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Abstract

In this paper we prove that every Banach lattice having the Fatou prop-
erty and having its σ-order continuous part as an order dense subset, can be
represented as the space L1

w(ν) of weakly integrable functions with respect
to some vector measure ν defined on a δ-ring.

1 Introduction

The interplay among the properties of a vector measure ν, its range and its inte-
gration operator allows us to understand the behavior of the space L1(ν) of inte-
grable functions with respect to ν. This makes desirable to know which spaces
can be described as such L1 spaces. In [2, Theorem 8], Curbera proves that every
order continuous Banach lattice E with a weak unit is order isometric to a space
L1(ν) where ν is a vector measure defined on a σ-algebra. The result remains true
if E has not a weak unit but for ν defined on a δ-ring. This was stated in [1, pp. 22-
23] but the proof there is just outlined. We present here a proof of this fact in full
detail. Note that the differences between the integration theory with respect to
vector measures on σ-algebras and the integration theory with respect to vector
measures on δ-rings are significant. For instance, bounded functions are always
integrable for the first one while they are not necessarily integrable for the second
one.
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Associated to ν there is another interesting space whose properties can be
studied through the properties of ν. Namely, the space L1

w(ν) of weakly integrable
functions. In [3, Theorem 2.5], Curbera and Ricker show that every Banach lattice
E satisfying the σ-Fatou property and with a weak unit belonging to the σ-order
continuous part Ea of E is order isometric to a space L1

w(ν) for a vector measure ν
defined on a σ-algebra. The aim of this paper is to prove the corresponding result
in the case when E has not a weak unit by using a vector measure defined on a
δ-ring.

Given an order continuous Banach lattice E, Section 3 is devoted to the con-
struction of a vector measure ν defined on a δ-ring associated to E. In Section 4,
we show that L1(ν) is order isometric to E via the integration operator. This fact is
the starting point for proving our main result in Section 6, namely, every Banach
lattice E with the Fatou property such that its σ-order continuous part Ea is order
dense in E is order isometric to the L1

w space of the vector measure associated to
Ea which in this case is also order continuous. This L1

w space is studied first in
Section 5. We end with two examples of Banach lattices which can be represented
as L1

w(ν) with ν defined on a δ-ring, but cannot be represented in the same way
for any vector measure defined on a σ-algebra.

2 Preliminaries

2.1 Banach lattices.

Let E be a Banach lattice with norm ‖ · ‖ and order ≤. A weak unit of E is an
element 0 ≤ e ∈ E such that x ∧ e = 0 implies x = 0. A closed subspace F of E is
an ideal of E if y ∈ F whenever y ∈ E with |y| ≤ |x| for some x ∈ F. An ideal F in
E is said to be order dense if for every 0 ≤ x ∈ E there exists an upwards directed
system 0 ≤ xτ ↑ x such that (xτ)τ ⊂ F. We will say that E has the Fatou property if
for every (xτ)τ ⊂ E upwards directed system 0 ≤ xτ ↑ such that supτ ‖xτ‖ < ∞

it follows that there exists x = supτ xτ in E and ‖x‖ = supτ ‖xτ‖. We will say that
E has the σ-Fatou property if for every (xn)n≥1 ⊂ E increasing sequence 0 ≤ xn ↑
such that supn≥1 ‖xn‖ < ∞ it follows that there exists x = supn≥1 xn in E and
‖x‖ = supn≥1 ‖xn‖. The Banach lattice E is order continuous if for every (xτ)τ ⊂ E
downwards directed system xτ ↓ 0 it follows that ‖xτ‖ ↓ 0. If ‖xn‖ ↓ 0 for any
(xn)n≥1 ⊂ E decreasing sequence xn ↓ 0, then E is said to be σ-order continuous.
We call order continuous part Ean of E to the largest order continuous ideal in E. It
can be described as

Ean = {x ∈ E : |x| ≥ xτ ↓ 0 implies ‖xτ‖ ↓ 0}.

Similarly, the σ-order continuous part Ea of E is the largest σ-order continuous ideal
in E, which can be described as

Ea = {x ∈ E : |x| ≥ xn ↓ 0 implies ‖xn‖ ↓ 0}.

The Banach lattice E is said to be σ-complete if every order bounded sequence has
a supremum.



An operator T : E → F between Banach lattices is said to be an order isometry if
it is a linear isometry which is also an order isomorphism, that is, T is linear, one
to one, onto, ‖Tx‖F = ‖x‖E for all x ∈ E and T(x ∧ y) = Tx ∧ Ty for all x, y ∈ E.

For these and other issues related to Banach lattices, see for instance [6], [7]
and [10].

2.2 Integration with respect to vector measures on δ-rings.

This integration theory is due to Lewis [5] and Masani and Niemi [8], [9]. See also
[4].

Let R be a δ-ring of subsets of an abstract set Ω (i.e. a ring of sets closed under
countable intersections). Associated to R we have the σ-algebra Rloc of subsets A
of Ω such that A∩ B ∈ R for every B ∈ R. The space of measurable real functions
on (Ω,Rloc) will be denoted by M(Rloc) and the space of simple functions by
S(Rloc). A special role will be played by the simple functions based on R. The
space of these functions will be denoted by S(R).

Let λ : R → R be a countably additive measure, that is, ∑n≥1 λ(An) converges
to λ(∪n≥1An) whenever (An)n≥1 are pairwise disjoint sets in R with ∪n≥1An ∈
R. The variation of λ is the countably additive measure |λ| : Rloc → [0, ∞] given
by

|λ|(A) = sup
{

∑ |λ(Ai)| : (Ai) finite disjoint sequence in R∩ 2A
}

.

The space L1(λ) of integrable functions with respect to λ is defined just as L1(|λ|)
with the same norm. The space S(R) is dense in L1(λ). For each
ϕ = ∑

n
i=1 αiχAi

∈ S(R), the integral of ϕ with respect to λ is defined as usual,
∫

ϕ dλ = ∑
n
i=1 αiλ(Ai). For every f ∈ L1(λ), the integral of f with respect to λ is

defined as
∫

f dλ = limn→∞

∫

ϕn dλ for any sequence (ϕn)n≥1 ⊂ S(R) converg-

ing to f in L1(λ).
Let ν : R → X be a vector measure with values in a real Banach space X, that is,

∑n≥1 ν(An) converges to ν(∪n≥1An) in X whenever (An)n≥1 are pairwise disjoint
sets in R with ∪n≥1An ∈ R. Denoting by X∗ the dual space of X and by BX∗

the unit ball of X∗, the semivariation of ν is the map ‖ν‖ : Rloc → [0, ∞] given by
‖ν‖(A) = sup{|x∗ν|(A) : x∗ ∈ BX∗} for all A ∈ Rloc, where |x∗ν| is the variation
of the measure x∗ν : R → R. A set B ∈ Rloc is ν-null if ‖ν‖(B) = 0. A property
holds ν-almost everywhere (ν-a.e.) if it holds except on a ν-null set.

We will denote by L1
w(ν) the space of functions in M(Rloc) which are inte-

grable with respect to |x∗ν| for all x∗ ∈ X∗. Functions which are equal ν-a.e. are
identified. The space L1

w(ν) is a Banach space with the norm

‖ f‖ν = sup
{

∫

| f | d|x∗ν| : x∗ ∈ BX∗

}

.

