Representation of Banach lattices as L_{w}^{1} spaces of a vector measure defined on a δ-ring

O. Delgado* M. A. Juan ${ }^{\dagger}$

Abstract

In this paper we prove that every Banach lattice having the Fatou property and having its σ-order continuous part as an order dense subset, can be represented as the space $L_{w}^{1}(v)$ of weakly integrable functions with respect to some vector measure v defined on a δ-ring.

1 Introduction

The interplay among the properties of a vector measure v, its range and its integration operator allows us to understand the behavior of the space $L^{1}(v)$ of integrable functions with respect to v. This makes desirable to know which spaces can be described as such L^{1} spaces. In [2, Theorem 8], Curbera proves that every order continuous Banach lattice E with a weak unit is order isometric to a space $L^{1}(v)$ where v is a vector measure defined on a σ-algebra. The result remains true if E has not a weak unit but for v defined on a δ-ring. This was stated in [1, pp. 2223] but the proof there is just outlined. We present here a proof of this fact in full detail. Note that the differences between the integration theory with respect to vector measures on σ-algebras and the integration theory with respect to vector measures on δ-rings are significant. For instance, bounded functions are always integrable for the first one while they are not necessarily integrable for the second one.

[^0]Associated to v there is another interesting space whose properties can be studied through the properties of v. Namely, the space $L_{w}^{1}(v)$ of weakly integrable functions. In [3, Theorem 2.5], Curbera and Ricker show that every Banach lattice E satisfying the σ-Fatou property and with a weak unit belonging to the σ-order continuous part E_{a} of E is order isometric to a space $L_{w}^{1}(v)$ for a vector measure v defined on a σ-algebra. The aim of this paper is to prove the corresponding result in the case when E has not a weak unit by using a vector measure defined on a δ-ring.

Given an order continuous Banach lattice E, Section 3 is devoted to the construction of a vector measure v defined on a δ-ring associated to E. In Section 4, we show that $L^{1}(v)$ is order isometric to E via the integration operator. This fact is the starting point for proving our main result in Section 6, namely, every Banach lattice E with the Fatou property such that its σ-order continuous part E_{a} is order dense in E is order isometric to the L_{w}^{1} space of the vector measure associated to E_{a} which in this case is also order continuous. This L_{w}^{1} space is studied first in Section 5. We end with two examples of Banach lattices which can be represented as $L_{w}^{1}(v)$ with v defined on a δ-ring, but cannot be represented in the same way for any vector measure defined on a σ-algebra.

2 Preliminaries

2.1 Banach lattices.

Let E be a Banach lattice with norm $\|\cdot\|$ and order \leq. A weak unit of E is an element $0 \leq e \in E$ such that $x \wedge e=0$ implies $x=0$. A closed subspace F of E is an ideal of E if $y \in F$ whenever $y \in E$ with $|y| \leq|x|$ for some $x \in F$. An ideal F in E is said to be order dense if for every $0 \leq x \in E$ there exists an upwards directed system $0 \leq x_{\tau} \uparrow x$ such that $\left(x_{\tau}\right)_{\tau} \subset F$. We will say that E has the Fatou property if for every $\left(x_{\tau}\right)_{\tau} \subset E$ upwards directed system $0 \leq x_{\tau} \uparrow$ such that $\sup _{\tau}\left\|x_{\tau}\right\|<\infty$ it follows that there exists $x=\sup _{\tau} x_{\tau}$ in E and $\|x\|=\sup _{\tau}\left\|x_{\tau}\right\|$. We will say that E has the σ-Fatou property if for every $\left(x_{n}\right)_{n \geq 1} \subset E$ increasing sequence $0 \leq x_{n} \uparrow$ such that $\sup _{n \geq 1}\left\|x_{n}\right\|<\infty$ it follows that there exists $x=\sup _{n \geq 1} x_{n}$ in E and $\|x\|=\sup _{n \geq 1}\left\|x_{n}\right\|$. The Banach lattice E is order continuous if for every $\left(x_{\tau}\right)_{\tau} \subset E$ downwards directed system $x_{\tau} \downarrow 0$ it follows that $\left\|x_{\tau}\right\| \downarrow 0$. If $\left\|x_{n}\right\| \downarrow 0$ for any $\left(x_{n}\right)_{n \geq 1} \subset E$ decreasing sequence $x_{n} \downarrow 0$, then E is said to be σ-order continuous. We call order continuous part $E_{a n}$ of E to the largest order continuous ideal in E. It can be described as

$$
E_{a n}=\left\{x \in E:|x| \geq x_{\tau} \downarrow 0 \text { implies }\left\|x_{\tau}\right\| \downarrow 0\right\} .
$$

Similarly, the σ-order continuous part E_{a} of E is the largest σ-order continuous ideal in E, which can be described as

$$
E_{a}=\left\{x \in E:|x| \geq x_{n} \downarrow 0 \text { implies }\left\|x_{n}\right\| \downarrow 0\right\} .
$$

The Banach lattice E is said to be σ-complete if every order bounded sequence has a supremum.

An operator $T: E \rightarrow F$ between Banach lattices is said to be an order isometry if it is a linear isometry which is also an order isomorphism, that is, T is linear, one to one, onto, $\|T x\|_{F}=\|x\|_{E}$ for all $x \in E$ and $T(x \wedge y)=T x \wedge T y$ for all $x, y \in E$.

For these and other issues related to Banach lattices, see for instance [6], [7] and [10].

2.2 Integration with respect to vector measures on δ-rings.

This integration theory is due to Lewis [5] and Masani and Niemi [8], [9]. See also [4].

Let \mathcal{R} be a δ-ring of subsets of an abstract set Ω (i.e. a ring of sets closed under countable intersections). Associated to \mathcal{R} we have the σ-algebra $\mathcal{R}^{\text {loc }}$ of subsets A of Ω such that $A \cap B \in \mathcal{R}$ for every $B \in \mathcal{R}$. The space of measurable real functions on $\left(\Omega, \mathcal{R}^{l o c}\right)$ will be denoted by $\mathcal{M}\left(\mathcal{R}^{l o c}\right)$ and the space of simple functions by $\mathcal{S}\left(\mathcal{R}^{l o c}\right)$. A special role will be played by the simple functions based on \mathcal{R}. The space of these functions will be denoted by $\mathcal{S}(\mathcal{R})$.

Let $\lambda: \mathcal{R} \rightarrow \mathbb{R}$ be a countably additive measure, that is, $\sum_{n \geq 1} \lambda\left(A_{n}\right)$ converges to $\lambda\left(\cup_{n \geq 1} A_{n}\right)$ whenever $\left(A_{n}\right)_{n \geq 1}$ are pairwise disjoint sets in \mathcal{R} with $\cup_{n \geq 1} A_{n} \in$ \mathcal{R}. The variation of λ is the countably additive measure $|\lambda|: \mathcal{R}^{l o c} \rightarrow[0, \infty]$ given by

$$
|\lambda|(A)=\sup \left\{\sum\left|\lambda\left(A_{i}\right)\right|:\left(A_{i}\right) \text { finite disjoint sequence in } \mathcal{R} \cap 2^{A}\right\} .
$$

The space $L^{1}(\lambda)$ of integrable functions with respect to λ is defined just as $L^{1}(|\lambda|)$ with the same norm. The space $\mathcal{S}(\mathcal{R})$ is dense in $L^{1}(\lambda)$. For each $\varphi=\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \in \mathcal{S}(\mathcal{R})$, the integral of φ with respect to λ is defined as usual, $\int \varphi d \lambda=\sum_{i=1}^{n} \alpha_{i} \lambda\left(A_{i}\right)$. For every $f \in L^{1}(\lambda)$, the integral of f with respect to λ is defined as $\int f d \lambda=\lim _{n \rightarrow \infty} \int \varphi_{n} d \lambda$ for any sequence $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}(\mathcal{R})$ converging to f in $L^{1}(\lambda)$.

Let $v: \mathcal{R} \rightarrow X$ be a vector measure with values in a real Banach space X, that is, $\sum_{n \geq 1} v\left(A_{n}\right)$ converges to $v\left(\cup_{n \geq 1} A_{n}\right)$ in X whenever $\left(A_{n}\right)_{n \geq 1}$ are pairwise disjoint sets in \mathcal{R} with $\cup_{n \geq 1} A_{n} \in \mathcal{R}$. Denoting by X^{*} the dual space of X and by $B_{X^{*}}$ the unit ball of X^{*}, the semivariation of v is the map $\|v\|: \mathcal{R}^{l o c} \rightarrow[0, \infty]$ given by $\|v\|(A)=\sup \left\{\left|x^{*} v\right|(A): x^{*} \in B_{X^{*}}\right\}$ for all $A \in \mathcal{R}^{l o c}$, where $\left|x^{*} v\right|$ is the variation of the measure $x^{*} v: \mathcal{R} \rightarrow \mathbb{R}$. A set $B \in \mathcal{R}^{\text {loc }}$ is v-null if $\|v\|(B)=0$. A property holds v-almost everywhere (v-a.e.) if it holds except on a v-null set.

We will denote by $L_{w}^{1}(v)$ the space of functions in $\mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$ which are integrable with respect to $\left|x^{*} v\right|$ for all $x^{*} \in X^{*}$. Functions which are equal v-a.e. are identified. The space $L_{w}^{1}(v)$ is a Banach space with the norm

$$
\|f\|_{v}=\sup \left\{\int|f| d\left|x^{*} v\right|: x^{*} \in B_{X^{*}}\right\}
$$

Moreover, it is a Banach lattice having the σ-Fatou property for the v-a.e. pointwise order and it is an ideal of measurable functions, that is, if $|f| \leq|g| v$-a.e. with $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)$ and $g \in L_{w}^{1}(v)$, then $f \in L_{w}^{1}(v)$. Also, note that convergence in norm of a sequence implies v-a.e. convergence of some subsequence. A function
$f \in L_{w}^{1}(v)$ is integrable with respect to v if for each $A \in \mathcal{R}^{\text {loc }}$ there exists a vector denoted by $\int_{A} f d v \in X$, such that

$$
x^{*}\left(\int_{A} f d v\right)=\int_{A} f d x^{*} v \text { for all } x^{*} \in X^{*} .
$$

We will write $\int f d v$ for $\int_{\Omega} f d v$. We will denote by $L^{1}(v)$ the space of integrable functions with respect to v. It is an order continuous Banach lattice when endowed with the norm and the order structure of $L_{w}^{1}(v)$. Even more, it is an ideal of measurable functions and so an ideal of $L_{w}^{1}(v)$. Note that if $\varphi=\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \in$ $\mathcal{S}(\mathcal{R})$ then $\varphi \in L^{1}(v)$ with $\int_{A} \varphi d v=\sum_{i=1}^{n} a_{i} v\left(A_{i} \cap A\right)$ for all $A \in \mathcal{R}^{l o c}$. The space $\mathcal{S}(\mathcal{R})$ is dense in $L^{1}(v)$. The integration operator $I_{v}: L^{1}(v) \rightarrow X$ given by $I_{v}(f)=\int f d v$ is linear and continuous with $\left\|I_{v}(f)\right\| \leq\|f\|_{v}$.

