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ABSTRACT

This paper presents a nonlinear robust control strategy to solve the path tracking problem for a quadrotor unmanned aerial
vehicle. The main objective is to design controllers that provide certain required performances during the quadrotor flight, such
as null tracking error and robustness in the presence of sustained external disturbances affecting the six degrees of freedom,
parametric uncertainties, and unmodeled dynamics. The control structure is performed through a nonlinear H∞ controller to
stabilize the rotational movements and a control law based on the backstepping approach with integral action to track the
reference trajectory. Simulation results are carried out to corroborate the effectiveness and the robustness of the proposed strategy.
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I. INTRODUCTION

Unmanned aerial vehicles (UAVs) constitute an area
that has motivated the control community during recent years.
Many areas of control and robotics, such as fusion sensors,
computer vision techniques, state estimators, and control
methodologies have been exploited to improve the perfor-
mance of these kinds of systems.

Due to the electromechanical design of aerial vehicles,
most of these systems are underactuated mechanical systems,
i.e., they have fewer control inputs than degrees of freedom.
Generally, the intentional design results in a weight and cost
reduction of the vehicle. However, underactuated systems
bring a complexity and an increased challenge to the control
area. Techniques developed for fully actuated robots cannot
be directly applied to these kind of mechanical systems, since
most of the underactuated systems are not fully feedback
linearizable and exhibit nonholonomic constraints [9]. There-
fore, nonlinear modelling techniques and modern nonlinear
control theory are often employed to achieve autonomous
flight with high performance [5,3]. Usually, the control
law design for underactuated systems considers only the
dynamics of controlled degrees-of-freedom (DOF) into the

error state vector and those remaining must be assumed to
have stable zero dynamics, or they must be controlled in an
outer loop.

This paper deals with a UAV in the quadrotor helicopter
configuration, which presents some advantages when com-
pared to a classic helicopter. This is mainly because it is lifted
and propelled by four rotors, which makes it possible to
reduce each individual rotor size and to maintain the total
load capacity, when compared with a helicopter with one
main rotor. Moreover, these vehicles do not require mechani-
cal linkages to act on propellers. This reduces the design,
maintenance, and cost of the vehicle. These facts, added to its
high maneuverability, allow take-offs and landings, as well as
flight in touch environment [12].

Since the last decade, many efforts have been made to
control quadrotor helicopters and several strategies have been
developed to tackle with the path tracking problem for this
type of system. As the quadrotor helicopter configuration is
constituted by four coplanar propellers (see Fig. 1), it is not
static feedback exact linearizable for the desired controlled
outputs, x, y, z and ψ, i.e., the translational and yaw angle
positions [19]. Therefore, two types of approaches are often
used to perform path tracking of the quadrotor helicopter: on
one hand, considering the output vector as x, y, z and ψ, it is
possible to use an augmented state vector with a double
integrator of the thrust (the altitude control input), which
generates coupling between translational and rotational
motion allowing using the feedback linearization technique.
This makes the system with the controlled outputs x, y, z and
ψ output controllable [19,20].

On the other hand, taking into account the quadrotor
helicopter model split up into two subsystems, the rotational
and the translational or, in some cases, the actuated and the
unactuated, the path tracking can be performed by using
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cascade control strategies. This approach uses an inner
control loop for the rotational subsystem, or for the actuated
degrees of freedom, combined with an outer loop to control
the translational movements, which are needed to ensure the
stability of the whole system. Control systems using this
strategy can be found in [6,2]. This second approach is the
one selected to develop the control strategy in this work.

One of the most commonly used control techniques for
the quadrotor helicopter using cascade structures is the
backstepping approach, which is applied to perform both
path tracking and stabilization problems. Backstepping
approaches applied to the quadrotor helicopter are found in
[17,16,15,11,23].

However, many control strategies tested on the
quadrotor helicopter do not consider sustained disturbances
on the six degrees of freedom, parametric and structural
model uncertainties. In recent years, researchers considered
them during the controller design. In some papers the
quadrotor helicopter is controlled using a linear H∞ control-
ler based on linearized models [6].

Furthermore, robust sliding mode and backstepping
approaches have also been developed. To improve the
quadrotor helicopter path tracking performance when main-
tained winds disturb the system, a backstepping approach
using integral action in the first step of the procedure is used
in [1,2,18,7]. Xu and Özgüner propose an approach using
sliding mode control for underactuated mechanical systems
to stabilize a quadrotor helicopter when 30% uncertainty
is added in each parameter of the model [28]. In [8] a
backstepping approach is used to control the quadrotor

helicopter, by applying backstepping on the Lagrangian form
of the dynamics. Neural networks are introduced to estimate
the aerodynamic components. In [21] a fractional order
sliding mode controller is used to control a quadrotor heli-
copter taking into account the effect of the battery power loss.

In this paper, a nonlinear robust control strategy to solve
the path tracking problem of the quadrotor helicopter is pro-
posed. The main objective is to design controllers that provide
certain required performances during the quadrotor flight, as
null tracking error and robustness in presence of sustained
external disturbances affecting the six degrees of freedom,
parametric uncertainties and unmodeled dynamics. A non-
linear H∞ controller is synthesized to stabilize the rotational
movements, whereas a control law based on a backstepping
approach with integral action is used to track the reference
trajectory. In both controllers the integral action is consid-
ered, allowing the achievement of a null steady-state error
when the system is disturbed. In the translational controller
design, the integral backstepping procedure is used consider-
ing the integral term in its second step. This backstepping
controller guarantees stability and convergence of the track-
ing error for a generic plant when a maintained disturbance
affects the system and the reference signal is time-varying.
On the other hand, one advantage of using the nonlinear H∞

controller, compared with the linear one, to control of the
rotational movements is related to the attraction basin, which
is enlarged by the nonlinear approach.