Moreover, it is a Banach lattice having the σ-Fatou property for the ν-a.e. point-
wise order and it is an ideal of measurable functions, that is, if | f | ≤ |g| ν-a.e.
with f ∈ M(Rloc) and g ∈ L1

w(ν), then f ∈ L1
w(ν). Also, note that convergence in

norm of a sequence implies ν-a.e. convergence of some subsequence. A function



f ∈ L1
w(ν) is integrable with respect to ν if for each A ∈ Rloc there exists a vector

denoted by
∫

A f dν ∈ X, such that

x∗
(

∫

A
f dν

)

=
∫

A
f dx∗ν for all x∗ ∈ X∗.

We will write
∫

f dν for
∫

Ω
f dν. We will denote by L1(ν) the space of integrable

functions with respect to ν. It is an order continuous Banach lattice when en-
dowed with the norm and the order structure of L1

w(ν). Even more, it is an ideal
of measurable functions and so an ideal of L1

w(ν). Note that if ϕ = ∑
n
i=1 aiχAi

∈

S(R) then ϕ ∈ L1(ν) with
∫

A ϕ dν = ∑
n
i=1 aiν(Ai ∩ A) for all A ∈ Rloc. The

space S(R) is dense in L1(ν). The integration operator Iν : L1(ν) → X given by
Iν( f ) =

∫

f dν is linear and continuous with ‖Iν( f )‖ ≤ ‖ f‖ν.
A vector measure ν : R → E with values in a Banach lattice E is positive if

ν(A) ≥ 0 for all A ∈ R. In this case, the integration operator Iν : L1(ν) → E
is positive (i.e. Iν( f ) ≥ 0 whenever 0 ≤ f ∈ L1(ν)) and it can be checked that
‖ f‖ν = ‖Iν(| f |)‖ for all f ∈ L1(ν).

We know that the space L1
w(ν) has the σ-Fatou property for every vector mea-

sure ν : R → X, but what about the Fatou property? The following proposition,
which will be needed later on, gives a sufficient condition for L1

w(ν) to have the
Fatou property.

Proposition 1. If ν : R → X is a σ-finite vector measure, that is, there exists a sequence
(An)n≥1 ⊂ R and a ν-null set N ∈ Rloc such that Ω = (∪n≥1An) ∪ N, then L1

w(ν)
has the Fatou property.

Proof. Let ν : R → X be a σ-finite vector measure. Then, by [4, Remark 3.4], there
exists x∗0 ∈ BX∗ such that |x∗0ν| is a local control measure for ν, that is, |x∗0ν| has
the same null sets as ν.

Let ( fτ)τ ⊂ L1
w(ν) be such that 0 ≤ fτ ↑ ν-a.e. and supτ ‖ fτ‖ν < ∞. Then,

0 ≤ fτ ↑ |x∗0ν|-a.e. and supτ

∫

fτ d|x∗0ν| ≤ supτ ‖ fτ‖ν < ∞. Since L1(x∗0ν) has the

Fatou property, there exists f = supτ fτ in L1(x∗0ν). On the other hand L1(x∗0ν) is

order separable, so we can take a sequence fτn ↑ f in L1(x∗0ν). Then, fτn ↑ f |x∗0ν|-
a.e. (equivalently ν-a.e.) and so |x∗ν|-a.e. for all x∗ ∈ X∗. By using the monotone
convergence theorem, we have that

∫

| f | d|x∗ν| = lim
n

∫

| fτn | d|x∗ν| ≤ ‖x∗‖ · sup
τ

‖ fτ‖ν < ∞,

and so f ∈ L1(x∗ν) for all x∗ ∈ X∗. Hence, f ∈ L1
w(ν) and ‖ f‖ν ≤ supτ ‖ fτ‖ν.

Since the |x∗0ν|-a.e. pointwise order coincides with the ν-a.e. one and 0 ≤ fτ ↑
f in L1(|x∗0ν|), it follows that 0 ≤ fτ ↑ f in L1

w(ν). Indeed if g ∈ L1
w(ν) is such that

fτ ≤ g ν-a.e. for all τ, then g ∈ L1
w(|x

∗
0ν|) is such that fτ ≤ g |x∗0ν|-a.e. for all τ,

and so f ≤ g |x∗0ν|-a.e. or equivalently ν-a.e. Moreover, since ‖ fτ‖ν ≤ ‖ f‖ν for all
τ, we have that ‖ f‖ν = supτ ‖ fτ‖ν. Therefore, L1

w(ν) has the Fatou property.

In particular, from Proposition 1, we have that L1
w(ν) has the Fatou property

for every vector measure ν defined on a σ-algebra.



3 Vector measure associated to an order continuous Banach

lattice

Let E be an order continuous Banach lattice. We will prove that there exists a vec-
tor measure ν defined on a δ-ring and with values in E, such that the space L1(ν)
of integrable functions with respect to ν is order isometric to E. More precisely,
the integration operator Iν : L1(ν) → E is an order isometry.

As it has been remarked in the Introduction, in the case when E has a weak
unit this result was proved in [2, Theorem 8] with ν defined in a σ-algebra. In the
general case, there is an outlined proof in [1, pp. 22-23]. For completeness, we
include in this paper a detailed proof.

In this section, we construct a vector measure ν for which we will see in Sec-
tion 4 that the order isometry works.

The key for constructing our vector measure is the following result of Linden-
strauss and Tzafriri [6, Proposition 1.a.9]: E can be decomposed into an uncondition-
ally direct sum of a family of mutually disjoints ideals {Eα}α∈∆, each Eα having a weak
unit. That is, every e ∈ E has a unique representation e = ∑α∈∆ eα with eα ∈ Eα, only
countably many eα 6= 0 and the series converging unconditionally.

Each Eα is an order continuous Banach lattice with a weak unit. Then, from [2,
Theorem 8], there is a σ-algebra Σα of subsets of an abstract set Ωα and a positive
vector measure να : Σα → Eα such that the integration operator Iνα : L1(να) → Eα

is an order isometry.
Consider the set Ω = ∪α∈∆

(

{α} × Ωα

)

, that is

Ω =
{

(α, ω) : α ∈ ∆ and ω ∈ Ωα

}

.

In a similar way, we denote ∪α∈∆{α} × Aα =
{

(α, ω) : α ∈ ∆ and ω ∈ Aα

}

,
where Aα ⊂ Ωα for all α ∈ ∆. For every Γ ⊂ ∆ we write ∪α∈Γ{α} × Aα =
∪α∈∆{α} × Aα whenever Aα = ∅ for all α ∈ ∆\Γ. Note that if An = ∪α∈∆{α} ×
An

α for n ≥ 1,

⋃

n≥1

An =
⋃

α∈∆

(

{α} ×
⋃

n≥1

An
α

)

and
⋂

n≥1

An =
⋃

α∈∆

(

{α} ×
⋂

n≥1

An
α

)

.

Also, if A = ∪α∈∆{α} × Aα and B = ∪α∈∆{α} × Bα,

A\B =
⋃

α∈∆

(

{α} × Aα\Bα

)

.

Then the family R of sets ∪α∈∆{α} × Aα satisfying that Aα ∈ Σα for all α ∈ ∆ and
there exists a finite set I ⊂ ∆ such that Aα is να-null for all α ∈ ∆\I, is a δ-ring of
subsets of Ω. Moreover,

Rloc =
{

∪α∈∆ {α} × Aα : Aα ∈ Σα for all α ∈ ∆
}

.

