Representation of Banach lattices as L. spaces
of a vector measure defined on a é-ring
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Abstract

In this paper we prove that every Banach lattice having the Fatou prop-
erty and having its o-order continuous part as an order dense subset, can be
represented as the space L. (v) of weakly integrable functions with respect
to some vector measure v defined on a J-ring.

1 Introduction

The interplay among the properties of a vector measure v, its range and its inte-
gration operator allows us to understand the behavior of the space L!(v) of inte-
grable functions with respect to v. This makes desirable to know which spaces
can be described as such L! spaces. In [2, Theorem 8], Curbera proves that every
order continuous Banach lattice E with a weak unit is order isometric to a space
L!(v) where v is a vector measure defined on a c-algebra. The result remains true
if E has not a weak unit but for v defined on a d-ring. This was stated in [1, pp. 22-
23] but the proof there is just outlined. We present here a proof of this fact in full
detail. Note that the differences between the integration theory with respect to
vector measures on c-algebras and the integration theory with respect to vector
measures on J-rings are significant. For instance, bounded functions are always
integrable for the first one while they are not necessarily integrable for the second
one.
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Associated to v there is another interesting space whose properties can be
studied through the properties of v. Namely, the space L} (1) of weakly integrable
functions. In [3, Theorem 2.5], Curbera and Ricker show that every Banach lattice
E satistying the o-Fatou property and with a weak unit belonging to the c-order
continuous part E, of E is order isometric to a space L} (v) for a vector measure v
defined on a -algebra. The aim of this paper is to prove the corresponding result
in the case when E has not a weak unit by using a vector measure defined on a
J-ring.

Given an order continuous Banach lattice E, Section 3 is devoted to the con-
struction of a vector measure v defined on a J-ring associated to E. In Section 4,
we show that L!(v) is order isometric to E via the integration operator. This fact is
the starting point for proving our main result in Section 6, namely, every Banach
lattice E with the Fatou property such that its o-order continuous part E, is order
dense in E is order isometric to the Ll space of the vector measure associated to
E, which in this case is also order continuous. This L., space is studied first in
Section 5. We end with two examples of Banach lattices which can be represented
as L} (v) with v defined on a §-ring, but cannot be represented in the same way
for any vector measure defined on a c-algebra.

2 Preliminaries

2.1 Banach lattices.

Let E be a Banach lattice with norm || - || and order <. A weak unit of E is an
element 0 < e € E such that x A e = 0 implies x = 0. A closed subspace F of E is
an ideal of E if y € F whenever y € E with |y| < |x| for some x € F. Anideal F in
E is said to be order dense if for every 0 < x € E there exists an upwards directed
system 0 < x¢ 1 x such that (x;); C F. We will say that E has the Fatou property if
for every (x;); C E upwards directed system 0 < x; 1 such that sup_ ||x|| < oo
it follows that there exists x = sup_x; in E and ||x|| = sup, ||x||. We will say that
E has the o-Fatou property if for every (x,),>1 C E increasing sequence 0 < x,, 1
such that sup,,., ||x|| < oo it follows that there exists x = sup,, X, in E and
|x|| = sup,~q |[xn]|. The Banach lattice E is order continuous if for every (xr)r C E
downwards directed system x; | 0 it follows that ||x| | 0. If ||x,| | O for any
(xn)n>1 C E decreasing sequence x,, | 0, then E is said to be o-order continuous.
We call order continuous part E,y, of E to the largest order continuous ideal in E. It
can be described as

Esp ={x € E: |x| > x¢ | 0 implies ||x¢| | 0}.

Similarly, the o-order continuous part E, of E is the largest o-order continuous ideal
in E, which can be described as

E,={x€E: |x| > x, |0 implies ||x,| J 0}.

The Banach lattice E is said to be o-complete if every order bounded sequence has
a supremum.



An operator T: E — F between Banach lattices is said to be an order isometry if
it is a linear isometry which is also an order isomorphism, that is, T is linear, one
to one, onto, ||Tx||p = ||x||g forallx € Eand T(x Ay) = Tx A Ty forall x,y € E.

For these and other issues related to Banach lattices, see for instance [6], [7]
and [10].

2.2 Integration with respect to vector measures on J/-rings.

This integration theory is due to Lewis [5] and Masani and Niemi [8], [9]. See also
[4].

Let R be a 6-ring of subsets of an abstract set () (i.e. a ring of sets closed under
countable intersections). Associated to R we have the -algebra R/ of subsets A
of QO suchthat ANB € R for every B € R. The space of measurable real functions
on (Q, R'¢) will be denoted by M (R!°°) and the space of simple functions by
S(R!°¢). A special role will be played by the simple functions based on R. The
space of these functions will be denoted by S(R).

Let A: R — Rbe a countably additive measure, thatis, -1 A(A,) converges
to A(U,>1A,) whenever (Ay),>1 are pairwise disjoint sets in R with U,>1A, €
R. The variation of A is the countably additive measure |A|: R/°° — [0, o] given

by
A|(A) = sup { Y IA(A})] : (A;) finite disjoint sequence in R N 2A}.

The space L!()) of integrable functions with respect to A is defined just as L (| A|)
with the same norm. The space S(R) is dense in L!(A). For each
¢ = Y qaixa, € S(R), the integral of ¢ with respect to A is defined as usual,
[ @dA =Y a;A(A;). For every f € L1(A), the integral of f with respect to A is
defined as [ fdA = lim, e [ @ndA for any sequence (¢,),>1 C S(R) converg-
ing to f in L1(A).