A vector measure $v: \mathcal{R} \rightarrow E$ with values in a Banach lattice E is positive if $v(A) \geq 0$ for all $A \in \mathcal{R}$. In this case, the integration operator $I_{v}: L^{1}(v) \rightarrow E$ is positive (i.e. $I_{v}(f) \geq 0$ whenever $0 \leq f \in L^{1}(v)$) and it can be checked that $\|f\|_{v}=\left\|I_{v}(|f|)\right\|$ for all $f \in L^{1}(v)$.

We know that the space $L_{w}^{1}(v)$ has the σ-Fatou property for every vector measure $v: \mathcal{R} \rightarrow X$, but what about the Fatou property? The following proposition, which will be needed later on, gives a sufficient condition for $L_{w}^{1}(v)$ to have the Fatou property.

Proposition 1. If $v: \mathcal{R} \rightarrow X$ is a σ-finite vector measure, that is, there exists a sequence $\left(A_{n}\right)_{n \geq 1} \subset \mathcal{R}$ and a v-null set $N \in \mathcal{R}^{l o c}$ such that $\Omega=\left(\cup_{n \geq 1} A_{n}\right) \cup N$, then $L_{w}^{1}(v)$ has the Fatou property.

Proof. Let $v: \mathcal{R} \rightarrow X$ be a σ-finite vector measure. Then, by [4, Remark 3.4], there exists $x_{0}^{*} \in B_{X^{*}}$ such that $\left|x_{0}^{*} v\right|$ is a local control measure for v, that is, $\left|x_{0}^{*} v\right|$ has the same null sets as v.

Let $\left(f_{\tau}\right)_{\tau} \subset L_{w}^{1}(v)$ be such that $0 \leq f_{\tau} \uparrow v$-a.e. and $\sup _{\tau}\left\|f_{\tau}\right\|_{v}<\infty$. Then, $0 \leq f_{\tau} \uparrow\left|x_{0}^{*} v\right|$-a.e. and $\sup _{\tau} \int f_{\tau} d\left|x_{0}^{*} v\right| \leq \sup _{\tau}\left\|f_{\tau}\right\|_{v}<\infty$. Since $L^{1}\left(x_{0}^{*} v\right)$ has the Fatou property, there exists $f=\sup _{\tau} f_{\tau}$ in $L^{1}\left(x_{0}^{*} v\right)$. On the other hand $L^{1}\left(x_{0}^{*} v\right)$ is order separable, so we can take a sequence $f_{\tau_{n}} \uparrow f$ in $L^{1}\left(x_{0}^{*} v\right)$. Then, $f_{\tau_{n}} \uparrow f\left|x_{0}^{*} v\right|-$ a.e. (equivalently v-a.e.) and so $\left|x^{*} v\right|$-a.e. for all $x^{*} \in X^{*}$. By using the monotone convergence theorem, we have that

$$
\int|f| d\left|x^{*} v\right|=\lim _{n} \int\left|f_{\tau_{n}}\right| d\left|x^{*} \nu\right| \leq\left\|x^{*}\right\| \cdot \sup _{\tau}\left\|f_{\tau}\right\|_{\nu}<\infty,
$$

and so $f \in L^{1}\left(x^{*} v\right)$ for all $x^{*} \in X^{*}$. Hence, $f \in L_{w}^{1}(v)$ and $\|f\|_{v} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{v}$.
Since the $\left|x_{0}^{*} v\right|$-a.e. pointwise order coincides with the v-a.e. one and $0 \leq f_{\tau} \uparrow$ f in $L^{1}\left(\left|x_{0}^{*} v\right|\right)$, it follows that $0 \leq f_{\tau} \uparrow f$ in $L_{w}^{1}(v)$. Indeed if $g \in L_{w}^{1}(v)$ is such that $f_{\tau} \leq g v$-a.e. for all τ, then $g \in L_{w}^{1}\left(\left|x_{0}^{*} v\right|\right)$ is such that $f_{\tau} \leq g\left|x_{0}^{*} v\right|$-a.e. for all τ, and so $f \leq g\left|x_{0}^{*} v\right|$-a.e. or equivalently v-a.e. Moreover, since $\left\|f_{\tau}\right\|_{v} \leq\|f\|_{\nu}$ for all τ, we have that $\|f\|_{v}=\sup _{\tau}\left\|f_{\tau}\right\|_{v}$. Therefore, $L_{w}^{1}(v)$ has the Fatou property.

In particular, from Proposition 1, we have that $L_{w}^{1}(v)$ has the Fatou property for every vector measure v defined on a σ-algebra.

3 Vector measure associated to an order continuous Banach lattice

Let E be an order continuous Banach lattice. We will prove that there exists a vector measure v defined on a δ-ring and with values in E, such that the space $L^{1}(v)$ of integrable functions with respect to v is order isometric to E. More precisely, the integration operator $I_{v}: L^{1}(v) \rightarrow E$ is an order isometry.

As it has been remarked in the Introduction, in the case when E has a weak unit this result was proved in [2, Theorem 8] with v defined in a σ-algebra. In the general case, there is an outlined proof in [1, pp. 22-23]. For completeness, we include in this paper a detailed proof.

In this section, we construct a vector measure v for which we will see in Section 4 that the order isometry works.

The key for constructing our vector measure is the following result of Lindenstrauss and Tzafriri [6, Proposition 1.a.9]: E can be decomposed into an unconditionally direct sum of a family of mutually disjoints ideals $\left\{E_{\alpha}\right\}_{\alpha \in \Delta}$, each E_{α} having a weak unit. That is, every $e \in E$ has a unique representation $e=\sum_{\alpha \in \Delta} e_{\alpha}$ with $e_{\alpha} \in E_{\alpha}$, only countably many $e_{\alpha} \neq 0$ and the series converging unconditionally.

Each E_{α} is an order continuous Banach lattice with a weak unit. Then, from [2, Theorem 8], there is a σ-algebra Σ_{α} of subsets of an abstract set Ω_{α} and a positive vector measure $v_{\alpha}: \Sigma_{\alpha} \rightarrow E_{\alpha}$ such that the integration operator $I_{v_{\alpha}}: L^{1}\left(v_{\alpha}\right) \rightarrow E_{\alpha}$ is an order isometry.

Consider the set $\Omega=\cup_{\alpha \in \Delta}\left(\{\alpha\} \times \Omega_{\alpha}\right)$, that is

$$
\Omega=\left\{(\alpha, \omega): \alpha \in \Delta \text { and } \omega \in \Omega_{\alpha}\right\} .
$$

In a similar way, we denote $\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}=\left\{(\alpha, \omega): \alpha \in \Delta\right.$ and $\left.\omega \in A_{\alpha}\right\}$, where $A_{\alpha} \subset \Omega_{\alpha}$ for all $\alpha \in \Delta$. For every $\Gamma \subset \Delta$ we write $\cup_{\alpha \in \Gamma}\{\alpha\} \times A_{\alpha}=$ $\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}$ whenever $A_{\alpha}=\varnothing$ for all $\alpha \in \Delta \backslash \Gamma$. Note that if $A_{n}=\cup_{\alpha \in \Delta}\{\alpha\} \times$ A_{α}^{n} for $n \geq 1$,

$$
\bigcup_{n \geq 1} A_{n}=\bigcup_{\alpha \in \Delta}\left(\{\alpha\} \times \bigcup_{n \geq 1} A_{\alpha}^{n}\right) \text { and } \bigcap_{n \geq 1} A_{n}=\bigcup_{\alpha \in \Delta}\left(\{\alpha\} \times \bigcap_{n \geq 1} A_{\alpha}^{n}\right) .
$$

Also, if $A=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}$ and $B=\cup_{\alpha \in \Delta}\{\alpha\} \times B_{\alpha}$,

$$
A \backslash B=\bigcup_{\alpha \in \Delta}\left(\{\alpha\} \times A_{\alpha} \backslash B_{\alpha}\right) .
$$

Then the family \mathcal{R} of sets $\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}$ satisfying that $A_{\alpha} \in \Sigma_{\alpha}$ for all $\alpha \in \Delta$ and there exists a finite set $I \subset \Delta$ such that A_{α} is v_{α}-null for all $\alpha \in \Delta \backslash I$, is a δ-ring of subsets of Ω. Moreover,

$$
\mathcal{R}^{l o c}=\left\{\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}: A_{\alpha} \in \Sigma_{\alpha} \text { for all } \alpha \in \Delta\right\}
$$

Indeed, given $A \in \mathcal{R}^{l o c}$, if we take $B_{\alpha}=\left\{\omega \in \Omega_{\alpha}:(\alpha, \omega) \in A\right\}$ we have that

$$
A=\cup_{\alpha \in \Delta}\{\alpha\} \times B_{\alpha}
$$

where $\{\alpha\} \times B_{\alpha}=A \cap\left(\{\alpha\} \times \Omega_{\alpha}\right) \in \mathcal{R}$ (as $\left.\{\alpha\} \times \Omega_{\alpha} \in \mathcal{R}\right)$. So, $B_{\alpha} \in \Sigma_{\alpha}$.
Conversely, take $A=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}$ with $A_{\alpha} \in \Sigma_{\alpha}$ for every $\alpha \in \Delta$. If $B=$ $\cup_{\alpha \in \Delta}\{\alpha\} \times B_{\alpha} \in \mathcal{R}$,

$$
A \cap B=\bigcup_{\alpha \in \Delta}\left(\{\alpha\} \times A_{\alpha} \cap B_{\alpha}\right) \in \mathcal{R}
$$

and so $A \in \mathcal{R}^{\text {loc }}$.
Let $v: \mathcal{R} \rightarrow E$ be the set function defined by

$$
v\left(\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}\right)=\sum_{\alpha \in \Delta} v_{\alpha}\left(A_{\alpha}\right) .
$$