Indeed, given A ∈ Rloc, if we take Bα = {ω ∈ Ωα : (α, ω) ∈ A} we have that

A = ∪α∈∆{α} × Bα,



where {α} × Bα = A ∩ ({α} × Ωα) ∈ R (as {α} × Ωα ∈ R). So, Bα ∈ Σα.
Conversely, take A = ∪α∈∆{α} × Aα with Aα ∈ Σα for every α ∈ ∆. If B =

∪α∈∆{α} × Bα ∈ R,

A ∩ B =
⋃

α∈∆

(

{α} × Aα ∩ Bα

)

∈ R

and so A ∈ Rloc.
Let ν : R → E be the set function defined by

ν
(

∪α∈∆ {α} × Aα

)

= ∑
α∈∆

να(Aα).

Let us see that ν is a vector measure. Given An = ∪α∈∆{α} × An
α ∈ R for n ≥ 1

mutually disjoint sets such that ∪n≥1An ∈ R, we have that

⋃

n≥1

An =
⋃

α∈∆

(

{α} ×
⋃

n≥1

An
α

)

where
⋃

n≥1 An
α is a disjoint union for every α ∈ ∆ and there exists a finite set

I ⊂ ∆ such that
⋃

n≥1 An
α is να-null for all α ∈ ∆\I. Since for each α ∈ ∆ the sum

∑n≥1 να(An
α) converges to να(∪n≥1An

α) in Eα and so in E, then we have that

ν
(

⋃

n≥1

An

)

= ∑
α∈I

να

(

⋃

n≥1

An
α

)

= ∑
α∈I

∑
n≥1

να(An
α) = ∑

n≥1
∑
α∈I

να(An
α) = ∑

n≥1

ν(An).

Note that a set A = ∪α∈∆{α} × Aα ∈ Rloc is ν-null if and only if Aα is να-null for
all α ∈ ∆. Also note that ν is positive as every να is so.

Remark 2. Let f ∈ M(Rloc). For each α ∈ ∆, we denote by fα the function
fα : Ωα → R given by fα(ω) = f (α, ω) for all ω ∈ Ωα. Since for every Borel
set B on R we have that

f−1(B) = ∪α∈∆{α} × f−1
α (B) ∈ Rloc,

then f−1
α (B) ∈ Σα for each α ∈ ∆. Hence, fα ∈ M(Σα) for each α ∈ ∆. In partic-

ular, if ϕ = ∑
n
j=1 ajχAj

with Aj = ∪α∈∆{α} × A
j
α ∈ Rloc, then ϕα = ∑

n
j=1 ajχA

j
α
∈

S(Σα).

From now and on, fα will denote the functions defined in Remark 2 for some
function f ∈ M(Rloc). The following lemma will allow us to give useful descrip-
tions of the spaces L1(ν) and L1

w(ν) in next sections.

Lemma 3. Let f ∈ M(Rloc) and α ∈ ∆. Then,

a) f χ{α}×Ωα
∈ L1

w(ν) if and only if fα ∈ L1
w(να).

b) f χ{α}×Ωα
∈ L1(ν) if and only if fα ∈ L1(να). In this case

∫

f χ{α}×Ωα
dν =

∫

fα dνα.



Proof. Let x∗ ∈ E∗ and x∗α ∈ E∗
α be the restriction of x∗ to Eα. For each function

ϕ = ∑
n
j=1 ajχAj

∈ S(Rloc) with Aj = ∪β∈∆{β} × A
j
β, we have that ϕχ{α}×Ωα

=

∑
n
j=1 ajχ{α}×A

j
α
∈ S(R) and ϕα = ∑

n
j=1 ajχA

j
α
∈ S(Σα), then

∫

ϕχ{α}×Ωα
dx∗ν =

n

∑
j=1

ajx
∗ν({α} × A

j
α) =

n

∑
j=1

ajx
∗να(A

j
α)

=
n

∑
j=1

ajx
∗
ανα(A

j
α) =

∫

ϕα dx∗ανα.

It is routine to check that |x∗ν|({α} × Aα) = |x∗ανα|(Aα) for every Aα ∈ Σα. Then,
in a similar way as for x∗ν, we have that

∫

ϕχ{α}×Ωα
d|x∗ν| =

∫

ϕα d|x∗ανα|.

Let (ϕn)n≥1 ⊂ S(Rloc) be a sequence such that 0 ≤ ϕn ↑ | f | pointwise. Then,
0 ≤ ϕnχ{α}×Ωα

↑ | f |χ{α}×Ωα
and 0 ≤ (ϕn)α ↑ | fα| pointwise. Using the monotone

convergence theorem, we have that
∫

| f |χ{α}×Ωα
d|x∗ν| = lim

n→∞

∫

ϕnχ{α}×Ωα
d|x∗ν| (1)

= lim
n→∞

∫

(ϕn)α d|x∗ανα| =
∫

| fα| d|x∗ανα|.

Then, fα ∈ L1
w(να) implies f χ{α}×Ωα

∈ L1
w(ν).

Let now y∗ ∈ E∗
α and define ỹ∗ : E → R as ỹ∗(e) = y∗(eα) for e = ∑β∈∆ eβ.

Then, ỹ∗ ∈ E∗ and the restriction of ỹ∗ to Eα coincides with y∗. So, by (1),
∫

| fα| d|y∗να| =
∫

| f |χ{α}×Ωα
d|ỹ∗ν|.

Hence, f χ{α}×Ωα
∈ L1

w(ν) implies fα ∈ L1
w(να). Therefore, a) holds.

In the case when
∫

| f |χ{α}×Ωα
d|x∗ν| < ∞, that is, f χ{α}×Ωα

∈ L1(x∗ν), there

exists a sequence (ϕn)n≥1 ⊂ S(R) such that ϕn → f χ{α}×Ωα
in L1(x∗ν) and so

ϕnχ{α}×Ωα
→ f χ{α}×Ωα

in L1(x∗ν). Also, by (1), which holds for every function

in M(Rloc), we have that
∫

| fα − (ϕn)α| d|x∗ανα| =
∫

| f − ϕn|χ{α}×Ωα
d|x∗ν|, and

so (ϕn)α → fα in L1(x∗ανα). Hence,
∫

f χ{α}×Ωα
dx∗ν = lim

n→∞

∫

ϕnχ{α}×Ωα
dx∗ν (2)

= lim
n→∞

∫

(ϕn)α dx∗ανα =
∫

fα dx∗ανα.

Suppose that f χ{α}×Ωα
∈ L1(ν). In particular, f χ{α}×Ωα

∈ L1
w(ν) and so,

by a), fα ∈ L1
w(να). On other hand, taking a sequence (ϕn)n≥1 ⊂ S(R) such

that ϕn → f χ{α}×Ωα
in L1(ν) and so ϕnχ{α}×Ωα

→ f χ{α}×Ωα
in L1(ν), we have

that
∫

ϕnχ{α}×Ωα
dν converges to

∫

f χ{α}×Ωα
dν in E. Since

∫

ϕnχ{α}×Ωα
dν =

∫

(ϕn)α dνα ∈ Eα and Eα is closed in E, we have that
∫

f χ{α}×Ωα
dν ∈ Eα. Given

y∗ ∈ E∗
α and ỹ∗ ∈ E∗ defined as above, it follows

y∗
(

∫

f χ{α}×Ωα
dν

)

= ỹ∗
(

∫

f χ{α}×Ωα
dν

)

=
∫

f χ{α}×Ωα
dỹ∗ν =

∫

fα dy∗να,



where we have used (2) in the last equality. Hence, fα ∈ L1(να) and
∫

fα dνα =
∫

f χ{α}×Ωα
dν.

