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P. Millána,1,2, L. Orihuelab,2, C. Vivasb,2, F. R. Rubiob,2, D. V. Dimarogonasc, K. H. Johanssonc

aP. Millán is with the Dpto. de Métodos Cuantitativos, Universidad Loyola Andalucı́a, Sevilla, Spain
pmillan@uloyola.es

bL. Orihuela, C. Vivas and F.R. Rubio are with the Dpto. de Ingenierı́a de Sistemas y Automática, Universidad de Sevilla,Spain
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Abstract

This paper proposes a novel distributed estimation and control method for uncertain plants. It is of application in the case of
large-scale systems, where each control unit is assumed to have access only to a subset of the plant outputs, and possiblycontrols
a restricted subset of input channels. A constrained communication topology between nodes is considered so the units can benefit
from estimates of neighboring nodes to build their own estimates. The paper proposes a methodology to design a distributed control
structure so that the system is asymptotically driven to equilibrium with L2-gain disturbance rejection capabilities. A difficulty
that arises is that the separation principle does not hold, as every single unit ignores the control action that other units might be
applying. To overcome this, a two-stage design is proposed:firstly, the distributed controllers are obtained to robustly stabilize the
plant despite of the observation errors in the controlled output. At the second stage, the distributed observers are designed aiming
to minimize the effects of the communication noise in the observation error. Both stages are formulated in terms of linear matrix
inequalities. The performance is shown on a level-control real plant.

Keywords: Distributed estimation and control, sensor networks, process control, linear matrix inequalities.

1. Introduction

Distributed control is a relatively mature field of research,
and nowadays constitutes a relevant and attractive field forits
important applications and theoretical challenges. One ofthe
main reasons is the applicability of these techniques to physical
large-scale complex plants, where traditional centralized archi-
tectures are often hard or even impossible to implement.

Traditional procedures for analyzing systems and designing
control strategies typically rely on the assumption of centrality:
the information collected about the system, and the computa-
tions based upon this information, take place sufficiently close
to each other, such that communication issues can be neglected.

In many today’s complex systems applications it is prefer-
able, if not unavoidable, to elude a centralized scheme for a
number of reasons, for example, lower wiring costs, excessive
computational burden required for centralized implementation,
mitigation of failures by redundancy, increased flexibility, mod-
ularity, reconfigurability and reliability, etc. In other cases, as in
geographically distributed systems, it is not realistic toassume
that each control agent can use all the measurement signals of
the system to generate its local control input. In other words,
some constraints on information flow between agents must be
considered.

Distributed estimation and control finds application in many
fields, such as traffic systems, water delivery channels, oil/gas
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pipelines, electrical power grids water, manufacturing systems,
large-scale structures, robotic systems, and multi-agentsys-
tems, among others. In all these cases the centrality assumption
no longer holds, and a decentralized or distributed strategy is
often more desirable.

Although decentralized control can be traced back to the late
70s (see [9, 10, 34] and references therein), in these first works
most real-time control tasks were loosely distributed as they
were carried out within individual modules without commu-
nication among them. Nowadays, recent advances in micro-
electronics and communications technologies provide us with
a wealth of cheap, customizable, embedded sensors with wire-
less communication capacities. The advantage of Wireless Sen-
sor Networks (WSNs) with respect to traditional technologies is
enormous, as deploying and maintaining a geographically dis-
tributed wired network of thousands of nodes is impractical.

The state of the art concerning distributed control strategies
comprises a vast number of techniques, taking different ap-
proaches depending on the problem nature and, in many cases,
based on the area of expertise of the authors. It is possible,
however, to group the works in a couple of main research lines:
control of multi-agent systems and large-scale plants.

The first line refers to the problems of controlling/monitoring
a number of entities, called agents, that interact with the envi-
ronment in the pursue of a control objective that must be col-
lectively achieved. This line has revealed itself as a very pro-
ductive topic of research with applications that have branched
into a variety of fields as scheduling and planning [6, 40], diag-
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nostics [8], condition monitoring [3, 27, 41], distributedcontrol
[3, 14, 41], hybrid control [13] and congestion control [15,38]
among others.

In the control field, consensus ideas have been especially
prolific. The problem here consists in controlling a number
of agents with identical dynamics. Many works in the field
model the agents as integrators [21, 31], though extensionsto
more complex systems can be found in [1, 19, 30]. Some other
studies take into account the communication channel proposing
event-triggered solutions [11], or consensus with delays [24].

The second main research line in distributed control refers
to the problem of controlling large-scale systems. Typically,
large-scale control systems have several local control stations,
each one having access to some local outputs and controlling
only some specific input channels. All the controllers are in-
volved, however, in controlling the overall system.

It is remarkable that many authors have followed ideas of
Model Predictive Control, [4, 5, 12, 22, 23, 26, 29, 33, 35, 39].
In [25] a different solution is proposed based on semi-active
control with applications to large-scale civil structures. A com-
pletely innovative idea is proposed in [7], where the plant is
modeled using small modular blocks that communicate with
their neighbors. These modules can be stacked building large-
scale systems. The controllers are also modular and are associ-
ated to different plant modules. Most of these works, including
[28], decompose the plant in smaller subsystems that are con-
trolled by different nodes. This decoupling is referred to plant
dynamics or control actions.

A closely related line of research is the so-called decen-
tralized overlapping control, where different controllers are al-
lowed to share control inputs of the plant. The decentralized
overlapping control is fundamentally used in two cases. In the
first case, the subsystems of a system (referred to as overlap-
ping subsystems) share some states [16, 17, 37]. In this case, it
is usually desired that the structure of the controller matches the
overlapping structure of the system [37]. The second situation
considers some limitations on the availability of the states. In
this case, only certain number of the system outputs are avail-
able for constructing each control signal.