Let us see that v is a vector measure. Given $A_{n}=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}^{n} \in \mathcal{R}$ for $n \geq 1$ mutually disjoint sets such that $\cup_{n \geq 1} A_{n} \in \mathcal{R}$, we have that

$$
\bigcup_{n \geq 1} A_{n}=\bigcup_{\alpha \in \Delta}\left(\{\alpha\} \times \bigcup_{n \geq 1} A_{\alpha}^{n}\right)
$$

where $\bigcup_{n \geq 1} A_{\alpha}^{n}$ is a disjoint union for every $\alpha \in \Delta$ and there exists a finite set $I \subset \Delta$ such that $\bigcup_{n \geq 1} A_{\alpha}^{n}$ is v_{α}-null for all $\alpha \in \Delta \backslash I$. Since for each $\alpha \in \Delta$ the sum $\sum_{n \geq 1} v_{\alpha}\left(A_{\alpha}^{n}\right)$ converges to $v_{\alpha}\left(\cup_{n \geq 1} A_{\alpha}^{n}\right)$ in E_{α} and so in E, then we have that

$$
v\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{\alpha \in I} v_{\alpha}\left(\bigcup_{n \geq 1} A_{\alpha}^{n}\right)=\sum_{\alpha \in I} \sum_{n \geq 1} v_{\alpha}\left(A_{\alpha}^{n}\right)=\sum_{n \geq 1} \sum_{\alpha \in I} v_{\alpha}\left(A_{\alpha}^{n}\right)=\sum_{n \geq 1} v\left(A_{n}\right) .
$$

Note that a set $A=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha} \in \mathcal{R}^{l o c}$ is v-null if and only if A_{α} is v_{α}-null for all $\alpha \in \Delta$. Also note that v is positive as every v_{α} is so.
Remark 2. Let $f \in \mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$. For each $\alpha \in \Delta$, we denote by f_{α} the function $f_{\alpha}: \Omega_{\alpha} \rightarrow \mathbb{R}$ given by $f_{\alpha}(\omega)=f(\alpha, \omega)$ for all $\omega \in \Omega_{\alpha}$. Since for every Borel set B on \mathbb{R} we have that

$$
f^{-1}(B)=\cup_{\alpha \in \Delta}\{\alpha\} \times f_{\alpha}^{-1}(B) \in \mathcal{R}^{l o c}
$$

then $f_{\alpha}^{-1}(B) \in \Sigma_{\alpha}$ for each $\alpha \in \Delta$. Hence, $f_{\alpha} \in \mathcal{M}\left(\Sigma_{\alpha}\right)$ for each $\alpha \in \Delta$. In particular, if $\varphi=\sum_{j=1}^{n} a_{j} \chi_{A_{j}}$ with $A_{j}=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}^{j} \in \mathcal{R}^{\text {loc }}$, then $\varphi_{\alpha}=\sum_{j=1}^{n} a_{j} \chi_{A_{\alpha}^{j}} \in$ $\mathcal{S}\left(\Sigma_{\alpha}\right)$.

From now and on, f_{α} will denote the functions defined in Remark 2 for some function $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)$. The following lemma will allow us to give useful descriptions of the spaces $L^{1}(v)$ and $L_{w}^{1}(v)$ in next sections.

Lemma 3. Let $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)$ and $\alpha \in \Delta$. Then,
a) $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$ if and only if $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$.
b) $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L^{1}(v)$ if and only if $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$. In this case

$$
\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v=\int f_{\alpha} d v_{\alpha}
$$

Proof. Let $x^{*} \in E^{*}$ and $x_{\alpha}^{*} \in E_{\alpha}^{*}$ be the restriction of x^{*} to E_{α}. For each function $\varphi=\sum_{j=1}^{n} a_{j} \chi_{A_{j}} \in \mathcal{S}\left(\mathcal{R}^{l o c}\right)$ with $A_{j}=\cup_{\beta \in \Delta}\{\beta\} \times A_{\beta}^{j}$, we have that $\varphi \chi_{\{\alpha\} \times \Omega_{\alpha}}=$ $\sum_{j=1}^{n} a_{j} \chi_{\{\alpha\} \times A_{\alpha}^{j}} \in \mathcal{S}(\mathcal{R})$ and $\varphi_{\alpha}=\sum_{j=1}^{n} a_{j} \chi_{A_{\alpha}^{j}} \in \mathcal{S}\left(\Sigma_{\alpha}\right)$, then

$$
\begin{aligned}
\int \varphi \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v & =\sum_{j=1}^{n} a_{j} x^{*} v\left(\{\alpha\} \times A_{\alpha}^{j}\right)=\sum_{j=1}^{n} a_{j} x^{*} v_{\alpha}\left(A_{\alpha}^{j}\right) \\
& =\sum_{j=1}^{n} a_{j} x_{\alpha}^{*} v_{\alpha}\left(A_{\alpha}^{j}\right)=\int \varphi_{\alpha} d x_{\alpha}^{*} v_{\alpha}
\end{aligned}
$$

It is routine to check that $\left|x^{*} v\right|\left(\{\alpha\} \times A_{\alpha}\right)=\left|x_{\alpha}^{*} v_{\alpha}\right|\left(A_{\alpha}\right)$ for every $A_{\alpha} \in \Sigma_{\alpha}$. Then, in a similar way as for $x^{*} v$, we have that $\int \varphi \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right|=\int \varphi_{\alpha} d\left|x_{\alpha}^{*} v_{\alpha}\right|$.

Let $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}\left(\mathcal{R}^{l o c}\right)$ be a sequence such that $0 \leq \varphi_{n} \uparrow|f|$ pointwise. Then, $0 \leq \varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha} \uparrow}|f| \chi_{\{\alpha\} \times \Omega_{\alpha}}$ and $0 \leq\left(\varphi_{n}\right)_{\alpha} \uparrow\left|f_{\alpha}\right|$ pointwise. Using the monotone convergence theorem, we have that

$$
\begin{align*}
\int|f| \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right| & =\lim _{n \rightarrow \infty} \int \varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right| \tag{1}\\
& =\lim _{n \rightarrow \infty} \int\left(\varphi_{n}\right)_{\alpha} d\left|x_{\alpha}^{*} v_{\alpha}\right|=\int\left|f_{\alpha}\right| d\left|x_{\alpha}^{*} v_{\alpha}\right|
\end{align*}
$$

Then, $f_{\alpha} \in L_{w}^{1}\left(\nu_{\alpha}\right)$ implies $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$.
Let now $y^{*} \in E_{\alpha}^{*}$ and define $\tilde{y}^{*}: E \rightarrow \mathbb{R}$ as $\tilde{y}^{*}(e)=y^{*}\left(e_{\alpha}\right)$ for $e=\sum_{\beta \in \Delta} e_{\beta}$. Then, $\tilde{y}^{*} \in E^{*}$ and the restriction of \tilde{y}^{*} to E_{α} coincides with y^{*}. So, by (1),

$$
\int\left|f_{\alpha}\right| d\left|y^{*} v_{\alpha}\right|=\int|f| \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|\tilde{y}^{*} v\right|
$$

Hence, $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$ implies $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$. Therefore, a) holds.
In the case when $\int|f| \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right|<\infty$, that is, $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L^{1}\left(x^{*} v\right)$, there exists a sequence $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}(\mathcal{R})$ such that $\varphi_{n} \rightarrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L^{1}\left(x^{*} v\right)$ and so $\varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} \rightarrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L^{1}\left(x^{*} v\right)$. Also, by (1), which holds for every function in $\mathcal{M}\left(\mathcal{R}^{l o c}\right)$, we have that $\int\left|f_{\alpha}-\left(\varphi_{n}\right)_{\alpha}\right| d\left|x_{\alpha}^{*} v_{\alpha}\right|=\int\left|f-\varphi_{n}\right| \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right|$, and so $\left(\varphi_{n}\right)_{\alpha} \rightarrow f_{\alpha}$ in $L^{1}\left(x_{\alpha}^{*} v_{\alpha}\right)$. Hence,

$$
\begin{align*}
\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v & =\lim _{n \rightarrow \infty} \int \varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v \tag{2}\\
& =\lim _{n \rightarrow \infty} \int\left(\varphi_{n}\right)_{\alpha} d x_{\alpha}^{*} v_{\alpha}=\int f_{\alpha} d x_{\alpha}^{*} v_{\alpha}
\end{align*}
$$

Suppose that $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L^{1}(v)$. In particular, $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$ and so, by a), $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$. On other hand, taking a sequence $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}(\mathcal{R})$ such that $\varphi_{n} \rightarrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L^{1}(v)$ and so $\varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} \rightarrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L^{1}(v)$, we have that $\int \varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} d v$ converges to $\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v$ in E. Since $\int \varphi_{n} \chi_{\{\alpha\} \times \Omega_{\alpha}} d v=$ $\int\left(\varphi_{n}\right)_{\alpha} d v_{\alpha} \in E_{\alpha}$ and E_{α} is closed in E, we have that $\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v \in E_{\alpha}$. Given $y^{*} \in E_{\alpha}^{*}$ and $\tilde{y}^{*} \in E^{*}$ defined as above, it follows

$$
y^{*}\left(\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v\right)=\tilde{y}^{*}\left(\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v\right)=\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d \tilde{y}^{*} v=\int f_{\alpha} d y^{*} v_{\alpha}
$$

where we have used (2) in the last equality. Hence, $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$ and $\int f_{\alpha} d v_{\alpha}=$ $\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d v$.

Suppose now that $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$. In particular, $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$ and so, by a), $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$. Since $\int f_{\alpha} d v_{\alpha} \in E_{\alpha} \subset E$, for every $x^{*} \in E^{*}$ we have that

$$
x^{*}\left(\int f_{\alpha} d v_{\alpha}\right)=x_{\alpha}^{*}\left(\int f_{\alpha} d v_{\alpha}\right)=\int f_{\alpha} d x_{\alpha}^{*} v_{\alpha}=\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v
$$

where $x_{\alpha}^{*} \in E_{\alpha}^{*}$ is the restriction of x^{*} to E_{α}. Then, $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L^{1}(v)$. Therefore, b) holds.