Suppose now that fα ∈ L1(να). In particular, fα ∈ L1
w(να) and so, by a),

f χ{α}×Ωα
∈ L1

w(ν). Since
∫

fα dνα ∈ Eα ⊂ E, for every x∗ ∈ E∗ we have that

x∗
(

∫

fα dνα

)

= x∗α

(

∫

fα dνα

)

=
∫

fα dx∗ανα =
∫

f χ{α}×Ωα
dx∗ν,

where x∗α ∈ E∗
α is the restriction of x∗ to Eα. Then, f χ{α}×Ωα

∈ L1(ν). Therefore,
b) holds.

4 Description of an order continuous Banach lattice as an L1(ν)

Let E be an order continuous Banach lattice and ν the associated vector measure
constructed in Section 3. Let us give a description of the space L1(ν) which will
be helpful to prove that E is order isometric to L1(ν).

Proposition 4. The space L1(ν) can be described as the space of all functions f ∈
M(Rloc) such that fα ∈ L1(να) for all α ∈ ∆ and ∑α∈∆

∫

| fα| dνα is uncondition-

ally convergent in E, where fα is defined as in Remark 2. Moreover, if f ∈ L1(ν) we have
that

∫

f dν = ∑
α∈∆

∫

fα dνα.

Proof. Let f ∈ L1(ν). Then, for every α ∈ ∆, we have that f χ{α}×Ωα
∈ L1(ν)

and so, by Lemma 3.b), fα ∈ L1(να). Let (ϕn)n≥1 ⊂ S(R) be a sequence such
that ϕn → f in L1(ν) and ν-a.e. Since each ϕn is supported in R, we can write
Supp ϕn = ∪α∈∆{α} × An

α where An
α is να-null for all α ∈ ∆\In with In ⊂ ∆ finite.

Then,

Supp f ⊂
⋃

n≥1

Supp ϕn =
⋃

n≥1

⋃

α∈∆

{α} × An
α =

⋃

α∈∆

{α} ×
(

⋃

n≥1

An
α

)

.

Note that ∪n≥1An
α is να-null for every α /∈ I = ∪n In. So, ∪α∈∆\I{α} ×

(

∪n≥1 An
α

)

is ν-null and thus
f = f χ∪α∈I{α}×(∪n≥1An

α) ν-a.e.

For every α ∈ ∆\I, from Lemma 3.b) and since f χ{α}×Ωα
= 0 ν-a.e., we have that

∫

| fα| dνα =
∫

| f |χ{α}×Ωα
dν = 0.

Write I = {αj}j≥1 and gn = ∑
n
j=1 | f |χ{αj}×Ωαj

. Note that 0 ≤ gn ↑ | f | ∈ L1(ν).

Then, since L1(ν) is order continuous, gn → | f | in L1(ν) and so

n

∑
j=1

∫

| fαj
| dναj

=
n

∑
j=1

∫

| f |χ{αj}×Ωαj
dν =

∫

gn dν →
∫

| f | dν in E.

Therefore, ∑α∈∆

∫

| fα| dνα is unconditionally convergent in E.



Conversely, let f ∈ M(Rloc) be a function such that fα ∈ L1(να) for all α ∈ ∆

and ∑α∈∆

∫

| fα| dνα is unconditionally convergent in E. From this and since να is
positive, we have that there exists a countable set N ⊂ ∆ such that

‖ fα‖να =
∥

∥

∥

∫

| fα| dνα

∥

∥

∥

E
= 0 for all α ∈ ∆\N.

That is, fα = 0 να-a.e. for all α ∈ ∆\N. So, for each α ∈ ∆\N, there exists a να-null
set Zα such that

fα(ω) = 0 for all ω ∈ Ωα\Zα.

Note that the set ∪α∈∆\N{α} × Zα ∈ Rloc is ν-null, then

f = ∑
α∈N

f χ{α}×Ωα
ν-a.e.

Write N = {αj}j≥1 and take fn = ∑
n
j=1 f χ{αj}×Ωαj

which belongs to L1(ν) from

Lemma 3.b). Then, for m < n,

‖ fn − fm‖ν =
∥

∥

∥

∫

| fn − fm| dν
∥

∥

∥

E

=
∥

∥

∥

n

∑
j=m+1

∫

| f |χ{αj}×Ωαj
dν

∥

∥

∥

E

=
∥

∥

∥

n

∑
j=m+1

∫

| fαj
| dναj

∥

∥

∥

E
→ 0

as m, n → ∞. Since fn → f ν-a.e., it follows that f ∈ L1(ν). Moreover, fn → f in
L1(ν), so

∫

f dν = lim
n

∫

fn dν = ∑
α∈∆

∫

fα dνα.

We go on now to show that L1(ν) and E are order isometric.

Theorem 5. The space L1(ν) is order isometric to E. Even more, the integration operator
Iν : L1(ν) → E is an order isometry.

Proof. The integration operator Iν : L1(ν) → E is a positive (as ν is positive) con-
tinuous linear operator satisfying that ‖Iν( f )‖E ≤ ‖ f‖ν = ‖Iν(| f |)‖E for every
f ∈ L1(ν). Let us see that Iν is an isometry. Fix f ∈ L1(ν). From Proposition 4, it
follows

‖ f‖ν =
∥

∥

∥

∫

| f | dν
∥

∥

∥

E
= sup

x∗∈BE∗

∣

∣

∣
x∗
(

∫

| f | dν
)
∣

∣

∣
(3)

= sup
x∗∈BE∗

∣

∣

∣
x∗
(

∑
α∈∆

∫

| fα| dνα

)
∣

∣

∣

= sup
x∗∈BE∗

∣

∣

∣ ∑
α∈∆

x∗
(

∫

| fα| dνα

)
∣

∣

∣
.



Let x∗ ∈ E∗. Note that x∗ ◦ Iνα ∈ L1(να)
∗ for all α ∈ ∆ (recall Iνα : L1(να) → Eα

is an order isometry). Taking ξα = χ{ fα≥0} − χ{ fα<0}, we define x̃∗ : E → R by

x̃∗(e) = ∑
α∈∆

x∗ ◦ Iνα

(

ξα I−1
να

(eα)
)

for all e ∈ E with e = ∑α∈∆ eα such that eα ∈ Eα and the sum is uncondition-
ally convergent. Let us see that x̃∗ is well defined and belongs to E∗. Take an
element e = ∑α∈∆ eα ∈ E as above. Then, |e| = ∑α∈∆ |eα| where the sum is also
unconditionally convergent. Let N ⊂ ∆ be a countable set such that eα = 0 for all
α ∈ ∆\N. Then, ξα I−1

να
(eα) = 0 and so x∗ ◦ Iνα

(

ξα I−1
να

(eα)
)

= 0 for all α ∈ ∆\N.
Writing N = {αj}j≥1 we have that

∣

∣

∣

m

∑
j=n

x∗ ◦ Iναj

(

ξαj
I−1
ναj

(eαj
)
)

∣

∣

∣
=

∣

∣

∣
x∗
( m

∑
j=n

Iναj

(

ξαj
I−1
ναj

(eαj
)
)

)
∣

∣

∣

≤ ‖x∗‖ ·
∥

∥

∥

m

∑
j=n

Iναj

(

ξαj
I−1
ναj

(eαj
)
)

∥

∥

∥

E
.

