• Power System:A set of diesel and electric motors that provide the necessary energy to perform all the tasks.

• Supporting Structure: This is used to move the pipes in and out of the oil well, and so,to vary the weight

applied during the process.

• The Rotatory System to make the system rotate. It is composed by:

– Swivel andKelly : To connect the Supporting and Rotatory Systems.

– Rotatory Table: Also called turntable . It is a large disc-shaped inertia coupled to the drillstring that

drives the rotating motion using power from electric motors.

– Drillstring : As shown before, it is a sequence of tubes that connect the rotatory table and the bit.

– Bit: The cutting device.

• Circulation System: It consists of a set of pipes and pumps which create a flow within the hole bydrilling

mud into it. This substance is aimed to lubricate and refrigerate the contact between the rock and the bit, and

so to lift the rock cuttings from the drill bit to the surface.

A more exhaustive description of the rotatory system can be found, in [21] and [31] among other papers.

One of the main problems is the appearance of oscillatory behaviors (limit cycles), that cause a decreasing of the

drilling performance from the viewpoints of different parameters (rate of penetration at the surface, rotational speed

of the bit, ...) and so provoking the mechanical failure of the drillstring or the breakage of any of the elements [31].
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bit-bouncing


whirl
whirl


stick-slip


Fig. 2. Different types of vibrations in drillstring systems.

The vibrations appearing in the drillstring can be divided into 3 different categories [14] [10], (see Figure 2):

• Longitudinal vibrationsare produced in a vertical direction from the drilling tower, causing rebounds of the

bit at the bottom of the oil well, a phenomenon calledbit-bouncing.

• Lateral vibrationsare produced when the drillstring’s mass center is displaced from the rotation axis, causing

whirl-like movements and rebounds within the oil well walls, a phenomenon calledwhirling .

• Torsional vibrationsare produced when the rotational velocities at the surface and the bottom of the drillstring

are different, causingstick-slip movements.

Each oscillation phenomenon appears both at different times and different frequency ranges, and so, they can be

studied separately. This work is focused on stick-slip vibrations.

The stick-slip oscillations are generally associated to typical dry friction profiles [19], i.e., when there is no

movement, the friction torque (static friction) is larger than in non zero velocity cases (dynamic friction). The

difference between those two magnitudes has been shown by many authors to be one of the most relevant variables

that characterizes stick-slip oscillations [22].

III. SYSTEM MODELLING

Multiple kind of models have been used in literature to describe drillstring systems (see for example [19] and

[31]). The type and the complexity of the model to be used are closely related to the aim pursued (modelling,

simulation, model for control, etc). However, lumped parameters models have been shown to be valid enough to

properly describe the stick-slip oscillation phenomena and easy enough to make the study not too complex [10].

The problem of modelling stick-slip phenomenon in a drillstring by means of a lumped-parameter model has been

studied from several points of view. Most of them consider the drillstring as a torsional pendulum with different

degrees of freedom, for instance: [17], [20], [27], [32] propose single-degree-of-freedom models, [1], [5], [22], [24]
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Fig. 3. Drillstring two-coupled masses model.

propose two-degree-of-freedom models including a linear controller, and [15], [29] present two-degree-of-freedom

models for the mechanical part of the system plus the model for the rotary table electric motor system.

As it will be seen in subsequent sections, the bit-rock friction model is fundamental for properly reproducing

stick-slip oscillations phenomenon. Many models have beenproposed in literature, some of them summarized in

[22]. The model used here (depicted in Figure 3) is a two-degree-of-freedom model with two inertial massesJr

and Jb, locally damped bydr and db. The inertias are coupled with each other by an elastic shaftof stiffnessk

and dampingc. The variablesϕr andϕb stand for the rotary and the bit angle. The rotary torque control signalv

used to regulate the rotary angular velocityϕ̇r. The ToB (Torque on Bit) represents the total friction torque over

the drill bit.

The model equations are the following:

Jrϕ̈r + c(ϕ̇r − ϕ̇b) + k(ϕr − ϕb) + drϕ̇r = v (1)

Jbϕ̈b + c(ϕ̇b − ϕ̇r) + k(ϕb − ϕr) + dbϕ̇b = −ToB (2)

In constants above, the sub-script′r′, and ′b′ stands for rotary and bit, respectively.

A suitable model forToB is essential, because the reproduction of stick-slip vibrations will strongly depend on

the particular choice of the model forToB. This torque represents the combined effects of reactive torque on the bit

and nonlinear frictional forces along the drillstring. In our case, theToB will be given by the product ofµ(ϕ̇b, z),

which describes the normalized (dimensionless) torsionalbit-rock friction (different bit-rock friction models are

presented in [22]), and the normal forceu called Weight on Bit (WoB), i.e.

ToB = µ(ϕ̇b, z) · u (3)

Several forms forµ(ϕ̇b, z) can be considered according the use of the model. Next, we describe the model forToB

used for simulations and for validating the control law, then a simplified model is introduced for control analysis
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purposes.

A. Model for simulations

The state-space representation of the later model is the following:

ẋ = Ax + Bv + Hµ(x, z)u (4)

ż = f(x, z) (5)

with

A =











0 1 −1

−k
Jr

−(dr+c)
Jr

c
Jr

k
Jb

c
Jb

−(c+db)
Jb











, B =











0

1
Jr

0











, H =











0

0

−1
Jb











where the statex = [x1 x2 x3]
T is defined as follows:

x1 = ϕr − ϕb

x2 = ϕ̇r (6)

x3 = ϕ̇b

In this description, the statez ∈ R represents the internal friction state, and Equation (5) describes the friction

dynamics. Various friction models have been shown to work properly to capture the typical friction phenomena

(stiction, Stribeck effect, etc) which cause stick-slip oscillations ( [12] and [18]). One possible model for Equation

(5) is theLuGre friction model [8]:

ż = x3 − σ0
|x3|

g(x3)
z,

g(x3) = µC + (µS − µC)e−(x3/vs)2 (7)

µ(x, z) = σ0z + σ1ż,

The functiong(v) it mainly affect the steady-state characteristics of the friction model. In steady-state, the

model predict the following friction value,µSS(x3) = g(x3)sgn(x3). In this model,σ0, σ1, vs, µC , µS are positive

constants characterizing the friction physical properties. Also note that the torsional linear friction at the drill bit

side is already incorporated in theA matrix of the representation (4).