In this work, a novel distributed control scheme for large-
scale systems is proposed. The control scenario consists ofan
uncertain linear process which is to be controlled and moni-
tored in a distributed fashion by a number of interconnected
nodes with a given topology. Each node is assumed to have ac-
cess to a limited subset of the plant outputs, and may possibly
generate a control signal for a restricted subset of the control
channels. The problem so formulated entails the design of an
estimation and control structure for every node, such that the
collective control action robustly asymptotically drivesthe sys-
tem to equilibrium.

To this end, every node is assumed to run its own estimator
of the plant states, resorting to a Luenberger-like observer struc-
ture improved with consensus strategies, that allows the nodes
to benefit from the estimations of neighboring nodes. Local ob-
servability is not assumed, that is, no node is able to estimate
the full plant states based only on its direct measurements of
the plant. However, collective observability is a necessary as-

sumption [31]. This means that the network of nodes is able, as
a whole, to observe the complete state.

A difficulty that arises with this formulation of the problem
is that the separation principle does not hold, as the nodes ig-
nore the control signals that other actuator nodes are applying.
To overcome this, a two-stage design is proposed. At the first
stage, the distributed controllers are obtained to robustly sta-
bilize the overall system despite uncertainties and observations
errors. At a second stage, the observers are designed such that
estimation errors are asymptotically stable withL2-gain distur-
bance rejection capabilities. Both steps are formulated using
the Lyapunov theory and solved in terms of Linear Matrix In-
equalities (LMIs), for which efficient computational toolsare
widely available.

It is important to emphasize that the proposed method does
not impose any specific constraint on the plant to be controlled
(there is no need to be stable nor decomposable in any spe-
cific way). The design procedure, though requires a centralized
off-line computation of controllers and observers, allowsfully
distributed implementation. Remarkably, the methodologyac-
counts for overlapping control where different nodes can si-
multaneously provide control signal for the same control chan-
nel. This approach increases reliability and controllability of
the overall plant. Delays and packet dropouts are not explicitly
considered in the approach since there is a wealth of relevant
practical applications where this limitation is not an issue, spe-
cially in the context of modern communications networks with
increasing reliability and speed.

As an application example, the proposed method has been
successfully tested in a level-control real plant.

The rest of the paper is organized as follows. Section 2
describes the system set-up as well as the different devices
involved. Section 3 formulates the problem under study.
Section 4 deals with the controllers design problem and Section
5 with the observers design. Section 6 studies an application
of the proposed distributed scheme to a coupled tank system.
Finally, Section 7 summarizes the research in this paper.

Notation: R
n denotes then-dimensional Euclidean space,

R
n×m is the set ofn×m real matrices,I is the identity matrix

of appropriate dimensions,‖ · ‖ stands for the Euclidean vector
norm or the induced matrix 2-norm as appropriate. The nota-
tion X > 0 (respectively,X ≥ 0), for X ∈ R

n×n means that the
matrix X is a real symmetric matrix positive definite (respec-
tively, positive semi-definite). For an arbitrarily real matrix B

and two real symmetric matricesA andC,

[

A B
∗ C

]

denotes

a real symmetric matrix, where∗ denotes the entries implied
by symmetry. The symbol⊗ stands for the Kronecker product.
For any finite energy signala(t), ‖a(t)‖L2 is theL2-norm of
a(t), defined as‖a(t)‖L2 =

∫ ∞
0 aT(t)a(t)dt.

2. Problem description

Consider the scheme depicted in Figure 1, whereΣ is
an uncertain continuous-time plant being monitored/controlled
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Figure 1: Network of sensors (s) and actuators (a) for distributed control and
observation.

through an interconnected sensor network. The notation related
to the distributed scheme is summarized in Table 1.

In the following subsections, the different elements compris-
ing the aforementioned system are described in detail.

2.1. Plant

The dynamics of the plantΣ to be controlled is given by the
following equations:

Σ :

{

ẋ(t) = Ax(t)+Bu(t)+ fn(t,x(t))+Bωω(t),
z(t) = Dx(t),

(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

m is the control
input,z(t)∈R

q is the controlled output, andω(t)∈R
n denotes

anL2 external perturbation.A, B, Bω andD are some constant
matrices of appropriate dimensions. The initial conditionof the
system isx(t0) = x0.

Function fn(t,x(t)) : R+ ×R
n → R

n represents nonlinear
uncertainties of the plant to be controlled. It is assumed that
fn(t,x(t)) is a piecewise-continuous nonlinear function int and
x, that satisfies the following quadratic constraint condition:

f T
n (t,x(t)) fn(t,x(t))≤ α2xT(t)HTHx(t), ∀t ≥ 0, (2)

whereα > 0 is the bounding parameter of the uncertain func-
tion andH is a constant matrix. Some systems with mild non-
linearities operating in the proximity of a set-point can beade-
quately described with model (1). The four-coupled tank sys-
tem used in this paper is an example, as it will be shown in
Section 6.

Consider a partition of the control signalu(t) as

u(t) =











u1(t)
u2(t)

...
up(t)











, (3)

whereui ∈ R
di (i = 1, . . . , p) is the control signal that actua-

tor i applies to the system andp is the number of nodes in the
network. It is assumed that∑p

i=1di ≥ m, so that overlapping is

Description

x State of the system
ui Control input by nodei
yi Output measured by nodei
x̂ Estimated state

Mi Luenberger-like gain
Ni j Consensus matrix
Ki Controller gain

Table 1: Notation

considered. Control matrixB is consistently partitioned accord-
ing to the dimensions of each individual control inputui , that is,
B= [B1 B2 . . . Bp].

The final objective of this work is to stabilize the plant (1) by
applying suitable control inputsui (i = 1, . . . , p). In the devel-
opments to come, the following stability definition will be used.

Definition 1 [36]. System (1) is said to be robustly asymp-
totically stable with degreeα if the equilibrium pointx(t) = 0
is globally asymptotically stable for allfn(t,x(t)) verifying (2).

2.2. Network

The network in Figure 1 is topologically defined by its graph
G = (V ,E ) with nodesV = {1,2, ..., p} and linksE ⊂ V ×V .
The set of nodes connected to nodei is named theneighbor-
hood of i and is denoted byNi ≡ { j : (i, j) ∈ E }. Directed
communications are considered so that link(i, j) implies that
nodei receives information from nodej.