Note that, since Iνα is an order isometry, |Iνα(h)| = Iνα(|h|) for all h ∈ L1(να) and
Iνα(h̃) ≤ Iνα(h) whenever h̃ ≤ h ∈ L1(να) (the same holds for I−1

να
) . Then,

∣

∣

∣

m

∑
j=n

Iναj

(

ξαj
I−1
ναj

(eαj
)
)

∣

∣

∣
≤

m

∑
j=n

∣

∣Iναj

(

ξαj
I−1
ναj

(eαj
)
)
∣

∣

=
m

∑
j=n

Iναj

(

|ξαj
I−1
ναj

(eαj
)|
)

≤
m

∑
j=n

Iναj

(

|I−1
ναj

(eαj
)|
)

=
m

∑
j=n

Iναj

(

I−1
ναj

(|eαj
|)
)

=
m

∑
j=n

|eαj
|.

Therefore,

∣

∣

∣

m

∑
j=n

x∗ ◦ Iναj

(

ξαj
I−1
ναj

(eαj
)
)

∣

∣

∣
≤ ‖x∗‖ ·

∥

∥

∥

m

∑
j=n

|eαj
|
∥

∥

∥

E
→ 0

as n, m → ∞. So, x̃∗ is well defined, obviously linear and continuous as |x̃∗(e)| ≤
‖x∗‖ · ‖e‖E for all e ∈ E, that is, x̃∗ ∈ E∗ and ‖x̃∗‖ ≤ ‖x∗‖. Moreover,

x∗
(

∫

| fα| dνα

)

= x∗ ◦ Iνα(| fα|) = x∗ ◦ Iνα(ξα fα) = x∗ ◦ Iνα

(

ξα I−1
να

(

Iνα( fα)
))

for all α ∈ ∆. From Proposition 4, we have that Iν( f ) = ∑α∈∆ Iνα( fα) and so,

x̃∗
(

Iν( f )
)

= ∑
α∈∆

x∗ ◦ Iνα

(

ξα I−1
να

(

Iνα( fα)
))

= ∑
α∈∆

x∗
(

∫

| fα| dνα

)

.



Hence, we have proved that for every x∗ ∈ BE∗ there exists x̃∗ ∈ BE∗ such that

∑α∈∆ x∗
(

∫

| fα| dνα

)

= x̃∗
(

Iν( f )
)

. Then, from (3), ‖ f‖ν ≤ ‖Iν( f )‖E . Therefore, Iν

is a linear isometry.
Let us see now that Iν is onto. Let e = ∑α∈∆ eα ∈ E. Since each eα ∈ Eα, there

exists hα ∈ L1(να) such that eα = Iνα(hα). Define f : Ω → R by f (α, ω) = hα(ω)
for all (α, ω) ∈ Ω. Then, f ∈ M(Rloc) (as f−1(B) = ∪α∈∆{α} × h−1

α (B) for every
Borel set B on R), fα = hα ∈ L1(να) for all α ∈ ∆ and

∑
α∈∆

Iνα( fα) = ∑
α∈∆

Iνα(hα) = ∑
α∈∆

eα

is unconditionally convergent in E. So, by Proposition 4, we have that f ∈ L1(ν)
and Iν( f ) = ∑α∈∆ Iνα( fα) = e. Note that if e ≥ 0, that is, eα ≥ 0 for all α ∈ ∆, then
hα ≥ 0 for all α ∈ ∆ and so f ≥ 0. Hence, I−1

ν is positive.
So, Iν is positive, linear, one to one and onto with I−1

ν positive. Then, by
[6, p. 2], Iν is an order isomorphism.

Let us show an example of the representation as an L1(ν) of an order continu-
ous Banach lattice without weak unit. This example has been already studied in
[1, p. 23] and [4, Example 2.2].

Example 6. Consider an uncountable set Γ and the δ-ring R = {A ⊂ Γ : A is finite}.
The space ℓ1(Γ) is order continuous, so, by Theorem 5, ℓ1(Γ) is order isometric to
L1(ν) for some vector measure ν defined on a δ-ring, via the integration operator.
The vector measure ν : R → ℓ1(Γ) can be defined as ν(A) = ∑γ∈A eγ, where eγ is
the characteristic function of the point γ. In this case, the integration operator is
the identity map. Note that ℓ1(Γ) cannot be represented as L1(ν) with ν defined
on a σ-algebra, as it has no weak unit.

5 L1
w(ν) for ν associated to an order continuous Banach lattice

Until now, we have considered an order continuous Banach lattice E. If we for-
get about the order continuity property, descriptions of E by means of a vector
measure could exist. For instance, if E is a Banach lattice satisfying the σ-Fatou
property with a weak unit belonging to the σ-order continuous part Ea of E, then
there exists a vector measure ν defined on a σ-algebra such that E is order iso-
metric to L1

w(ν), see [3, Theorem 2.5]. In this reference, it is noted that in this case
Ea is also order continuous. Indeed, Ea is an ideal of E which is σ-complete as it
is σ-Fatou ([10, Theorem 113.1]). Then, Ea is also σ-complete and, as it is σ-order
continuous, it follows that it is order continuous ([6, Proposition 1.a.8]). The proof
of the representation of E as an L1

w(ν) consists in taking a vector measure ν such
that L1(ν) is order isometric to Ea via the integration operator Iν, and extending
Iν to L1

w(ν). The result is that this extension is an order isometry from L1
w(ν) onto

E. Our question now is if a similar result is possible if we forget about the weak
unit and consider vector measures defined on a δ-ring, as it happens in the case
when E is order continuous. For solving this question, we will need a description
of L1

w(ν) along the lines of Proposition 4.



Let E be again an order continuous Banach lattice and ν the associated vector
measure constructed in Section 3.

Proposition 7. The space L1
w(ν) can be described as the space of all functions f ∈

M(Rloc) such that fα ∈ L1
w(να) for all α ∈ ∆ and ∑α∈∆

∫

| fα| d|x∗να| converges for all

x∗ ∈ E∗, where fα is defined as in Remark 2. Moreover, if f ∈ L1
w(ν) and x∗ ∈ E∗, then

∫

f dx∗ν = ∑
α∈∆

∫

fα dx∗να and
∫

f d|x∗ν| = ∑
α∈∆

∫

fα d|x∗να|.

Proof. Let f ∈ L1
w(ν). Then, f χ{α}×Ωα

∈ L1
w(ν) and so, by Lemma 3.a), fα ∈

L1
w(να) for every α ∈ ∆. Take x∗ ∈ E∗. For every I ⊂ ∆ finite, by (1), we have that

∑
α∈I

∫

| fα| d|x∗να| = ∑
α∈I

∫

| f |χ{α}×Ωα
d|x∗ν|

=
∫

| f |χ∪α∈I{α}×Ωα
d|x∗ν| ≤ ‖x∗‖ · ‖ f‖ν.

So, ∑α∈∆

∫

| fα| d|x∗να| is convergent.