B. Model for control

Note that the previous model for theµ(x, z) includes an additional friction dynamics,z which is suited to describe

motion at pre-sliding, and in particular to regularize the differential equation describing the system dynamics. An

alternative is to use static description forµ(x) (maps without memory), which may be simple for control analysis.

The different between both models, may not be too significant, as long as computation issues are strongly simplified.

The model for control is then described by,

ẋ = Ax + Bv + Hµ(x3)u (8)
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8

where hereµ(x3) is a static map between the bit rotational velocityx3 = ϕ̇b and the normalized friction parameter

µ, i.e. the steady-state form of the model (7), or any suitableapproximation like the one shown in Figure 12.

IV. ROTATIONAL VELOCITY REGULATION LOOP

The first task to confront is designing a proper control law for motor torquev. This signal will be aimed mainly

at regulating the rotational velocity of the rotatory tableϕ̇r to a certain desired valueωd (a typical value forωd is

5 rad/s). As we have shown in Section I, many architectures have beenproposed for that purpose, from classic PID

structures to a linearH∞ robust control, although oil well drillstrings usually operate with reduced-order simple

control laws.

A. Rotary table velocity control loop

In this work, the structure of the velocity controller is inspired by the one presented in [10], as shown by:

v =

[

k1 +
k2

s

]

(ωd − ϕ̇r) − k3(ϕ̇r − ϕ̇b) (9)

or equivalent

v = k1(ωd − x2) + k2x4 − k3(x2 − x3)

ẋ4 = (ωd − x2)

then the closed-loop equations take the form for the model for simulation,

ẋ = Aclx + Bclωd + Hclµ(x, z)u (10)

ż = f(x, z) (11)

and the following one for the model for control analysis,

ẋ = Aclx + Bclωd + Hclµ(x3)u (12)

with the obvious observation thatx is now of dimension four (due to the introduction of an integral term in the

rotary table control), i.e.x = [x1, x2, x3, x4], and with theAcl, Bcl andHcl given as:

Acl =

















0 1 −1 0

−k
Jr

−(dr+c+k1+k3)
Jr

(c+k3)
Jr

k2

Jr

k
Jb

c
Jb

−(c+db)
Jb

0

0 −1 0 0

















, Bcl =

















0

k1

Jr

0

1

















, Hcl =

















0

0

−1
Jb

0

















The steady-state value ofx, consideringµ∗ = µ(x∗
3), is:

x∗
1 =

u0µ
∗ + dbωd

k
(13)

x∗
2 = ωd (14)

x∗
3 = ωd (15)

x∗
4 =

(db + dr)ωd + µ∗u0

k2
(16)

June 6, 2007 DRAFT

ha
l-0

03
94

99
0,

 v
er

si
on

 1
 - 

13
 J

un
 2

00
9



9

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

Time[s]

Rotary speed [rad/s]

 

 

Surface
Downhole

a) b)

Fig. 4. Stick-slip measured in the field (a) (taken from [29])and simulation profiles obtained with the closed-loop model(b).

Therefore, rotatory table and bit velocities stabilize at the desired rotational velocity, revealing a proper featurein

our feedback control law.

There are many possible ways of adjusting the gainsk1, k2 and k3. One possible option is to use a classic

two-time-scales separation method to accomplish this (see, for example [9]). Further details are given in Appendix

A.

B. Closed-loop system model validation

Once the control torque has been designed and tuned, the global performance of the model in terms of reproducing

the behavior of real drilling equipment, particularly the ability of reproducing stick-slip oscillations, must be

validated.

In Figure 4, a comparison between stick- slip oscillations measured in the field (Figure obtained with permission

from [29]) and the ones produced by simulating the closed-loop system (10)-(11) can be seen. Note that, although

the model does not include the lateral and vertical motion dynamics, it is able to reproduce trajectories that are

qualitatively close to the ones reported from field data in terms on frequency, amplitude, and shape. Irregularities in

the oscillation amplitudes of the field measures are probably due to the vertical bouncing oscillations not included

in our model.

V. PRELIMINARY ANALYSIS OF STICK-SLIP OSCILLATIONS BEHAVIOR

With regards to the oscillatory behavior of drillstring system, it is assumed that, depending on certain working

parameters like the instantaneous value ofWoB, the rotatory speed of the set, the velocity control gains values,

and so forth, the drillstring system can enter into oscillation.

There will be cases in which the controller can suppress suchoscillation, and so, the system recovers its nominal

working regime, and other cases in which the system enters into sustained oscillation. This behavior is observed in

real drillstring equipment, as seen in Figure 4.
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A particular feature of the model presented here (for simulations) is that it succeeds in reproducing such behavior,

as it can be seen in Figure 5, where theWoB parameter is perturbed away from its nominal operation value; in

the left (upper) corner of Figure 5, theWoB changes from40000N to 45000N and the controller is still able to

correctly regulate the rotatory speed, whereas in the left (lower) corner of Figure 5 theWoB is perturbed enough

(from 40000N to 50000N ) so that the velocity controller cannot compensate the perturbation and the system enters

into stick-slip oscillation.
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Fig. 5. Different behaviors obtained by perturbingWoB. Figures show the time-profiles of the table and bit speed.