Letv: R — X be a vector measure with values in a real Banach space X, that is,
Y .>1V(An) converges to v(U,>1A,) in X whenever (A;),>1 are pairwise disjoint
sets in R with U,>1A, € R. Denoting by X* the dual space of X and by By-
the unit ball of X*, the semivariation of v is the map |v||: R"¢ — [0, 0] given by
|v|[(A) = sup{|x*v|(A) : x* € Bx-} forall A € R!°, where |x*v/| is the variation
of the measure x*v: R — R. A set B € R/ is v-null if ||v|(B) = 0. A property
holds v-almost everywhere (v-a.e.) if it holds except on a v-null set.

We will denote by L. (v) the space of functions in M (R!°¢) which are inte-
grable with respect to |x*v| for all x* € X*. Functions which are equal v-a.e. are
identified. The space L} (v) is a Banach space with the norm

£l = sup { [ Ifldlvl: 2 e By .

Moreover, it is a Banach lattice having the o-Fatou property for the v-a.e. point-
wise order and it is an ideal of measurable functions, that is, if [f| < |g| v-a.e.
with f € M(R"¢)and g € L1 (v), then f € L} (v). Also, note that convergence in
norm of a sequence implies v-a.e. convergence of some subsequence. A function



f € LL(v) is integrable with respect to v if for each A € R!°° there exists a vector
denoted by [, fdv € X, such that

x (/Afdv):/Afdxvforallx e X",

We will write [ fdv for [, fdv. We will denote by L!(v) the space of integrable
functions with respect to v. It is an order continuous Banach lattice when en-
dowed with the norm and the order structure of L. (v). Even more, it is an ideal
of measurable functions and so an ideal of L}, (v). Note that if ¢ = Y!' 1 a;x4, €
S(R) then ¢ € L(v) with [, pdv = Y1 av(A;NA) forall A € R The
space S(R) is dense in L!(v). The integration operator I,: L!(v) — X given by
I,(f) = [ f dv is linear and continuous with ||I, (f)|| < || f|lv-

A vector measure v: R — E with values in a Banach lattice E is positive if
v(A) > 0 for all A € R. In this case, the integration operator I,: L'(v) — E
is positive (i.e. I,(f) > 0 whenever 0 < f € L'(v)) and it can be checked that
Il = IL(f)Il forall £ € L1(v).

We know that the space L1 (v) has the o-Fatou property for every vector mea-
sure v: R — X, but what about the Fatou property? The following proposition,
which will be needed later on, gives a sufficient condition for L} (v) to have the
Fatou property.

Proposition 1. If v: R — X is a o-finite vector measure, that is, there exists a sequence
(An)u>1 C Rand a v-null set N € R such that Q = (U,>1A,) UN, then LL (v)
has the Fatou property.

Proof. Letv: R — X be a o-finite vector measure. Then, by [4, Remark 3.4], there
exists x5 € Bx+ such that |x;jv| is a local control measure for v, that is, |xjv| has
the same null sets as v.

Let (fr)r C LL(v) be such that 0 < f; 1 v-a.e. and sup_ ||fr||y < oo. Then,
0 < fr 1 |x¢v|-a.e. and sup, [ frd|xjv| < sup, | frlly < oo. Since L!(x}v) has the
Fatou property, there exists f = sup. fr in L!(x}v). On the other hand L!(x}v) is
order separable, so we can take a sequence fr, 1 f in L!(x}v). Then, fr, 1 f [x{v|-
a.e. (equivalently v-a.e.) and so |x*v|-a.e. for all x* € X*. By using the monotone
convergence theorem, we have that

[ 1fldlxvl = tim [ [fqldlxv] < |5 - sup [ fell < oo,
T

Since the |xjv|-a.e. pointwise order coincides with the v-a.e. oneand 0 < f; 1
fin LY(|x§v]), it follows that 0 < fr 1 fin L. (v). Indeed if ¢ € L} (v) is such that
fr < gv-ae. forall 7, then ¢ € LI (|x}v]) is such that fr < g |xjv|-a.e. for all T,
and so f < g |xjv|-a.e. or equivalently v-a.e. Moreover, since || fz||, < ||f||, for all
7, we have that ||f||, = sup, || f¢||v- Therefore, L}, (v) has the Fatou property. =

and so f € L}(x*v) for all x* € X*. Hence, f € L}, (v) and ||f||v < sup, || fz|lv-

In particular, from Proposition 1, we have that L (v) has the Fatou property
for every vector measure v defined on a c-algebra.



3 Vector measure associated to an order continuous Banach
lattice

Let E be an order continuous Banach lattice. We will prove that there exists a vec-
tor measure v defined on a -ring and with values in E, such that the space L!(v)
of integrable functions with respect to v is order isometric to E. More precisely,
the integration operator I,: L'(v) — E is an order isometry.

As it has been remarked in the Introduction, in the case when E has a weak
unit this result was proved in [2, Theorem 8] with v defined in a c-algebra. In the
general case, there is an outlined proof in [1, pp. 22-23]. For completeness, we
include in this paper a detailed proof.

In this section, we construct a vector measure v for which we will see in Sec-
tion 4 that the order isometry works.

The key for constructing our vector measure is the following result of Linden-
strauss and Tzafriri [6, Proposition 1.a.9]: E can be decomposed into an uncondition-
ally direct sum of a family of mutually disjoints ideals {E }4ca, each E, having a weak
unit. That is, every e € E has a unique representation e = Y, eq with e, € E,, only
countably many e, # 0 and the series converging unconditionally.

Each E, is an order continuous Banach lattice with a weak unit. Then, from [2,
Theorem 8], there is a o-algebra X, of subsets of an abstract set (), and a positive
vector measure v, : Xy — E, such that the integration operator I, : L! (vy) — Eq
is an order isometry.