Conversely, let f ∈ M(Rloc) be such that fα ∈ L1
w(να) for all α ∈ ∆ and

∑α∈∆

∫

| fα| d|x∗να| converges for all x∗ ∈ E∗. Fix x∗ ∈ E∗. There exists a countable
set N ⊂ ∆ such that

∫

| fα| d|x∗να| = 0 for all α ∈ ∆\N.

Then, for every α ∈ ∆\N, there exists a |x∗να|-null set Zα such that

fα(ω) = 0 for all ω ∈ Ωα\Zα.

Noting that ∪α∈∆\N{α} × Zα is |x∗ν|-null, it follows

f = ∑
α∈N

f χ{α}×Ωα
|x∗ν|-a.e.

Write N = {αj}j≥1 and take fn = ∑
n
j=1 f χ{αj}×Ωαj

which, by Lemma 3.a), is in

L1
w(ν). Then, for m < n, by (1),

∫

| fn − fm| d|x∗ν| =
n

∑
j=m+1

∫

| f |χ{αj}×Ωαj
d|x∗ν| =

n

∑
j=m+1

∫

| fαj
| d|x∗ναj

| → 0

as m, n → ∞. Note that fn → f |x∗ν|-a.e. So, f ∈ L1(|x∗ν|) and fn → f in
L1(|x∗ν|). Therefore, f ∈ L1

w(ν) and, by (1) and (2),

∫

f dx∗ν = ∑
α∈∆

∫

fα dx∗να and
∫

f d|x∗ν| = ∑
α∈∆

∫

fα d|x∗να| for all x∗ ∈ E∗.

For the proof of our main result we will need the following fact which holds
for the vector measure ν associated to the order continuous Banach lattice E.



Proposition 8. The space L1
w(ν) has the Fatou property.

Proof. For every I ⊂ ∆ finite, consider ΩI = ∪α∈I{α} × Ωα and the σ-algebra
ΣI =

{

∪α∈I {α} × Aα : Aα ∈ Σα for all α ∈ I
}

of parts of ΩI . Note that ΩI ⊂ Ω

and ΣI ⊂ R. Denote by νI : ΣI → E the restriction of ν to ΣI . Since νI is a vector
measure defined on a σ-algebra, L1

w(νI) has the Fatou property, see Proposition 1.
For each f ∈ M(Rloc), denote by f I the function resulting from the restriction

of f to ΩI . Of course, f I ∈ M(ΣI). For every x∗ ∈ E∗, it follows
∫

| f I | d|x∗νI | =
∫

| f |χΩI
d|x∗ν|. (4)

Indeed, for every A ∈ ΣI we have that |x∗νI |(A) = |x∗ν|(A) and so it is routine
to check that (4) holds for f ∈ S(Rloc). For a general f the result follows by
applying the monotone convergence theorem. Then, for every f ∈ L1

w(ν) we
have that f χΩI

∈ L1
w(ν) and so f I ∈ L1

w(νI) with ‖ f I‖νI = ‖ f χΩI
‖ν. Note that if

Z is a ν-null set then Z ∩ ΩI is νI-null.
Let ( fτ)τ ⊂ L1

w(ν) be an upwards directed system 0 ≤ fτ ↑ ν-a.e. such that
supτ ‖ fτ‖ν < ∞. Then, ( f I

τ)τ ⊂ L1
w(νI) is an upwards directed system 0 ≤ f I

τ ↑

νI-a.e. and supτ ‖ f I
τ‖νI = supτ ‖ fτχΩI

‖ν ≤ supτ ‖ fτ‖ν < ∞. Since L1
w(νI) has the

Fatou property, there exists f I = supτ f I
τ in L1

w(νI) and ‖ f I‖νI = supτ ‖ f I
τ‖νI .

Now, from each I = {α} with α ∈ ∆, we construct the function f : Ω → R

given by f (α, ω) = f {α}(α, ω) for all (α, ω) ∈ Ω. Since f−1(B) = ∪α∈∆( f {α})−1(B)
for all Borel set B on R, we have that f ∈ M(Rloc). Noting that ∪α∈∆{α} × Zα is
ν-null whenever {α} × Zα is ν{α}-null for all α ∈ ∆, we have that f = supτ fτ . Let

us see that f ∈ L1
w(ν) by using the characterization of Proposition 7. For every

α ∈ ∆ and y∗ ∈ E∗
α , taking ỹ∗ ∈ E∗ defined as ỹ∗(e) = y∗(eα) for e = ∑α∈∆ eα, by

(1) and (4), we have that
∫

| fα| d|y∗να| =
∫

| f |χΩ{α}
d|ỹ∗ν| =

∫

| f {α}| d|ỹ∗ν{α}| < ∞.

So, fα ∈ L1
w(να). Moreover, given x∗ ∈ E∗, for every I ⊂ ∆ finite,

∑
α∈I

∫

| fα| d|x∗να| = ∑
α∈I

∫

| f |χΩ{α}
d|x∗ν| =

∫

| f |χΩI
d|x∗ν|

=
∫

| f I | d|x∗νI | ≤ ‖ f I‖νI ≤ sup
τ

‖ fτ‖ν < ∞.

Then ∑α∈I

∫

| fα| d|x∗να| converges and so f ∈ L1
w(ν). Moreover,

∫

| f | d|x∗ν| = ∑
α∈∆

∫

| fα| d|x∗να| ≤ sup
τ

‖ fτ‖ν.

Hence, ‖ f‖ν ≤ supτ ‖ fτ‖ν. The equality follows, as ‖ fτ‖ ≤ ‖ f‖ν for all τ.

Note that for the proof of Proposition 8 the fact that Ω is an uncountable dis-
joint union of sets in R and also the way as the δ-ring R is defined are crucial.
So, L1

w(ν) has the Fatou property for the particular vector measure ν constructed
in Section 3. But, has L1

w(ν) the Fatou property for every vector measure ν de-
fined on a δ-ring? In the case when ν is σ-finite, the answer is yes (Proposition 1),
however for the general case this is an open question.



6 Description of a Banach lattice as an L1
w(ν)

Let E be now a general Banach lattice. We always can consider the order continu-
ous part Ean of E. Then, we can take the vector measure ν associated to Ean as in
Section 3, and so, by Theorem 5, Iν : L1(ν) → Ean is an order isometry. The ques-
tion is if it is possible to extend Iν to the space L1

w(ν) in a way that the extension
is an order isometry between L1

w(ν) and E. Note that if this extension is possible,
by Proposition 8, E must have the Fatou property. So, we will require E to have
this property. In this case, E has the σ-Fatou property and then Ean = Ea, as we
said at the beginning of Section 5.

In order to prove the desired result, we will need the next Lemma. Recall that
the order continuous part Ea of E can be decomposed into an unconditionally
direct sum of a family of mutually disjoints ideals {E α

a }α∈∆, each E α
a having a

weak unit uα (see Section 3).