A. Intuitive behaviour

Although the system at hand is more complex, the following explanation of the system behaviour gives some

intuition on how the system may operated. The system trajectories can intuited to behave like the ones in Figure 6.

From this figure, we expect that the behavior of a nonlinear system will display a local stable region with a stable

limit set outside this local attraction domain (some more formal statements will be given latter). This is the pattern

display with our system whenu is assumed to be constant. Indeed, the system behavior is even more complex when

u can take on different values. For instance, a saddle-node bifurcation of periodic orbits may be exhibited if the

value ofu is decreased enough. In that case, two limit cycles emerge atthe bifurcation point, one of them being

stable while the other is unstable. As the system has an equilibrium point, its local stability is not affected by the

emergence of such limit cycles. Furthermore, for values ofu smaller than the one corresponding to the bifurcation

point, limit cycles disappear and the equilibrium becomes globally stable.
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Equilibrium Domain


Stable Orbit


Fig. 6. Figure presents the general idea of a local equilibrium encircled by a stable limit cycle. When the perturbation is not too large system

trajectories return to equilibrium. When the perturbationis large enough, the trajectory converge to a limit cycle.

VI. STICK-SLIP OSCILLATIONS PREDICTION BASED ONDF-ANALYSIS

The oscillation pattern shown by Figure 4 reflects two main characteristics: first oscillations will present a bias

term, and second they are dominated by a main harmonic with a relatively well-defined period. Therefore, the SBDF

(Sinusoid plus bias describing function) method can then beused as a first approximation to predict possible limit

cycle and to study its stability. To further simplify the computation of the SBDF corresponding to the nonlinear

dynamic friction map (7), we would rather use a simpler approximation of the resulting steady-state characteristic

of (7), see Figure 7. This approximation is valid because thefriction dynamics are much faster than the ones of

the drillstring mechanism.







-




















G(s)

ToB

ω̄d

Fs

Fc

vs

W (s)
G(s)

ωd y = ϕ̇b

Fig. 7. System block diagram and static friction torque.

The setup for this study is shown in Figure 7.G(s) is the linear map fromG(s) : (ω̄d − ToB) → y = ϕ̇b, and

ω̄d is the resulting bias due to the constant referenceωd.

Applying harmonic balance, the necessary condition to produce maintained oscillations in the system is:

G(jω0) =
−1

N1(A0, ω0, y0)
(17)
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Fig. 8. Describing functionN(A) (a), and evolution of −1
N(A)

(b). |p0| is two or three magnitude orders lower than|p1|, depending on value

of WoB.

y0 [1 + G(0)N0(A0, y0)] = W (0)ωd (18)

A0 andω0 are the particular values satisfying both equalities. Theyrepresent the amplitude and frequency of the

predicted oscillations, if any.y0 is the output bias, andN1 andN0 are given in the Appendix B.

Note thatG(jω) depends on the control parameters, hence the assigned bandwidth ωn.

Since the observed oscillations are clearly asymmetrical,the SBDF is used to computeN1(A, ω, y0), see [4].

N1(A, y0) will have only a real part because the friction torque characteristic has an odd symmetry.

Note that the frequency locus ofG(jω0) can only cross the real axis at one point, thenω0 can be uniquely

computed fromIm {G(jω0)} = 0, ∀ ω0 6= 0, |ω0| < ∞, and hence it does not depend on the other two

unknown variablesA0 andy0. The introduction of a integral action in the velocity control results inG(0) = 0, and

W (0) = 1. Therefore, the output bias can be straightforwardly computed from equation (18). Yielding

y0 =
W (0)

[1 + G(0)N0(A0, y0)]
ωd = ωd

With y0 = ωd known and independent of frequency and amplitude, the prediction of the limit cycle and its associated

amplitudeA0, can be obtained only from equation (17), i.e.

Re {G(jω0)} = − 1

N(A0)

with N(A0) = N1(A, ωd).

Figure 8 shows how −1
N(A) changes as a function ofA. The main feature of this amplitude locus, pertinent to

oscillation predictions, is the location of pointsp0 andp1. These points derive from the maximum and minimum

values ofN(A). In particular, it is interesting to notice that these points have the following property:

|p0| ∼
1

WoB
and |p1| ∼

1

WoB

Then, low values ofWoB make these two points larger in magnitude (its sign remains unchanged), reducing the

possibility to intersect the Nyquist ofG(jω). Inversely, when the weight on bit force increases, the probability of
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Fig. 9. Oscillations frequency domain. Border obtained by simulations and border predicted from the SBDF analysis.

oscillation is higher.

It is also interesting to note, that for almost every realistic choice ofωn, two sets of limit cycles will be predicted;

one stable set and another unstable. The stable set arises atamplitudesA = As, whereas the unstable one occurs for

A = Au. In all casesAs > Au. This means that for all parameter combinations(WoB−ωn) where an intersection

of G(jω) and−1/N(A) takes place, there exists a local (attractive) stable domain delimited byAu. This property

is further exploited in the proposed D-OSKIL mechanism.

It is also of interest to compute the set of possible combinations between system bandwidth and weight on bit

force for which stable limit cycles are predicted. Figure 9 shows the area in the(WoB − ωn)-plane giving rise to

possible stable oscillations. This analysis allow us to determine the range of proper values of controller closed-loop

bandwidth to avoid oscillations as a function of the operating WoB. As the figure shows, and on the basis of this

analysis, oscillations may be eliminated either by changing ωn, and/or by reducing theWoB magnitude.

One possible control strategy could be then to modify the rotary table bandwidth to reduce the possibility of

entering into oscillation. From Figure 9, we can see that suitable choices forωn are either small or large values.