Consider the set QO = Ugea ({a} X ), thatis

O={(a,w): a € Aand we Oy}

In a similar way, we denote Ugea{a} X Ay = {(a,w) : « € A and w € A},
where A, C Q, for all « € A. For every I' C A we write Uper{a} X A, =
Ugea{a} x Ay whenever A, = @ for all &« € A\T'. Note thatif A, = Ugep{a} x
Al forn > 1,

U an=U (fa}x U 4b) and ) Ac= U ({a} x N 42).

n>1 aEN n>1 n>1 aEA n>1

Also, if A = Ugep{a} x Ay and B = Ugep{a} X By,

A\B = J ({a} x A\Bu).

aEA

Then the family R of sets Upepa{a} x A, satisfying that A, € &, foralla € A and
there exists a finite set I C A such that A, is v,-null for all « € A\I, is a é-ring of
subsets of (). Moreover,

RIC = { Upyen {a} x Ay : Ay € Iy foralla € A},
Indeed, given A € RI¢, if we take B, = {w € Oy : (a,w) € A} we have that

A= szeA{“} X thz



where {a} x By = AN ({a} x Q) € R (as {a} x Qy € R). So, By € %,.
Conversely, take A = Uycp{a} x Ay with A, € X, for every « € A. If B =
Ugen{a} X By € R,

ANB=J ({a} x AuNBy) €R
STAN

and so A € R°.
Let v: R — E be the set function defined by

V( Uren {‘x} X Arx) = Z Vo (Ag).

aEA

Let us see that v is a vector measure. Given A, = Ugep{a} x Al € R forn > 1
mutually disjoint sets such that U, >1A; € R, we have that

U 4= U (fa} x U 42)

n>1 aEA n>1

where (J,,>1 Aj is a disjoint union for every a € A and there exists a finite set
I C A such that J,,>1 Ajf is vg-null for all « € A\I. Since for each « € A the sum
Y >1Va(A}) converges to vy (U,>1A}) in E4 and so in E, then we have that

t(ghyqyng®=zzwm@=zzwm@=ZwMy

ael acln>1 n>1lacl n>1

Note that a set A = Ugep{a} x A, € R/ is v-null if and only if A, is v,-null for
all « € A. Also note that v is positive as every v, is so.

Remark 2. Let f € M(R!c). For each « € A, we denote by f, the function
fa: Qy — R given by fy(w) = f(a,w) for all w € Q. Since for every Borel
set B on R we have that

f1(B) = Unea{a} x fi '(B) € R,
then f, }(B) € X, for each « € A. Hence, f, € M(Z,) for each a € A. In partic-
ular, if ¢ = 2?21 ajxX A with A; = Ugea{a} x Al € RI’¢, then ¢, = 2?21 ajx ,i €

From now and on, f, will denote the functions defined in Remark 2 for some
function f € M(R!). The following lemma will allow us to give useful descrip-
tions of the spaces L' (v) and Ll (v) in next sections.

(
Lemma 3. Let f € M(
D FXuyxcr, € LL(v) ifand only i f, € LL(ue).

b) fX{a}x0, € L'(v) ifand only if fu € L' (vy). In this case

/fX{fx}ma dv = /fadva.

R¢Y and a € A. Then,



Proof. Let x* € E* and x; € Ej be the restriction of x* to E,. For each function
P = 2;1:1 ajX A € S(RZOC) with A] = U/;eA{‘B} X A']B, we have that PX{atxQy =
i UX (e, € S(R) and g = 14 X 4 € S(XZy), then

/@X{“}Xﬂa dx*v = gajx*v({tx} X A{X) = Zajx*va(Aﬁ)
]:

j=1
n .
= a]-x;v,x(Afx) = /(p,x Ax;vy.
=1

J

It is routine to check that |x*v|({a} X Ay) = |xiva|(As) for every A, € Z,. Then,
in a similar way as for x*v, we have that [ )14}, 41X V| = [ @ud|x3vel.

Let (¢)n>1 C S(R!°¢) be a sequence such that 0 < ¢, 1 |f| pointwise. Then,
0 < @nX{ayxe T IfIX{a1x0, and 0 < (@n)a T | fu| pointwise. Using the monotone
convergence theorem, we have that

J kg ea,dlxvl = lim [ guxi o, dixv] (1)
— lim [ (@aadizival = [ 1fel dlxival.

Then, fy € Li,(va) implies fx 4150, € Lip(V).
Let now y* € Ej and define j*: E — R as §*(e) = y*(ex) for e = Y gepep.
Then, #* € E* and the restriction of #* to E, coincides with y*. So, by (1),

[1feldlyval = [ £l <o, 4150l

Hence, fX(s1x0, € Ll (v) implies f, € L (vy). Therefore, a) holds.

In the case when [ |f|x{u}x0, dlx*v| < oo, thatis, fx(x1x0, € L'(x*v), there
exists a sequence (¢,),>1 C S(R) such that ¢ — fx(a1xq, in L'(x*v) and so
PnX{a}x0x — fX{a}x0, IN L'(x*v). Also, by (1), which holds for every function
in M(R'), we have that [ [fo — (¢n)al d|xjva] = [ |f = @ulX {2} <, d|x*V|, and
0 (¢n)a — fa in LY(x}v,). Hence,

[ Freeandry = tim [ oo, dy @
= Jgrc}o (qon)“dx;vﬂz/f“dx;vﬂ.