2.3. Nodes: sensors and actuators

Consider the distributed elements or nodes. As it has been
already described, the nodes in the network can play the roleof
sensors, measuring local plant outputs, the role of controllers,
providing a control signal to a subset of the plant control in-
puts, or both. Furthermore, the nodes require the information
exchanged with their neighbors to observe the full plant state.
Next, a common model valid for all nodes is presented.

A generic nodei may receive information from the plant
yi(t) ∈R

r i and may apply some control inputui(t) ∈R
di . The

output and input vectors are defined as

yi(t) = Cix(t)+ vi(t), (4)

ui(t) = Ki x̂i(t), (5)

wherex̂i ∈ R
n denotes the estimation of nodei and matrices

Ci (i ∈ V ) are known. Ki (i ∈ V ) are the local controllers to
be designed. The signalvi(t) ∈ L2[t0,∞) represents an additive
noise affecting the sensor measurements.

Local observability is not assumed, that is, the pairs(A,Ci)
are neither observable nor detectable. However, a necessary
assumption for the problem to be solvable is thatcollective
observabilityholds, that is, the network as a whole is able to
observe the state of the plant (see [31] for a formal definition
of this concept). Mathematically, this assumption impliesthat
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the pair(A,C) is observable, whereC= [CT
1 CT

2 . . . CT
p ]

T .

Remark. In general, the nodes exhibit both sensing and
actuation capabilities. However, in the present formulation this
is not a necessary condition. By setting matricesCi ≡ 0 or
Bi ≡ 0, nodei loses sensing or actuation ability, respectively.

In order to perform the estimation of the plant state, every
node runs an observer described by

˙̂xi(t) = Ax̂i(t)+Bûi(t)+Mi(yi(t)−Ci x̂i(t))

+ ∑
j∈Ni

Ni j (x̂ j(t)− x̂i(t)), (6)

whereûi(t) ∈R
m is an estimation of all the control actions ap-

plied to the plant at timet, defined by

ûi(t) = Kx̂i(t),

with controllerKT =
[

KT
1 KT

2 . . . KT
p

]

.
Looking at equation (6), each node has two different sources

of information to correct its estimations. The output received
from the plant is used in the same way as a classical Luenberger
observer,Mi(yi(t)−Ci x̂i(t)), beingMi , i ∈ V , the observer gain
to be designed.

On the other hand, the information received from neighbor-
ing nodes is also used to correct the estimations,Ni j (x̂ j(t)−
x̂i(t)), ∀ j ∈Ni , whereNi j , (i, j) ∈ E are the consensus gains to
be designed.

Using a compact notation, letM ,N ,K denote the sets of
observers and controllers given by

M = {Mi , i ∈ V },
N = {Ni j ,(i, j) ∈ E },
K = {Ki , i ∈ V }.

The observation error is defined as

ei(t) = x(t)− x̂i(t). (7)

It is worth recalling here that no node knows exactly the ac-
tual control signal applied to the plant, as each actuator applies
a different control signal based on its particular state estimation
(5). However, each node needs a control signal to estimate the
state of the plant according to (6).

This fact constitutes a serious drawback in mixed control and
estimation schemes. In order to make equation (6) realizable,
the solution proposed in this work consists, roughly speaking,
in allowing each node to run its observer as if all control inputs
were decided based on its particular estimate. That is

Bûi(t) = BKx̂i(t) =
p

∑
j=1

B jK j x̂i(t).

The actual control signal applied to the plant is built based
on the estimates of each node

Bu(t) =
p

∑
j=1

B jK j x̂ j(t).

In general, estimated and actual control signals differ. How-
ever, if the observers are designed in such a way that nodes
estimations converge to the plant states, these differences pro-
gressively vanish.

Remark. Modern networked control strategies are nowadays
implemented resorting to packet-based communications. No-
tice however that, as is common practice in digital control and
without loss of generality, the plant dynamics, observers run-
ning in the nodes, and the applied control actions are modeled
as continuous-time processes. The remaining element, the com-
munication links, can also be modeled as continuous-time pro-
cesses as far as the communication characteristic times areneg-
ligible with respect to the plant’s dynamics. This case is not un-
common in modern high-speed communications networks us-
ing error-free protocols. This assumption justifies the useof
continuous-time formulation throughout the paper.

2.4. Preliminary results
So far, every element in the distributed scheme given in

Figure 1 has been introduced. The following propositions
present the dynamics of the estimation error and the plant
state according to the described setup. Let us define the
augmented vectorseT(t) = [eT

1 (t) eT
2 (t) . . . eT

p(t)]
T and

v(t) = [vT
1 (t) vT

2 (t) . . . vT
p(t)]

T .

Proposition 1. The dynamics of the state of the plantx(t) is
given by

ẋ(t) = (A+BK)x(t)+ϒ(K )e(t)+ fn(t,x(t))+Bωω(t), (8)

where

ϒ(K ) =
[

−B1K1 −B2K2 · · · −BpKp
]

.

The proof is immediate from equation (1).

Proposition 2. The dynamics of the observation error vector
e(t) is given by

ė(t) = (Φ(M )+Ψ(K )+Λ(N ))e(t)

+ I ⊗ (Bωω(t)+ fn(t,x(t)))−Π(M )v(t), (9)

where the matrix functions are defined by

Φ(M ) = diag{(A−M1C1), . . . ,(A−MpCp)},

Ψ(K ) = diag{BK, . . . ,BK}+







ϒ(K )
...

ϒ(K )






,

Π(M ) = diag{M1, . . . ,MP},
Λ(N ) = ∑

(i, j)∈E

Θ(Ni j ),

with

Θ(Ni j ) =

col. i j
















0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · −Ni j · · · Ni j · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 0

















row i
.
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The proof is detailed in Appendix A.