Small values are not suited because they yield to poor performance, and large values are limited by noise. Typical

values forωn are in the range[20, 30] rad/s.

Another alternative will be to keep the value ofWoB below the oscillation zone. However, this will have two

drawbacks: first, high-performance drilling operations require magnitudes forWoB larger than the ones indicated

by the oscillation limits, and second, this strategy will require a precise knowledge of this map, which in addition

will vary according to drilling depth. KeepingWoB low, will thus be a too conservative strategy, which may cause

exploitation time to increase.

High-performance drilling operation takes place in a region in the plane(WoB−ωn), where potential oscillations
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may occur. Therefore, in this paper we account for this particularity assuming that thenominalsystem operation

parameters are taken within this zone. The design of the D-OSKIL mechanisms presented next, will be performed

in light of the following two observations:

• oscillation can be eliminated by decreasing the Weight on Bit force, and

• if WoB is reduced from its nominal value, then after the oscillation has been eliminated, the value ofWoB

needs to be brought back to its nominal value again to restartan efficient drilling operation.

VII. T HE D-OSKIL MECHANISM DESIGN

This section presents the design of the D-OSKIL mechanism, which stands forDrilling OScillation KILler.

First we introduce some intuitive ideas completing the understanding on the system behaviors gained in previous

sections. Then we present the mathematical form for this algorithm and the different steps involved in their stability

properties.

A. Basic Ideas

Let us first assume that the normal forceu (i.e. the weight on BitWoB), is given as the sum of the nominal

weight of the drillstring (u0) and the D-OSKIL control signal (̃u):

u = u0 + ũ (19)

Figure 10 is a schematic description of what we expected to bethe behavior of the system. Although it is not

formal, we may think of this Figure as a bifurcation diagram,where in the horizontal axis we have the “bifurcation

parameter”u, and in the vertical axis a measure of the oscillations (i.e.the Euclidian norm of the error vector,

to be defined later). As previously discussed,u0 is here the nominal value foru of an efficient drilling operation.

The upper solid line describes a possible family ofstableoscillations, whereas the lower dotted line is a family

of unstableones. The lines with arrows describe possible trajectoriesof the closed-loop system parameterized as a

function of u. These trajectories are extrapolated from the a priori behavior of the drillstring system.

There are two interesting cases to be analyzed:

a) Nominal behavior:Assume thatu = u0, and the system trajectories are at equilibrium. Then if a perturbation

arrives:

• Either the perturbation is not large enough to divert the system trajectories from their local attraction domain

(a curve in figure). Therefore the velocity controller succeeds in regulating the trajectories back to their

equilibrium. Or,

• The perturbation is large enough to divert the system from equilibrium domain. In this case (b curves in

figure), the trajectories are attracted by the corresponding stable limit cycle and the system enters into sustained

oscillation.
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Fig. 10. Possible drillstring system trajectories.

b) Behavior beyond nominal operations:To suppress such oscillations, theu = WoB must be reduced by

means of the control signal̃u, until its trajectory reaches the bifurcation point, and the local controller is able to

return the system trajectories to the equilibrium. Thereafter, the nominal value of theWoB must be recovered in

a proper slow manner, to continue with the drilling task, i.e. u → u0. Significantly enough, the variation of̃u

should be restricted to a valid domain, and in particular restricted to a positive values other than zero. Without this

restriction, it is clear that drilling may not be efficient, or it will be impractical.

The general structure of the variation law foru (or equivalent forũ), will be here of the form:

˙̃u = P0
−u0

{−σũ + Φ(·)}

whereσ > 0, can be understood as a time-constant of the controller, andP0
−u0

is a projector operator ensuring that

solutions of the above equation makesũ stay in the range(−u0, 0], andΦ(·) is a nonlinear function which must

be designed to ensure system stability, that is:

ϕ̇r → ωd and ũ → 0

In order to make the presentation simpler, we will trop the explicit use of the projection operationP in the following

section. However, the reader should keep in mind thatũ is a bounded signal in the prescribed range.

With this in mind, the complete closed-loop equations are:

ẋ = Aclx + Bclωd + Hclµ(x3)(u0 + ũ) (20)

˙̃u = −σũ + Φ(·) (21)

where matricesAcl, Bcl, Hcl have been defined previously.
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Fig. 11. Error system block diagram.

B. Error equations

Error equations can be obtained by applying the change of coordinatese = x−x∗, and considering the steady-state

valuesµ(e3)ss = µ∗ and ũss = 0. This yields2:

ė = Acle + Hcl [µ(y)ũ + µ̃(y)u0] (22)

˙̃u = −σũ + Φ(y) (23)

y = Ce = e3 (24)

where the term̃µ(y) is defined as follows:

µ̃(y) = µ(y) − µ∗ (25)

and we assume that the update rule forũ is designed on the basis of the outputy. The error system can be described

by the block diagram in Figure 11, with the following definitions:

G(s) : Ψ 7→ y (26)

Γ : y 7→ ũ1 = µ(y)ũ (27)

∆ : y 7→ ũ2 = µ̃(y)u0 (28)

whereΨ = −(ũ1 + ũ2).

C. Error equation properties

1) PR condition onG(s): The mapG(s) is:

G(s) = −C(sI − Acl)Hcl (29)

2With an abuse of notation, we will useµ(y) to denote the expression ofµ(x3), in the shift coordinatey+ωd, i.e.µ(x3) = µ(y+ωd) = µ(y).