Lemma 9. Suppose that Ea is order dense in E. Then, for every 0 ≤ e ∈ E it follows

e(n,I) = ∑
α∈I

e ∧ (nuα) ↑ e (5)

where the indices (n, I) are such that n ∈ N and I ⊂ ∆ is finite. Moreover, in the case
when 0 ≤ e ∈ Ea, there exists a countable set {αj} ⊂ ∆ such that e ∧ (nuα) = 0 for all
n and α ∈ ∆\{αj}, and

e = lim
n,m

m

∑
j=1

e ∧ (nuαj
) in norm. (6)

Proof. Let 0 ≤ e ∈ E and e(n,I) as in (5). Then 0 ≤ e(n,I) ↑ and e(n,I) ≤ e for all

(n, I). Note that {nuα : α ∈ ∆} is a set of pairwise disjoint elements, so

e(n,I) = ∑
α∈I

e ∧ (nuα) = e ∧
(

∑
α∈I

nuα

)

(7)

(see [7, Theorem 12.5]). Let z ∈ E be such that e(n,I) ≤ z for all (n, I). Let us

see that e ≤ z. Suppose first that e ∈ Ea and write e = ∑j≥1 eαj
where eαj

∈ E
αj
a

and the series converges unconditionally. Note that, since e ≥ 0 and {eαj
} is a

set of pairwise disjoint elements, eαj
≥ 0 for every j. Then ∑

m
j=1 eαj

↑ e in the

lattice order (see [10, Theorem 100.4.(i)]). For a fix j we have that eαj
∧ (nuαj

) ↑ eαj

(see [6, pp. 7-8]). Then, for each m it follows that ∑
m
j=1 eαj

∧ (nuαj
) ↑ ∑

m
j=1 eαj

(see

[7, Theorem 15.2]). Since eαj
≤ e for all j, taking Im = {α1, ..., αm} we have that

∑
m
j=1 eαj

∧ (nuαj
) ≤ e(n,Im) ≤ z for all n and so ∑

m
j=1 eαj

≤ z. Hence e ≤ z. Note

that actually we have proved that ∑
m
j=1 e ∧ (nuαj

) ↑ e where the indices are (n, m).

Then, by the order continuity of Ean, it follows that e = limn,m ∑
m
j=1 e ∧ (nuαj

) in

norm. Hence, (5) and (6) hold if e ∈ Ea.
In the general case, since Ea is order dense in E, there exists (eτ) ⊂ Ea such

that 0 ≤ eτ ↑ e. We now know that ∑α∈I eτ ∧ (nuα) ↑ eτ for every τ. Then, since

∑α∈I eτ ∧ (nuα) ≤ e(n,I) ≤ z, we have that eτ ≤ z for every τ, and so e ≤ z.



Now we can prove our main result by using Lemma 9.

Theorem 10. If E has the Fatou property and Ea is order dense in E, then E is order
isometric to L1

w(ν).

Proof. Let us extend Iν to L1
w(ν). First, consider 0 ≤ f ∈ L1

w(ν) and choose
(ϕn)n≥1 ⊂ S(Rloc) such that 0 ≤ ϕn ↑ f . For each n ≥ 1 and I ⊂ ∆ fi-
nite, we define ξ(n,I) = ϕnχ∪α∈I{α}×Ωα

∈ S(R). Then, (ξ(n,I))(n,I) ⊂ L1(ν) is

an upwards directed system 0 ≤ ξ(n,I) ↑ f in L1
w(ν) and so, since Iν is positive,

(Iν(ξ(n,I)))(n,I) ⊂ Ea ⊂ E is an upwards directed system 0 ≤ Iν(ξ(n,I)) ↑ and

sup(n,I) ‖Iν(ξ(n,I))‖E = sup(n,I) ‖ξ(n,I)‖ν ≤ ‖ f‖ν < ∞. Then, by the Fatou prop-

erty of E, there exists e = sup(n,I) Iν(ξ(n,I)) in E and ‖e‖E = sup(n,I) ‖Iν(ξ(n,I)‖E.

We define T( f ) = e.
Using an argument similar to the one in [3, Theorem 2.5], we will see that T

is well defined. Take another sequence (ψn)n≥1 ⊂ S(Rloc) such that 0 ≤ ψn ↑
f . Denote η(n,I) = ψnχ∪α∈I{α}×Ωα

and z = sup(n,I) Iν(η(n,I)). Let 0 ≤ x∗ ∈ E∗

be fixed. Then, x∗(e) ≥ x∗
(

Iν(ξ(n,I))
)

=
∫

ξ(n,I) dx∗ν for all n ≥ 1 and I ⊂ ∆

finite. It can be proved that also 0 ≤ ξ(n,I) ↑ f in L1(x∗ν), since L1(x∗ν) has

the Fatou property, we have that sup(n,I)

∫

ξ(n,I) dx∗ν =
∫

f dx∗ν. Consequently,

x∗(e) ≥
∫

f dx∗ν ≥ x∗
(

Iν(ξ(n,I))
)

for all n ≥ 1 and I ⊂ ∆ finite. In a similar

way, x∗(z) ≥
∫

f dx∗ν ≥ x∗
(

Iν(η(n,I))
)

for all n ≥ 1 and I ⊂ ∆ finite. Then, it

follows that x∗(e) ≥ x∗
(

Iν(η(n,I))
)

and x∗(z) ≥ x∗
(

Iν(ξ(n,I))
)

for all n ≥ 1 and

I ⊂ ∆ finite. Since this holds for all 0 ≤ x∗ ∈ E∗, we have that e ≥ Iν(η(n,I)) and

z ≥ Iν(ξ(n,I)) for all n ≥ 1 and I ⊂ ∆ finite. Then, e ≥ z and z ≥ e, and thus e = z.
So, T is well defined. Moreover,

‖T( f )‖E = ‖e‖E = sup
(n,I)

‖Iν(ξ(n,I))‖E = sup
(n,I)

‖ξ(n,I)‖ν = ‖ f‖ν,

where in the last equality we have used that L1
w(ν) has the Fatou property (see

Proposition 8). Let us see now that T( f ∧ g) = T f ∧ Tg for every 0 ≤ f , g ∈
L1

w(ν). Consider sequences (ϕn)n≥1, (ψn)n≥1 ⊂ S(Rloc) satisfying that 0 ≤ ϕn ↑ f
and 0 ≤ ψn ↑ g, and denote ξ(n,I) = ϕnχ∪α∈I{α}×Ωα

and η(n,I) = ψnχ∪α∈I{α}×Ωα
.

Then, T f = sup(n,I) Iν(ξ(n,I)) and Tg = sup(n,I) Iν(η(n,I)). Note that (ϕn ∧ ψn)n≥1

which is contained in S(Rloc), satisfies that 0 ≤ ϕn ∧ ψn ↑ f ∧ g (see [7, Theorem
15.3]) and also (ϕn ∧ ψn)χ{α}×Ωα

= (ξ(n,I) ∧ η(n,I))(n,I). Then, since Iν is an order
isometry, we have that

T( f ∧ g) = sup
(n,I)

Iν(ξ(n,I) ∧ η(n,I)) = sup
(n,I)

Iν(ξ(n,I)) ∧ Iν(η(n,I)) = T f ∧ Tg.

For a general f ∈ L1
w(ν), we define T f = T f+ − T f− where f+ and f− are

the positive and negative parts of f respectively. So, T : L1
w(ν) → E is a positive

linear operator extending Iν. For the linearity, see for instance [7, Theorem 15.8].
Moreover T is an isometry. Indeed, for f ∈ L1

w(ν) , since f+ ∧ f− = 0, we have
that T f+ ∧ T f− = T( f+ ∧ f−) = 0. Then, it follows that |T f | = |T f+ − T f−| =
T f+ + T f− = T| f |, and so, ‖T( f )‖E = ‖T(| f |)‖E = ‖ f‖ν.