The goal of the nonlinear H∞ control theory is to
achieve a bounded ratio between the energy of the so-called
error signals and the energy of the disturbance signals. The
nonlinear H∞ approach considers Hamilton-Jacobi-Bellman-
Isaacs partial derivative equations (HJBI PDEs), which
replace the Riccati equations in the case of the linear H∞

control formulation. The main problem in the nonlinear case
is the absence of a general method to solve these HJBI PDEs.
Therefore, solutions have to be found for each particular case.
In [22] a strategy to control fully actuated mechanical
systems considering the tracking error dynamic equation is
proposed. In such strategy a nonlinear H∞ control, formu-
lated via game theory, is applied. This strategy provides,
through an analytical solution, a constant gain similar to the
results obtained with the feedback linearization procedures.

The use of integral action in the backstepping technique
was first proposed by [13]. The most common way to include
integral action in this approach is to use parameter adaptation
[14]. An analysis of different techniques using integral action
in the backstepping approach is carried out by [25], where
another two methods that consist in the augmentation of the
the system dynamic with the integral state are presented.

The remainder of the paper is organized as follows. In
Section II, a description of the quadrotor helicopter modeling
is given. The control strategy proposed in this work is pre-
sented in Section III, where the backstepping control with
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Fig. 1. Quadrotor helicopter scheme.
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integral action for the translational movements is developed
and the nonlinear H∞ controller for the rotational subsystem
is presented. Some simulation results are shown in Section IV.
Finally, the major conclusions of the paper are drawn in
Section V.

II. SYSTEM MODELING

2.1 Description

The autonomous aerial vehicle used in this paper is a
miniature quadrotor helicopter. The movement of the UAV
results from changes on the lift force caused by adjusting
the rotational velocities of the rotors. In order to achieve
forward motion the velocity of the rear rotor must be
increased and, simultaneously, the front rotor velocity
must be decreased. The lateral displacement is performed
with the same procedure but using the right and left pro-
pellers. Yaw movement is obtained from the difference in
the counter-torque between each pair of propellers, i.e.,
accelerating the two clockwise turning rotors while decel-
erating the counter-clockwise turning rotors, and vice-versa.

The dynamic model of the system is obtained under
the assumption that the vehicle is a rigid body in the space
subject to one main force (thrust) and three torques. There-
fore, the helicopter is considered an underactuated mechani-
cal system with six degrees of freedom and only four
control inputs. Since this kind of system is a flight vehicle
of lightweight structure, gyroscopic effects resulting from
the rotation of the rigid body and the four propellers should
be included in the dynamic model. Moreover, assuming a
realistic hypothesis that the center of mass is displaced by a
position r from the center of rotation, a strongly-coupled
dynamic model should be considered. Due to already
present complexities, some assumptions are made in the
model for control purposes. Firstly, the gyroscopic effects
caused by the propellers will be considered as unknown,
because it is assumed, at the motion control design stage,
that there is no access to the rotor speed. Consequently,
these effects will be neglected for the control design and
will be considered as external disturbances. Furthermore, to
overcome the strong coupling between rotational and trans-
lational movements, the center of mass and the body-fixed
frame origin are assumed congruent, which leads to a
decentralized dynamic model allowing to design cascade
control strategies. The ground effect is also neglected and,
for controller synthesis purposes, the helicopter structure is
assumed to be symmetric, which results in a moment of
inertia tensor with just diagonal inertia terms. Therefore, all
mentioned aerodynamic effects are neglected and assumed
as uncertainties in the control design stage, and most of
them taken into account in the model used to emulate the
quadrotor helicopter model.

2.2 Helicopter dynamics

The helicopter as a rigid body is characterized by a
frame linked to it. Let B = { , , }B B B1 2 3 be the frame fixed to
the body, where the B1 axis points towards the front of the
vehicle, B2 is orthogonal to B1 and negative to starboard in the
horizontal plane, whereas B3 is oriented in the ascendant
sense and orthogonal to the plane B1OB2. The inertial frame
I = { , , }E E Ex y z is considered fixed with respect to the earth
(see Fig. 1).

The vector ξ = [x y z]′ represents the position of the
helicopter mass center expressed in the inertial frame I .*
The vehicle orientation is given by a rotation matrix
RI B I: → , where RI ∈SO( )3 is an orthonormal rotation
matrix [9]. In this work the XYZ Euler angles,
η = [φ θ ψ]′ ∈ R3, are used to describe the helicopter
rotation in the three-Euclidean space with respect to the body-
fixed frame. For a more detailed description of the quadrotor
helicopter modeling see [24].

The helicopter equations of motion can be obtained by
the Euler-Lagrange formalism based on the kinetic and
potential energy concept, which compose the Lagrangian of
the helicopter model, L ( , )q q� . The generalized coordinate
vector is given by q = [ξ′ η′]′ ∈ R6.

Based on the assumption that the helicopter center of
mass is congruent with the center of rotation, the Lagrangian
does not contain kinetic energy terms combining �x and �h .
Consequently, the Euler-Lagrange equations can be divided
into translational and rotational dynamics (see Fig. 2;
Quadrotor Helicopter block). The translational movement can
be expressed by the following equation [23]:

m mg��x x+ =e f3 ,
(1)

where f R f Tx a= +I
ˆ is the translational force applied to

the helicopter due to the main control input U1 in z axis
direction, with R f R eI I

ˆ =
3
U1, and αT = [Ax Ay Az]′ is the

aerodynamic force vector, whose components are in the Ex, Ey

and Ez axes, respectively (The notation e3 represents the
vector e3 = [0 0 1]′. Thus, the therm R eI 3 denotes the third
column of the rotation matrix.) Aerodynamic forces and
moments are considered as external disturbances in the
controller design.

Equation (1) can be expressed by means of state vector
ξ, yielding:
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*The prime notation ′ denotes transpose.

Asian Journal of Control, Vol. 17, No. 1, pp. , January 2015142–156144

© 2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



where m is the helicopter mass and g is the gravitational
acceleration.