Suppose that fx(u1x0, € L'(v). In particular, fX{arx0. € Ll (v) and so,
by a), fx € Ll (vy). On other hand, taking a sequence (¢,),>1 C S(R) such
that ¢, — fX{ayx0, in L'(v) and s0 ¢uX{a1x0, = fX{a}x0, 0 L' (v), we have
that [ @nX () x0, dv converges to [ fx(xxn, 4V in E. Since [ ¢nxia1xa, 4V =
J(@n)advy € Ey and E, is closed in E, we have that ff)({,x}xga dv € E,. Given
y* € Ej and j* € E* defined as above, it follows

y*(/fX{,x}an dV) :y*(/f)({rx}xﬂ,x dV) = /fX{,x}an dij*v = /fzxdy*vm



where we have used (2) in the last equality. Hence, f, € L'(v,) and f fadv, =

I fX (=0, dv.
Suppose now that f, € L!'(v,). In particular, f, € L} (v,) and so, by a),
fXfayx0, € LL(v). Since [ fudvy € Ey C E, for every x* € E* we have that

x*(/f,x v, ) = xi(/f,x v ) = /f,x dxiv, = /f;({a}ma ',

where x; € Ej is the restriction of x* to Eq. Then, fxsx0, € L'(v). Therefore,
b) holds. -

4 Description of an order continuous Banach lattice as an L' (v)

Let E be an order continuous Banach lattice and v the associated vector measure
constructed in Section 3. Let us give a description of the space L!(v) which will
be helpful to prove that E is order isometric to L (v).

Proposition 4. The space L'(v) can be described as the space of all functions f €
M(R¢) such that f, € L'(vy) for all & € A and Yuen [ |fu| dve is uncondition-
ally convergent in E, where f, is defined as in Remark 2. Moreover, if f € L'(v) we have

that
/fdv=“§/f,xdv,x.

Proof. Let f € L'(v). Then, for every a € A, we have that x40, € L'(v)

and so, by Lemma 3.b), f, € L!(v,). Let (¢n)y>1 C S(R) be a sequence such
that ¢, — f in L'(v) and v-a.e. Since each ¢, is supported in R, we can write
Supp ¢n = Ugea{a} x Al where A% is v,-null for all & € A\ I, with I,, C A finite.
Then,

Supp f C USuppgon: U U{tx}xAg: U{oc}x(UAZ).

n>1 n>1a€eA aEN n>1

Note that Uy, > A} is ve-null for every a & I = Uyl S0, Uyea\ ({a} X (Up>1 Af)
is v-null and thus

f = fXUaeI{“}X(UnzlAﬂ) v-a.e.

For every a € A\I, from Lemma 3.b) and since fx {a}xQ, = 0 v-a.e., we have that

/|ftx|dvtx=/|f|X{a}andV=0-

Write I = {aj};>1 and g» = L}, ]f|)({,xj}xﬂaj. Note that 0 < g, 1 |f| € L1(v).

Then, since L!(v) is order continuous, g, — |f| in L'(v) and so
n n
Z/’fzxj|d1/1xj - Z/ ’f|X{lX]'}><Q,X]. dv = /gndV — / |fldv in E.
j=1 j=1

Therefore, Y ycp [ |fa| AVa is unconditionally convergent in E.



Conversely, let f € M(R!°) be a function such that f, € L!(v,) foralla € A
and Y ,cn [ |fa| dva is unconditionally convergent in E. From this and since v, is
positive, we have that there exists a countable set N C A such that

felloo = | [ 1faldvs

Thatis, fo = 0 vx-a.e. for alla € A\N. So, for each &« € A\N, there exists a v,-null
set Z, such that

.= 0 forallw € A\N.

fa(w) =0 forall w € O\ Z,.
Note that the set U, A\ N{a} x Zy € RI°¢ is y-null, then

f=Y fX{xo, v-ae.

xeN
Write N = {a;};>1 and take f, = }.i'; fX{a;}x0,, Which belongs to L'(v) from
= j
Lemma 3.b). Then, for m < n,

= fulle = || [V v
— i /|f’X{IXj}><Q“]’dVHE

j=m+1

= i /|f“;‘| v

j=m+1

—0
E

as m,n — oo. Since f, — f v-a.e., it follows that f € L!(v). Moreover, f, — f in

L'(v), so
/fdv:lirrln/fndv:Z/f,xdv,x. m

LTSN
We go on now to show that L!(v) and E are order isometric.

Theorem 5. The space L' (v) is order isometric to E. Even more, the integration operator
I,: LY(v) — E is an order isometry.

Proof. The integration operator I,: L!(v) — E is a positive (as v is positive) con-
tinuous linear operator satisfying that ||L,(f)||[g < [|fllv = [[I.(|f])||g for every
f € L'(v). Let us see that I, is an isometry. Fix f € L!(v). From Proposition 4, it

follows
g le(fue) o

= sup x*<2/|flx|d1/a>

X*GBE* aEA

= sup ‘Zx*(/|f,x]dv,x)

X*GBE* KEA

£l = || [if1av] = sup




Let x* € E*. Note that x* o [, € LY (v,)* for all & € A (recall I, : LY(vy) — Eq
is an order isometry). Taking &u = X{f,>0} — X{f, <0}, Wwe define ¥*: E — R by

= ¥ x" o Iy (8l ()

aeA

for alle € E with e = ) ,ca e such that e, € E, and the sum is uncondition-
ally convergent. Let us see that ¥* is well defined and belongs to E*. Take an
elemente = Y ,cpeq € E as above. Then, |e| = Y ca |ex| where the sum is also
unconditionally convergent Let N C A be a countable set such that e, = 0 for all
& € A\N. Then, &1, '(ex) = 0 and so x* o I, (€al, ' (ex)) = O forall & € A\N.
Writing N = {a;}>1 we have that

‘ i x*o IW], (gajlﬁjl(eaj)) ) =
j=n

(ZIVa Ctx, v (e,x]))))

J=n

< | 0 e (@B )|
]:7’!