Note that aty = 0, we haveµ(y = 0) = µ(ωd) = µ∗.
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with C = [0 0 1 0], or equivalently:

G(s) =
s(a2s

2 + a1s + a0)

b4s4 + b3s3 + b2s2 + b1s + b0
(30)

The error equation and updating rule ofũ have been designed in such a way that the resulting mapG(s) has

relative degree one. This condition is necessary to obtain PR and SPR functions. The verification thatG(s) is PR

can be done directly on the triplets of matrices(Acl, Hcl, C) as demonstrated in [30] for SPR function. Adapting

this result to PR functions and using our notation at hand, results in the following relaxed conditions: consider the

transfer functionG(s) = −C(sI − Acl)Hcl. G(s) is PR if and only if: 1)CAclHcl > 0, 2)Acl is stable, 3) the

matrix Acl(I − (1/CAclHcl)AclHclC)Acl has no eigenvalues on the open negative real axis(−∞, 0).

The first condition is easy to compute in terms of model parameters. This givesCAclHcl = (c + db)/J2
b > 0,

and always holds from the physics of the system. The second condition is also verified sinceAcl is designed to be

stable. The last condition is more involved, but it can be easily checked numerically. For typical values of drillstring

system model parameters andv-control gains considered in this paper, it is possible to show that condition 3) holds.

Note also that by continuity of the eigenvalues with respectto the matrices parameters, there will exists a certain

degree of robustness of this condition with respect the model uncertainly.

Consequently we have thatG(s) is a Positive Real (PR) function, and hence from theKalman-Yacubovich-Popov

Lemma[16], the following property holds:∃P = PT > 0, Q = LT L ≥ 0 such that:

AT
clP + PAcl = −Q = −LT L ≤ 0 (31)

PHcl = −C (32)

Therefore, as a consequence we have the following two properties for the linear mapG(s):

• G(s) is a passive relative toV (e) = eT Pe, and

• G(s) has a finiteL2-gain: γ2(G) = supω |G(jω)| < ∞

2) Boundedness of signalΨ(t): From the definitions of̃u1 andũ2 in Equations (27) and (28), together with the

assumption that the adaptation mechanism yields values in the rangẽu ∈ (−u0, 0], it follows that both signals,̃u1

and ũ2, are bounded, that is:

||ũ1||∞ = sup
t≥0

|ũ1| ≤ u0 < ∞, (33)

||ũ2||∞ = sup
t≥0

|ũ2| ≤ 2 · u0 < ∞. (34)

Hence||Ψ(t)||∞ ≤ 3 · u0.

3) Boundedness of the outputy(t): Since G(s) : Ψ 7→ y is a lineal stable map, the output signaly is also

bounded, i.e.

Ψ ∈ L∞ ⇒ y ∈ L∞ (35)

4) Sector condition on∆: With regard to Figure 11, the output of the map∆ can be seen as a disturbance

acting on the closed loop system resulting from the operators G(s) in feedback connection with nonlinear operator

Γ.
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Fig. 12. Normalized friction function (a).∆(y) lies at the interval[a, b] (b).

Figure 12-(a) shows the memoryless friction map used for this study. Note that as the steady-state rotatory bit

speed (ωd) is in general much larger than the Stribeck velocityvs, we can then assume thatµ∗ = µC . Therefore,

taking into account thaty = e3 = ϕ̇b − ωd, the output of block∆ will have the profile shown in Figure 12-(b).

This operator belongs to the cone sector[a, b] as displayed in the same Figure (see [33] for further discussion on

sector definitions). Formally this is stated as follows.

The nonlinear operator∆(y) belongs to the sector[a, b] if the following holds true:

• ∆(0) = 0

• a ≤ ∆(y)
y ≤ b , ∀y ≥ 0, or equivalently,

• ay2 ≤ y∆(y) ≤ by2 , ∀y ∈ ℜ

In our case, the values fora andb are:

a = −µS − µC

ωd
u0 (36)

b =
µS + µC

ωd
u0 (37)

and consequently, the map∆ has also finiteL2-gain, which is bounded by:

γ2(∆) ≤ max[|a|, |b|] (38)

5) Block transformation:As it can be seen in Figure 12-(b), the map∆ is almostpassive, sincealmostthe whole

diagram is within the first and third quadrants. This characteristic is generic, as the difference between break-away

and Coulomb friction levels is generally small (a is small when compared tob).
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Figure 13 shows a possible block transformation, where the following new operators,∆∗, andΓ∗ are defined:

∆∗ : y 7→ (ũ2 + εy)

Γ∗ : y 7→ (ũ1 − εy)

























+


+


+


-




-


-


∆

ε

G(s)

Γ

ε

y

∆∗

Γ∗

Ψ

Fig. 13. Modified Block Diagram.

With this transformation, it can be easily proved that the map ∆∗ is passive if the value ofε is taken such that

ε = |a|, as can be seen in Figure 14.

ε = |a| ⇒
∫ t

0

y(ũ2 + εy)dt ≥ 0 (39)

With this new feedback configuration, the problem of designing a stable update law for̃u(t) is equivalent to

finding a functionΦ(y), and parameter conditions, such that the transformed operator Γ∗ defines a passive map.

This design strategy results from well known properties of feedback interconnected passive systems.

The next subsection uses such a result to demonstrate the stability properties of one possible candidate update

rule.

D. D-OSKIL updating law

Under the premise that the complete form of the update law should also include a suited projection operator

ensuring that the variation of̃u is limited to the admissible parameters range, the following updating rule will be

analyzed.
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Fig. 14. Profile of map∆∗.

Let us consider the nonlinear functionΦ(y):

Φ(y) = λ y sgn(µ(y)) λ ≥ 0 (40)

Note that this choice is conditioned by the ability of computing the sign ofµ(y). Considering the form of the

friction model for this study, the sign ofµ(y) = µ(ϕ̇b − ωd), can be computed iḟϕb can be measured, or at least,

observed as shown in simulations later on. We proceed according to this hypothesis in what follows.