The equations of the rotational motion are written as a
function of the generalized coordinate η. Let Wη be the Euler
matrix, which relates the time-derivative of the Euler angles,
�h, with the angular velocities expressed in the body-fixed
frame, ω, and is given by:

Wh =
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0

0

sin

cos sin cos

sin cos cos

,

θ
φ φ θ
φ φ θ

(3)

the inertia matrix is defined by M W JW( )h h h= ′ , where
J = diag(Ixx, Iyy, Izz) is the diagonal moment of inertia tensor.
Then the Euler-Lagrange rotational equations in terms of η
can be written, in a general form, as follows [4]:

M C a d( ) ( , ) ,h h h h h t th h�� � �+ = + (4)

where tha is the applied roll, pitch and yaw control torque
vector, and thd = ′[ ]A A Ap q r is the aerodynamic torque
vector. The Coriolis and centrifugal force matrix C( , )h h� is
not unique, but the vector C( , )h h h� � is indeed unique. For the
sake of convenience, in this work this matrix is obtained
through the well-known Christoffel Symbols (of the first
kind), cijk(η), defined as follows [26]:

c
m m m

ijk
kj

i

ki

j

ij

k

: ,=
∂
∂
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−
∂
∂

⎧
⎨
⎩

⎫
⎬
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1

2 η η η
(5)

and the (k, j)th element of the matrix C( , )h h� is given by:

c c

m m m

kj ijk i
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kj
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η η η
η

�

�

1

3

1

3 1

2
∑∑ .

(6)

III. THE PROPOSED CONTROL STRATEGY

The control strategy used in this work is based on the
decentralized structure of the quadrotor helicopter model
that is composed by the dynamic equations (1) and (4) (see
Fig. 2).

The goal of the strategy is to reach a robust flight of the
quadrotor helicopter in the presence of sustained external
disturbances, parametric uncertainties and unmodelled
dynamics. To achieve it, two nonlinear techniques are
combined.

Initially, the reference trajectory for the translational
movements is provided off-line by the Trajectory Generator
block. The computation of this trajectory is based on a virtual
reference vehicle whose model is the same as the QuadRotor
simplified one for the translational motion. Thereby, starting
from a desired route for the translational movements, xd, yd, zd

and their derivatives are computed. The reference yaw angle
is defined separately. This trajectory is generated under the
following assumptions: there are no external disturbances
acting on the virtual vehicle; and the attitude of the virtual
vehicle is assumed stabilized.

For the inner-loop control, a nonlinear H∞ controller
for the rotational subsystem is used to perform the
QuadRotor helicopter stabilization. The angular position and
velocity are controlled in this loop, being the torques applied

Fig. 2. Quadrotor helicopter control structure.
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on the three axis, tha = ′[ ]τ τ τφ θ ψa a a
, the manipulated

variables. To obtain null steady-state error in presence of
sustained external disturbances, the integral of the angular
position error is considered. Due to the cascade structure of
this strategy and taking into account the closed-loop perfor-
mance achieved by the nonlinear H∞ inner-loop controller,
the Euler angles can be considered as time-varying
parameters on the design of the translational controllers.

To obtain a robust path tracking, an integral back-
stepping approach is used to design the quadrotor transla-
tional motion controller. As can be seen in [23], the standard
backstepping procedure is not able to perform the tracking
task, without considering the integral action, when sustained
disturbances affect the system. Therefore, an integral action is
added on the control design. Moreover, in the backstepping
approach presented in this work the integral action is consid-
ered in its second step, which guarantees stability and con-
vergence of the tracking error for a generic plant when a
maintained disturbance affect the system and the reference
signal is time-varying. This same benefit is not obtained when
the integral term is considered in the first step of the
backstepping control design. Control strategies applied to the
quadrotor helicopter using the backstepping approach with
integral action in its first step are found in [2,18].

The translational motion control is performed in two
stages. In the first one, the altitude, z, is controlled and the
desired total thrust, U1, is the manipulated signal. In the
second stage, the reference of pitch and roll angles (θd and ϕd,
respectively) are generated through two virtual inputs, com-
puted to follow the desired xy movement. In this step, the
control variable U1 is used as a time-varying parameter.

The development of each one of these controllers is
analyzed in the following.

3.1 Backstepping control with integral action for
path tracking

In this section a control law to solve the path tracking
problem by translational movements is designed. Back-
stepping technique can be used to design this control law in
such a way that the subsystem is forced to track the reference
trajectory.

However, a helicopter can be subject to external distur-
bances like wind gusts or, in the worst case, sustained winds.
So that the integral action is considered in the backstepping
approach. As a well known fact, the inclusion of the integral
action allows the removal of constant steady-state offsets in
closed-loop, besides to enable the path tracking in presence of
sustained disturbances, unmodeled dynamics, and parameter
deviations.

3.1.1 Backstepping control with integral action formulation

Consider a nonlinear system given by:

�
�
x x x x

x x x x x u d
1 1 1 2

2 1 2 1 2

= + ⋅
= + ⋅ +

f g

f g
1 1

2 2

( ) ( )

( , ) ( , ) ,
(7)

where x1 and x2 are the state vectors, u is the control input
vector and d is an unknown sustained disturbance vector.

First of all, the backstepping state transformation is
considered:

e x x

e x e
d1 1

2 2 1

= −
= −

( )

( , ),

t

ta
(8)

where α(e1, t) is a virtual control and xd(t) is a reference
signal. The goal of this approach is to solve the tracking
problem limt→∞e1(t) = 0.

The integral term x( ) ( )t d
t

= ∫0 e2 τ τ is considered in the
second step of the backstepping approach. As commented in
[25], this method guarantees convergence for constant or
time-varying reference signals, which could not be guaran-
teed for a generic plant when the integral action is added in
the first step of this control design.