3. Problem formulation

In this section, the problem to be solved is formally stated.
Before proceeding, some preliminary issues are examined.

As it can be seen from equation (8), the dynamics of the plant
is affected by external disturbancesω(t) and observation errors
ei(t) (i ∈ V ). Since the control inputs are performed according
to the node estimates, the observation errors can be viewed as
external disturbances to the plant state, deviating their response
from the ideal situation in which a centralized state feedback
control is implemented. This way, the vector of disturbance
signals for the plant is defined asdz(t) = [eT(t) ωT(t)]T .

Similarly, the dynamics of the observation error (9) is
affected by external disturbancesω(t) and measurement
noisesv(t). In this case, the disturbance vector is defined as
de(t) = [ωT(t) vT(t)]T .

Definition 2. Robust distributed control and observation
problem. Consider an uncertain plant with dynamics given by
(1). The plant is being observed and controlled by a set ofp
nodes which are connected by means of a network represented
by a graphG = (V ,E ). The dynamics of the nodes are given
by (6). Each node may receive an output from the plant (4) and
may apply a control signal according to (5).

Therobust distributed control and observation problemcon-
sists of finding observersMi , i ∈ V , and Ni j , (i, j) ∈ E , and
controllersKi , i ∈ V , such that:

1. The dynamics of the system statex(t) and the estimation
errors are robustly asymptotically stable with degreeα for
ω(t)≡ v(t)≡ 0.

2. Under the assumption of zero initial condition for the plant
state, the effects of the external disturbances and the obser-
vation errors are attenuated in the controlled output byγx,
such that‖z(t)‖L2 ≤ γx‖dz(t)‖L2.

3. Under the assumption of zero initial conditions for the es-
timation errors, the effects of the external disturbances and
the measurement noises in the estimates are attenuated by
γe, such that‖e(t)‖L2 ≤ γe‖de(t)‖L2.

In the following sections a solution to this problem is pre-
sented. It consists of a two-stage design procedure. Firstly,
stabilizing controllers are designed to satisfy the disturbance
attenuation constraintγx. At the second step, the observers are
designed to guarantee stable estimation errors and to minimize
the attenuation indexγe.

4. Controllers design

The first step of the procedure described above is presented in
this section. In order to guarantee stability, a Lyapunov-based
approach is employed. Concretely, the following classicalLya-
punov function is chosen:

Vx(t) = xT(t)Pxx(t), (10)

wherePx is a positive definite matrix. The following theorem
presents the design procedure to obtain the controllersKi

(i ∈ V ) according to the definition of the problem.

Theorem 1. Given a positive scalarα > 0, assume that a
positive definite matrix X, any matrix Y , and a positive scalar
ρ solve the following optimization problem:

max
X,Y,ρ

λmin(X)

subject to
















φ1 ρ I BωX ϒ̄(Y) XHT XDT

∗ −ρ I 0 0 0 0
∗ ∗ −X 0 0 0
∗ ∗ ∗ −I(p)⊗X 0 0
∗ ∗ ∗ ∗ − ρ

α2 I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0, (11)

where

ϒ̄(Y) =
[

−B1S1Y −B2S2Y · · · −BpSpY
]

,

Si =
[

0di×d1 . . . Idi×di . . . 0di×dp

]

, i ∈ V .

Then, by designing the distributed controllers as
Ki = SiYX−1 (i ∈ V ), the system is robustly asymptoti-
cally stable with degreeα for dz(t) ≡ 0 and theL2 gain from
dz(t) to z(t) is given byγx = 1/λmin(X).

Proof. The proof is based on the Lyapunov theory. AsPx is
positive definite, the Lyapunov function (10) is positive for all
x(t) 6= 0 and zero only forx(t)≡ 0.

The derivative of the Lyapunov function is given by

V̇x(t) = 2xT(t)Pxẋ(t).

Using the evolution of ˙x(t) in Proposition 1, the derivative
can be written as follows3.

V̇x = 2xTPx(A+BK)x+2xTPxϒ(K )e+2xTPx( fn+ω).

Now, some null terms are added to the derivative

V̇x = 2xTPx(A+BK)x+2xTPxϒ(K )e+2xTPx( fn+ω)

± ε f T
n fn±ωTPxω ±eTP̄xe± zTz,

whereε is a positive scalar and̄Px , I(p)⊗Px.
Defining an augmented state vector asξ T =

[

xT f T
n ωT eT

]

, previous equation can be rewritten as

V̇x = ξ TFxξ + ε f T
n fn+ωTPxω +eTP̄xe− zTz,

where

Fx =









PxAK +AT
KPx+DTD Px PxBω Pxϒ(K )
∗ −εI 0 0
∗ ∗ −Px 0
∗ ∗ ∗ −P̄x









,

3Time references have been removed to alleviate the notation.
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with AK = A+BK.
The termε f T

n fn can be bounded byεα2xTHTHx. Then, it
turns out that the derivative of the Lyapunov function can also
be bounded as follows,

V̇x ≤ ξ TΞxξ +ωTPxω +eTP̄xe− zTz, (12)

where

Ξx = Fx+









εα2HTH 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0









. (13)

Assume now thatΞx is negative definite.

• For ω(t),e(t)≡ 0,∀t, the following holds:

V̇x ≤ ξ TΞxξ − zTz. (14)

As Ξx is negative definite, one can obtain thatVx(t) de-
creases for allt. ThenV̇x(t) ≤ −δ‖x(t)‖2 for a sufficient
small δ > 0, which ensure asymptotic stability of system
with degreeα.

• Taking into accountΞx < 0, the termξ TΞxξ is negative
definite. Thus, forω ,e 6= 0 and under zero initial condi-
tions,

V̇x ≤−zTz+ωTPxω +eTP̄xe. (15)

Integrating both sides of (15) fromt0 to t, one can see that

Vx(t)−Vx(t0) ≤ −
∫ t

t0
zT(s)z(s)ds

+

∫ t

t0

(

ωT(s)Pxω(s)+eT(s)P̄xe(s)
)

ds.