Note that, since I, is an order isometry, |I,, (h)| = L, (|h|) forall h € L'(vy) and
L, (h) < I, (h) whenever i < h € L(v,) (the same holds for I, 1) . Then,

NgE

‘ Z Iv,x]- (gtxj 11;]1 (e“j)) } < ‘I‘/tx]- (g”‘f 11;]1 (e“f)) ‘
j=n

J

n

Il
NgE

IV"‘j (’gajlijl (eﬂé]‘)’)

j=n

Z IVWj(|11;1(eﬂj)|)

j=n !
m m

= ZIVa<(Il;¢<1(|e“j|)) = Z |€u¢j’-
j=n j=n

IN

Therefore,

3 b (G 15 )| < 11| 3 fe
j=n j=n

as n,m — o0. So, ¥* is well defined, obviously linear and continuous as |¥*(e)| <
|x*|| - |le||g for alle € E, thatis, £* € E* and ||X*|| < ||x*||. Moreover,

X (/ | fal dVDc) =x"oly(|fa]) = x" 0 L, (§afa) = x" 0 I, (Clxlﬂl (Ile(f“)))

for all &« € A. From Proposition 4, we have that I, (f) = Y ,ca L, (fx) and so,

T (L(f)) = Z x* o I, (Galy, (Iva(fzx = / | fal thx

aEA zxeA



Hence, we have proved that for every x* € Bg« there exists £* € B+ such that

e x*(f 1A dv,x) = #(L,(f)). Then, from (3), || fllv < L (f)||. Therefore, I,

is a linear isometry.

Let us see now that I, is onto. Lete = ) -5 ex € E. Since each ¢, € E,, there
exists hy € L!(v,) such that e, = I, (hy). Define f: QO — Rby f(a, w) = hy(w)
for all (x,w) € Q. Then, f € M(R!°) (as f~1(B) = Upea{a} x hy(B) for every
Borel set Bon R), f, = h, € L'(v,) foralla € A and

Z Iv,x(fpc) = Z Iva(h/x) = Z €x

aEN aEA aEA

is unconditionally convergent in E. So, by Proposition 4, we have that f € L!(v)
and I, (f) = Ypea I, (fa) = e. Note thatif e > 0, thatis, e, > 0 for all « € A, then
hy > 0forallae € Aandso f > 0. Hence, Ilis positive.

So, I, is positive, linear, one to one and onto with I 1 positive. Then, by
[6, p- 2], I, is an order isomorphism. [ ]

Let us show an example of the representation as an L!(v) of an order continu-

ous Banach lattice without weak unit. This example has been already studied in
[1, p. 23] and [4, Example 2.2].

Example 6. Consider an uncountable set I and the 6-ring R = {A C T': A is finite}.
The space ¢! (T') is order continuous, so, by Theorem 5, ¢}(T) is order isometric to
L!(v) for some vector measure v defined on a é-ring, via the integration operator.
The vector measure v: R — ¢!(T) can be defined as v(A) = Y cA €y, Where e is
the characteristic function of the point . In this case, the integration operator is
the identity map. Note that ¢! (') cannot be represented as L!(v) with v defined
on a v-algebra, as it has no weak unit.

5 Ll (v) forv associated to an order continuous Banach lattice

Until now, we have considered an order continuous Banach lattice E. If we for-
get about the order continuity property, descriptions of E by means of a vector
measure could exist. For instance, if E is a Banach lattice satisfying the o-Fatou
property with a weak unit belonging to the o-order continuous part E; of E, then
there exists a vector measure v defined on a c-algebra such that E is order iso-
metric to L} (v), see [3, Theorem 2.5]. In this reference, it is noted that in this case
E, is also order continuous. Indeed, E, is an ideal of E which is o-complete as it
is o-Fatou ([10, Theorem 113.1]). Then, E, is also c-complete and, as it is o-order
continuous, it follows that it is order continuous ([6, Proposition 1.a.8]). The proof
of the representation of E as an L. (v) consists in taking a vector measure v such
that L (v) is order isometric to E, via the integration operator I,, and extending
I, to L% (v). The result is that this extension is an order isometry from Ll (v) onto
E. Our question now is if a similar result is possible if we forget about the weak
unit and consider vector measures defined on a J-ring, as it happens in the case
when E is order continuous. For solving this question, we will need a description
of L}, (v) along the lines of Proposition 4.



Let E be again an order continuous Banach lattice and v the associated vector
measure constructed in Section 3.

Proposition 7. The space L%, (v) can be described as the space of all functions f €
M(R¢) such that f € LL,(vy) foralla € Aand Y pep [ | fu] d|x*va| converges for all
x* € E*, where f, is defined as in Remark 2. Moreover, if f € Li,(v) and x* € E*, then

/de*V=“;A/flde*le and /fd|x*1/| =“§A/f,xd|x*v,x|.

Proof. Let f € LL(v). Then, fX{arx0. € Ll (v) and so, by Lemma 3.a), f, €
Ll (vy) for every a € A. Take x* € E*. For every I C A finite, by (1), we have that

Y [ 1faldixvl = X [ £ <o, dxv]

acl ael

= /!flxuael{a}m“d!x*ﬂ < [l 1A

S0, Yuea J |fa] d|x*v4| is convergent.

