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Abstract. We study extension of operators T : E → L0([0, 1]), where E is an
F–function space and L0([0, 1]) the space of measurable functions with the
topology of convergence in measure, to domains larger than E, and we study
the properties of such domains. The main tool is the integration of scalar
functions with respect to stochastic measures and the corresponding spaces
of integrable functions.
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1. Introduction

Let T : E → L0([0, 1]) be a linear operator, where E is a function space and
L0([0, 1]) the space of measurable functions with the topology of convergence in
measure. The aim of this paper is to study conditions on T and E that allow us
to extend the operator T to domains larger than E and, in that case, to study the
properties of such domains.

In the case when T : E → X with X (and also E) a Banach space, this prob-
lem has been considered in [7], [9], [12]. For the particular case of T the operator
associated with Sobolev inequality and X a rearrangement invariant space, this
study has been done in [8], [10]; and for T a convolution operator and X = Lp(T),
in [23]. In all of these cases, the main tool has been an X–valued measure ν
canonically associated with the operator T and the corresponding space L1(ν) of
scalar functions which are integrable with respect to ν. The integration theory for
Banach space valued measures was developed by Bartle, Dunford and Schwartz,
[3], and Lewis, [16], [17]. However, L0([0, 1]) with the topology of convergence in
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measure is a complete metric linear space, but not locally convex. This case is
essentially different from the Banach space case already studied, since the lack of
duality precludes the use of the main ideas and techniques of the Banach space
case. The adequate framework is to consider L0([0, 1]) as an F–space (and, hence,
also E). This allows us to use the theory for integrating scalar functions with
respect to an F–space valued measure for the study of the extension of operators
T : E → L0([0, 1]).

The paper is organized as follows. In § 2, we collect general facts on F–spaces
and F–function spaces (F.f.s. in short); and recall the theory for integrating scalar
functions with respect to an F–space valued measure developed by Turpin, [34],
[35], Rolewicz, [25], [26], and Thomas, [32]. While the space L1(ν), for ν a Banach
space valued measure, has been thoroughly studied (see, for example, [4], [5], [6],
[11], [22], [24]), this is not the case when ν is an F–space valued measure. In § 3,
we study properties of the space L1(ν) for a measure ν with values in a general
F–space. Special emphasis is placed on the case of stochastic (i.e. countably addi-
tive L0([0, 1])–valued) measures, which are better behaved due to the properties of
L0([0, 1]). In particular, we show that, for ν a stochastic measure, the space L1(ν)
is a C–space whenever ν is positive (Theorem 3.5). It is a remarkable fact that,
for ν a stochastic measure, the space L1(ν) always satisfies the bounded multiplier
test (Theorem 3.7). We identify the class of all spaces arising as L1 of an F–space
valued measure, namely, it coincides with the class of all order continuous F.f.s.
(Theorem 3.8). In § 4, by applying the results of § 3, we show that, under certain
conditions, an operator T : E → X can be extended to L1(ν), where ν is a measure
canonically associated with T . Moreover, L1(ν) is the largest F.f.s. with order con-
tinuous F–norm to which T can be extended (Theorem 4.3). Particular attention
is given to the case when T is a kernel operator. We end in § 5 by exhibiting several
examples arising from classical analysis.

2. Preliminaries

2.1. A metric linear space is a vector space X (which we will consider over R)
endowed with a metric d which renders continuous the operations of addition and
multiplication by scalars. We can assume that the metric d is invariant under
translation, that is, d(x + z, y + z) = d(x, y) for x, y, z ∈ X, since there is always
an equivalent metric with this property; see [26, Theorem 1.1.1]. An F–norm on
a vector space X is a map ‖ · ‖ : X → [0,∞) satisfying

(i) ‖x‖ = 0 if and only if x = 0.
(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖, for x, y ∈ X.
(iii) ‖αx‖ ≤ ‖x‖, for x ∈ X and α ∈ R with |α| ≤ 1.
(iv) ‖αx‖ → 0 when α → 0, for x ∈ X.

In this case, d(x, y) := ‖x−y‖, x, y ∈ X, defines an invariant metric generating the
topology of X. Conversely, if X is a metric linear space with an invariant metric



d, then ‖x‖ := d(x, 0), x ∈ X, is an F–norm in X. If the topology generated by
the F–norm is complete, X is said to be an F–space.

A Riesz space is a vector space X endowed with an order compatible with
the linear structure, for which the supremum of any pair of elements exists. An
F–lattice is an F–space X which also is a Riesz space, and where the F–norm and
the order are compatible, that is, ‖x‖ ≤ ‖y‖ whenever x, y ∈ X with |x| ≤ |y|. An
operator T between F–lattices is positive if Tx ≥ 0 whenever x ≥ 0. Linear positive
operators between F–lattices are always continuous. An F–function space over a
finite measure space (Ω,Σ, λ) is an F–space E of (classes of) real measurable, finite
λ–a.e. functions, satisfying:

(i) f measurable, g ∈ E and |f | ≤ |g| λ–a.e., imply f ∈ E and ‖f‖ ≤ ‖g‖.
(ii) χA ∈ E for every A ∈ Σ.

This definition extends that of Banach function space given in [18, Definition
1.b.17]. Note that an F–function space is an F–lattice for the λ–a.e. order, and
L∞(Ω,Σ, λ) ⊂ E ⊂ L0(Ω,Σ, λ) where the inclusions are continuous. In particu-
lar, convergence in E of a sequence implies pointwise λ–a.e. convergence for some
subsequence.

For topics on metric linear spaces, see [15], [25], [26]; on Riesz spaces, see [1],
[19].
2.2. We briefly recall the theory of integration of scalar measurable functions with
respect to a vector measure with values in an F–space. This presentation is based
on the common features of the work of Rolewicz, [25, §III.6] and [26, §3.6]; Turpin,
[34] and [35, Chp.7]; and Thomas, [32].