Then, lettingt →∞ and taking into account that under zero
initial conditionVx(t0) = 0 and the positive definitiveness
of the functional, it can be shown that
∫ ∞

t0
zT(s)z(s)ds≤

∫ ∞

t0

(

ωT(s)Pxω(s)+eT(s)P̄xe(s)
)

ds.

The quadratic terms on the right-hand side of the equation
can be bounded using the propertyxTPx≤ λmax(P)xTx,
for P> 0. Therefore:

‖z(t)‖L2 ≤ λmax(Px)(‖ω(t)‖L2 + ‖e(t)‖L2)

≤ λmax(Px)‖dz(t)‖L2,

where it has been used thatλmax(Px) = λmax(P̄x).

Hence, if Ξx < 0 the asymptotic stability of the system is
guaranteed and theL2 gain fromdz(t) to z(t) is γx = λmax(Px)=
1/λmin(X).

It remains to prove that matrixΞx is indeed negative definite.
To do so, Schur complements are applied to the inequality
Ξx < 0 to eliminate the quadratic termsDTD and εα2HTH
from the element(1,1) of Ξx. Then, pre and post-multiplying

the resulting inequality bydiag{P−1
x ,ε−1,P−1

x , P̄−1
x , I , I} and

its transpose, an inequality with the same structure of (11)
is obtained by definingρ ≡ ε−1, X ≡ P−1

x and Y ≡ KP−1
x .

Therefore, if LMI (11) is satisfied, thenΞx < 0 holds. �

Theorem 1 solves the first two points of the robust distributed
control and observation problem given in Definition 2. The con-
trollers are synthesized to attenuate disturbances due to external
perturbations and observation errors.

The optimization problem with linear constraints proposed
in Theorem 1 can be solved using efficient interior point algo-
rithms, as for instancemincx in Matlab. The interested reader
may find some examples in [2].

5. Observers design

This section is devoted to the second stage of the design pro-
cedure. The objective is the synthesis of the observers suchthat
the estimation errors are asymptotically stable. Additionally,
the effects of the measurement noises are attenuated.

As before, a Lyapunov-based approach is followed. In this
case, the Lyapunov function includes terms related to the ob-
servation error and the state of the system, as both dynamics
are coupled:

V̇e(t) = xT(t)Pxx(t)+eT(t)Pee(t),

wherePx was designed in the previous section andPe is a block
diagonal matrix

Pe =











P1 0 . . . 0
0 P2 . . . 0
...

...
.. .

...
0 0 . . . Pp











,

where matricesPi ∈R
n×n (i ∈ V ) are positive definite.

Recalling the dynamics of the observation error given
in Proposition 2, it is worth mentioning that the separation
principle does not hold here. The main implication of this fact
is that the design of the observers depends on the controller
gains previously designed through Theorem 1. The following
theorem presents the synthesis procedure forMi and Ni j

(i ∈ V , j ∈ Ni).

Theorem 2. Given scalarsα,γe > 0, a positive definite
matrix Px, and controllers Ki , i ∈ V , assume that the LMI(16)
has a feasible solution for a positive definite matrix Pe,
any matrices Wi ,Xi j (i ∈ V , j ∈ Ni) and a positive scalar
ε. Then, if the observers are designed as Mi = P−1

i Wi and
Ni j = P−1

i Xi j , i ∈ V , j ∈ Ni , the estimation errors of the all
the nodes are robustly asymptotically stable with degreeα
for de(t)≡ 0 and theL2 gain from de(t) to e(t) is lower thanγe.

Proof. The proof is very similar to that of Theorem 1. The
derivative of the Lyapunov function is

V̇e(t) = 2xT(t)Pxẋ(t)+2eT(t)Peė(t).
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



















θ11 Px PxBω 0 −PxB1K1 . . . −PxBpKp 0 εHT

∗ −εI 0 0 P1 . . . Pp 0 0
∗ ∗ −γ2

eI 0 BT
ωP1 . . . BT

ωPp 0 0
∗ ∗ ∗ −γ2

eI −WT
1 . . . −WT

p 0 0
∗ ∗ ∗ ∗ θ55a+θ55b+θ55c I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε

α2 I





















< 0, (16)

where

θ11 = Px(A+BK)+ (A+BK)TPx,

θ55a =







P1A+ATP1−W1C1−CT
1 WT

1 . . . 0
...

...
...

∗ . . . PpA+ATPp−WpCp−CT
pWT

p






,

θ55b =







P1BK+KTBTP1 . . . 0
...

...
...

∗ . . . PpBK+KTBTPp






−







P1B1K1+KT
1 BT

1 P1 . . . P1BpKp
...

. . .
...

∗ . . . PpBpKp+KT
p BT

pPp






,

θ55c = ∑
(i, j)∈E

col. i j
















0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · −Xi j · · · Xi j · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 0

















row i
.

Using the evolution ofx(t) in Proposition 1 and ofe(t) in
Proposition 2, the derivative can be written as follows4.

V̇e = 2xTPx(A+BK)x+2xTPxϒ(K )e+2xTPx fn
+ 2xTPxBωω +2eTPe(Φ(M )+Ψ(K )+Λ(N ))e

+ 2eTPe(I ⊗ fn)+2eTPe(I ⊗Bωω)−2eTPeΠ(M )v.

Adding some null terms to the derivative, it yields

V̇e = 2xTPx(A+BK)x+2xTPxϒ(K )e+2xTPx fn
+ 2xTPxBωω +2eTPe(Φ(M )+Ψ(K )+Λ(N ))e

+ 2eTPe(I ⊗ fn)+2eTPe(I ⊗Bωω)−2eTPeΠ(M )v

± eTe± γ2
e(ω

Tω + vTv)± ε f T
n fn.