4 Description of an order continuous Banach lattice as an $L^{1}(v)$

Let E be an order continuous Banach lattice and v the associated vector measure constructed in Section 3. Let us give a description of the space $L^{1}(v)$ which will be helpful to prove that E is order isometric to $L^{1}(v)$.

Proposition 4. The space $L^{1}(v)$ can be described as the space of all functions $f \in$ $\mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$ such that $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d v_{\alpha}$ is unconditionally convergent in E, where f_{α} is defined as in Remark 2. Moreover, if $f \in L^{1}(v)$ we have that

$$
\int f d v=\sum_{\alpha \in \Delta} \int f_{\alpha} d v_{\alpha}
$$

Proof. Let $f \in L^{1}(v)$. Then, for every $\alpha \in \Delta$, we have that $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L^{1}(v)$ and so, by Lemma 3.b), $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$. Let $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}(\mathcal{R})$ be a sequence such that $\varphi_{n} \rightarrow f$ in $L^{1}(v)$ and v-a.e. Since each φ_{n} is supported in \mathcal{R}, we can write Supp $\varphi_{n}=\cup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}^{n}$ where A_{α}^{n} is v_{α}-null for all $\alpha \in \Delta \backslash I_{n}$ with $I_{n} \subset \Delta$ finite. Then,

$$
\text { Supp } f \subset \bigcup_{n \geq 1} \operatorname{Supp} \varphi_{n}=\bigcup_{n \geq 1} \bigcup_{\alpha \in \Delta}\{\alpha\} \times A_{\alpha}^{n}=\bigcup_{\alpha \in \Delta}\{\alpha\} \times\left(\bigcup_{n \geq 1} A_{\alpha}^{n}\right)
$$

Note that $\cup_{n \geq 1} A_{\alpha}^{n}$ is v_{α}-null for every $\alpha \notin I=\cup_{n} I_{n}$. So, $\cup_{\alpha \in \Delta \backslash I}\{\alpha\} \times\left(\cup_{n \geq 1} A_{\alpha}^{n}\right)$ is v-null and thus

$$
f=f \chi_{\cup_{\alpha \in I}\{\alpha\} \times\left(\cup_{n \geq 1} A_{\alpha}^{n}\right)} \quad v \text {-a.e. }
$$

For every $\alpha \in \Delta \backslash I$, from Lemma 3.b) and since $f \chi_{\{\alpha\} \times \Omega_{\alpha}}=0 v$-a.e., we have that

$$
\int\left|f_{\alpha}\right| d v_{\alpha}=\int|f| \chi_{\{\alpha\} \times \Omega_{\alpha}} d v=0
$$

Write $I=\left\{\alpha_{j}\right\}_{j \geq 1}$ and $g_{n}=\sum_{j=1}^{n}|f| \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}}$. Note that $0 \leq g_{n} \uparrow|f| \in L^{1}(v)$. Then, since $L^{1}(v)$ is order continuous, $g_{n} \rightarrow|f|$ in $L^{1}(v)$ and so

$$
\sum_{j=1}^{n} \int\left|f_{\alpha_{j}}\right| d v_{\alpha_{j}}=\sum_{j=1}^{n} \int|f| \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}} d v=\int g_{n} d v \rightarrow \int|f| d v \text { in } E .
$$

Therefore, $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d v_{\alpha}$ is unconditionally convergent in E.

Conversely, let $f \in \mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$ be a function such that $f_{\alpha} \in L^{1}\left(v_{\alpha}\right)$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d v_{\alpha}$ is unconditionally convergent in E. From this and since v_{α} is positive, we have that there exists a countable set $N \subset \Delta$ such that

$$
\left\|f_{\alpha}\right\|_{v_{\alpha}}=\left\|\int\left|f_{\alpha}\right| d v_{\alpha}\right\|_{E}=0 \text { for all } \alpha \in \Delta \backslash N .
$$

That is, $f_{\alpha}=0 v_{\alpha}$-a.e. for all $\alpha \in \Delta \backslash N$. So, for each $\alpha \in \Delta \backslash N$, there exists a v_{α}-null set Z_{α} such that

$$
f_{\alpha}(\omega)=0 \text { for all } \omega \in \Omega_{\alpha} \backslash Z_{\alpha} .
$$

Note that the set $\cup_{\alpha \in \Delta \backslash N}\{\alpha\} \times Z_{\alpha} \in \mathcal{R}^{l o c}$ is v-null, then

$$
f=\sum_{\alpha \in N} f \chi_{\{\alpha\} \times \Omega_{\alpha}} v \text {-a.e. }
$$

Write $N=\left\{\alpha_{j}\right\}_{j \geq 1}$ and take $f_{n}=\sum_{j=1}^{n} f \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}}$ which belongs to $L^{1}(v)$ from Lemma 3.b). Then, for $m<n$,

$$
\begin{aligned}
\left\|f_{n}-f_{m}\right\|_{v} & =\left\|\int\left|f_{n}-f_{m}\right| d v\right\|_{E} \\
& =\left\|\sum_{j=m+1}^{n} \int|f| \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}} d v\right\|_{E} \\
& =\left\|\sum_{j=m+1}^{n} \int\left|f_{\alpha_{j}}\right| d v_{\alpha_{j}}\right\|_{E} \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$. Since $f_{n} \rightarrow f v$-a.e., it follows that $f \in L^{1}(v)$. Moreover, $f_{n} \rightarrow f$ in $L^{1}(v)$, so

$$
\int f d v=\lim _{n} \int f_{n} d v=\sum_{\alpha \in \Delta} \int f_{\alpha} d v_{\alpha}
$$

We go on now to show that $L^{1}(v)$ and E are order isometric.
Theorem 5. The space $L^{1}(v)$ is order isometric to E. Even more, the integration operator $I_{v}: L^{1}(v) \rightarrow E$ is an order isometry.

Proof. The integration operator $I_{v}: L^{1}(v) \rightarrow E$ is a positive (as v is positive) continuous linear operator satisfying that $\left\|I_{v}(f)\right\|_{E} \leq\|f\|_{v}=\left\|I_{V}(|f|)\right\|_{E}$ for every $f \in L^{1}(v)$. Let us see that I_{v} is an isometry. Fix $f \in L^{1}(v)$. From Proposition 4, it follows

$$
\begin{align*}
\|f\|_{v} & =\left\|\int|f| d v\right\|_{E}=\sup _{x^{*} \in B_{E^{*}}}\left|x^{*}\left(\int|f| d v\right)\right| \tag{3}\\
& =\sup _{x^{*} \in B_{E^{*}}}\left|x^{*}\left(\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d v_{\alpha}\right)\right| \\
& =\sup _{x^{*} \in B_{E^{*}}}\left|\sum_{\alpha \in \Delta} x^{*}\left(\int\left|f_{\alpha}\right| d v_{\alpha}\right)\right| .
\end{align*}
$$

Let $x^{*} \in E^{*}$. Note that $x^{*} \circ I_{\nu_{\alpha}} \in L^{1}\left(v_{\alpha}\right)^{*}$ for all $\alpha \in \Delta$ (recall $I_{\nu_{\alpha}}: L^{1}\left(v_{\alpha}\right) \rightarrow E_{\alpha}$ is an order isometry). Taking $\xi_{\alpha}=\chi_{\left\{f_{\alpha} \geq 0\right\}}-\chi_{\left\{f_{\alpha}<0\right\}}$, we define $\tilde{x}^{*}: E \rightarrow \mathbb{R}$ by

$$
\tilde{x}^{*}(e)=\sum_{\alpha \in \Delta} x^{*} \circ I_{\nu_{\alpha}}\left(\xi_{\alpha} I_{v_{\alpha}}^{-1}\left(e_{\alpha}\right)\right)
$$

for all $e \in E$ with $e=\sum_{\alpha \in \Delta} e_{\alpha}$ such that $e_{\alpha} \in E_{\alpha}$ and the sum is unconditionally convergent. Let us see that \tilde{x}^{*} is well defined and belongs to E^{*}. Take an element $e=\sum_{\alpha \in \Delta} e_{\alpha} \in E$ as above. Then, $|e|=\sum_{\alpha \in \Delta}\left|e_{\alpha}\right|$ where the sum is also unconditionally convergent. Let $N \subset \Delta$ be a countable set such that $e_{\alpha}=0$ for all $\alpha \in \Delta \backslash N$. Then, $\xi_{\alpha} I_{v_{\alpha}}^{-1}\left(e_{\alpha}\right)=0$ and so $x^{*} \circ I_{v_{\alpha}}\left(\xi_{\alpha} I_{v_{\alpha}}^{-1}\left(e_{\alpha}\right)\right)=0$ for all $\alpha \in \Delta \backslash N$. Writing $N=\left\{\alpha_{j}\right\}_{j \geq 1}$ we have that

$$
\begin{aligned}
\left|\sum_{j=n}^{m} x^{*} \circ I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right| & =\left|x^{*}\left(\sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right)\right| \\
& \leq\left\|x^{*}\right\| \cdot\left\|\sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right\|_{E} .
\end{aligned}
$$

Note that, since $I_{v_{\alpha}}$ is an order isometry, $\left|I_{v_{\alpha}}(h)\right|=I_{v_{\alpha}}(|h|)$ for all $h \in L^{1}\left(v_{\alpha}\right)$ and $I_{v_{\alpha}}(\tilde{h}) \leq I_{v_{\alpha}}(h)$ whenever $\tilde{h} \leq h \in L^{1}\left(v_{\alpha}\right)$ (the same holds for $\left.I_{v_{\alpha}}^{-1}\right)$. Then,

$$
\begin{aligned}
\left|\sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right| & \leq \sum_{j=n}^{m}\left|I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right| \\
& =\sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(\left|\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right|\right) \\
& \leq \sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(\left|I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right|\right) \\
& =\sum_{j=n}^{m} I_{v_{\alpha_{j}}}\left(I_{v_{\alpha_{j}}}^{-1}\left(\left|e_{\alpha_{j}}\right|\right)\right)=\sum_{j=n}^{m}\left|e_{\alpha_{j}}\right| .
\end{aligned}
$$