Let (Ω,Σ) be a measurable space, X an F–space and ν : Σ → X a countably
additive vector measure, that is, ν satisfies that

∑
ν(An) converges to ν(∪An)

in X, for every sequence (An) of disjoint sets in Σ. A measurable set A is ν-
null if ν(B) = 0 for every measurable set B ⊂ A. Given a simple function ϕ =∑n

1 aiχAi
, the integral of ϕ with respect to ν is

∫
ϕdν :=

∑n
1 aiν(Ai) ∈ X. In

order to extend the integral to bounded measurable functions it is sufficient (and
necessary) that the integration operator ϕ ∈ S(Σ) 
→ ∫

ϕdν ∈ X is continu-
ous when we consider the topology of uniform convergence on the space S(Σ) of
the simple functions. In this case, the integration operator is continuous from the
space L∞(ν), of ν–essentially bounded measurable functions, to X. This condition
is equivalent to the convex hull of ν(Σ), the range of ν, being bounded. Measures
satisfying this property are called L∞–bounded measures. Although this condition
may fail (see examples in [27], [33] and [35, Theorem 7.4(c)]), the measures for
which it holds abound. Namely, this is the case for bounded measures (i.e. with
bounded range) with values in an F–space satisfying the bounded multiplier test,
that is,

∑
bnxn converges for all (bn) ∈ �∞ whenever the series

∑
xn is uncon-

ditionally convergent. In particular, this is the case for measures with values in a
Frèchet or a Banach space. All measures considered in this paper will be assumed
to be L∞–bounded.



A measurable function f is integrable with respect to ν if there exists a
sequence of simple functions (ϕn) such that

(i) ϕn converges to f ν–a.e.
(ii)

∫
ϕnh dν converges in X, for every h ∈ L∞(ν).

In this case, the integral of f is defined by
∫

fdν := lim
∫

ϕndν. If needed, we
will also use the following notation ν(f) =

∫
fdν. We denote by L1(ν) the space

of integrable functions with respect to ν, where functions which are equal ν–a.e.
are identified. In order to endow the space L1(ν) with a topology, we consider the
semivariation of ν, that is, the map ν̇ defined for measurable functions f by

ν̇(f) = sup
{∥

∥
∥

∫

ϕdν
∥
∥
∥

X
: ϕ simple, |ϕ| ≤ |f |

}

,

where ‖ · ‖X is the F–norm on X. Note that ‖ ∫
ϕdν‖X ≤ ν̇(ϕ) for every simple

function ϕ. For A ∈ Σ, we denote ν̇(A) = ν̇(χA). Then, A ∈ Σ is ν-null if and
only if ν̇(A) = 0. Let f, g, fn be measurable functions, the semivariation satisfies
the following properties:
(a) ν̇(f) = 0 if and only if f = 0 ν–a.e.
(b) If |f | ≤ |g| ν–a.e., then ν̇(f) ≤ ν̇(g).
(c) ν̇(f + g) ≤ ν̇(f) + ν̇(g).
(d) ν̇(

∑
fn) ≤ ∑

ν̇(fn), whenever
∑

fn converges ν–a.e.
Let L1

w(ν) denote the space of all measurable functions f with ν̇(f) < ∞, where
functions which are equal ν–a.e. are identified. The space L1

w(ν) endowed with
the ν–a.e. order is a Riesz space and an ideal of measurable functions, that is,
f ∈ L1

w(ν) whenever |f | ≤ |g| ν–a.e. for some g ∈ L1
w(ν). The semivariation ν̇

would be an F–norm on L1
w(ν) if every measurable function f ∈ L1

w(ν) satisfies
ν̇(αf) → 0 when α → 0. An equivalent condition is that the set B(f) := {∫ ϕdν :
ϕ simple, |ϕ| ≤ |f |} is bounded in X. We denote by L1

b(ν) the subspace of L1
w(ν)

consisting of those functions f such that B(f) is bounded. Then, ν̇ is a complete
F–norm on L1

b(ν) which is compatible with the ν–a.e. order. It follows that L1
b(ν)

is an F–lattice which is an ideal of measurable functions containing L∞(ν), and
L1(ν) is the closure of the simple functions in L1

b(ν). Thus, L1(ν) is an F–lattice
for the F–norm ν̇ and the ν–a.e. order, and an ideal of measurable functions. A
very important property of L1(ν) follows from the dominated convergence theo-
rem: order bounded increasing sequences are convergent, that is, L1(ν) is order
continuous. The inequality ‖ ∫

fdν‖X ≤ ν̇(f) holds for all f ∈ L1(ν), so the inte-
gration operator f ∈ L1(ν) 
→ ∫

fdν ∈ X is continuous. Note that when X is a
Frèchet or a Banach space, we have L1

b(ν) = L1
w(ν), and this space coincides with

the space of scalarly integrable functions; see [17, §5].

3. Stochastic measures

We will focus our attention on the case when X is the particular space L0([0, 1],
M,m) of real, Lebesgue measurable, finite m–a.e. functions over [0, 1] (M is the



Lebesgue σ–algebra in [0,1] and m the Lebesgue measure on M), where functions
which are equal m–a.e. are identified. It is an F.f.s. when endowed with the m–a.e.
order and the F–norm

‖f‖0 =

1∫

0

|f(t)|
1 + |f(t)|dt .

The topology generated is that of convergence in measure.
Let ν : M → L0([0, 1]) be a countably additive measure, we will say in this

case that ν is an stochastic measure. Talagrand, [31], and Kalton, Peck and Rob-
erts, [14], have proved that ν is bounded, that is, ν(M) is a bounded set in
L0([0, 1]). Maurey and Pisier have proved that L0([0, 1]) satisfies the bounded mul-
tiplier test, [21, Corollaire]. These two facts together imply that ν is L∞–bounded.
Thus, the space L1(ν) always exists and it is non-trivial. Observe that, since the
F–norm ‖ · ‖0 is bounded, we always have L1

w(ν) = L0([0, 1]).
Due to the properties of L0([0, 1]), integrability with respect to a stochas-

tic measure has a rich variety of equivalent conditions. Recall that a sequence
(xn) in an F–space X is a C–sequence if the series

∑
anxn converges for every

(an) ∈ c0. The space X is a C–space if, for any C–sequence (xn), the series
∑

xn

is convergent. Schwartz has shown that L0([0, 1]) is a C–space, [29].