Now, defining a different augmented vectorζ as ζ T =
[

xT f T
n ωT vT eT

]

, the last equation can be rewritten in the
following form,

V̇e = ζ TΞexζ −eTe+ ε f T
n fn+ γ2

e(ω
Tω + vTv),

where

Ξex=













θ11 Px PxBω 0 −PxB1K1 . . . −PxBpKp

∗ −εI 0 0 P1 . . . Pp

∗ ∗ −γ2
e I 0 BT

ωP1 . . . BT
ωPp

∗ ∗ ∗ −γ2
e I −MT

1 P1 . . . −MT
p Pp

∗ ∗ ∗ ∗ Ξ55
ex













4Time references have been removed to alleviate the notation.

with Ξ55
ex = Pe(Φ(M )+Ψ(K )+Λ(N )) +

(Φ(M )+Ψ(K )+Λ(N ))T Pe.

Using the bound onε f T
n fn, V̇e(t) can be bounded as it

was done forV̇x(t) in the proof of Theorem 1. Then, Schur
complements are applied following the same procedure. The
application of Schur complements together with the changes
of variablesMiPi = Wi and Ni j Pi = Xi j , allow to obtain that
Ξex is negative definite if the LMI (16) holds. This way, it is
straightforward to follow the rest of the steps in the proof of
Theorem 1 to deduce the robust stability of the estimation error
as well as the bound‖e(t)‖L2 ≤ γe‖de(t)‖L2. �

The results given in Theorems 1 and 2 deserve some com-
ments concerning the practical implementation of the proposed
scheme. In particular, the computation of the controllers and
observers makes implicit use of the network connectivity (G )
and the input and outputs channels of all agents (Bi,Ci ). There-
fore, this implies that both problems must be solved in a cen-
tralized way, which can be computationally complex when the
system dimension, the agents, and the number of connections
are large. However, the design problem needs to be solved only
once and this is made offline.

Once the controllers and observers are synthesized, every
node requires only local information to carry out its tasks:
plant outputyi(t) and state estimations from neighboring nodes
x̂ j(t), j ∈ Ni . Hence, the implementation is completely dis-
tributed.
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Figure 2: Plant of four-coupled tanks.

6. Application example

This section presents an application of the proposed dis-
tributed scheme to test its performance in a real system. The
plant and the experimental setup are described, providing all
the considerations related to the distributed scheme. Later, sim-
ulation and experimental results are presented.

6.1. Plant description

The quadruple-tank process introduced by Johansson [20]
has received a great attention because it exhibits interesting
properties representative of relevant problems in both, research
and industry. The system exhibits complex dynamics, including
interactions and a tunable transmission zero location.

The experiments have been performed in the 33-041 Coupled
Tanks System of Feedback Instruments, see [18]. A picture of
the platform is given in Figure 2. It is comprised of 4 tanks,
each one with a pressure sensor to measure the water level. The
couplings between the tanks can be modified using seven man-
ual valves. Water is delivered to the tanks by two independently
controlled, submerged pumps. Drain flow rates can be mod-
ified using easy-to-change orifice caps. Notation related with
the plant is given in Table 2.

The coupled tanks are controlled using Simulink and an Ad-
vanced PCI1711 Interface Card. The system is highly config-
urable, due to the numerous available valves. For the experi-
ments, the following configuration is chosen (see Figure 3):

• Input water is delivered to the upper tanks. Pump 1 feeds
tank 1 and pump 2 feeds tank 3.

Description

hi Water level of tanki
vi Voltage of pumpi
h0

i Reference level of tanki
v0

i Reference voltage of pumpi
∆hi Increment ofhi with respect toh0

i
∆vi Increment ofvi with respect tov0

i
s Output to be tracked
r Output reference fors

∆hr Reference level with respect toh0

∆vr Reference voltage with respect tov0

Table 2: Notation related to the plant

• Tanks 1 and 3 are coupled by opening the corresponding
valve.

1

2

3

4

pump 1 pump 2

Figure 3: Schematic configuration of the coupled tanks

The distributed scheme proposed in this chapter can find a
possible application in large-scale chemical plants, where cou-
pled processes (represented by the coupled tanks) can be lo-
cated hundred of meters away from each other. In these situa-
tions, communication between local sensors and controllers can
be expensive using classical point-to-point wired networks, so
only neighboring devices should be able to communicate.

In this experiment, a reduced network with 4 nodes is pro-
posed, two of them being sensors and the other two sen-
sor+actuators. Figure 4 shows a block diagram of the whole
system. Each node has been tagged from 1 to 4 according
to the number of the tank whose level it is measuring. Node
1 (respectively 3) applies the control signal to pump 1 (2).
The nodes communicate by means of a network with topol-
ogy 2⇔ 1 ⇔ 3 ⇔ 4. Please note that no node can estimate
the whole plant state based only on the available local measure-
ments of the plant.

The objective of the experiments is twofold. First, the state
of the plant must be monitored from every node. Secondly, the

8



1

2

3

4

Figure 4: Distributed control scheme with 4 nodes. Nodes 1 and 3 are sen-
sor+actuators; nodes 2 and 4 are sensors. Blue dotted lines represent the com-
munication links.

water level of the two lower tanks is to be controlled.

6.2. Plant modeling

The coupled tanks can be easily modeled by means of the
following nonlinear model:

dh1(t)
dt

= −a1

A

√

2gh1(t)+ηv1(t)−
a13

A

√

2g(h1(t)−h3(t)),

dh2(t)
dt

=
a1

A

√

2gh1(t)−
a2

A

√

2gh2(t),

dh3(t)
dt

= −a3

A

√

2gh3(t)+ηv2(t)+
a13

A

√

2g(h1(t)−h3(t)),

dh4(t)
dt

=
a3

A

√

2gh3(t)−
a4

A

√

2gh4(t),

wherehi(t) (i = 1, . . . ,4) denote the water level in the tanks,vi

(i = 1,2) are voltages applied to the pumps,ai (i = 1, . . . ,4) are
the outlet area of the tanks,a13 is the outlet area between tanks
1 and 3,η is a constant relating the control voltage with the
water flow from the pump,A is the cross-sectional area of the
tanks, andg is the gravitational constant.