Therefore,

$$
\left|\sum_{j=n}^{m} x^{*} \circ I_{v_{\alpha_{j}}}\left(\xi_{\alpha_{j}} I_{v_{\alpha_{j}}}^{-1}\left(e_{\alpha_{j}}\right)\right)\right| \leq\left\|x^{*}\right\| \cdot\left\|\sum_{j=n}^{m}\left|e_{\alpha_{j}}\right|\right\|_{E} \rightarrow 0
$$

as $n, m \rightarrow \infty$. So, \tilde{x}^{*} is well defined, obviously linear and continuous as $\left|\tilde{x}^{*}(e)\right| \leq$ $\left\|x^{*}\right\| \cdot\|e\|_{E}$ for all $e \in E$, that is, $\tilde{x}^{*} \in E^{*}$ and $\left\|\tilde{x}^{*}\right\| \leq\left\|x^{*}\right\|$. Moreover,

$$
x^{*}\left(\int\left|f_{\alpha}\right| d v_{\alpha}\right)=x^{*} \circ I_{v_{\alpha}}\left(\left|f_{\alpha}\right|\right)=x^{*} \circ I_{v_{\alpha}}\left(\xi_{\alpha} f_{\alpha}\right)=x^{*} \circ I_{v_{\alpha}}\left(\xi_{\alpha} I_{v_{\alpha}}^{-1}\left(I_{v_{\alpha}}\left(f_{\alpha}\right)\right)\right)
$$

for all $\alpha \in \Delta$. From Proposition 4, we have that $I_{v}(f)=\sum_{\alpha \in \Delta} I_{v_{\alpha}}\left(f_{\alpha}\right)$ and so,

$$
\tilde{x}^{*}\left(I_{v}(f)\right)=\sum_{\alpha \in \Delta} x^{*} \circ I_{v_{\alpha}}\left(\xi_{\alpha} I_{v_{\alpha}}^{-1}\left(I_{v_{\alpha}}\left(f_{\alpha}\right)\right)\right)=\sum_{\alpha \in \Delta} x^{*}\left(\int\left|f_{\alpha}\right| d v_{\alpha}\right)
$$

Hence, we have proved that for every $x^{*} \in B_{E^{*}}$ there exists $\tilde{x}^{*} \in B_{E^{*}}$ such that $\sum_{\alpha \in \Delta} x^{*}\left(\int\left|f_{\alpha}\right| d v_{\alpha}\right)=\tilde{x}^{*}\left(I_{v}(f)\right)$. Then, from (3), $\|f\|_{v} \leq\left\|I_{v}(f)\right\|_{E}$. Therefore, I_{v} is a linear isometry.

Let us see now that I_{v} is onto. Let $e=\sum_{\alpha \in \Delta} e_{\alpha} \in E$. Since each $e_{\alpha} \in E_{\alpha}$, there exists $h_{\alpha} \in L^{1}\left(v_{\alpha}\right)$ such that $e_{\alpha}=I_{\nu_{\alpha}}\left(h_{\alpha}\right)$. Define $f: \Omega \rightarrow \mathbb{R}$ by $f(\alpha, \omega)=h_{\alpha}(\omega)$ for all $(\alpha, \omega) \in \Omega$. Then, $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)\left(\right.$ as $f^{-1}(B)=\cup_{\alpha \in \Delta}\{\alpha\} \times h_{\alpha}^{-1}(B)$ for every Borel set B on \mathbb{R}), $f_{\alpha}=h_{\alpha} \in L^{1}\left(v_{\alpha}\right)$ for all $\alpha \in \Delta$ and

$$
\sum_{\alpha \in \Delta} I_{v_{\alpha}}\left(f_{\alpha}\right)=\sum_{\alpha \in \Delta} I_{v_{\alpha}}\left(h_{\alpha}\right)=\sum_{\alpha \in \Delta} e_{\alpha}
$$

is unconditionally convergent in E. So, by Proposition 4, we have that $f \in L^{1}(v)$ and $I_{v}(f)=\sum_{\alpha \in \Delta} I_{v_{\alpha}}\left(f_{\alpha}\right)=e$. Note that if $e \geq 0$, that is, $e_{\alpha} \geq 0$ for all $\alpha \in \Delta$, then $h_{\alpha} \geq 0$ for all $\alpha \in \Delta$ and so $f \geq 0$. Hence, I_{v}^{-1} is positive.

So, I_{V} is positive, linear, one to one and onto with I_{v}^{-1} positive. Then, by [6, p. 2], I_{ν} is an order isomorphism.

Let us show an example of the representation as an $L^{1}(v)$ of an order continuous Banach lattice without weak unit. This example has been already studied in [1, p. 23] and [4, Example 2.2].
Example 6. Consider an uncountable set Γ and the δ-ring $\mathcal{R}=\{A \subset \Gamma: A$ is finite $\}$. The space $\ell^{1}(\Gamma)$ is order continuous, so, by Theorem $5, \ell^{1}(\Gamma)$ is order isometric to $L^{1}(v)$ for some vector measure v defined on a δ-ring, via the integration operator. The vector measure $v: \mathcal{R} \rightarrow \ell^{1}(\Gamma)$ can be defined as $v(A)=\sum_{\gamma \in A} e_{\gamma}$, where e_{γ} is the characteristic function of the point γ. In this case, the integration operator is the identity map. Note that $\ell^{1}(\Gamma)$ cannot be represented as $L^{1}(v)$ with v defined on a σ-algebra, as it has no weak unit.

$5 L_{w}^{1}(v)$ for v associated to an order continuous Banach lattice

Until now, we have considered an order continuous Banach lattice E. If we forget about the order continuity property, descriptions of E by means of a vector measure could exist. For instance, if E is a Banach lattice satisfying the σ-Fatou property with a weak unit belonging to the σ-order continuous part E_{a} of E, then there exists a vector measure v defined on a σ-algebra such that E is order isometric to $L_{w}^{1}(v)$, see [3, Theorem 2.5]. In this reference, it is noted that in this case E_{a} is also order continuous. Indeed, E_{a} is an ideal of E which is σ-complete as it is σ-Fatou ($\left[10\right.$, Theorem 113.1]). Then, E_{a} is also σ-complete and, as it is σ-order continuous, it follows that it is order continuous ([6, Proposition 1.a.8]). The proof of the representation of E as an $L_{w}^{1}(v)$ consists in taking a vector measure v such that $L^{1}(v)$ is order isometric to E_{a} via the integration operator I_{v}, and extending I_{v} to $L_{w}^{1}(v)$. The result is that this extension is an order isometry from $L_{w}^{1}(v)$ onto E. Our question now is if a similar result is possible if we forget about the weak unit and consider vector measures defined on a δ-ring, as it happens in the case when E is order continuous. For solving this question, we will need a description of $L_{w}^{1}(v)$ along the lines of Proposition 4.

Let E be again an order continuous Banach lattice and v the associated vector measure constructed in Section 3.

Proposition 7. The space $L_{w}^{1}(v)$ can be described as the space of all functions $f \in$ $\mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$ such that $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right|$ converges for all $x^{*} \in E^{*}$, where f_{α} is defined as in Remark 2. Moreover, if $f \in L_{w}^{1}(v)$ and $x^{*} \in E^{*}$, then

$$
\int f d x^{*} v=\sum_{\alpha \in \Delta} \int f_{\alpha} d x^{*} v_{\alpha} \text { and } \int f d\left|x^{*} v\right|=\sum_{\alpha \in \Delta} \int f_{\alpha} d\left|x^{*} v_{\alpha}\right|
$$

Proof. Let $f \in L_{w}^{1}(v)$. Then, $f \chi_{\{\alpha\} \times \Omega_{\alpha}} \in L_{w}^{1}(v)$ and so, by Lemma 3.a), $f_{\alpha} \in$ $L_{w}^{1}\left(v_{\alpha}\right)$ for every $\alpha \in \Delta$. Take $x^{*} \in E^{*}$. For every $I \subset \Delta$ finite, by (1), we have that

$$
\begin{aligned}
\sum_{\alpha \in I} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right| & =\sum_{\alpha \in I} \int|f| \chi_{\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right| \\
& =\int|f| \chi_{\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}} d\left|x^{*} v\right| \leq\left\|x^{*}\right\| \cdot\|f\|_{v} .
\end{aligned}
$$

So, $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right|$ is convergent.
Conversely, let $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)$ be such that $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right|$ converges for all $x^{*} \in E^{*}$. Fix $x^{*} \in E^{*}$. There exists a countable set $N \subset \Delta$ such that

$$
\int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right|=0 \text { for all } \alpha \in \Delta \backslash N
$$

Then, for every $\alpha \in \Delta \backslash N$, there exists a $\left|x^{*} v_{\alpha}\right|$-null set Z_{α} such that

$$
f_{\alpha}(\omega)=0 \text { for all } \omega \in \Omega_{\alpha} \backslash Z_{\alpha}
$$

Noting that $\cup_{\alpha \in \Delta \backslash N}\{\alpha\} \times Z_{\alpha}$ is $\left|x^{*} \nu\right|$-null, it follows

$$
f=\sum_{\alpha \in N} f \chi_{\{\alpha\} \times \Omega_{\alpha}}\left|x^{*} v\right| \text {-a.e. }
$$

Write $N=\left\{\alpha_{j}\right\}_{j \geq 1}$ and take $f_{n}=\sum_{j=1}^{n} f \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}}$ which, by Lemma 3.a), is in $L_{w}^{1}(v)$. Then, for $m<n$, by (1),

$$
\int\left|f_{n}-f_{m}\right| d\left|x^{*} v\right|=\sum_{j=m+1}^{n} \int|f| \chi_{\left\{\alpha_{j}\right\} \times \Omega_{\alpha_{j}}} d\left|x^{*} v\right|=\sum_{j=m+1}^{n} \int\left|f_{\alpha_{j}}\right| d\left|x^{*} v_{\alpha_{j}}\right| \rightarrow 0
$$

as $m, n \rightarrow \infty$. Note that $f_{n} \rightarrow f\left|x^{*} v\right|$-a.e. So, $f \in L^{1}\left(\left|x^{*} v\right|\right)$ and $f_{n} \rightarrow f$ in $L^{1}\left(\left|x^{*} v\right|\right)$. Therefore, $f \in L_{w}^{1}(v)$ and, by (1) and (2),

$$
\int f d x^{*} v=\sum_{\alpha \in \Delta} \int f_{\alpha} d x^{*} v_{\alpha} \text { and } \int f d\left|x^{*} v\right|=\sum_{\alpha \in \Delta} \int f_{\alpha} d\left|x^{*} v_{\alpha}\right| \text { for all } x^{*} \in E^{*}
$$

For the proof of our main result we will need the following fact which holds for the vector measure v associated to the order continuous Banach lattice E.