Proposition 3.1. Let ν be an stochastic measure. For a measurable function f , the
following conditions are equivalent:

(i) f is integrable with respect to ν.
(ii) There exists a sequence (ϕn) of simple functions converging to f ν–a.e., and

satisfying that (
∫

A
ϕn dν) converges in L0([0, 1]), for every A ∈ M.

(iii) The sequence (gn) is a C–sequence in L1(ν), whenever (gn) are disjoint sim-
ple functions with |gn| ≤ |f | ν–a.e.

(iv) The sequence (ν(gn)) is a C–sequence in L0([0, 1]), whenever (gn) are disjoint
simple functions with |gn| ≤ |f | ν–a.e.

(v)
∑∣

∣ν(gn)(t)
∣
∣2 < ∞, for m–a.e. t ∈ [0, 1], whenever (gn) are disjoint simple

functions with |gn| ≤ |f |ν–a.e.

Proof. (i) and (ii) are equivalent since ν takes its values in L0([0, 1]), a space
satisfying the bounded multiplier test; see [34, 2.15].

(i) ⇒ (iii) Let f ∈ L1(ν) and (gn) disjoint simple functions with |gn| ≤ |f |
ν–a.e. Since

∑ |gn| ≤ |f | and L1(ν) is an order continuous ideal of measurable
functions, we have that

∑ |gn| converges in L1(ν). Hence,
∑

angn is convergent
in L1(ν) for every (an) ∈ c0.

(iii) ⇒ (iv) Follows from the continuity of the integration map.
(iv) ⇒ (v) Follows from the Kolmogorov–Kintchine inequality:

∑ |fn|2 con-
verges m–a.e. whenever (fn) is a C–sequence in L0([0, 1]); see [26, Proposition
3.10.7].

(v) ⇒ (iv) Suppose there exist disjoint simple functions (gn) with |gn| ≤ |f |
ν–a.e. and (an) ∈ c0 such that

∑
anν(gn) does not converge in L0([0, 1]). Then,



there exist δ > 0, and mk > nk > mk−1 > nk−1 such that ‖∑mk

nk
ajν(gj)‖0 > δ,

for k ≥ 1. Consider the functions φk :=
∑mk

nk
ajgj . They are disjoint, simple, and

satisfy |φk| ≤ |f | ν–a.e. for large enough k such that supj≥nk
|aj | ≤ 1. Then, by

assumption,
∑∣

∣ν(φk)(t)
∣
∣2 < ∞, for m–a.e. t ∈ [0, 1]. In particular, ν(φk) → 0

m–a.e. and so, ν(φk) → 0 in L0([0, 1]). This contradicts ‖ν(φk)‖0 > δ.
(iv) ⇒ (iii) Suppose there exist disjoint simple functions (gn) with |gn| ≤ |f |

ν–a.e. and (an) ∈ c0 such that
∑

angn does not converge in L1(ν). Then, there
exist δ > 0, and mk > nk > mk−1 > nk−1 such that ν̇(

∑mk

nk
ajgj) > δ, for

k ≥ 1. By definition of the semivariation of ν, there exist simple functions (ϕk)
such that |ϕk| ≤ |∑mk

nk
ajgj | and ‖ν(ϕk)‖0 > δ. Note that (ϕk) are disjoint and

|ϕk| ≤ |f | ν–a.e. for large enough k. Then, (ν(ϕk)) is a C–sequence in L0([0, 1]).
Since L0([0, 1]) is a C–space,

∑
ν(ϕk) converges in L0([0, 1]). Hence, ν(ϕk) tends

to zero in L0([0, 1]). We have arrived at a contradiction.
(iii) ⇒ (i) Consider the sets An = {x ∈ [0, 1] : n − 1 ≤ |f(x)| < n}, for

n ≥ 1. We have
∑

(n − 1)χAn
≤ |f | <

∑
nχAn

pointwise. The simple functions
gn = (n − 1)χAn

are disjoint and satisfy |gn| ≤ |f |, so (gn) is a C–sequence in
L1(ν). Suppose that

∑
gn does not converges in L1(ν). Then, there exist δ > 0,

and mk > nk > mk−1 > nk−1 such that ν̇(
∑mk

nk
gj) > δ, for k ≥ 1. Let (ϕk) be

simple functions such that |ϕk| ≤ |∑mk

nk
gj | and ‖ν(ϕk)‖0 > δ, for k ≥ 1. Since

(ϕk) are disjoint and |ϕk| ≤ |f | ν–a.e., we have that (ϕk) is a C–sequence in L1(ν).
Then, (ν(ϕk)) is a C–sequence in L0([0, 1]), which is a C–space, and so ν(ϕk) tends
to zero in L0([0, 1]). We have arrived at a contradiction. Consequently,

∑
gn con-

verges in L1(ν). Hence, g =
∑

gn ∈ L1(ν) and, since |f | < g + χ[0,1], we have that
f ∈ L1(ν). �

Remark 3.2. Condition (ii) is precisely the definition, by Bartle, Dunford and
Schwartz, of integrability with respect to a Banach space–valued measure; [3].

There is a particular class of vector measures for which we obtain special prop-
erties. Namely, the positive vector measures. Let X be an F–lattice and ν : Σ → X
a vector measure, we say that ν is positive if ν(A) ≥ 0 (in the order of X), for all
A ∈ Σ. Note that positive vector measures are always L∞–bounded. To see this
let ν be a positive measure and ϕ =

∑n
1 aiχAi

a simple function, then
∣
∣
∣

∫

ϕdν
∣
∣
∣ ≤

n∑

1

|ai|ν(Ai) ≤ ‖ϕ‖∞ν(∪n
1Ai) ≤ ‖ϕ‖∞ν(Ω) .