E. Stability analysis

Lemma 1:Let ρ > 0 be an arbitrarily positive constant, andλ, σ be such that the following design inequality

holds,
λ

σ
≥

(

µS

µC
− 1

)

u0

ωd
+

σ

µC
ρ (41)

where µS

µC
≥ 1. Then mapΓ∗ : y 7→ (µ(y)ũ − εy) is strictly input passive, i.e.

I =

∫ t

0

(µ(y)ũ − εy)y ≥ ρ

∫ t

0

y2 − β0 (42)

with β0 = ymax

σ 2u0 > 0.

Proof: Let I define the integral of the input-output product of the operator Γ∗, i.e.

I =

∫ t

0

(µ(y)ũ − εy)y =

∫ t

0

µ(y)ũy −
∫ t

0

εy2

Substitutingũ from Equation (23) in the above expression gives,

I =
1

σ

∫ t

0

µ(y)Φ(y)y − 1

σ

∫ t

0

µ(y)y ˙̃u −
∫ t

0

εy2

From sections VII-C.2, and VII-C.3, signalsy and µ(y) have been shown to be bounded. Let note these bounds

as: |y| < ymax, |µ(y)| < 1. Therefore,
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I ≥ 1

σ

∫ t

0

µ(y)yΦ(y) −
∫ t

0

εy2 − ymax

σ

∣

∣

∣

∣

∫ t

0

˙̃u

∣

∣

∣

∣

Taking nowΦ(y) = λ y sgn(µ(y)), gives

I ≥
∫ t

0

(
λ

σ
|µ(y)| − ε)y2 − ymax

σ
|ũ(t) − ũ(0)|

≥
∫ t

0

(
λ

σ
|µ(y)| − ε)y2 − ymax

σ
2u0

≥
∫ t

0

(
λ

σ
µC − |a|)y2 − β0

where the last inequality is obtained by using the lower bound on |µ(y)|, i.e., |µ(y)| ≥ µC , the definition of

ε = |a| (with a as given in Equation (36)) and the constantβ0 = ymax

σ 2u0. Finally, introducing the condition (41)

in the above expression, gives the following lower bound onI:

I ≥
∫ t

0

(
λ

σ
µC − |a|)y2 − β0 ≥ ρ

∫ t

0

y2 − β0

which proves the lemma.

Remark 1:The condition (41) exhibits several interesting practicalfeatures. It relates the design parameters (σ,

λ) as a function of physical drillstring system characteristics such as the nominalWoB (u0), the rock friction

features (µS − µC ), and the desired rotational velocity (ωd). The parameterρ as shown latter, provides a measure

of the convergence rate of the outputy to zero.

We are now in a position to establish the main stability result.

Theorem 7.1:Consider the closed-loop system of Figure 13 withG(s), Γ∗, ∆∗ holding the following properties:

(i) G(s) is a PR operator satisfying (31)-(32)

(ii) ∆∗ is a passive map satisfying (39)

(iii) Γ∗ is a strictly input passive map satisfying (42), i.e. designparameters are such that the condition (41) holds.

Then,(e∗, ũ∗) = (0, 0) is a globally asymptotically stable equilibrium of the considered closed-loop system.

Proof: Let us take the following scalar function:

V (e, ũ) =
1

2
eT Pe +

∫ t

0

y(ũ2 + εy) +

[

I(ũ, y) + β0 − ρ

∫ t

0

y2

]

(43)

From (39) and (42), we have thatV (e, ũ) is semi-positive definite.

Computing the time-derivative ofV (e, ũ), and using the properties(i) − (iii) of the theorem, results in:

V̇ (e, ũ) = −1

2
eT LT Le − ρy2 ≤ 0 , ∀e, ũ (44)

Therefore, from last Equation, we have thaty → 0 with a rate depending on the value ofρ. The rest of the proof

follows from the application of the LaSalle’s invariance principle. From Equation (23), we can see that ify → 0,
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Fig. 15. Simulation of D-OSKIL scheme withσ = 0.3 andλ = 2.000.

together with the fact thatσ is a positive constant andΦ(0) = 0, gives thatũ → 0. Finally, this implies that the

two last terms in Equation (22) also tends to zero, i.e.

lim
t→∞

[µ(y)ũ + µ̃(y)u0] = [µ(0)0 + µ̃(0)u0] = 0

sinceµ(0) = µ∗ = µC , and µ̃(0) = µ(0) − µ∗ = µ∗ − µ∗ = 0. Therefore, this results in

ė = Acle + Hcl lim
t→∞

[·] = Acle

So it can be concluded thate → 0, and hence thate∗ = 0, andũ∗ = 0 are a globally asymptotically stable equilibria.

VIII. S IMULATION EXAMPLE

In order to demonstrate the behavior of the proposed adaptive law, simulations of the drillstring system controlled

under the D-OSKIL mechanism designed in Section VII-D are shown in Figures 15 and 16. The values3 for system

model parameters used in the simulations are presented in Table I. In these Figures, the typical profiles in terms

on rotatory velocity, both in surface and downhole, and system WoB are shown.

As it can be observed, with the nominal weightu0 = 40000N, the system is under a sustained oscillation

regime. The D-OSKIL mechanism is activated att = 50s, and in both cases, the controller is able to extinguish

such oscillations, although theWoB profiles obtained are quite different.

3The numerical values of the drilling system parameters according to a2000m long drillstring have been taken from [29].
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Fig. 16. Simulation of D-OSKIL scheme withσ = 1.0 andλ = 2.500.

In Figure 15 (with control parametersλ = 2.000 andσ = 0.3) the D-OSKIl mechanism is able to extinguish the

oscillations with a soft evolution in theWoB control signal.

On the other hand, in Figure 16 (with control parametersλ = 2.500 andσ = 1.0), the transition from oscillation

regime to stabilization period is faster than the one obtained in Figure 15. The stabilization time for the value of

WoB is also faster in Figure 16, but in this case some oscillations occur during the transition.