This system is linearized around the equilibrium point given
by h0

i andu0
i , yielding

∆̇h(t) = A∆h(t)+B∆v(t)+ fn(t,∆h(t)), (17)

where ∆h(t) =
[

h1(t)−h0
1 . . . h4(t)−h0

4

]T
and ∆v(t) =

[

v1(t)− v0
1 v2(t)− v0

2

]T
. MatricesA andB are obtained by us-

ing a Taylor expansion of the nonlinear equations of the model
(18).

The nonlinear termfn(t,∆h(t)) in (17) includes the lineariza-
tion errors. For each tanki, let Ri denote the linearization error
of this tank. This error is given by (see [32]):

Ri = ∑
j

g(2)j (ς j )

2
(∆h j(t))

2,

where functionsg j represent the influence of the tank levelj
on the dynamics of leveli. Variableς j is an unknown number

belonging to the interval of interest relative to tank levelj. For
instance, the linearization error of tank 2 is given by:

R2 =−a1

A

√

2g
1

4ς3/2
1

(∆h1(t))
2+

a2

A

√

2g
1

4ς3/2
2

(∆h2(t))
2.

Given the interval of interest, the maximum value of|R2| can
be found, which is an upper bound of the linearization error.For
the other tanks, an equivalent procedure can be used to obtain
the maximum of|R1|, |R3|, |R4|.

Note that the maximum of|Ri | depends quadratically on
∆h(t). Recalling the model of the nonlinear uncertainties in (2),
the maximum of| fn(t,∆h(t))| depends linearly on∆h(t). As it
is always possible to upper bound a quadratic function usinga
linear one around the equilibrium point, suitable values for H
andα can be found in order to take into account the lineariza-
tion errors. Needless to mention, the larger interval of interest,
the larger value forα (given a fixedH). For the rest of the
section5, H = I(4) andα = 0.01.

The objective is not only to stabilize the plant around the
linearization point, but also to track references. To do so,the
system output is set ass, Cr ∆h, whereCr is a matrix that se-
lects the water level of tanks 2 and 4. The references are given
by the vectorr. At the equilibrium points, it should be verified
s≃ r and∆̇hr ≃ 0. To perform the tracking task, the incremen-
tal equilibrium points(∆hr ,∆vr) associated with referencesr
are found as follows:

0 = A∆hr +B∆vr ,

r = Cz∆hr .

Rewriting the equation above in blocks, it yields
[

0
r

]

=

[

A B
Cz 0

][

∆hr

∆vr

]

,

so that the incremental equilibrium point associated withr can
be obtained as

[

∆hr

∆vr

]

=

[

A B
Cz 0

]−1[ 0
r

]

.

It is assumed that the references are reachable by the system,
that is, the inverse above does exist. Finally, to track references,
we must stabilize the following system.

ẋ(t) = Ax(t)+Bu(t)+ fn(t,x(t)), (19)

wherex(t), ∆h(t)−∆hr andu(t), ∆v(t)−∆vr. Note that this
system has the same structure that the one described in (1).

6.3. Simulation results

In the simulation example, the objective consists in tracking
the following reference:

• Fromt = 100 s tot = 500 s, the water level in tank 2 and
4 should rise 4 and 2 cm, respectively.

5Observe that the multiplicative constants onR2 are of order 10−4.
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A=



















− a1g

A
√

2gh0
1

− a13g

A
√

2g(h0
1−h0

3)
0 a13g

A
√

2g(h0
1−h0

3)
0

a1g

A
√

2gh0
1

− a2g

A
√

2gh0
2

0 0
a13g

A
√

2g(h0
1−h0

3)
0 − a3g

A
√

2gh0
3

− a13g

A
√

2g(h0
1−h0

3)
0

0 0 a3g

A
√

2gh0
3

− a4g

A
√

2gh0
4



















, B=









η 0
0 0
0 η
0 0









(18)

Value Unit Description

hi 0-25 cm Water level of tanki
vi 0-5 V Voltage level of pumpi
A 0.01389 m2 Cross-sectional area
ai 50.265e-6 m2 Outlet area of tanki
a13 50.265e-6 m2 Outlet area between tanks 1 and 3
η 0.22 cm

V.s Contant relating voltage and flow
h0

1 9.55 (12.6) cm Reference level of tank 1
h0

2 16.9 (12.6) cm Reference level of tank 2
h0

3 7.6 (11) cm Reference level of tank 3
h0

4 14.1 (11) cm Reference level of tank 4
v0

1 3.3 (3.5) V Voltage level of pump 1
v0

2 2.6 (1.5) V Voltage level of pump 2

Table 3: Parameters of the plant. The terms in parentheses are related to the
simulation experiments.

• From t = 500 s tot = 900, the water level in both tanks
should go to the equilibrium point.

• Fromt = 900 s tot = 1300 s, the water level in tank 2 and
4 should rise 1 and 1.5 cm, respectively.

• Fromt = 1300 s, both tanks should reach the equilibrium
point.

The equilibrium point is defined in Table 3 in parentheses.
The result of the simulation is shown in Figure 5.
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Figure 5: Water level of the four tanks in simulation

The references are tracked and the control performance is
satisfactory. The plant has a characteristic rise time of 300 sec-
onds. With the distributed control strategy, it is reduced to ap-
proximately 100 seconds. Note that the control objective isto
track references in tanks 2 and 4, so that overshooting in tanks
1 and 3 is allowed to improve the tracking performance. By
properly tuning the controller, it is possible to obtain slower
response with less overshooting.