Then, for the plant (7), the system for the first step is
given by:

�
�

e e x e x e

e x e x
d d

d d

1 1 1 2

1 1

= +( ) + +( ) ⋅
+ + ⋅ −
f t g t

g t t
1 1

1

( ) ( )

( ( )) ( , ) (a tt).
(9)

where functions f1 and g1 are written with respect to the error
variables (8).

A first positive definite Lyapunov function V1(e1, t) is
chosen as follows:

V t1
1

2
( , ) .e e e1 1 1= ′ ⋅ (10)

Its time derivative becomes

� �V t1( , ) .e e e1 1 1= ′ ⋅ (11)

By substituting (9) in (11), the virtual control, α(e1, t),
is defined to guarantee that the time derivative of the candi-
date Lyapunov function is negative definite when e2 = 0.
It is given as follows:

a ( , ) ( ( )) [ ( ( )) ( )],e e x e x C e xd d d1 1 1 1 1t g t f t t= + ⋅ − + − ⋅ +−
1

1
1 �

(12)

where C C1 1= ′ > 0. This virtual control law cancels all
nonlinear terms of (9) and depends only on e1 and the
reference signal.

Consequently, the time derivative of the Lyapunov func-
tion can be written as:

�V t g t1 1( , ) ( ( )) ,e e C e e e x ed1 1 1 1 1 1 2= − ′ ⋅ ⋅ + ′ ⋅ + ⋅ (13)

allowing the control design to proceed, which for e2 = 0 it is
negative definite.
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In the second step the integral action is introduced and
the following system is considered:

�

�
x

a
a

=
= + + + +
+ ⋅

e

e e x e e e x e

e u
d d

2

2 1 2 1 1 2

1

f t t g t

t
2 2( ( ), ( , )) ( ( ),

( , )) −− +a ( , ) ,e d1 t

(14)

where functions f2 and g2 are written with respect to the error
variables (8) and (from now on the arguments of the system
functions will be omitted):

� �a a a
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D
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1 1 1( ( )) ( )( ( ))

(

C e x xd e x d

e

d1 1 1

1

� �

xx d dd x x( )) ( ) ( ) .t f t t1 ⋅ + ]� ��

A second Lyapunov function is chosen as:

V t V2 1
1

2

1

2
( , , , ) ,x x xxe e K e e1 2 2 2= + ′ ⋅ ⋅ + ′ ⋅ (16)

where K Kx x= ′ > 0, and its time derivative is given by:

� � � �V t V t

g
2 1( , , , ) ( , )x x xxe e e K e e

e C e e
1 2 1 2 2

1 1 1 1

= + ′ ⋅ ⋅ + ′ ⋅
= − ′ ⋅ ⋅ + ′ ⋅ 11

2 2

⋅ + ′ ⋅ ⋅
+ ′ ⋅ + ⋅ − +

e K e

e u e d
2 2

2 1

x
a

x

[ ( , ) ].f g t�

(17)

Thus, in order to guarantee that the time derivative of
the candidate Lyapunov function, (17), is definite negative
when no exogenous disturbances are acting on the system, the
computed control law, u, is defined as follows:

u e e K C e= ⋅ − + − ′ ⋅ − ⋅ − ⋅[ ]−g f t g2
1

2 1�a xx( , ) ,1 1 2 2 (18)

with C C2 2= ′ > 0.
Replacing this control law in (17) yields to:

�V t2 2( , , , ) .x e e e C e e C e e d1 1 1 1 2 2 2 2= − ′ ⋅ ⋅ − ′ ⋅ ⋅ + ′ (19)

which guarantees that the equilibrium (ξ, e1, e2) = 0
of the closed-loop with d = 0 is UGAS (uniform
global asymptotic stable). If d ≠ 0, the new equilibrium
( , , ) ( , , )x xe e K d1 2 = ⋅−1 0 0 of the closed loop is UGAS for any
constant d (for more details see [25]).

Considering the backstepping state transformation (8)
and the virtual control law (12), the control law (18) can be
written in terms of a nonlinear PID with a feedforward action
control law as follows:

u K K x x

K x x F
I P d

D d F

= − ⋅ − ⋅ −
− ⋅ − ⋅ − +−

x [ ( )]

[ ( ( ) )] ,
1

2

t

g t f1
1

1�
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(21)

3.1.2 Translational subsystem backstepping control

The controller for the translational subsystem is per-
formed in two phases. The first one controls the helicopter
height through the input U1, whereas the second one makes
use of this signal as a time variant parameter in the linear
x and y motions to compute two virtual control inputs, ux

c

and uy
c.
For the controller design, the system (2) can be

written in a state-space form as
�x x x= f ( , )u , where

x = ′[ ]x u y v z w0 0 0 stands for the state-space
vector of the system, and u0, v0, and w0 are the components of
the linear velocity of the vehicle mass center expressed in the
inertial frame.

From (2) and the new state-space vector, the system
dynamic equation to control design can be written in the
following form:
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with:

u

u
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y

�
�

cos sin cos sin sin

sin sin cos cos sin .

ψ θ φ ψ φ
ψ θ φ ψ φ

+
−

(23)

Equations (22) show that the movement through the x
and y axes depends on the control input U1. In fact, U1 is the
designed total thrust magnitude to obtain the desired linear
movement, while ux and uy can be considered as the directions
of U1 that cause the movement through the x and y axes,
respectively.

In the following subsections the controllers based on
the backstepping approach with integral action are developed.
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Altitude control. To design the altitude controller the last
two equations of the system (22) with the unknown distur-
bance term Az ≠ 0 are considered. Due to the quadrotor heli-
copter cascade structure, the Euler angles are considered to be
time-varying parameters.