This issue is due to theλ value, when large values of theλ are chosen a sharpWoB value transition is obtained

in the switching instant of time (in our simulationst = 50s).

From a practical point of view, and in order to avoid oscillations in the control signal, the parameter values

proposed in Figure 15 seem to be more appropriate.

IX. OBSERVER-BASED DESIGN

In this section we present some extensions of the previous control which has been studied and designed under

the hypothesis of the measure of the bit rotational velocityϕ̇b. In this section we first provide an alternative way

to get this measure trough a state observer.

A. Observer Design

The observer is designed on the basis of open-loop equation (8). That is on

ẋ = Ax + Bv + (Hu) · µ (45)

yo = Cox = ϕ̇r (46)
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Following [35] we propose to use the following observer based on the observation of the rotary angular velocity

yo = ϕ̇r:

˙̂x = Ax̂ + Bv + (Hu) · µ̂ +
[

Ko + βΓΓT CT
o

]

(yo − Cox̂) (47)

˙̂µ = βΓT CT
o (yo − Cox̂) (48)

Γ̇ = [A − KoCo] Γ + (Hu) (49)

where:Γ is a (3 × 1) time-varying vector,β > 0 is a positive scalar,̂x, andµ̂ are the state and friction coefficient

estimates respectively,yo is the measured output,Ko is a (3 × 1) observer vector gain, andCo = [0, 1, 0]. Note

that Co 6= C.

The observer not only provides an estimate for the bit rotational velocityx̂3, but also provide an estimate of the

friction coefficientµ̂ which can be useful for other monitoring purposes. The observer, as indicated in [35], results

in a globally exponentially stable observer providing the following hypothesis hold:

• µ is constant

• Exists a matrixKo such that(A−KoCo) is strictly stable matrix, i.e. The constant pair(A, Co) is detectable.

• u(t) is persistently exciting, i.e.∃δ, T > 0 such that the following inequality is satisfied:
∫ t+T

t

Γ(τ)T CT
o CoΓ(τ)dτ > δ > 0

Let comment the practical implication of the previous hypothesis.

The first hypothesis assumes that the friction coefficient isconstant, or eventually slow-time variant4 µ̇ ≈ 0. Note

that this approximation is often assumed in the context of observer design with unknown inputs, but also in the

context of adaptive control. Here this hypothesis means that the rate of variation of the rock friction coefficient does

not exhibit substantial changes during the drill-operation. Even if the drilled surfaces may have different friction

characteristics, the rate of penetration (drilling-speed) remains small.

The second hypothesis correspond to the necessity observation property need to build the observed. By inspecting

this condition, we can see that the system observability is invariant with respect the matricA andCo.

Finally, the last property is necessary to the observer to converge. Note that as the “adaptation” is done under

a single parameterµ, the required condition is weak and will be simple to fulfill.To see this note that the pair

(A−KoCo, H) is controllable and the pair(A−KoCo, Co) is observable, then the persistently exciting condition

is easily verified if the WoB force is not equal to zero, i.e.u(t) > 0. A detailed justification of this can be found

in [11].

B. Simulation with the observed-based controller

The original controller has the form

˙̃u = −σũ + λ(x3 − ωd) · sgn(µ(x3 − ωd)) (50)

4In this case, it can also be shown that stability (not asymptotic) follows is preserved
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Fig. 17. Simulation of D-OSKIL scheme with observer. The D-OKILL mechanisms is activated at after 80 sec. The upper plotsshow the

Surface and the downhole rotational speed. The middle plotsshow the time-evolution of the weight on bit. It has been saturated for efficiency

reasons at1000N . The lower plots shows the downhole velocity and its estimated.

replacingx3 by its estimatêx3, and noting that sgn(µ(x3 − ωd)) = sgn(x3 − ωd), we get the final, quite simple,

control law structure to be implemented together with the observer,

˙̃u = −σũ + λ|x̂3 − ωd)| (51)

In Figure 17, we repeat the experiment shown previously in Figure 15 (with the parameters given in Table I) with

the observed-based control law instead. The additional parameter for the observer used in this simulation where:

β = 0.05 andKo = [−26.8125; 4.5928; −10.4562]. As the figure shows, the D-OSKIL mechanism works well in

this case. The behavior obtained in this figure and in Figure 15 are quite similar. Note that the observer can tolerate

a certain amount of uncertainty on the knowledge of the physical parameters as demonstrated by the authors in

[35]. The figure at the bottom shows the comparison between the downhole rotatory speed and the signal provided

by the observer.
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TABLE I

PARAMETER VALUES USED IN SIMULATION OF FIGURE 15.

Parameter Value Unit

Jr 2122 [Kg.m2]

Jb 374 [Kg.m2]

k 473 [Nm/rad]

c 23.2 [1/s2]

dr 425 [1/s]

db 50 [1/s]

µC 0.3 [-]

µS 0.35 [-]

vs 0.01 [rad/s]

u0 40000 [Kg.m/s2]

ωd 5 [rad/s]

k1 15725 [Nm/rad/s]

k2 30576 [Nm/rad]

k3 194 [Nm/rad/s]

X. CONCLUSIONS

We have proposed to use the weight on the bit (WoB) force as an additional control variable to extinguish

limit cycles when they occur. An adaptation law, named D-OSKIL, of the oscillation killer (OSKIL) mechanism,

to oil well drillstring systems has been proposed. An approximate analysis based on the bias describing function

did provide a good insight of the slip-stick behavior and in the control design.

We have then presented a stability analysis of a variant of the D-OSKIL control mechanism, introduced in [7], to

remove stick-slip oscillations in drillstring systems. The presented stability analysis based on passivity has shown

that this algorithm is globally asymptotically stable. Simulations applying such an algorithm showed that stick-slip

oscillations can be effectively eliminated.