Furthermore, it can be observed that the observer perfor-
mance is also adequate. Figure 6 shows the estimation in node
1 of the water level of tanks 2 and 4. It is worthwhile to recall
that node 1 measures only the level in tank 1. In order to esti-
mate the height of the water column in tanks 2 and 4, node 1
needs to communicate with its neighbors. The stabilizationof
the estimation error is faster than the tracking. Node 1 achieves
a tolerable estimation of the water levels in tanks 2 and 4 in
30-40 seconds.
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Figure 6: Water level of tanks 2 and 4 and the estimates in node1 in simulation

6.4. Experimental results
This section shows the experimental results obtained in the

FeedBack Coupled Tank System. The references in the first ex-
periment are identical to those of the previous simulation.The
linearization point is different, see Table 3. Figure 7 depicts the
evolution of the water level for the four tanks. The estimates in
node 1 of the levels in tanks 2 and 4 are shown in Figure 8.

The control performance is similar to that obtained in simu-
lation. Again, with overshooting in tanks 1 and 3, a rise timeof
approximately 100 seconds is achieved. The estimator in node
1 also shows a good performance.
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Figure 7: Water level of the four tanks
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Figure 8: Water level of tanks 2 and 4 and the estimates in node1

In the experiments in Figures 9-10, some disturbances are
introduced. Concretely:

• An additional valve between tanks 3 and 4 is opened.

• 50cl of extra water is added in tank 4.

It can be seen that the distributed controller exhibits a good
disturbance rejection in both cases.

In the last experiment, the importance of the coupling effect
is showed. Tank 2 is asked to track references whereas tank 4
is asked to maintain the water level at the equilibrium point. In
order to vary the level of tank 2, tank 1 must be filled or emp-
tied. Due to the coupling valve, tank 3 varies its level, affecting
to tank 4. Figure 11 depicts the system response. The controller
achieves notable decoupling of the closed-loop dynamics. The
control signal applied to the pumps is shown in Figure 12.

7. Conclusions

In this paper a novel method for distributed estimation and
control is proposed. The method is intended to be of applica-
tion in the case of large-scale uncertain plants where the control
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Figure 9: Disturbance rejection when an additional valve between tanks 3 and
4 is opened fromt = 100 tot = 110 seconds
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Figure 10: Disturbance rejection when 50 cl of water is addedto the tank 4 at
t = 50 seconds

is geographically distributed among a number of units. Eachin-
dividual unit is assumed to have access to a subset of the plant
states, and possibly controls only a restricted subset of plant
control channels. A communication network between nodes is
also considered so that the units use the estimates of neighbor-
ing nodes to build their own estimates of the plant states.

The objective is designing a control structure for every unit
(distributed control), so that collective control actionsrobustly
asymptotically drive the system to equilibrium withL2-gain dis-
turbance rejection capabilities. A difficulty that readilyarises
when the problem is so formulated, is that the separation princi-
ple does not hold, as every single unit ignores the control action
that other units might be applying. To overcome this, a two-
stage design is proposed: In a first stage, the control gains are
obtained to robustly stabilize the plant despite the observation
errors. At the second stage, the observer gains for every unit
are designed to minimize anH∞ index to reduce the effects of
the communication noise in the observation error. Both steps
are formulated and solved in terms of LMIs. The performance
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Figure 11: Coupling effect in tank 4 when the level of tank 2 ismodified
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Figure 12: Control signal applied to the pumps

is shown both by simulations and experimentally on a four-tank
level-control system.

It is worth mentioning that the proposed methodology ex-
hibits the following novel characteristics:

• Both, control and estimation, are tackled in a unified way
providing a robust design that takes into account nonlinear
time-varying model uncertainties andL2-gain disturbance
rejection capabilities.

• The design procedure, though centralized in conception,
allows fully decentralized implementation. The solution
is obtained in terms of LMIs for which efficient computa-
tional algorithms are widely available. The distributed de-
sign, which would contribute to reduce the computational
complexity, is an interesting open problem and it will be
matter of future research.

• The methodology allows the consideration of two types of
units: sensor units which only build their estimate of the
plant states, and sensor+actuator nodes which both esti-
mate plant states and generate control actions.

• Remarkably, the methodology accounts for overlapping
control where different units can simultaneously provide
control signals for the same control channel. This ap-
proach increases reliability and controllability of the over-
all plant.
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Appendix A. Proof of Proposition 2

The observation error of nodei can be obtained using equa-
tion (7) and Proposition 1:

ėi(t) = ẋ(t)− ˙̂xi(t)

= (A+BK)x(t)+ϒ(K )e(t)+ fn(t,x(t))+Bωω(t)

−(A+BK)x̂i(t)−Mi(yi(t)−Ci x̂i(t))

− ∑
j∈Ni

Ni j (x̂ j(t)− x̂i(t)). (A.1)

We can write ˙ei(t) = (tr1)i +(tr2)i +(tr3)i , where(tr1)i in-
cludes the terms of (A.1) which do not depend on the neigh-
bours,(tr2)i are related to other nodes, and(tr3)i depends on
external signals. Consider first the terms(tr1)i :

(tr1)i , (A+BK)ei(t)−MiCiei(t)+ϒ(K )e(t)

= (A−MiCi +BK)ei(t)+ϒ(K )e(t). (A.2)

Consider now(tr2)i :

(tr2)i , ∑
j∈Ni

Ni j (x̂ j(t)− x̂i(t))

= ∑
j∈Ni

Ni j (ei(t)−ej(t)). (A.3)

Lastly, the external inputs are given by

(tr3)i , fn(t,x(t))+Bωω(t)−Mivi(t). (A.4)

Recall the definition of the augmented observation error
eT(t) =

[

eT
1 (t) . . . eT

p(t)
]

and the augmented noise vector
v(t) = [vT

1 (t) . . . vT
p(t)]

T . Making some mathematical manip-
ulations, it can be checked that the following equalities hold.











(tr1)1

(tr1)2
...

(tr1)p











= (Φ(M )+Ψ(K ))e(t),











(tr2)1

(tr2)2
...

(tr2)p











= Λ(N )e(t),











(tr3)1

(tr3)2
...

(tr3)p











= I ⊗ ( fn(t,x(t))+Bωω(t))−Π(M )v(t).

By adding the three vectors above it is immediate to obtain
that the derivative ofe(t) can be written as in (9).
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