The first step considers the backstepping state
transformation:

e z z tz d1 = − ( ) (24)

e z e tz zz2 1= −� α ( , ), (25)

where the integral term is ξ τ τz

t
t e dz( ) ( )= ∫0 2 , and the virtual

control, α1 1( , )e tz , is obtained from (12) for the altitude
system as follows:

α z de t c e z tz z z( , ) ( ).1 1 1= − + �

Then, the system based on the backstepping approach
for altitude control is given by:

�
�

� �

e e e t

e

e g
U

m

A

m
e

z z z

z

z z

z

z

z
z

1 2 1

2

2
1

1

= +

=

= − + + −

α
ξ

φ θ α

( , )

(cos cos ) ( ,, ),t

(26)

where the thrust U1, computed through the backstepping
approach, is defined as follows:

U
m

k c c z z

c c z z g

z z z

z z

z d

d

1 2 1

1 2

1= ⋅ − − + −[
− + − + +
cos cos

( )( )

( )( )

φ θ
ξξ

� � ���zd ].

Longitudinal and lateral movement control. To compute
ux

c and uy
c the same backstepping approach is used and the

following backstepping transformation is considered:

e x x

e x e
xy xy xy

xy xy xy

d

xy

1 1

2 2 1

= −
= −

( )

( , ),

t

ta
(27)

where:

x xxy xy1 2= ⎡
⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢
⎤
⎦⎥

=
⎡

⎣

∫
∫

x

y

x

y

e d

e d
xy

x

y

t

t
, ,

( )

( )

�
�

x
2

0

2
0

τ τ

τ τ
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,

and the virtual control, a xy e xy( , ) [ ( , ) ( , )]1 t e t e tx yx y= ′α α1 1 ,
is obtained from equation (12).

Therefore, the control law is given by:

u

u

m

U
x
c

y
c

⎡

⎣
⎢

⎤

⎦
⎥ = ⋅ − − +( ) −( )⎡⎣

− +
1

K C C x x

C

xy xy xy xy xy

xy

xy dx x 1 2 1 1

2( CC x x xxy xy xy xyd d1 2) ,−( ) + ⎤⎦� ��
(28)

where U1 is assumed non-zero and

C C Kxy xy xy1 2=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦

c

c

c

c

k

k
x

y

x

y

x

y

1

1

2

2

0

0

0

0

0

0
, , x

ξ

ξ
⎥⎥ .

Taking into account that the virtual control inputs ux
c

and uy
c have been obtained to track the path reference in the

xy plane, the necessary values of ϕ and θ could be computed
by (23). At this point, it should be noted that (23) constitutes
a definition of the system to be controlled. Therefore, these
values can not be set directly since these angles are two of the
outputs of the rotational subsystem, being the nonlinear H∞

inner-loop in charge of carrying out this task.
In consequence, a desired virtual direction vector,

uxy
d = ′[ ]u ux

d
y
d , must be defined in the same sense of (23) as

follows:

u t t t t t ty
d

r r r( ) sin ( )sin ( ) cos ( ) cos ( )sin ( ).= −ψ θ φ ψ φ

u t t t t t ty
d

r r r( ) sin ( )sin ( ) cos ( ) cos ( )sin ( ).= −ψ θ φ ψ φ (29)

Thereby, by making the virtual control inputs equal to
the desired values, u uxy

c
xy
d= , the reference of the roll and

pitch angles, ϕr and θr respectively, are derived using (29).
These references are necessary for the helicopter rotational
loop.

3.2 Rotational subsystem nonlinear H∞ control

In this section the rotational subsystem control law to
achieve robustness in the presence of sustained disturbances,
parametric uncertainties and unmodeled dynamics is syn-
thesized. This control law is based on the full-actuated non-
linear H∞ controller presented in [24], which is proposed to
accomplish the required task.

The dynamic model of the rotational movements (4),
obtained from the Euler-Lagrange formalism, is used in
order to design the nonlinear H∞ controller, which is carried
out by a direct method.

As a first step to synthesize the control law, the tracking
error vector is defined as follows:

�

��

�

�

� �

x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−
−

−( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥∫ ∫

h
h

h

h h
h h

h hdt dt

d

d

d

, (30)

where ηd and �hd ∈ℜn are the desired trajectory and the
corresponding velocity, respectively. Note that the integral
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term is considered in the error vector. This term will allow the
achievement of a null steady-state error when sustained
disturbances are acting on the system [24].

The following control law is proposed for the rotational
subsystem:

t h h h h h
h h h h

ha M C

T Tx C Tx T u

= +
− +( ) +− −

( ) ( , )

( ) ( , ) .

�� � �

�� � �1 1
1 1

(31)

The proposed control law can be split up into three
different parts: the first one consists of the first two terms of
that equation, which are designed in order to compensate the
system dynamics (4). The second part consists of terms
including the error vector �x and its time derivative, ��x .
Assuming thd ≡ 0, these two terms of the control law enable
perfect tracking, which means that they represent the essen-
tial control effort needed to perform the task. Finally, the third
part includes a vector u ∈ Rp, which represents the additional
control effort needed for disturbance rejection.

It can also be pointed out that the previous control law
might not seem a well posed system, however, it will be
shown afterwards that the computed torque does not rely on
joint accelerations, but on their references.

Matrix T in (31) can be partitioned as follows:

T T T T= [ ]1 2 3 ,

with T1 = ρ1, where ρ is a positive scalar, 1 is the nth-order
identity matrix, and T2 and T3 are nth-order constant positive
definite matrices.