Conversely, let f € M(R!) be such that f, € Ll (v,) for all &« € A and
Ywen [ |fal d|x*vy| converges forall x* € E*. Fix x* € E*. There exists a countable
set N C A such that

/|f1x|d|x*1/,x| =0 foralla € A\N.

Then, for every & € A\N, there exists a |x*v,|-null set Z, such that
fa(w) =0 forall w € O\ Z,.

Noting that Uyea\n{a} X Zy is |x*v|-null, it follows

f= ¥ fXiaea, [Xvlae

aeN

Write N = {a;};>1 and take f, = }.i; fX{a;}x0,, Which, by Lemma 3.a), is in
- j
L1 (v). Then, for m < n, by (1),

n n
[ 1= faldix v = Y [l dlevl = 3 [ 1faldlug] -0

j=m+1 j=m+1

as m,n — oo. Note that f, — f |x*v|-a.e. So, f € L'(]x*v]) and f, — f in
LY(]x*v]). Therefore, f € L. (v) and, by (1) and (2),

/fdx*v: Z/f,xdx*v,x and /fd|x*1/] = Z/f,xd|x*v,x| for all x* € E*.

aEN aEA
| ]

For the proof of our main result we will need the following fact which holds
for the vector measure v associated to the order continuous Banach lattice E.



Proposition 8. The space L (v) has the Fatou property.

Proof. For every I C A finite, consider Q) = Uyer{a} x Q4 and the o-algebra
2= { User {a} x Ay : Ay € Zy foralla € I} of parts of O);. Note that QO C O
and X; C R. Denote by v;: £; — E the restriction of v to 2. Since vy is a vector
measure defined on a c-algebra, Ll (v) has the Fatou property, see Proposition 1.

For each f € M(R'°), denote by f! the function resulting from the restriction
of f to Q)y. Of course, f! € M(Z;). For every x* € E*, it follows

[ 1l = [ Iflxo, vl @

Indeed, for every A € X; we have that |x*v[|(A) = |x*V|(A) and so it is routine
to check that (4) holds for f € S(R/°). For a general f the result follows by
applying the monotone convergence theorem. Then, for every f € Ll (v) we
have that fxq, € LL,(v) and so f! € LL (v;) with ||f!]|,, = ||fxq,|lv- Note that if
Z is a v-null set then Z N ) is vi-null.

Let (fr)r C LL(v) be an upwards directed system 0 < f; 1 v-a.e. such that
sup, || fellv < 0. Then, (fI)r C LL(v;) is an upwards directed system 0 < fI ¢
vi-a.e. and sup_ || ff|lv, = sup, || frxa,llv < sup, || frlly < co. Since Ly, (vy) has the
Fatou property, there exists f! = sup_ fin LY (v;) and || 1|}, = sup, || fL]|v,-

Now, from each I = {a} with « € A, we construct the function f: QO — R
givenby f(a,w) = fl&} (a,w) forall (a,w) € Q. Since f~1(B) = Uyea(F14)~1(B)
for all Borel set B on IR, we have that f € M(R!°°). Noting that U,cp{a} x Z, is
v-null whenever {a} x Z, is v(,3-null for alla € A, we have that f = sup_ f. Let

us see that f € Ll (v) by using the characterization of Proposition 7. For every
x € Aand y* € E}, taking 7* € E* defined as i7*(e) = y*(ex) for e = Y yca €x, Dy
(1) and (4), we have that

Jifeldlyval = [ Flxay, digvi = [1£9dl7vi] <.

So, fu € LL(vy). Moreover, given x* € E*, for every I C A finite,

Y [ faldlxvl = X [ Iflxa, dixvl = [ flxa 'y

acl ael

= [l vl < 1l < sup el < e
T
Then Y et [ | fal d|x*vy| converges and so f € L (v). Moreover,

[ 1fldivl = ¥ [ Ifeddlxud < sup|ifell.

aEN

Hence, ||f|lv < sup. || fc|lv- The equality follows, as || f-|| < || f||, for all 7. ]

Note that for the proof of Proposition 8 the fact that (2 is an uncountable dis-
joint union of sets in R and also the way as the J-ring R is defined are crucial.
So, L1, (v) has the Fatou property for the particular vector measure v constructed
in Section 3. But, has L} (v) the Fatou property for every vector measure v de-
tined on a J-ring? In the case when v is o-finite, the answer is yes (Proposition 1),
however for the general case this is an open question.



6 Description of a Banach lattice as an L] (v)

Let E be now a general Banach lattice. We always can consider the order continu-
ous part E;; of E. Then, we can take the vector measure v associated to E;; as in
Section 3, and so, by Theorem 5, I, : ! (v) — Egapn is an order isometry. The ques-
tion is if it is possible to extend I, to the space L} (v) in a way that the extension
is an order isometry between L (v) and E. Note that if this extension is possible,
by Proposition 8, E must have the Fatou property. So, we will require E to have
this property. In this case, E has the c-Fatou property and then E;;, = E;, as we
said at the beginning of Section 5.

In order to prove the desired result, we will need the next Lemma. Recall that
the order continuous part E; of E can be decomposed into an unconditionally
direct sum of a family of mutually disjoints ideals {E/ },ca, each EX having a
weak unit u, (see Section 3).