Thus, ‖ ∫
ϕdν‖X ≤ ‖‖ϕ‖∞ ·ν(Ω)‖X , and so the integration operator is continuous

on the space of the simple functions with the topology of the uniform convergence.
Since for a positive vector measure ν we have

∫
fdν ≥ 0, for every non-negative

function f ∈ L1(ν), the following equivalent expressions for the semivariation of
f ∈ L1(ν) hold:

sup
A∈Σ

∥
∥
∥

∫

A

fdν
∥
∥
∥

X
≤ ν̇(f) =

∥
∥
∥

∫

|f | dν
∥
∥
∥

X
≤ 2 sup

A∈Σ

∥
∥
∥

∫

A

fdν
∥
∥
∥

X
. (3.1)



An important property for a vector measure is the existence of a control
measure. Given a measure ν : Σ → X, a control measure for ν is a real measure
μ : Σ → [0,∞) such that μ(A) → 0 implies ν(A) → 0. This equivalent to μ(A) = 0
implies ν(A) = 0 since μ is finite. When μ and ν have the same null sets (that is,
μ(A) = 0 if and only if ν̇(A) = 0) they are said to be equivalent.

Remark 3.3. A measure ν : Σ → X, where X is a F.f.s over a finite measure
space (Δ,Ξ, λ), always has an equivalent control measure. To see this for ν being
positive, we only have to consider the vector measure ξ defined, for A ∈ Σ, by
ξ(A)(δ) := ν(A)

ν(Ω) (δ) when δ belongs to the support of ν(Ω), and ξ(A) = 0 in other
case. Since ν is positive, ν(A) ≤ ν(Ω), hence ξ takes values in the Banach space
L1(Δ,Ξ, λ). Then, from [13, Theorem IX.2.2], there exist a control measure μ for
ξ (which can be taken to be of Rybakov type, that is, μ = |x∗ξ|, for some x∗ in
L∞(Δ,Ξ, λ)). Thus, μ is an equivalent measure for ξ. Since ξ and ν have the same
null sets, it follows that μ and ν are equivalent.

For a general ν, the claim follows from X being continuously embedded in
L0(Δ,Ξ, λ), and a result of Talagrand [31, Theorem B], based in the ideas of Mau-
rey in [20]: any measure with values in an space L0(Δ,Ξ, λ) has an equivalent
control measure.

We present conditions on a positive measure ν guaranteeing that L1(ν) is a
C–space.

Proposition 3.4. Let X be an F–lattice which is a C–space and ν : Σ → X a positive
measure having an equivalent positive real measure. Then L1(ν) is a C–space.

Proof. We will prove that L1(ν) is a C–space by showing that every C–sequence
(fn) ⊂ L1(ν) tends to zero; see [26, Proposition 3.10.3]. From (3.1) it follows that,
for each A ∈ Σ, the sequence (

∫
A

fndν) is a C–sequence in X. Since X is a C–space,∫
A

fndν → 0 in X, for each A ∈ Σ. Consider the measures νn : Σ → X defined by
νn(A) :=

∫
A

fndν, for A ∈ Σ (for more details on density measures, see Proposi-
tion 5.3 below). Let μ be a positive real measure equivalent to ν. Since limn νn(A)
exists for each A ∈ Σ and μ(A) = 0 implies νn(A) = 0, from a generalized version
of the Vitali–Hahn–Saks theorem, [34, 2.7.2], it follows that supn ‖νn(A)‖X → 0
as μ(A) → 0. That is, given ε > 0 there exists δ > 0 such that μ(A) < δ implies
supn ‖νn(A)‖X < ε.

Since ν and μ are equivalent, L1(ν) is an F.f.s. over (Ω,Σ, μ). Hence, L1(ν)
is continuously included in L0(Ω,Σ, μ). Thus, (fn) is a C–sequence in L0(Ω,Σ, μ)
and so, by the Kolmogorov–Kintchine inequality, we have that

∑ |fn|2 converges
μ–a.e., so fn → 0 μ–a.e. Applying Egoroff’s theorem, for the δ > 0 given above,
there exists Zδ ∈ Σ with μ(Zδ) < δ and such that fn → 0 uniformly on Ω\Zδ.
Then, for every A ∈ Σ, we have



∥
∥
∥

∫

A

fndν
∥
∥
∥

X
≤

∥
∥
∥

∫

A∩Zδ

fndν
∥
∥
∥

X
+

∥
∥
∥

∫

A∩Ω\Zδ

fndν
∥
∥
∥

X

≤ sup
n

∥
∥
∥νn(A ∩ Zδ)

∥
∥
∥

X
+ ν̇(fnχΩ\Zδ

)

≤ ε + ν̇(‖fnχΩ\Zδ
‖∞) ≤ 2ε,

for large enough n. From (3.1), it follows that fn → 0 in L1(ν). �

Returning to the case of stochastic measures, from Remark 3.3, Proposition
3.4, and since L0([0, 1]) is a C–space, we have the following conclusion.

Theorem 3.5. Let ν be a positive stochastic measure. Then L1(ν) is a C–space.

In general, the bounded multiplier test is not satisfied in F–spaces. It is a
remarkable fact that for stochastic measures, the space L1(ν) always satisfies the
bounded multiplier test. The following lemma, from [28], is needed to proof this
result.

Lemma 3.6. Let (gj)m
1 be measurable functions and |bj | ≤ 1, 1 ≤ j ≤ m. Then

m

([
∣
∣
∣

m∑

j=1

bjgj(t)
∣
∣
∣ > 8ε

])

≤ 8 max
δj=±1

m

([
∣
∣
∣

m∑

j=1

δjgj(t)
∣
∣
∣ > ε

])

,

where, if g is a measurable function, we denote [|g| > r] := {t ∈ [0, 1] : |g(t)| > r}.
Theorem 3.7. Let ν be an stochastic measure. Then L1(ν) satisfies the bounded
multiplier test.