Substituting the expression of the control law from
(31) into the Euler-Lagrange equation of the system (4) and
defining d T d= 1th , the following expression is obtained:

M Tx C Tx u d( ) ( , ) .h h h�� � �+ = + (32)

where d ∈ Rq is the vector of external disturbances.
This expression represents the dynamic equation of

the system error. Taking into account this nonlinear equation
and the following cost variable ζ ∈ R(m+p):

z = ⎡
⎣⎢

⎤
⎦⎥

W
x

u

h( )
, (33)

where h(x) ∈ Rm represents a function of the error vector
to be controlled and W ∈ R(m+p)×(m+p) is a weighting matrix, if
the states x are assumed to be available for measurement,
the nonlinear H∞ problem can be posed as follows:

Find the smallest value γ* ≥ 0, such that, for any γ ≥ γ*

there exists a state feedback u = u(x, t), such that the L2 gain
from d to ζ is less than or equal to γ, that is:

z 2

2

0

2
2

2

0
dt dt

T T

∫ ∫≤ γ d , (34)

where

z z z2

2 = ′ = ′ ′[ ] ′ ⎡
⎣⎢

⎤
⎦⎥

h
h

( )
( )

,x u W W
x

u

and the symmetric positive definite matrix W′W can be
partitioned as follows:

′ =
′

⎡
⎣⎢

⎤
⎦⎥

W W
Q S

S R
. (35)

Matrices Q and R are symmetric positive definite and
the fact that ′ >W W guarantees that Q SR S− ′ >−1 .

Considering the definition of the vector error, �x, and the
definition of the cost variable, ζ, the following structures are
considered for matrices Q and S in (35):

Q

Q Q Q

Q Q Q

Q Q Q

S

S

S

S

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 12 13

12 2 23

13 23 3

1

2

3

, .

To apply the theoretical results presented in [27], it is
necessary to rewrite the nonlinear dynamic equation of the
system error (32) into the standard form of the nonlinear
H∞ problem. This can be done by defining the following
expressions:

�� � � �x x x u x d= + +f t g t k t( , ) ( , ) ( , ) , (36)

f tx T

M C

T T T T T To, ( )( ) =
−

− − + −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

−

−

− − −1

1

1 1 1
1 1 2 1 2 31 1

1 1 ⎥⎥
T xo

g t k tx x T

M

o, , ,( ) = ( ) =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

1

1

where 1 is the identity matrix, the zero matrix, both of nth
order, and:

T

T T T

o =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3

1 1
1

. (37)

Under these assumptions, an optimal control signal
u*(x, t) may be computed for system (36) if there is a smooth
solution V(x, t), with V(x0, t) ≡ 0 for t ≥ 0, to the following
HJBI equation [27]:
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∂
∂

+ ′∂
∂

+ ′∂
∂

′ − ′⎡ −

V

t

V
f t

V
k t k t g t g t

x
x

x
x x x R x

( , )

( , ) ( , ) ( , ) ( , )
1

2

1
2

1

γ⎣⎣⎢
⎤
⎦⎥
∂
∂

− ′∂
∂

′ + ′ − ′( ) =− −

V

V
g t h h h

x

x
x R S x x Q SR S x( , ) ( ) ( ) ( ) ,1 11

2
0

(38)

for each γ σ> ≥max( )R 0, where σmax stands for the
maximum singular value. In such a case, the optimal state
feedback control law is derived as follows [10]:

u R S x x
x

x
* = − ′ + ′

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−1 h g t
V t

( ) ( , )
( , )

. (39)

As stated before, the solution of the HJBI equation
depends on the choice of the cost variable, ζ, and particularly
on the selection of function h( )�x (see (33)). In this paper, this
function is taken to be equal to the error vector, i.e., h( )� �x x= .
Once this function has been selected, computing the control
law u will require finding the Lyapunov function, V t( , )�x , to
the HJBI equation posed in (38). Refer to [24] for more
details about how to find the candidate Lyapunov function.

The following theorem will help to do this.

Theorem 1[24]. Let V(xη, t) be the scalar function:

V tx x T Y X Y

X Y Z Y

T xo oh h h

h
,

( )

,( ) = ′ ′ −
− +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

2

J
(40)

where X, Y and Z ∈ Rn×n are constant, symmetric,
and positive definite matrices such that
Z XY X X− + >−1 2 O, and To is as defined in (37). Let T be
the matrix appearing in (32). If these matrices verify the
following equation:

O

Y X

Y X Z X

X Z X

Q T T

S T R S T

2 2

2

1
2

1

+
+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ + ′

− ′ +( ) ′ +( ) =−

γ

′ ,

(41)

then, function V(xη, t) constitutes a solution to the HJBI, for
a sufficiently high value of γ.

Proof 1. The proof of this theorem is obtained following the
steps presented in [22].

Matrix T = [T1 T2 T3] can be computed by solving
the Riccati algebraic equations from (41).

Once matrix T is computed, by substituting V t�x,( ) into
(39), the control law u* corresponding to the H∞ optimal
index γ is given by:

u R S T x* = − ′ +( )−1 �. (42)

Finally, if the control law (42) is placed into (31), and
taking into account the error vector (30) and matrix T
obtained from (41), the optimal control law can be written in
a compact form as follows:

t h h h h h

h h h h
ha M C

M K K K

d

D P I

* ( ) ( , )

( ) ,

= +

− + −( )∫
�� � �

�� � �dt
(43)

where:

K T T M C M R S TD = + + ′ +( )( )− − − −
1 2 1 1 1

1 1 1 1( ) ( , ) ( ) ,h h h h h�

K T T M C T M R S TP = + + ′ +( )( )− − − −
1 3 2 2 2

1 1 1 1( ) ( , ) ( ) ,h h h h�

K T M C T M R S TI = + ′ +( )( )− − − −
1 3 3

1 1 1 1
3( ) ( , ) ( ) .h h h h�

A particular case can be obtained when the components
of weighting compound W′W verify:

Q Q Q R

Q Q Q S S S
1 2 3

12 13 23 1 2 3

= = = =
= = = = = =
ω ω ω ω1

2
2
2

3
2 21 1 1 1, , , ,

, .
u

O O
(44)

In this case, the following analytical expressions for the
gain matrices have been obtained:

K M CD = + + +⎛
⎝⎜

⎞
⎠⎟

−ω ω ω
ω ω

2
2

1 3

1

1
2

2 1
1 1( ) ( , ) ,h h h�

u

K M CP = + + +⎛
⎝⎜

⎞
⎠⎟

−ω
ω

ω ω ω
ω ω

3

1

2
2

1 3

1

1
2

2 1
1 1( ) ( , ) ,h h h�

u

K M CI = +⎛
⎝⎜

⎞
⎠⎟

−ω
ω ω

3

1

1
2

1
( ) ( , ) .h h h�

u

1

where the parameters ω1, ω2, ω3 and ωu can be tuned by a
systematic procedure keeping in mind a linear PID control
action interpretation.