Let us prove that T is onto. Let 0 ≤ e ∈ E. Since Ea is order dense in E,
from Lemma 9 we have that e(n,I) = ∑α∈I e ∧ (nuα) ↑ e. Fix n and β ∈ ∆. Since

e ∧ (nuβ) ∈ E
β
a as 0 ≤ e ∧ (nuβ) ≤ nuβ, there exists 0 ≤ gn,β ∈ L1(νβ) such that

e ∧ (nuβ) = Iνβ
(gn,β). Define fn,β : Ω → R by fn,β(α, ω) = gn,β(ω) if α = β and

fn,β(α, ω) = 0 in other case. Then, from Proposition 4, we have that fn,β ∈ L1(ν)

and Iν( fn,β) = Iνβ
(gn,β) = e ∧ (nuβ). Taking ξ(n,I) = ∑α∈I fn,α ∈ L1(ν), we have

that 0 ≤ ξ(n,I) ↑ as ξ(n,I) = I−1
ν (e(n,I)) and sup(n,I) ‖ξ(n,I)‖ν = sup(n,I) ‖e(n,I)‖E ≤

‖e‖E. By the Fatou property of L1
w(ν), there exists f = sup(n,I) ξ(n,I) in L1

w(ν).

If we prove that x∗(e) ≥
∫

f dx∗ν for all 0 ≤ x∗ ∈ X∗, by the same argu-
ment used to see that T is well defined, we will have that T f = e. Fix α ∈ ∆,
since 0 ≤ ξ(n,I) ↑ f in L1

w(ν), it follows that 0 ≤ ξ(n,I)χ{α}×Ωα
↑ f χ{α}×Ωα

in

L1
w(ν). Since ξ(n,I)χ{α}×Ωα

= ∑β∈I fn,βχ{α}×Ωα
= fn,αχ{α}×Ωα

, actually we deal
with a sequence. Writing hα

n = fn,αχ{α}×Ωα
, we have that 0 ≤ hα

n ↑ f χ{α}×Ωα

in L1
w(ν) and so ν-a.e. Fix now 0 ≤ x∗ ∈ X∗. Since hα

n ↑ f χ{α}×Ωα
x∗ν-a.e., ap-

plying the dominated convergence theorem (see [8, Theorem 2.22]), we have that
∫

f χ{α}×Ωα
dx∗ν = lim

∫

hα
n dx∗ν. Noting that

∫

hα
n dx∗ν = x∗ Iν( fn,αχ{α}×Ωα

) ≤
x∗ Iν( fn,α) = x∗(e ∧ (nuα)), we obtain that

∑
α∈I

∫

f χ{α}×Ωα
dx∗ν = lim ∑

α∈I

∫

hα
n dx∗ν ≤ lim ∑

α∈I

x∗
(

e ∧ (nuα)
)

= lim x∗(e(n,I)) ≤ x∗(e)

for all finite I ⊂ ∆. Therefore, by the description of L1
w(ν) given in Proposition 7

and (2),
∫

f dx∗ν = ∑
α∈∆

∫

f χ{α}×Ωα
dx∗ν ≤ x∗(e).

For a general e ∈ E, consider e+ and e− the positive and negative parts of e. Let
g, h ∈ L1

w(ν) be such that Tg = e+ and Th = e−. Then, taking f = g − h ∈ L1
w(ν)

we have that T f = e. Note that T−1 is positive. So, T is positive, linear, one
to one and onto with inverse being positive, then T is an order isomorphism
(see [6, p. 2]).

Note that in the first lines of the proof of Theorem 10, we have seen that L1(ν)
is order dense in L1

w(ν). So, the conditions required in this theorem are necessary
and sufficient for the extension of Iν : L1(ν) → Ea to L1

w(ν) to be possible in the
desired way.

Finally, note that Theorem 10 generalizes [3, Theorem 2.5] where every Ba-
nach lattice E with the σ-Fatou property having a weak unit belonging to Ea is
represented by means of spaces L1

w for a vector measure defined on a σ-algebra.
Indeed, in this case, E has actually the Fatou property and Ea is order dense in E.

We end by showing two examples of the representation of Banach lattices as
L1

w(ν) spaces.

Example 11. Consider an uncountable set Γ and the δ-ring
R = {A ⊂ Γ : A is finite}. The space ℓ∞(Γ) has the Fatou property and its
σ-order continuous part c0(Γ) is order dense. Then, from Theorem 10, ℓ∞(Γ) is



order isometric to L1
w(ν) for some vector measure ν defined on a δ-ring. The vec-

tor measure ν : R → c0(Γ) can be defined as in Example 6 and in this case, the
order isometry is the identity map, see [4, Example 2.2]. Note that ℓ∞(Γ) cannot
be represented as L1

w(ν) with ν defined on a σ-algebra, as its σ-order continuous
part has no weak unit.

Example 12. Also, we can find Banach lattices without weak unit satisfying the re-
quirements of Theorem 10. Let Γ and ∆ be disjoint uncountable sets and consider
the Banach lattice ℓ1(Γ) × ℓ∞(∆) endowed with the norm ‖(x, y)‖ = ‖x‖ℓ1(Γ) +

‖y‖ℓ∞(∆) and the order (x, y) ≤ (x̃, ỹ) if and only if x ≤ x̃ and y ≤ ỹ for x, x̃ ∈

ℓ1(Γ) and y, ỹ ∈ ℓ∞(∆). This space has the Fatou property and its σ-order con-
tinuous part ℓ1(Γ) × c0(∆) is order dense. In this case, taking the δ-ring R =
{A ⊂ Γ ∪ ∆ : A is finite}, the vector measure ν : R → ℓ1(Γ) × c0(∆) can be
defined as ν(A) =

(

ν1(A ∩ Γ), ν2(A ∩ ∆)
)

for all A ∈ R, where ν1 and ν2 are
the vector measures defined in Example 6 and Example 11 respectively. Indeed,
(

ℓ1(Γ) × c0(∆)
)∗

is identified with
(

ℓ1(Γ)
)∗

×
(

c0(∆)
)∗

in the way x∗ = (x∗1 , x∗2)

such that x∗(a, b) = x∗1(a) + x∗2(b) for all (a, b) ∈ ℓ1(Γ)× c0(∆) and with ‖x∗‖ =
max{‖x∗1‖, ‖x∗2‖}. So, x∗ν(A) = x∗1ν1(A ∩ Γ) + x∗2ν2(A ∩ ∆) for all A ∈ R and
thus

|x∗ν|(B) = |x∗1ν1|(B ∩ Γ) + |x∗2ν2|(B ∩ ∆) for all B ∈ Rloc.

Then, for every f ∈ M(Rloc) we have that
∫

| f | d|x∗ν| =
∫

| f |χΓ d|x∗1ν1|+
∫

| f |χ∆ d|x∗2ν2|.

Noting that L1
w(ν1) × L1

w(ν2) = ℓ1(Γ) × ℓ∞(∆) isometrically, it follows that the
operator T : L1

w(ν) → ℓ1(Γ) × ℓ∞(∆), defined by T f = ( f χΓ, f χ∆) for all f ∈
L1

w(ν), is an order isometry. Note that T restricted to L1(ν) is the integration
operator Iν which is an order isometry between L1(ν) and ℓ1(Γ)× c0(∆).
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