Lemma 9. Suppose that E, is order dense in E. Then, for every 0 < e € E it follows

(1) = Y eN(nug) te )

ael

where the indices (n, I) are such that n € N and I C A is finite. Moreover, in the case
when 0 < e € E,, there exists a countable set {a;} C A such that e A\ (nu,) = 0 for all
nand o € A\{a;}, and

m
e = 1r}rnr11 Z{ e A (nuy;) innorm. (6)
]:

Proof. Let 0 < e € E and e, ) as in (5). Then 0 < e(, ;) T and e, ;) < e for all
(n,I). Note that {nu, : « € A} is a set of pairwise disjoint elements, so

ey = Y e (nig) =eN ( Y. nu,x> (7)

acl ael

(see [7, Theorem 12.5]). Let z € E be such that e < Z for all (n,I). Let us

see that e < z. Suppose first that e € E; and write e = 2]21 €a,; where en; € E; J
and the series converges unconditionally. Note that, since e > 0 and {e,xj} is a
set of pairwise disjoint elements, Ca; > 0 for every j. Then 27’:1 Ca; 1 e in the
lattice order (see [10, Theorem 100.4.(i)]). For a fix j we have that ex; A (nu,xj) T e
(see [6, pp-7-8]). Then, for each m it follows that Z}”:l ew; A\ (nitg;) T Z}”:l eq; (see
[7, Theorem 15.2]). Since en; < € for all j, taking I,, = {aq,..., &} we have that
271:1 €a; A\ (nu,xj) < e, <z for all n and so 27”’:1 ex; < z. Hence e < z. Note
that actually we have proved that } /2 ; e A (nuy;) T e where the indices are (1, m).
Then, by the order continuity of E,;, it follows that e = limy, ,, Z}“:l en (nua].) in
norm. Hence, (5) and (6) hold if e € E,.

In the general case, since E, is order dense in E, there exists (e;) C E, such
that 0 < e; T e. We now know that }_,c;er A (nuy) T er for every 7. Then, since
Yoaerer A (nuy) < 1) <z, we have that e; < z for every 7, and so e < z. ]



Now we can prove our main result by using Lemma 9.

Theorem 10. If E has the Fatou property and E, is order dense in E, then E is order
isometric to L1 (v).

Proof. Let us extend I, to L} (v). First, consider 0 < f € L. (v) and choose
(@n)n>1 C S(R'C) such that 0 < ¢, 1 f. Foreachn > land I C A fi-
nite, we define C(H,I) = ¢”XUae1{“}XQa ~ S(R) Then, (c:,‘(nll))(nll) C Ll(l/) is
an upwards directed system 0 < ¢, 1) T f in Ll (v) and so, since I, is positive,
(L(&n,1)))(n1y € Ea C Eisan upwards directed system 0 < I,({(, ) T and
sup,, 1y [ v (&) llE = supg,py I€eun llv < [lfllv < co. Then, by the Fatou prop-

erty of E, there exists e = sup( I )L,((;‘( n1)) in E and [le||g = sup, ||IV( En,n)lIE-

We define T(f) =
Using an argument similar to the one in [3, Theorem 2.5], we will see that T

is well defined. Take another sequence ({,,),>1 C S(R'"°) such that 0 < ¢, 1
f- Denote 1,1y = PuXu,c {a}x0, and z = sup, L(17(n,1))- Let0 < x* € E*
be fixed. Then, x*(¢) > x*(I,((1))) = [&ppdx™vforalln > Tand I C A
finite. It can be proved that also 0 < ¢,y T f in L'(x*v), since L'(x*v) has
the Fatou property, we have that sup, ;) [ &(,1)dx*v = [ fdx*v. Consequently,
x*(e) > [ fdx*v > x*(L,(G(nr))) for alln > 1and I C A finite. In a similar
way, x*(z) > [ fdx*v > x*(L,(yj(,,1))) foralln > 1and I C A finite. Then, it
follows that x*(e) > x*(Iy(1(n,1))) and x*(z) > x*(Iy(&(,,p))) for allm > 1 and
I C A finite. Since this holds for all 0 < x* € E*, we have thate > I, (17, 1)) and

z > Iv(gf(n,])) foralln > 1and I C A finite. Then,e > zand z > ¢, and thus e = z.
So, T is well defined. Moreover,

IT(H)lle = llelle = sup [ 1 (G u,n)llE = sup [[E,nllv = I fllvs

(n,1) (n,1)

where in the last equality we have used that L. (v) has the Fatou property (see
Proposition 8). Let us see now that T(f Ag) = Tf ATg forevery 0 < f,g €
LL(v). Consider sequences (@, ),>1, (¥n)n>1 C S(R'¢) satisfying that0 < ¢, 1 f
and 0 < P T 8 and denote g (nI) — q)ﬂxuael{zx}xﬂa and M(n,1) anXuaeI{lx}an
Then, Tf = sup,, ;y Iv(¢(,,1)) and Tg = sup,, ) Lv(1(n1))- Note that (@n A Pu)n>1
which is contained in S(R!%¢), satisfies that 0 < ¢, A ¢, T f A g (see [7, Theorem
15.3]) and also (@n A ¥u) X {ayx e = (S(n,1) A M(n,1)) (n,1)- Then, since I, is an order
isometry, we have that

T(fAg) = ?ulf; L(S(n,1y NMn,1y) = ?ulf; L(Gnn) AN lv(nn) = TfNTg.
n,I n,I

For a general f € L. (v), we define Tf = Tf* — Tf~ where f* and f~ are
the positive and negative parts of f respectively. So, T: L (v) — E is a positive
linear operator extending I,. For the linearity, see for instance [7, Theorem 15.8].
Moreover T is an isometry. Indeed, for f € L} (v), since f© A f~ = 0, we have
that TF* ATf~ = T(ft A f~) = 0. Then, it follows that |Tf| = |Tf" —Tf | =
TfT+Tf™ =T|f|,andso, [T(f)lle = IT(fDlle = IIfll-