Proposition 8. The space $L_{w}^{1}(v)$ has the Fatou property.
Proof. For every $I \subset \Delta$ finite, consider $\Omega_{I}=\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}$ and the σ-algebra $\Sigma_{I}=\left\{\cup_{\alpha \in I}\{\alpha\} \times A_{\alpha}: A_{\alpha} \in \Sigma_{\alpha}\right.$ for all $\left.\alpha \in I\right\}$ of parts of Ω_{I}. Note that $\Omega_{I} \subset \Omega$ and $\Sigma_{I} \subset \mathcal{R}$. Denote by $v_{I}: \Sigma_{I} \rightarrow E$ the restriction of v to Σ_{I}. Since v_{I} is a vector measure defined on a σ-algebra, $L_{w}^{1}\left(\nu_{I}\right)$ has the Fatou property, see Proposition 1.

For each $f \in \mathcal{M}\left(\mathcal{R}^{l o c}\right)$, denote by f^{I} the function resulting from the restriction of f to Ω_{I}. Of course, $f^{I} \in \mathcal{M}\left(\Sigma_{I}\right)$. For every $x^{*} \in E^{*}$, it follows

$$
\begin{equation*}
\int\left|f^{I}\right| d\left|x^{*} v_{I}\right|=\int|f| \chi_{\Omega_{I}} d\left|x^{*} v\right| \tag{4}
\end{equation*}
$$

Indeed, for every $A \in \Sigma_{I}$ we have that $\left|x^{*} v_{I}\right|(A)=\left|x^{*} v\right|(A)$ and so it is routine to check that (4) holds for $f \in \mathcal{S}\left(\mathcal{R}^{\text {loc }}\right)$. For a general f the result follows by applying the monotone convergence theorem. Then, for every $f \in L_{w}^{1}(v)$ we have that $f \chi_{\Omega_{I}} \in L_{w}^{1}(v)$ and so $f^{I} \in L_{w}^{1}\left(v_{I}\right)$ with $\left\|f^{I}\right\|_{v_{I}}=\left\|f \chi_{\Omega_{I}}\right\|_{v}$. Note that if Z is a v-null set then $\mathrm{Z} \cap \Omega_{I}$ is v_{I}-null.

Let $\left(f_{\tau}\right)_{\tau} \subset L_{w}^{1}(v)$ be an upwards directed system $0 \leq f_{\tau} \uparrow v$-a.e. such that $\sup _{\tau}\left\|f_{\tau}\right\|_{v}<\infty$. Then, $\left(f_{\tau}^{I}\right)_{\tau} \subset L_{w}^{1}\left(v_{I}\right)$ is an upwards directed system $0 \leq f_{\tau}^{I} \uparrow$ v_{I}-a.e. and $\sup _{\tau}\left\|f_{\tau}^{I}\right\|_{v_{I}}=\sup _{\tau}\left\|f_{\tau} \chi_{\Omega_{I}}\right\|_{v} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{v}<\infty$. Since $L_{w}^{1}\left(v_{I}\right)$ has the Fatou property, there exists $f^{I}=\sup _{\tau} f_{\tau}^{I}$ in $L_{w}^{1}\left(v_{I}\right)$ and $\left\|f^{I}\right\|_{\nu_{I}}=\sup _{\tau}\left\|f_{\tau}^{I}\right\|_{\nu_{I}}$.

Now, from each $I=\{\alpha\}$ with $\alpha \in \Delta$, we construct the function $f: \Omega \rightarrow \mathbb{R}$ given by $f(\alpha, \omega)=f^{\{\alpha\}}(\alpha, \omega)$ for all $(\alpha, \omega) \in \Omega$. Since $f^{-1}(B)=\cup_{\alpha \in \Delta}\left(f^{\{\alpha\}}\right)^{-1}(B)$ for all Borel set B on \mathbb{R}, we have that $f \in \mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$. Noting that $\cup_{\alpha \in \Delta}\{\alpha\} \times Z_{\alpha}$ is v-null whenever $\{\alpha\} \times Z_{\alpha}$ is $v_{\{\alpha\}}$-null for all $\alpha \in \Delta$, we have that $f=\sup _{\tau} f_{\tau}$. Let us see that $f \in L_{w}^{1}(v)$ by using the characterization of Proposition 7. For every $\alpha \in \Delta$ and $y^{*} \in E_{\alpha}^{*}$, taking $\tilde{y}^{*} \in E^{*}$ defined as $\tilde{y}^{*}(e)=y^{*}\left(e_{\alpha}\right)$ for $e=\sum_{\alpha \in \Delta} e_{\alpha}$, by (1) and (4), we have that

$$
\int\left|f_{\alpha}\right| d\left|y^{*} v_{\alpha}\right|=\int|f| \chi_{\Omega_{\{\alpha\}}} d\left|\tilde{y}^{*} v\right|=\int\left|f^{\{\alpha\}}\right| d\left|\tilde{y}^{*} v_{\{\alpha\}}\right|<\infty .
$$

So, $f_{\alpha} \in L_{w}^{1}\left(v_{\alpha}\right)$. Moreover, given $x^{*} \in E^{*}$, for every $I \subset \Delta$ finite,

$$
\begin{aligned}
\sum_{\alpha \in I} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right| & =\sum_{\alpha \in I} \int|f| \chi_{\Omega_{\{\alpha\}}} d\left|x^{*} v\right|=\int|f| \chi_{\Omega_{I}} d\left|x^{*} v\right| \\
& =\int\left|f^{I}\right| d\left|x^{*} v_{I}\right| \leq\left\|f^{I}\right\|_{v_{I}} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{v}<\infty .
\end{aligned}
$$

Then $\sum_{\alpha \in I} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right|$ converges and so $f \in L_{w}^{1}(v)$. Moreover,

$$
\int|f| d\left|x^{*} v\right|=\sum_{\alpha \in \Delta} \int\left|f_{\alpha}\right| d\left|x^{*} v_{\alpha}\right| \leq \sup _{\tau}\left\|f_{\tau}\right\|_{v}
$$

Hence, $\|f\|_{\nu} \leq \sup _{\tau}\left\|f_{\tau}\right\|_{\nu}$. The equality follows, as $\left\|f_{\tau}\right\| \leq\|f\|_{\nu}$ for all τ.
Note that for the proof of Proposition 8 the fact that Ω is an uncountable disjoint union of sets in \mathcal{R} and also the way as the δ-ring \mathcal{R} is defined are crucial. So, $L_{w}^{1}(v)$ has the Fatou property for the particular vector measure v constructed in Section 3. But, has $L_{w}^{1}(v)$ the Fatou property for every vector measure v defined on a δ-ring? In the case when v is σ-finite, the answer is yes (Proposition 1), however for the general case this is an open question.

6 Description of a Banach lattice as an $L_{w}^{1}(v)$

Let E be now a general Banach lattice. We always can consider the order continuous part $E_{a n}$ of E. Then, we can take the vector measure v associated to $E_{a n}$ as in Section 3, and so, by Theorem $5, I_{v}: L^{1}(v) \rightarrow E_{a n}$ is an order isometry. The question is if it is possible to extend I_{v} to the space $L_{w}^{1}(v)$ in a way that the extension is an order isometry between $L_{w}^{1}(v)$ and E. Note that if this extension is possible, by Proposition $8, E$ must have the Fatou property. So, we will require E to have this property. In this case, E has the σ-Fatou property and then $E_{a n}=E_{a}$, as we said at the beginning of Section 5 .

In order to prove the desired result, we will need the next Lemma. Recall that the order continuous part E_{a} of E can be decomposed into an unconditionally direct sum of a family of mutually disjoints ideals $\left\{E_{a}^{\alpha}\right\}_{\alpha \in \Delta}$, each E_{a}^{α} having a weak unit u_{α} (see Section 3).

Lemma 9. Suppose that E_{a} is order dense in E. Then, for every $0 \leq e \in E$ it follows

$$
\begin{equation*}
e_{(n, I)}=\sum_{\alpha \in I} e \wedge\left(n u_{\alpha}\right) \uparrow e \tag{5}
\end{equation*}
$$

where the indices (n, I) are such that $n \in \mathbb{N}$ and $I \subset \Delta$ is finite. Moreover, in the case when $0 \leq e \in E_{a}$, there exists a countable set $\left\{\alpha_{j}\right\} \subset \Delta$ such that $e \wedge\left(n u_{\alpha}\right)=0$ for all n and $\alpha \in \Delta \backslash\left\{\alpha_{j}\right\}$, and

$$
\begin{equation*}
e=\lim _{n, m} \sum_{j=1}^{m} e \wedge\left(n u_{\alpha_{j}}\right) \text { in norm. } \tag{6}
\end{equation*}
$$

Proof. Let $0 \leq e \in E$ and $e_{(n, I)}$ as in (5). Then $0 \leq e_{(n, I)} \uparrow$ and $e_{(n, I)} \leq e$ for all (n, I). Note that $\left\{n u_{\alpha}: \alpha \in \Delta\right\}$ is a set of pairwise disjoint elements, so

$$
\begin{equation*}
e_{(n, I)}=\sum_{\alpha \in I} e \wedge\left(n u_{\alpha}\right)=e \wedge\left(\sum_{\alpha \in I} n u_{\alpha}\right) \tag{7}
\end{equation*}
$$

(see [7, Theorem 12.5]). Let $z \in E$ be such that $e_{(n, I)} \leq z$ for all (n, I). Let us see that $e \leq z$. Suppose first that $e \in E_{a}$ and write $e=\sum_{j \geq 1} e_{\alpha_{j}}$ where $e_{\alpha_{j}} \in E_{a}^{\alpha_{j}}$ and the series converges unconditionally. Note that, since $e \geq 0$ and $\left\{e_{\alpha_{j}}\right\}$ is a set of pairwise disjoint elements, $e_{\alpha_{j}} \geq 0$ for every j. Then $\sum_{j=1}^{m} e_{\alpha_{j}} \uparrow e$ in the lattice order (see [10, Theorem 100.4.(i)]). For a fix j we have that $e_{\alpha_{j}} \wedge\left(n u_{\alpha_{j}}\right) \uparrow e_{\alpha_{j}}$ (see [6, pp.7-8]). Then, for each m it follows that $\sum_{j=1}^{m} e_{\alpha_{j}} \wedge\left(n u_{\alpha_{j}}\right) \uparrow \sum_{j=1}^{m} e_{\alpha_{j}}$ (see [7, Theorem 15.2]). Since $e_{\alpha_{j}} \leq e$ for all j, taking $I_{m}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ we have that $\sum_{j=1}^{m} e_{\alpha_{j}} \wedge\left(n u_{\alpha_{j}}\right) \leq e_{\left(n, I_{m}\right)} \leq z$ for all n and so $\sum_{j=1}^{m} e_{\alpha_{j}} \leq z$. Hence $e \leq z$. Note that actually we have proved that $\sum_{j=1}^{m} e \wedge\left(n u_{\alpha_{j}}\right) \uparrow e$ where the indices are (n, m). Then, by the order continuity of $E_{a n}$, it follows that $e=\lim _{n, m} \sum_{j=1}^{m} e \wedge\left(n u_{\alpha_{j}}\right)$ in norm. Hence, (5) and (6) hold if $e \in E_{a}$.