Proof. Let
∑

fn be an unconditionally convergent series in L1(ν). Given ε > 0,
there exists nε such that for every finite set M ⊂ N with minM > nε we have

ν̇

(
∑

n∈M

fn

)

≤ ε2

2(1 + ε)
.

Given (δj) with δj = ±1 and m > n > nε, set I+ = {j : n ≤ j ≤ m, δj = 1} and
I− = {j : n ≤ j ≤ m, δj = −1}. Let ϕ be a simple function with |ϕ| ≤ 1, then

∥
∥
∥

m∑

j=n

δj

∫

ϕfj dν
∥
∥
∥

0
≤ ν̇

(
m∑

j=n

δjfj

)

≤ ν̇

(
∑

j∈I+

fj

)

+ ν̇

(
∑

j∈I−
fj

)

≤ ε2

1 + ε
.

Then, we have

max
δj=±1

m

[
∣
∣
∣

m∑

j=n

δj

∫

ϕfj dν
∣
∣
∣ > ε

]

≤ max
δj=±1

1 + ε

ε

∥
∥
∥

m∑

j=n

δj

∫

ϕfj dν
∥
∥
∥

0
≤ ε .



Applying Lemma 3.6 to our setting, we have, for (bj) with |bj | ≤ 1,

m

[
∣
∣
∣

m∑

j=n

bj

∫

ϕfj dν
∣
∣
∣ > 8ε

]

≤ 8 max
δj=±1

m

[
∣
∣
∣

m∑

j=n

δj

∫

ϕfj dν
∣
∣
∣ > ε

]

≤ 8ε.

Then,

∥
∥
∥

m∑

j=n

bj

∫

ϕfj dν
∥
∥
∥

0
≤ m

[
∣
∣
∣

m∑

j=n

bj

∫

ϕfj dν
∣
∣
∣ > 8ε

]

+
8ε

1 + 8ε
≤ 16ε,

for all m > n > nε, (bj) with |bj | ≤ 1 and ϕ with |ϕ| ≤ 1. Noting that the
semivariation of ν for any function g ∈ L1(ν) can be written as

ν̇(g) = sup
{∥

∥
∥

∫

ϕgdν
∥
∥
∥

X
: ϕ simple, |ϕ| ≤ 1

}

, (3.2)

it follows that

ν̇

(
m∑

j=n

bjfj

)

= sup

{
∥
∥
∥

m∑

j=n

bj

∫

ϕfj dν
∥
∥
∥

0
: ϕ simple, |ϕ| ≤ 1

}

≤ 16ε,

for all m > n > nε and (bj) with |bj | ≤ 1. Hence,
∑

bnfn converges in L1(ν) for
every (bn) ∈ �∞. �

An important question is the following: What spaces arise as L1 of an sto-
chastic measure? A first simple example is the space L0([0, 1]) itself. We have
L1(ν) = L0([0, 1]) for the measure ν defined by

A ∈ M 
→ ν(A) := χA ∈ L0([0, 1]).

The next result characterizes the class of the spaces arising as L1(ν) for an F–space
valued measure ν having an equivalent positive real measure.

Theorem 3.8. Let E be an order continuous F.f.s. over a finite measure space
(Ω,Σ, λ). Then there exists an F–space valued measure ν such that E and L1(ν)
are linear and order isomorphic, and isometric. Moreover, the measures ν and λ
are equivalent.

Proof. Consider the set function ν : Σ → E defined by ν(A) := χA for A ∈ Σ. It is
clearly additive and, since E is order continuous, is countably additive. Note that
ν is positive, so it is L∞–bounded.

Any simple function ϕ satisfies
∫

ϕdν = ϕ. Thus, ν̇(ϕ) = ‖ϕ‖E . In particular,
ν̇(A) = ‖χA‖E so, λ and ν have the same null sets. Since the simple functions are
dense in both L1(ν) and E (by order continuity of both spaces), the spaces L1(ν)
and E coincide and ν̇(f) = ‖f‖E for all f ∈ E. �

Remark 3.9. In the context of Banach space valued measures, the result corre-
sponding to Theorem 3.8 is [4, Theorem 8].



Proposition 3.10. Let X be an order continuous F.f.s. over [0, 1] which is isomor-
phic to a subspace of L0([0, 1]). Then there exists an stochastic measure ν such
that L1(ν) is linear and order isomorphic to X.

Proof. Consider the measure ν : M → X defined by ν(A) := χA for A ∈ M. From
Theorem 3.8 if follows that L1(ν) = X. Let Φ be an isomorphism between X and
a subspace Z ⊂ L0([0, 1]). The measure η := Φ ◦ ν is L0([0, 1])–valued, countably
additive and L1(η) is linear (and order) isomorphic to X. �

Remark 3.11. Consider the Rademacher functions defined by rn(t) :=
sign sin(2nπt), for t ∈ [0, 1] and n ≥ 1. The closed linear subspace generated
by (rn) in L0([0, 1]) is isomorphic to �2 (since (an) ∈ �2 if and only if

∑
anrn

converges in measure, due to the independence of (rn)). Combining this fact with
the measure A ∈ M 
→ ν(A) := χA ∈ L2([0, 1]), for which L1(ν) = L2([0, 1]), we
obtain an stochastic measure η such that L1(η) = L2([0, 1]).

4. Optimal domain for L0([0, 1])–valued operators

Let T be a linear operator defined on a F.f.s. E and with values in an F–space X.
We look for conditions which allow us to extended T to a domain larger than E.
The main tool for this will be the X–valued measure canonically associated with
T .

Proposition 4.1. Let E be an F.f.s. over a finite measure space (Ω,Σ, λ), X an
F–space and T : E → X a linear operator. Suppose that T satisfies

(i) T (fn) → T (f) in X, whenever 0 ≤ fn ↑ fλ–a.e., fn, f ∈ E.
(ii) The restriction of T to L∞(λ) is continuous for the topology of uniform con-

vergence.
(iii) λ(A) = 0 whenever T (χB) = 0 for every B ⊂ A.
Then ν : Σ → X defined by

ν(A) := T (χA), A ∈ Σ,

is a countably additive, L∞–bounded measure, which is equivalent to λ. The space
E is continuously included in L1(ν), and the integration operator with respect to
ν extends T to L1(ν).