Let us prove that T is onto. Let0 < ¢ € E. Since E, is order dense in E,
from Lemma 9 we have that e(,, ;) = Y,cre A (nuy) 1 e. Fixnand p € A. Since
e N (nug) € Ef as 0 < e A (nug) < nug, there exists 0 < g, g € L' (vg) such that
eN (nuﬁ) = L,ﬁ(gn,/;). Define f,5: QO — R by fn,ﬁ(a,w) = gn,l;(w) ifa = B and
fup(,w) = 0in other case. Then, from Proposition 4, we have that f, g € L*(v)
and Iy(fy,5) = Lus(8np) = € A (nug). Taking &, 1y = Laeq fun € L'(v), we have
that 0 < &, 1) Tas &y = I (e(n,1)) and supy,, 1y €,y llv = sup, 1y e lle <
|le||g- By the Fatou property of Ll (v), there exists f = SUPp (. 1) & (n,1) iN LL(v).

If we prove that x*(e) > ffdx*v for all 0 < x* € X*, by the same argu-
ment used to see that T is well defined, we will have that Tf = e. Fixa € A,
since 0 < &,y T fin Ll (v), it follows that 0 < SN X{ayx0e T fX{a}x0, IN

Ly (v). Since € nX{atx0. = Lpel fupX{a}x0n = fraX{a}x0,, actually we deal
with a sequence. Writing hy; = fuaX{a)xq,, We have that 0 < Iy T fXx(a)x0q,

in L (v) and so v-a.e. Fix now 0 < x* € X*. Since h% 1 fX{a}x, X v-ae., ap-
plying the dominated convergence theorem (see [8, Theorem 2.22]), we have that
[ fX{ayx0, dx*v = lim [ hy dx*v. Noting that [ hf dx*v = x*I,(fuuX {2} x0,) <
x*Iy(fun) = x*(e A\ (nuy)), we obtain that

Z/f)({,,é}xgbY dx*v = limZ/hﬁdx*v <lim Y x*(e A (nuy))

ael ael ael
= limx*(e(,, 1)) < x*(e)

for all finite I C A. Therefore, by the description of L} (v) given in Proposition 7
and (2),
/fdx*v = Z /fX{Dc}XQa dx*v < x*(e).
aEA
For a general e € E, consider et and e~ the positive and negative parts of e. Let
¢, h € LL(v) be such that T¢ = e and Th = ™. Then, taking f = ¢ —h € LL(v)
we have that Tf = e. Note that T~! is positive. So, T is positive, linear, one

to one and onto with inverse being positive, then T is an order isomorphism
(see [6, p. 2]). ]

Note that in the first lines of the proof of Theorem 10, we have seen that L' (v)
is order dense in L (v). So, the conditions required in this theorem are necessary
and sufficient for the extension of I,: L'(v) — E, to Ll (v) to be possible in the
desired way.

Finally, note that Theorem 10 generalizes [3, Theorem 2.5] where every Ba-
nach lattice E with the o-Fatou property having a weak unit belonging to E, is
represented by means of spaces L., for a vector measure defined on a o-algebra.
Indeed, in this case, E has actually the Fatou property and E, is order dense in E.

We end by showing two examples of the representation of Banach lattices as
Ll (v) spaces.

Example 11. Consider an uncountable set I and the J-ring
R = {A C T : Aisfinite}. The space ¢*(T') has the Fatou property and its
o-order continuous part ¢o(I') is order dense. Then, from Theorem 10, /*(T) is



order isometric to L}, (v) for some vector measure v defined on a 5-ring. The vec-
tor measure v: R — ¢o(I') can be defined as in Example 6 and in this case, the
order isometry is the identity map, see [4, Example 2.2]. Note that /*(I') cannot
be represented as L. (v) with v defined on a o-algebra, as its o-order continuous
part has no weak unit.

Example 12. Also, we can find Banach lattices without weak unit satisfying the re-
quirements of Theorem 10. Let I and A be disjoint uncountable sets and consider
the Banach lattice ¢}(T') x £*(A) endowed with the norm [|(x,y)|| = ||x||x )+
[¥|l¢(a) and the order (x,y) < (%,7) if and only if x < ¥and y < 7 for x, % €
¢Y(T) and y,7 € £*°(A). This space has the Fatou property and its c-order con-
tinuous part /(') x co(A) is order dense. In this case, taking the é-ring R =
{A C TUA : Ais finite}, the vector measure v: R — ¢1(T') X ¢y(A) can be
defined as v(A) = (11(ANT),1(ANA)) forall A € R, where v; and v, are
the vector measures defined in Example 6 and Example 11 respectively. Indeed,
(61(T) x co(A))" is identified with (£1(T))" x (co(A))” in the way x* = (x],x3)
such that x*(a,b) = x}(a) + x5(b) for all (a,b) € £}(T) x co(A) and with ||x*|| =
max{||x] ||, [|x3]|}. So, x*'V(A) = xjr1i(ANT) + x5 (ANA) forall A € R and
thus

|x*v|(B) = |xiv1|(BNT) + |x312|(BNA) forall B € R

Then, for every f € M(R'"¢) we have that

Jifldixvl = [iflxedising + [ Iflxadixseal.

Noting that L! (v1) x LY (1n) = £1(T) x £*(A) isometrically, it follows that the
operator T: L (v) — £Y(T) x £*(A), defined by Tf = (fxr, fxa) for all f €
LL(v), is an order isometry. Note that T restricted to L!(v) is the integration
operator I, which is an order isometry between L!(v) and ¢}(T) x co(A).
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