These expressions have an important property: they do
not depend on the parameter γ. So, an algebraic expression for
computing the general optimal solution for this particular
case is obtained.

IV. SIMULATION RESULTS

The proposed control strategy, using an integral
backstepping controller in cascade with a nonlinear H∞ con-
troller, named IntBS-NLH∞ , has been tested by simulation in
order to corroborate the effectiveness to solve the path track-
ing problem when sustained disturbances affect the whole
system. Simulations have been performed with a more accu-
rate model as well as saturated control inputs, which emulates
a real quadrotor helicopter. This model considers that the axes
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of rotation of the body-fixed frame are parallel to the axes
passing through the center of mass, and its origin is displaced
by a position r to the center of mass, resulting in crossed
inertia terms in the moment of inertia tensor. Moreover, this
assumption results in a strongly-coupled dynamic model,
with crossed terms in the inertia matrix and in the Coriolis
and centrifugal matrix between ξ and η, and in the gravita-
tional force vector. Taking into account that the simplified
model derived in Section II is used just for control synthesis
purposes, structural uncertainties are present because that
model considers a moment of inertia tensor with only
diagonal inertia terms, no crossed inertia terms between ξ and
η, Coriolis and centrifugal terms only on the rotational
subsystem, and gravitational terms just on the translational
subsystem.

In addition, an amount of ±30% in the uncertainty of the
elements of the moment of inertia tensor and the mass are
also considered to test the robustness provided by the control
strategies with respect to parametric uncertainty. Finally, sus-
tained disturbances affecting all the degrees of freedom are
applied in different instants of time to check the disturbance
rejection capability of the proposed controllers.

Furthermore, simulations comparing the control struc-
ture developed in this paper ( IntBS-NLH∞) with the one of
[2] (cascade strategy using integral backstepping controllers
in both inner and outer loops—IntBS) and that of [23]
(cascade strategy using a backstepping controller in the
inner loop and a nonlinear H∞ controller in the outer
loop— BS-NLH∞) have been performed in order to show
the improvement obtained with the proposed strategy. The
first work proposes an integral backstepping approach,

which uses the integral term in the first step of the proce-
dure. It has been chosen for the comparison analysis
because it is able to present similar performance results, as
well as to reject sustained disturbances. The second work
uses a backstepping control law in cascade with a nonlinear
H∞ controller to perform path tracking. This strategy has
been selected to illustrate that the controller is not able to
reject sustained disturbances without the use of the integral
action.

The values of the model parameters used for simula-
tions are as follows: m = 0.74 kg, l = 0.21 m, g = 9.81 m/s2

and Ixx = Iyy = 0.004 kgm2, Izz = 0.0084 kgm2. Assuming that
the quadrotor helicopter needs, under ideal conditions, a
thrust value of about U1 ≈ 7.23 N to perform hovering flight,
the following persistent light gusts of wind are considered as
external disturbances on the aerodynamic forces and
moments: Ax = 1 N at t = 5 s; Ap = 1 Nm at t = 10 s; and
Ay = 1 N at t = 15 s; Aq = 1 Nm at t = 20 s; Az = 1 Nm at
t = 25 s; and Ar = 1 Nm at t = 30 s.

For the translational motion, the same parameters were
adjusted for all backstepping controllers as follows:
c c cx y z1 1 1 17= = = , c c cx y z2 2 2 2 5= = = . , k k kx y zξ ξ ξ= = =1 5. . The
nonlinear H∞ controller gains were tuned with the following
values: ω1 = 0.1, ω2 = 3, ω3 = 9 and ωu = 1.5.

The first reference path used is a circle evolving in the
R3 Cartesian space defined by:

x
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Fig. 3. Path tracking.
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For this trajectory, the initial conditions of the heli-
copter are ξ0 = [0 0 0]′m and η0 = [0 0 0.5]′rad.

Figs 3 to 6 show the simulation results of the path
tracking for the first reference trajectory. They illustrate how,
starting from an initial position far from the reference, the
proposed control strategy is able to make the quadrotor heli-
copter follow the reference trajectory.

Figs 4 and 5 show the position and position errors. It
can be seen that zero steady-state error is achieved for all
coordinates, even if structural uncertainty and different model
parameter values are considered in the vehicle. Moreover, the
translational controller provides the quadrotor helicopter with
a fast and smooth recovery to the reference trajectory when
external disturbances affect it.

The behaviour produced by the nonlinear H∞ control
law in the rotational motion is shown in Fig. 6. It can be
observed how that controller reacts when the helicopter is
disturbed on the six degrees of freedom. When disturbances
affect the translational motion, the rotational controller
counter-attack them so quickly that the damages is minimized
for the inner-loop. The first two graphs show how the refer-
ences generated by the integral backstepping controller
(translational motion loop), i.e., ϕd and θd, varies in its attain-
ment of an appropriate performance in the translational loop.
It is due to the system coupling.

A second simulation collection has been obtained with
a vertical helix reference trajectory. For this path, the heli-
copter starts at the initial position ξ0 = [0.5 0 1.0]′m and
η0 = [0 0 0.5]′rad, with an amount of +30% of uncertainty
in the elements of the mass and the inertia matrix. In these
simulations, results attained by the integral backstepping with
the nonlinear H∞ control structure are compared with the
ones achieved by the IntBS. A third control strategy, the
BS-NLH∞ , is also performed for the comparison analysis.