In the general case, since E_{a} is order dense in E, there exists $\left(e_{\tau}\right) \subset E_{a}$ such that $0 \leq e_{\tau} \uparrow e$. We now know that $\sum_{\alpha \in I} e_{\tau} \wedge\left(n u_{\alpha}\right) \uparrow e_{\tau}$ for every τ. Then, since $\sum_{\alpha \in I} e_{\tau} \wedge\left(n u_{\alpha}\right) \leq e_{(n, I)} \leq z$, we have that $e_{\tau} \leq z$ for every τ, and so $e \leq z$.

Now we can prove our main result by using Lemma 9.
Theorem 10. If E has the Fatou property and E_{a} is order dense in E, then E is order isometric to $L_{w}^{1}(v)$.

Proof. Let us extend I_{v} to $L_{w}^{1}(v)$. First, consider $0 \leq f \in L_{w}^{1}(v)$ and choose $\left(\varphi_{n}\right)_{n \geq 1} \subset \mathcal{S}\left(\mathcal{R}^{l o c}\right)$ such that $0 \leq \varphi_{n} \uparrow f$. For each $n \geq 1$ and $I \subset \Delta$ finite, we define $\xi_{(n, I)}=\varphi_{n} \chi_{\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}} \in \mathcal{S}(\mathcal{R})$. Then, $\left(\xi_{(n, I)}\right)_{(n, I)} \subset L^{1}(v)$ is an upwards directed system $0 \leq \xi_{(n, I)} \uparrow f$ in $L_{w}^{1}(v)$ and so, since I_{v} is positive, $\left(I_{v}\left(\mathcal{\xi}_{(n, I)}\right)\right)_{(n, I)} \subset E_{a} \subset E$ is an upwards directed system $0 \leq I_{v}\left(\xi_{(n, I)}\right) \uparrow$ and $\sup _{(n, I)}\left\|I_{v}\left(\xi_{(n, I)}\right)\right\|_{E}=\sup _{(n, I)}\left\|\xi_{(n, I)}\right\|_{v} \leq\|f\|_{v}<\infty$. Then, by the Fatou property of E, there exists $e=\sup _{(n, I)} I_{v}\left(\xi_{(n, I)}\right)$ in E and $\|e\|_{E}=\sup _{(n, I)} \| I_{\nu}\left(\xi_{(n, I)} \|_{E}\right.$. We define $T(f)=e$.

Using an argument similar to the one in [3, Theorem 2.5], we will see that T is well defined. Take another sequence $\left(\psi_{n}\right)_{n \geq 1} \subset \mathcal{S}\left(\mathcal{R}^{l o c}\right)$ such that $0 \leq \psi_{n} \uparrow$ f. Denote $\eta_{(n, I)}=\psi_{n} \chi_{\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}}$ and $z=\sup _{(n, I)} I_{v}\left(\eta_{(n, I)}\right)$. Let $0 \leq x^{*} \in E^{*}$ be fixed. Then, $x^{*}(e) \geq x^{*}\left(I_{v}\left(\xi_{(n, I)}\right)\right)=\int \xi_{(n, I)} d x^{*} v$ for all $n \geq 1$ and $I \subset \Delta$ finite. It can be proved that also $0 \leq \xi_{(n, I)} \uparrow f$ in $L^{1}\left(x^{*} v\right)$, since $L^{1}\left(x^{*} v\right)$ has the Fatou property, we have that $\sup _{(n, I)} \int \tilde{\xi}_{(n, I)} d x^{*} v=\int f d x^{*} v$. Consequently, $x^{*}(e) \geq \int f d x^{*} v \geq x^{*}\left(I_{v}\left(\xi_{(n, I)}\right)\right)$ for all $n \geq 1$ and $I \subset \Delta$ finite. In a similar way, $x^{*}(z) \geq \int f d x^{*} v \geq x^{*}\left(I_{v}\left(\eta_{(n, I)}\right)\right)$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, it follows that $x^{*}(e) \geq x^{*}\left(I_{v}\left(\eta_{(n, I)}\right)\right)$ and $x^{*}(z) \geq x^{*}\left(I_{v}\left(\xi_{(n, I)}\right)\right)$ for all $n \geq 1$ and $I \subset \Delta$ finite. Since this holds for all $0 \leq x^{*} \in E^{*}$, we have that $e \geq I_{\nu}\left(\eta_{(n, I)}\right)$ and $z \geq I_{v}\left(\xi_{(n, I)}\right)$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $e \geq z$ and $z \geq e$, and thus $e=z$. So, T is well defined. Moreover,

$$
\|T(f)\|_{E}=\|e\|_{E}=\sup _{(n, I)}\left\|I_{\nu}\left(\xi_{(n, I)}\right)\right\|_{E}=\sup _{(n, I)}\left\|\xi_{(n, I)}\right\|_{v}=\|f\|_{v}
$$

where in the last equality we have used that $L_{w}^{1}(v)$ has the Fatou property (see Proposition 8). Let us see now that $T(f \wedge g)=T f \wedge T g$ for every $0 \leq f, g \in$ $L_{w}^{1}(\nu)$. Consider sequences $\left(\varphi_{n}\right)_{n \geq 1},\left(\psi_{n}\right)_{n \geq 1} \subset \mathcal{S}\left(\mathcal{R}^{l o c}\right)$ satisfying that $0 \leq \varphi_{n} \uparrow f$ and $0 \leq \psi_{n} \uparrow g$, and denote $\xi_{(n, I)}=\varphi_{n} \chi_{\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}}$ and $\eta_{(n, I)}=\psi_{n} \chi_{\cup_{\alpha \in I}\{\alpha\} \times \Omega_{\alpha}}$. Then, $T f=\sup _{(n, I)} I_{v}\left(\xi_{(n, I)}\right)$ and $T g=\sup _{(n, I)} I_{v}\left(\eta_{(n, I)}\right)$. Note that $\left(\varphi_{n} \wedge \psi_{n}\right)_{n \geq 1}$ which is contained in $\mathcal{S}\left(\mathcal{R}^{l o c}\right)$, satisfies that $0 \leq \varphi_{n} \wedge \psi_{n} \uparrow f \wedge g$ (see [7, Theorem 15.3]) and also $\left(\varphi_{n} \wedge \psi_{n}\right) \chi_{\{\alpha\} \times \Omega_{\alpha}}=\left(\xi_{(n, I)} \wedge \eta_{(n, I)}\right)_{(n, I)}$. Then, since I_{ν} is an order isometry, we have that

$$
T(f \wedge g)=\sup _{(n, I)} I_{v}\left(\xi_{(n, I)} \wedge \eta_{(n, I)}\right)=\sup _{(n, I)} I_{v}\left(\xi_{(n, I)}\right) \wedge I_{v}\left(\eta_{(n, I)}\right)=T f \wedge T g .
$$

For a general $f \in L_{w}^{1}(v)$, we define $T f=T f^{+}-T f^{-}$where f^{+}and f^{-}are the positive and negative parts of f respectively. So, $T: L_{w}^{1}(v) \rightarrow E$ is a positive linear operator extending I_{v}. For the linearity, see for instance [7, Theorem 15.8]. Moreover T is an isometry. Indeed, for $f \in L_{w}^{1}(v)$, since $f^{+} \wedge f^{-}=0$, we have that $T f^{+} \wedge T f^{-}=T\left(f^{+} \wedge f^{-}\right)=0$. Then, it follows that $|T f|=\left|T f^{+}-T f^{-}\right|=$ $T f^{+}+T f^{-}=T|f|$, and so, $\|T(f)\|_{E}=\|T(|f|)\|_{E}=\|f\|_{v}$.

Let us prove that T is onto. Let $0 \leq e \in E$. Since E_{a} is order dense in E, from Lemma 9 we have that $e_{(n, I)}=\sum_{\alpha \in I} e \wedge\left(n u_{\alpha}\right) \uparrow e$. Fix n and $\beta \in \Delta$. Since $e \wedge\left(n u_{\beta}\right) \in E_{a}^{\beta}$ as $0 \leq e \wedge\left(n u_{\beta}\right) \leq n u_{\beta}$, there exists $0 \leq g_{n, \beta} \in L^{1}\left(v_{\beta}\right)$ such that $e \wedge\left(n u_{\beta}\right)=I_{\nu_{\beta}}\left(g_{n, \beta}\right)$. Define $f_{n, \beta}: \Omega \rightarrow \mathbb{R}$ by $f_{n, \beta}(\alpha, \omega)=g_{n, \beta}(\omega)$ if $\alpha=\beta$ and $f_{n, \beta}(\alpha, \omega)=0$ in other case. Then, from Proposition 4, we have that $f_{n, \beta} \in L^{1}(v)$ and $I_{v}\left(f_{n, \beta}\right)=I_{\nu_{\beta}}\left(g_{n, \beta}\right)=e \wedge\left(n u_{\beta}\right)$. Taking $\xi_{(n, I)}=\sum_{\alpha \in I} f_{n, \alpha} \in L^{1}(v)$, we have that $0 \leq \xi_{(n, I)} \uparrow$ as $\xi_{(n, I)}=I_{v}^{-1}\left(e_{(n, I)}\right)$ and $\sup _{(n, I)}\left\|\xi_{(n, I)}\right\|_{v}=\sup _{(n, I)}\left\|e_{(n, I)}\right\|_{E} \leq$ $\|e\|_{E}$. By the Fatou property of $L_{w}^{1}(v)$, there exists $f=\sup _{(n, I)} \xi_{(n, I)}$ in $L_{w}^{1}(v)$.