Proof. The set function ν is additive due to the linearity of T . Countable additiv-
ity of ν follows from condition (i) applied to χAn

↑ χ∪An
, when (An) ⊂ Σ is an

increasing sequence. Since Tϕ =
∫

ϕdν, for ϕ simple, condition (ii) implies that
ν is L∞–bounded. By definition of ν, every λ–null set is ν–null. Condition (iii)
implies that every ν–null set is λ–null. Hence, ν and λ are equivalent. Since T
and the integration operator coincide on the simple functions, they agree also on
L∞(ν) = L∞(λ).

Let f ∈ E. Since E is a lattice, it suffices to consider the case f ≥ 0. Let
(ϕn) be a sequence of simple functions such that 0 ≤ ϕn ↑ f . Let h ∈ L∞(ν),



with h ≥ 0. Since 0 ≤ ϕnh ↑ fh, by (i) we have
∫

ϕnh dν = T (ϕnh) → T (fh)
in X. Decomposing h ∈ L∞(ν) as h = h+ − h−, we deduce that f ∈ L1(ν), and∫

fdν = lim
∫

ϕndν = T (f). Hence, E is contained in L1(ν) and the integration
operator with respect to ν extends T to L1(ν).

Note that the inclusion of E in L1(ν) is injective since ν and λ have the same
null sets. This inclusion is continuous since it is a positive linear operator between
F–lattices. �

Remark 4.2. In Proposition 4.1 we have the following:
(a) If E = L∞(λ), condition (i) can be replaced by the weaker condition:

T (χAn
) → T (χ∪An

) in X, for every increasing sequence (An) ⊂ Σ.
(b) If E is order continuous and T : E → X is continuous then conditions (i) and

(ii) are satisfied.

The previous results allow us to establish an optimality property of the spaces
L1(ν), which is adequately explained in the statement and proof of the next result.

Theorem 4.3. Let (Ω,Σ, λ) be a finite measure space, X an F–space and T :
L∞(λ) → X a continuous linear operator satisfying

(i) T (χAn
) → T (χ∪An

) in X, for every increasing sequence (An) ⊂ Σ.
(ii) λ(A) = 0 whenever T (χB) = 0 for every B ⊂ A.

Then, for ν the L∞–bounded measure defined by ν(A) := T (χA), for A ∈ Σ, the
space L1(ν) is the largest order continuous F.f.s. over (Ω,Σ, λ) to which T can be
extended still taking values in X.

Proof. From Proposition 4.1 and Remark 4.2.(a), it follows that the integration
operator with respect to ν extends T to L1(ν). Note that L1(ν) is order continuous
and, due to (ii), it is an F.f.s. over (Ω,Σ, λ).

Let E be an order continuous F.f.s. over (Ω,Σ, λ), and T̃ : E → X a contin-
uous linear operator such that when restricted to L∞(λ) coincides with T . Then,
from Proposition 4.1 and Remark 4.2.(b), and noting that the measure ν̃ given
by ν̃(A) := T̃ (χA), for A ∈ Σ, coincides with ν, it follows that E is continuously
included in L1(ν) and the integration operator with respect to ν extends T̃ to
L1(ν). �

Corollary 4.4. Let E be an order continuous F.f.s. over a finite measure space
(Ω,Σ, λ), X an F–space and T : E → X a continuous linear operator such that
λ(A) = 0 whenever T (χB) = 0 for every B ⊂ A. Then the conclusions of Theorem
4.3 hold.

More can be said about the optimal domain of an operator T , in the case
when T is given by a positive kernel. Let K : [0, 1]×[0, 1] → [0,∞) be a measurable
function and T the linear operator defined, for a measurable function f , by

T (f)(x) =
∫ 1

0

f(y)K(x, y)dy for x ∈ [0, 1] ,



provided the integral exists for m–a.e. x ∈ [0, 1]. In order for T to be defined for
characteristic functions (and so, for simple functions) is needed that, for m–a.e.
x ∈ [0, 1], the function Kx, defined by Kx(y) := K(x, y), y ∈ [0, 1], is in L1([0, 1]).
In this case, the set function ν : M → L0([0, 1]) given by ν(A) := T (χA), for
A ∈ M, is well defined and additive. Clearly, every m–null set is ν–null. For m
and ν being equivalent is necessary and sufficient (via Fubini’s theorem) that K
satisfies

1∫

0

K(x, y)dx > 0 m–a.e. y ∈ [0, 1] ; (4.1)

this occurs if and only if T |f | = 0 m–a.e. implies f = 0 m–a.e. A kernel satisfying
these conditions will be called an admissible kernel.

Definition 4.5. Given an operator T defined by an admissible kernel K, and given
an F.f.s. X over [0, 1], we call the X–proper domain of T the space

[T,X] := {f ∈ L0([0, 1]) : T |f | ∈ X} . (4.2)

Note that [T,X] endowed with the F–norm ‖f‖[T,X] := ‖T |f | ‖X , f ∈ [T,X],
and the m–a.e. order, is an F–lattice satisfying that if |f | ≤ |g| m–a.e. with g ∈
[T,X], then f ∈ [T,X] and ‖f‖[T,X] ≤ ‖g‖[T,X]. In fact, [T,X] is the largest F–
lattice contained in L0([0, 1]) with this last property, on which T is defined and
takes values in X. Also, since |Tf | ≤ T |f |, we have that T : [T,X] → X is well
defined and continuous with ‖Tf‖X ≤ ‖f‖[T,X]. See [7], [8], [9], for various aspects
of the spaces [T,X] in the case when X is a Banach space.

Remark 4.6. In the particular case when X = L0([0, 1]), the space [T,L0([0, 1])]
coincides (with equivalent F–norm) with the proper domain for T studied by
Aronszajn and Szeptycki in [2] and [30].