The parameters for all control structures have been
adjusted to obtain a smooth reference tracking, with a quick

disturbance rejection, when it is possible, and a small
transient error. As commented before, the backstepping
parameters are the same for all translational controllers. The
parameters for the rotational controller used in the IntBS
structure have been synthesized to produce a similar behav-
iour of the nonlinear H∞ rotational controller. The simula-
tions results are depicted in Figs 7 to 10.

These figures illustrate that the proposed control strategy
and the IntBS present a robust path tracking when sustained
disturbances are applied on the whole quadrotor helicopter
degrees of freedom. Despite of the faster time response of the
translational controllers of both IntBS-NLH∞ and IntBS
control strategies, it can be clearly observed in Fig. 8 that the
translational motion response, in the case of the IntBS, con-
verges slower to the reference than the proposed IntBS-NLH∞

control strategy.As commented in [25], increasing the positive
feedbacks gains k iξ , c i1 and c i2 will eventually give stability
and convergence, for the backstepping procedure with the
integral term in the first step, when g1(x1) is constant (see (7)),
which is the case for the quadrotor helicopter model.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

x 
[m

]

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

y 
[m

]

0 5 10 15 20 25 30 35 40
0

5

time [s]

z 
[m

]

Reference
Nominal Parameters
Parameters +30%
Parameters −30%

Fig. 4. Position (x, y, z).

0 5 10 15 20 25 30 35 40

−0.4

−0.2

0

er
ro

r x [
m

]

0 5 10 15 20 25 30 35 40

0

0.02

0.04

er
ro

r y [
m

]

0 5 10 15 20 25 30 35 40

−0.4

−0.2

0

time [s]

er
ro

r z [
m

]

 

 

Nominal Parameters
Parameters +30%
Parameters −30%

Fig. 5. Position error (x, y, z).

0 5 10 15 20 25 30 35 40
−0.1

0
0.1
0.2
0.3

φ 
[r

ad
]

0 5 10 15 20 25 30 35 40

0

0.5

1

θ 
[r

ad
]

0 5 10 15 20 25 30 35 40

0

0.2

0.4

time [s]

ψ
 [

ra
d]

 

 Reference
Nominal Parameters
Parameters +30%
Parameters −30%

Fig. 6. Orientation (φ, θ, ψ).

Asian Journal of Control, Vol. 17, No. 1, pp. , January 2015142–156152

© 2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



When the control strategy proposed in this paper is
compared with the one gives by [23], the improvement gen-
erated by the use of the integral action is clearly pointed out.
Besides, to highlight this feature, the ω3 parameter of the
nonlinear H∞ controller is settled null in the second control
strategy. It can be clearly observed that, in the BS-NLH∞

case, the vehicle leaves the reference trajectory when the
disturbances are introduced, and it never reaches the reference
again. In addition, Figs 8 and 9 show that the helicopter
degrees of freedom can not obtain a null steady-state when no
integral term is considered in the controllers synthesis. To
corroborate the fact that null steady-state is achieved for the
proposed control strategy in this paper, Table I presents the
final errors in the 3D space.

Furthermore, the integral square error (ISE) perfor-
mance indexes obtained from the simulation results are

presented in Table II. It can be observed that the performance
is improved by the IntBS-NLH∞ control strategy for all
states, which, compared with the IntBs control strategy, pre-
sents an improvement of x↓96.62%, y↓94.36%, z↓97.33%,
ϕ↓38.42%, θ↓51.84% and ψ↓20.39%. These index values
corroborate the results presented in Figs 8 and 9.

On the other hand, the integral absolute derivative
control signal (IADU) index has been computed for all
control signals in the three control strategies (depicted in
Fig. 10). This performance index is appropriate to check the
control signals’ smoothness. Table III shows a comparison
between the results provided by the IntBs-NLH∞, IntBS and
Bs-NLH∞ control strategies. In this case, the third strategy
presents a smoother control signal. However, as can be seen in
Figs 8 and 9, the vehicle presents an offset in steady-state.
When the proposed control strategy is compared with the
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IntBS one, the index values are almost the same for the
control input U1, although the IntBs-NLH∞ strategy has
provided a faster response than the other one. For the rota-
tional loop, two of three control signals have been obtained
with higher smoothness. Again, it is noted that, despite of
some smoother signals presented by the others strategies,
only the IntBs-NLH∞ strategy has achieved the control
objectives.

V. CONCLUSIONS

In this paper a robust control strategy to solve the path
tracking problem for a quadrotor helicopter has been pre-
sented. This control structure has been designed in considera-
tion of external disturbances, like aerodynamic forces and
moments, acting on all degrees of freedom, parametric uncer-
tainties and unmodeled dynamics.

The proposed control strategy combines an integral
backstepping approach to control the translational move-
ments with a nonlinear H∞ controller designated to stabilize
the helicopter. The translational controller has been designed
through an integral backstepping procedure, using the
integral term in its second step. This controller guarantees
stability and convergence of the tracking error for a generic
plant when a maintained disturbance affect the system and the
reference signal is time-varying. A comparison with other
integral backstepping controllers using the integral term in
the first step has been provided, and it has confirmed the
improvement of the approach used in this paper.

On the other hand, a robust control based on nonlinear
H∞ theory has been used for the helicopter stabilization,
which is able to reject sustained disturbances.

The robustness of the control strategy have been
observed when parametric and structural uncertainties
have been considered during the simulations. Simulations
results have been presented to corroborate an appropriate
performance obtained to solve the path tracking problem,
where the use of integral action in the inner and outer loop
controllers has provided the capability to deal with sus-
tained disturbances when all degrees of freedom are
affected by this kind of perturbation in different moments of
time.

Finally, to show the improvements attained by the pro-
posed control strategy, a comparative analysis among the
proposed control strategy and others recent controllers has
been carried out by means of the ISE and IADU performance
indexes.
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