If we prove that $x^{*}(e) \geq \int f d x^{*} v$ for all $0 \leq x^{*} \in X^{*}$, by the same argument used to see that T is well defined, we will have that $T f=e$. Fix $\alpha \in \Delta$, since $0 \leq \xi_{(n, I)} \uparrow f$ in $L_{w}^{1}(v)$, it follows that $0 \leq \xi_{(n, I)} \chi_{\{\alpha\} \times \Omega_{\alpha}} \uparrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L_{w}^{1}(\nu)$. Since $\xi_{(n, I)} \chi_{\{\alpha\} \times \Omega_{\alpha}}=\sum_{\beta \in I} f_{n, \beta} \chi_{\{\alpha\} \times \Omega_{\alpha}}=f_{n, \alpha} \chi_{\{\alpha\} \times \Omega_{\alpha^{\prime}}}$ actually we deal with a sequence. Writing $h_{n}^{\alpha}=f_{n, \alpha} \chi_{\{\alpha\} \times \Omega_{\alpha}}$, we have that $0 \leq h_{n}^{\alpha} \uparrow f \chi_{\{\alpha\} \times \Omega_{\alpha}}$ in $L_{w}^{1}(v)$ and so v-a.e. Fix now $0 \leq x^{*} \in X^{*}$. Since $h_{n}^{\alpha} \uparrow f \chi_{\{\alpha\} \times \Omega_{\alpha}} x^{*} v$-a.e., applying the dominated convergence theorem (see [8, Theorem 2.22]), we have that $\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v=\lim \int h_{n}^{\alpha} d x^{*} v$. Noting that $\int h_{n}^{\alpha} d x^{*} v=x^{*} I_{v}\left(f_{n, \alpha} \chi_{\{\alpha\} \times \Omega_{\alpha}}\right) \leq$ $x^{*} I_{v}\left(f_{n, \alpha}\right)=x^{*}\left(e \wedge\left(n u_{\alpha}\right)\right)$, we obtain that

$$
\begin{aligned}
\sum_{\alpha \in I} \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v & =\lim \sum_{\alpha \in I} \int h_{n}^{\alpha} d x^{*} v \leq \lim \sum_{\alpha \in I} x^{*}\left(e \wedge\left(n u_{\alpha}\right)\right) \\
& =\lim x^{*}\left(e_{(n, I)}\right) \leq x^{*}(e)
\end{aligned}
$$

for all finite $I \subset \Delta$. Therefore, by the description of $L_{w}^{1}(v)$ given in Proposition 7 and (2),

$$
\int f d x^{*} v=\sum_{\alpha \in \Delta} \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d x^{*} v \leq x^{*}(e) .
$$

For a general $e \in E$, consider e^{+}and e^{-}the positive and negative parts of e. Let $g, h \in L_{w}^{1}(v)$ be such that $T g=e^{+}$and $T h=e^{-}$. Then, taking $f=g-h \in L_{w}^{1}(v)$ we have that $T f=e$. Note that T^{-1} is positive. So, T is positive, linear, one to one and onto with inverse being positive, then T is an order isomorphism (see [6, p. 2]).

Note that in the first lines of the proof of Theorem 10, we have seen that $L^{1}(v)$ is order dense in $L_{w}^{1}(v)$. So, the conditions required in this theorem are necessary and sufficient for the extension of $I_{v}: L^{1}(v) \rightarrow E_{a}$ to $L_{w}^{1}(v)$ to be possible in the desired way.

Finally, note that Theorem 10 generalizes [3, Theorem 2.5] where every Banach lattice E with the σ-Fatou property having a weak unit belonging to E_{a} is represented by means of spaces L_{w}^{1} for a vector measure defined on a σ-algebra. Indeed, in this case, E has actually the Fatou property and E_{a} is order dense in E.

We end by showing two examples of the representation of Banach lattices as $L_{w}^{1}(v)$ spaces.
Example 11. Consider an uncountable set Γ and the δ-ring $\mathcal{R}=\{A \subset \Gamma: A$ is finite $\}$. The space $\ell^{\infty}(\Gamma)$ has the Fatou property and its σ-order continuous part $c_{0}(\Gamma)$ is order dense. Then, from Theorem $10, \ell^{\infty}(\Gamma)$ is
order isometric to $L_{w}^{1}(v)$ for some vector measure v defined on a δ-ring. The vector measure $v: \mathcal{R} \rightarrow c_{0}(\Gamma)$ can be defined as in Example 6 and in this case, the order isometry is the identity map, see [4, Example 2.2]. Note that $\ell^{\infty}(\Gamma)$ cannot be represented as $L_{w}^{1}(v)$ with v defined on a σ-algebra, as its σ-order continuous part has no weak unit.
Example 12. Also, we can find Banach lattices without weak unit satisfying the requirements of Theorem 10. Let Γ and Δ be disjoint uncountable sets and consider the Banach lattice $\ell^{1}(\Gamma) \times \ell^{\infty}(\Delta)$ endowed with the norm $\|(x, y)\|=\|x\|_{\ell^{1}(\Gamma)}+$ $\|y\|_{\ell^{\infty}(\Delta)}$ and the order $(x, y) \leq(\tilde{x}, \tilde{y})$ if and only if $x \leq \tilde{x}$ and $y \leq \tilde{y}$ for $x, \tilde{x} \in$ $\ell^{1}(\Gamma)$ and $y, \tilde{y} \in \ell^{\infty}(\Delta)$. This space has the Fatou property and its σ-order continuous part $\ell^{1}(\Gamma) \times c_{0}(\Delta)$ is order dense. In this case, taking the δ-ring $\mathcal{R}=$ $\{A \subset \Gamma \cup \Delta: A$ is finite $\}$, the vector measure $v: \mathcal{R} \rightarrow \ell^{1}(\Gamma) \times c_{0}(\Delta)$ can be defined as $v(A)=\left(v_{1}(A \cap \Gamma), v_{2}(A \cap \Delta)\right)$ for all $A \in \mathcal{R}$, where v_{1} and v_{2} are the vector measures defined in Example 6 and Example 11 respectively. Indeed, $\left(\ell^{1}(\Gamma) \times c_{0}(\Delta)\right)^{*}$ is identified with $\left(\ell^{1}(\Gamma)\right)^{*} \times\left(c_{0}(\Delta)\right)^{*}$ in the way $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$ such that $x^{*}(a, b)=x_{1}^{*}(a)+x_{2}^{*}(b)$ for all $(a, b) \in \ell^{1}(\Gamma) \times c_{0}(\Delta)$ and with $\left\|x^{*}\right\|=$ $\max \left\{\left\|x_{1}^{*}\right\|,\left\|x_{2}^{*}\right\|\right\}$. So, $x^{*} v(A)=x_{1}^{*} v_{1}(A \cap \Gamma)+x_{2}^{*} v_{2}(A \cap \Delta)$ for all $A \in \mathcal{R}$ and thus

$$
\left|x^{*} v\right|(B)=\left|x_{1}^{*} v_{1}\right|(B \cap \Gamma)+\left|x_{2}^{*} v_{2}\right|(B \cap \Delta) \text { for all } B \in \mathcal{R}^{l o c} .
$$

Then, for every $f \in \mathcal{M}\left(\mathcal{R}^{\text {loc }}\right)$ we have that

$$
\int|f| d\left|x^{*} v\right|=\int|f| \chi_{\Gamma} d\left|x_{1}^{*} v_{1}\right|+\int|f| \chi_{\Delta} d\left|x_{2}^{*} v_{2}\right| .
$$

Noting that $L_{w}^{1}\left(v_{1}\right) \times L_{w}^{1}\left(v_{2}\right)=\ell^{1}(\Gamma) \times \ell^{\infty}(\Delta)$ isometrically, it follows that the operator $T: L_{w}^{1}(v) \rightarrow \ell^{1}(\Gamma) \times \ell^{\infty}(\Delta)$, defined by $T f=\left(f \chi_{\Gamma}, f \chi_{\Delta}\right)$ for all $f \in$ $L_{w}^{1}(v)$, is an order isometry. Note that T restricted to $L^{1}(v)$ is the integration operator I_{v} which is an order isometry between $L^{1}(v)$ and $\ell^{1}(\Gamma) \times c_{0}(\Delta)$.

Acknowledgment

The authors would like to thank Prof. E. A. Sánchez Pérez for useful discussions on this topic during the preparation of this paper.

References

[1] G. P. Curbera, El espacio de funciones integrables respecto de una medida vectorial, Ph. D. Thesis, Univ. of Sevilla, 1992.
[2] G. P. Curbera, Operators into L^{1} of a vector measure and applications to Banach lattices, Math. Ann. 293, 317-330 (1992).
[3] G. P. Curbera and W. J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators, Indag. Math. (N.S.) 17, 187-204 (2006).
[4] O. Delgado, L^{1}-spaces of vector measures defined on δ-rings, Arch. Math. 84, 432-443 (2005).
[5] D. R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16, 294-307, (1972).
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1979.
[7] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1971.
[8] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ-rings, Adv. Math. 73, 204-241 (1989).
[9] P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration, Adv. Math. 75, 121167 (1989).
[10] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.

Departamento de Matemática Aplicada I
E. T. S. de Ingeniería de Edificación

Universidad de Sevilla
Avenida Reina Mercedes, 4 A
41012 Sevilla, Spain
email:olvido@us.es
Instituto Universitario de Matemática Pura y Aplicada
Universidad Politécnica de Valencia
Camino de Vera s/n
46071 Valencia, Spain
email:majuabl1@mat.upv.es

[^0]: *Supported by MEC (MTM2009-12740-C03-02) and UPV (PAID-10 Ref. 2149)
 ${ }^{\dagger}$ Supported by MEC (MTM2008-04594), GV (2009/102) and UPV (PAID-06-08 Ref. 3093)