The implementation of the proposed control algorithm requires the sign of a friction torque on the bit,µ(y),

which can be computed if the sign of rotational velocity measured at the bit is known. It has also been shown in

the paper, that the measurement of this velocity can be undertaken by the proper design of an nonlinear observer,

without jeopardizing the performance of the closed-loop system.
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APPENDIX

A. TUNING METHOD FORCONTROLLER GAINS

From the system model Equations (1) and (2), and defining a newvariablez and constantǫ in the way:

z = k(ϕr − ϕb) , ǫ2 =
1

k

the ϕr andz dynamics are:

Jrϕ̈r + cǫ2ż + z + drϕ̇r = v (52)

ǫ2z̈ = − z

Jeq
− ǫ2(

c

Jeq
+

db

Jb
)ż +

+(
db

Jb
− dr

Jr
)ϕ̇r +

v

Jr
+

ToB

Jb
(53)

Since the torsional stiffnessk is usually very large, the assumptionǫ = 0 can be made, and so:

Jrϕ̈r + z + drϕ̇r = vs (54)

0 = − z

Jeq
+ (

db

Jb
− dr

Jr
)ϕ̇r +

vs

Jr
+

ToB

Jb
(55)

where the control signal is supposed to be split in slow (vs) and fast (vf ) modes:

v = vs + ǫvf

Therefore, solving Equation (55):

z = Jeq[(
db

Jb
− dr

Jr
)ϕ̇r +

vs

Jr
+

ToB

Jb
] (56)

And so, Equation (54) results in:

ϕ̈r + (
db + dr

Jr + Jb
)ϕ̇r =

1

Jr + Jb
vs −

1

Jr + Jb
ToB (57)

By supposingvs = (k1 + k2

s )(ωd − ϕ̇r), and defining a new variable:

˙̃ϕr = ωd − ϕ̇r ⇒ ϕ̃r =
ωd − ϕ̇r

s
, ¨̃ϕr = −ϕ̈r

We have (supposing(db + dr) ≪ (Jr + Jb)):

¨̃ϕr + (
k1

Jr + Jb
) ˙̃ϕr + (

k2

Jr + Jb
)ϕ̃r =

ToB

Jr + Jb
(58)

And so, by imposing some damping (δr) and natural frequency (ωn) in the closed loop dynamicsToB 7→ ϕ̃r,

the values ofk1 andk2 can be computed from:

k1 = (Jb + Jr) ·
[

2δrωn − db + dr

Jb + Jr

]

(59)

k2 = (Jb + Jr)ω
2
r (60)
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On the other hand, by substituting the controller structurein Equation (53), the following expression is obtained:

ǫ2z̈ = − z

Jeq
− ǫ2(

c

Jeq
+

db

Jb
)ż + (

db

Jb
− dr

Jr
)ϕ̇r +

+
vs

Jr
+

ǫ

Jr
vf +

ToB

Jb
(61)

Due to two-time scales separation, it can be assumed that theslow variable has reached its steady state value

respecting to the variations of the fast variablez, and so, rewriting Equation (61) as:

ǫ2z̈ = − z

Jeq
− ǫ2(

c

Jeq
+

db

Jb
)ż +

ǫ

Jr
vf +

ToB

Jb
+ ρ(ϕ̇∗

r , ϕ
∗
r) (62)

where the superscript∗ means steady-state value, and:

ρ(ϕ̇∗
r , ϕ

∗
r) = (

db

Jb
− dr

Jr
)ϕ̇∗

r +
vs(ϕ̇

∗
r , ϕ

∗
r)

Jr
=

z∗

Jeq
− ToB

Jb
(63)

By rewriting Equation (62) in fast error coordinatesζ = z − z∗, we have:

ζ̈ + (
c

Jeq
+

db

Jb
)ζ̇ +

1

ǫ2Jeq
ζ =

1

Jrǫ
vf (64)

Taking vf = −k3ζ̇:

ζ̈ + (
c

Jeq
+

db

Jb
+

k3

Jrǫ
)ζ̇ +

1

ǫ2Jeq
ζ = 0 (65)

and so, imposing certain damping value for torsion dynamics(δtor), the value ofk3 can be computed:

k3 =
Jr√
k
·
[

2δtor

√
kJeq −

c

Jeq
− db

Jb

]

(66)

B. COMPUTATION OF THE FUNCTIONSN0, AND N1

N0(A0, y0) =
1

2πy0

∫

x(t)d(θ) (67)

N1(A0, y0) =
1

πA0

∫

x(t)cos(θ)d(θ) (68)

N0(A0, y0) =
2Fs

yo
g(

y0

A0
) − A0(Fs − Fc)

2y0vs
·

·[f0(
vs + y0

A0
) − f0(

vs − y0

A0
)] (69)

N1(A0, y0) =
4Fs

πA0
D1(

y0

A0
) − (Fs − Fc)

2vs
·

·[f1(
vs + y0

A0
) + f1(

vs − y0

A − 0
)] (70)
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with:

g(x) =



















arcsin(x)
π | x |≤ 1

−1
2 x < −1

1
2 x > 1



















(71)

f0(x) =







2
π (xarcsin(x) +

√
1 − x2) | x |≤ 1

| x | | x |> 1







(72)

f1(x) =



















2
π (arcsin(x) + x

√
1 − x2) | x |≤ 1

−1 x < −1

1 x > 1
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


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


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(73)

D1(x) =







√
1 − x2 | x |≤ 1

0 | x |> 1







(74)
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Fig. 18. N0(A0, y0) andN1(A0, y0) functions in the case thaty0 = 5 rad/s.
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