The following theorem gives conditions allowing to identify the X–proper
domain of T with the space of integrable functions with respect to the X–valued
measure associated to T .

Theorem 4.7. Let X be an F.f.s. over [0, 1] and K an admissible kernel. Suppose
that the operator T associated with K satisfies

(i) T (χ[0,1]) ∈ X.
(ii) T (χAn

) → T (χ∪An
) in X, for every increasing sequence (An) ⊂ M.

Then,

(a) The measure ν
X

: M → X, defined by ν
X

(A) := T (χA), for A ∈ M, is
countably additive and L∞–bounded.

(b) L1(ν
X

) ⊂ [T,X] ⊂ L1
b(νX

), the inclusions being continuous.
(c) If X is order continuous, then [T,X] is order continuous and

[T,X] = L1(ν
X

).
(d) If X is a C–space, then [T,X] is a C–space and [T,X] = L1(ν

X
).



Proof. (a) Condition (i) implies ν
X

is well defined, and from condition (ii) it follows
that νX

is countably additive. Moreover, ν
X

is L∞–bounded since it is positive.
(b) Let 0 ≤ f ∈ L1(ν

X
). Consider a sequence (ϕn) of simple functions with

0 ≤ ϕn ↑ f . Then, by the Monotone Convergence theorem, Tϕn ↑ Tf . Since
L1(ν

X
) is order continuous, ϕn → f in L1(ν

X
) and so, Tϕn =

∫
ϕndν

X
→ ∫

fdν
X

in X. Thus, Tf =
∫

fdν
X

∈ X, that is, f ∈ [T,X]. Then L1(ν
X

) is contin-
uously contained in [T,X]. Moreover, since νX

is positive, from (3.1) we have
ν̇X

(f) = ‖∫ |f |dν
X

‖X = ‖T |f | ‖X = ‖f‖[T,X], for all f ∈ L1(ν
X

).
Given f ∈ [T,X] and a simple function ϕ with |ϕ| ≤ |f |, it follows that

| ∫ ϕdν
X

| = |Tϕ| ≤ T |f | ∈ X and so ‖ ∫
ϕdν‖X ≤ ‖T |f | ‖X . Then, ν̇

X
(f) ≤

‖T |f | ‖X < ∞, and so [T,X] is contained in L1
w(ν

X
). Applying the same argument

to αf , we have ν̇X
(αf) ≤ ‖ |α|T |f | ‖X → 0 whenever α → 0, and so [T,X] is

contained in L1
b(νX

). Hence, [T,X] is continuously contained in L1
b(νX

), since the
inclusion is a positive map.

(c) Let 0 ≤ fn ↑ f ∈ [T,X], then 0 ≤ Tfn ↑ Tf ∈ X. Since X is order contin-
uous, Tfn → Tf in X and so, fn → f in [T,X]. Hence, [T,X] is order continuous.
From (b), Proposition 4.1, and Remark 4.2.(b), it follows that L1(ν

X
) = [T,X].

(d) When X is a C–space, we have L1(ν
X

) = L1
b(νX

) (see [32, Theorem 7.4])
and so, from (b) it follows that L1(ν

X
) = [T,X]. From Proposition 3.4, we have

that [T,X] = L1(ν
X

) is C–space. �

Remark 4.8. Condition (i) in Theorem 4.7 implies that the simple functions are
contained in [T,X], and so [T,X] is a F.f.s. over [0, 1]. Also, note that under the
conditions of Theorem 4.7, T : L∞([0, 1]) → X satisfies the hypothesis of Theorem
4.3.

Remark 4.9. Note that, in the case when X = L0([0, 1]), from (4.2), we have that
[T,L0([0, 1])] is the space

{
f ∈ L0([0, 1]) : fKx ∈ L1([0, 1]), m−a.e. x ∈ [0, 1]

}
.

Moreover, in this case the conditions of Theorem 4.7 are satisfied and, hence, all
its conclusions hold. In particular, since L0([0, 1]) is order continuous, we have
L1(ν) = [T,L0([0, 1])], where ν is the measure associated to T considered with
values in L0([0, 1]). From this it follows that the space [T,L0([0, 1])] (the proper
domain for T of Aronszajn and Szeptycki), satisfies the properties of L1(ν) when
ν is a positive stochastic measure. Hence, we have the following result.

Proposition 4.10. The space [T,L0([0, 1])] is an order continuous C–space, satis-
fying the bounded multiplier test.

5. Examples

We have already seen examples of stochastic measures such that the corresponding
space L1(ν) is a Banach space (Remark 3.11), or an F–space (namely, L0([0, 1])).
Next we exhibit an example where the space L1(ν) is a Frèchet not Banach space.



Example 5.1. Consider the (admissible) kernel K(x, y) := 2 ·χ[ x
2 , x+1

2 ](y) for x, y ∈
[0, 1]. The associated measure is

ν(A)(x) =

1∫

0

χA

(x + y

2

)
dy .

Considering ν as an L0([0, 1])–valued measure, from Remark 4.9, we have that
L1(ν) coincides with the space L1

loc

(
(0, 1)

)
of locally integrable functions on (0, 1).

Since an F–lattice has an unique complete topology (due to the continuity of
positive maps), it follows that L1(ν) is order isomorphic (via identity operator) to
L1

loc

(
(0, 1)

)
.

The following is an example, different from Remark 3.11, of a measure for
which L1(ν) is a Banach space. In this case, the measure arises from a classical
kernel.

Example 5.2. Given 0 < α < 1, consider the (admissible) kernel of the fractional
integral K(x, y) := |x − y|α−1, for x, y ∈ [0, 1] with x �= y, and K equal to zero
in other case. Let ν be the associated measure considered as L0([0, 1])–valued. Let
us see, using the semivariation of ν, that the spaces L1(ν) and L1[0, 1] are order
isomorphic (via identity operator). For a simple function ϕ, we have, for every
x ∈ [0, 1],

(∫

|ϕ|dν

)

(x) =

1∫

0

|ϕ(y)|
|x − y|1−α dy ≥ ‖ϕ‖1 .

Thus, from (3.1) we have

ν̇(ϕ) =
∥
∥
∥

∫

|ϕ|dν
∥
∥
∥

0

≥ ‖ϕ‖1

1 + ‖ϕ‖1

.

On the other hand,

ν̇(ϕ) ≤
∥
∥
∥

∫

|ϕ|dν
∥
∥
∥

1

=

1∫

0

1∫

0

|ϕ(y)|
|x − y|1−α dy dx

=

1∫

0

|ϕ(y)|
1∫

0

1
|x − y|1−α dx dy ≤ 2

α
‖ϕ‖1 .

The previous examples can be extended by considering vector measures hav-
ing a density with respect to a given vector measure.

Proposition 5.3. Let X be an F–space and ν : Σ → X a countably additive L∞–
bounded measure. For h ∈ L1(ν), consider νh : Σ → X defined by νh(A) :=

∫
A

h dν,
for A ∈ Σ. Then, νh is countably additive and L∞–bounded; and f ∈ L1(νh) if
and only if fh ∈ L1(ν). Moreover,

∫
fdνh =

∫
fh dν, and ν̇h(f) = ν̇(fh), for

f ∈ L1(νh).



Proof. Since L1(ν) is an ideal of measurable functions, h ∈ L1(ν) implies hχA ∈
L1(ν), for every A ∈ Σ. So, νh is well defined. Given a sequence (An) ⊂ Σ of
disjoint sets, since L1(ν) is order continuous, we have ν̇(hχ∪j>nAj

) → 0. Thus,
‖νh(∪j>nAj)‖X → 0 and so, νh is countably additive. For a simple function ϕ, we
have ∥

∥
∥

∫

ϕdνh

∥
∥
∥

X
=

∥
∥
∥

∫

ϕhdν
∥
∥
∥

X
≤ ν̇(ϕh) ≤ ν̇(‖ϕ‖∞h) → 0

whenever ‖ϕ‖∞ → 0. Thus, νh is L∞–bounded. Writing the semivariation as in
(3.2) it follows that ν̇h(ϕ) = ν̇(ϕh), for every simple function ϕ. From this equality,
the proposition follows in a standard way. �

Remark 5.4. For a measurable function h, we denote by mh the measure with
density h with respect to the Lebesgue measure. From Proposition 5.3, we have
(a) If η is the stochastic measure in Remark 3.11, and h ∈ L2([0, 1]) = L1(η),

then L1(ηh) = L2([0, 1],mh2).
(b) If ν is the measure in Example 5.1, and h ∈ L1

loc

(
(0, 1)

)
= L1(ν), then

L1(νh) = L1
loc((0, 1),m|h|).

(c) If ν is the measure in Example 5.2, and h ∈ L1([0, 1]) = L1(ν), then L1(νh) =
L1([0, 1],m|h|).

Note that the identities between the above spaces are order isomorphisms.

Remark 5.5. Let ν be an stochastic measure defined by an admissible kernel K

and denote h(y) :=
∫ 1

0
K(s, y) ds, for y ∈ [0, 1]. If f ∈ L1([0, 1],mh), then

1∫

0

1∫

0

|f(y)|Kx(y) dy dx =

1∫

0

|f(y)|
1∫

0

K(x, y) dx dy

=

1∫

0

|f(y)|h(y) dy < ∞ .

Thus,
∫ 1

0
|f(y)|Kx(y) dy < ∞, for m–a.e. x ∈ [0, 1]. From Remark 4.9, it follows

that f ∈ L1(ν). Hence, we always have the continuous embedding L1([0, 1],mh) ↪→
L1(ν).

Suppose K satisfies that there exists a constant C > 0 and A ∈ M with
m(A) > 0, such that for every x ∈ A we have

K(x, y) ≥ C

1∫

0

K(s, y)ds m–a.e. y ∈ [0, 1] . (5.1)

Then, if f ∈ L1(ν), there exists x ∈ A such that:

∞ >

1∫

0

|f(y)|Kx(y) dy ≥ C

1∫

0

|f(y)|h(y) dy ,



and so f ∈ L1([0, 1],mh). Hence, L1(ν) is order isomorphic to the space
L1([0, 1],mh). Note that h > 0 m–a.e. and h ∈ L1([0, 1]), since K is an admissible
kernel.

Conversely, if h ∈ L1([0, 1]) and h > 0 m–a.e., from (c) in Remark 5.4 we
have that L1([0, 1],mh) = L1(νh), where ν is the vector measure in Example 5.2.
The stochastic measure νh is associated with the admissible kernel K̃(x, y) =
h(y)|x − y|α−1, for x, y ∈ [0, 1] with x �= y, and K̃ equal to zero in other case. The
kernel K̃ satisfies condition (5.1): for every x ∈ [0, 1] we have

1∫

0

K̃(s, y)ds = h(y)

1∫

0

|s − y|α−1ds ≤ 2
α

h(y)

≤ 2
α

h(y)|x − y|α−1 =
2
α

K̃(x, y)

for all y ∈ [0, 1], y �= x.
Therefore, the class of the spaces L1(ν) with ν an stochastic measure

defined by an admissible kernel K satisfying (5.1) coincides with the class of spaces
L1([0, 1],mh) with h ∈ L1[0, 1] and h > 0 m–a.e.

Remark 5.6. Let K be an admissible kernel and ν the associated stochastic mea-
sure. For any measurable function g : [0, 1] → [0,∞) such that

∫ 1

0
g(x)K(x, y) dx >

0 m–a.e. y ∈ [0, 1], we have that the kernel K̃(x, y) := g(x)K(x, y), for x, y ∈ [0, 1],
is admissible, and its associated stochastic measure ν̃ satisfies L1(ν̃) = L1(ν).
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[21] B. Maurey, G. Pisier, Un théorème d’extrapolation et ses conséquences, C. R. Acad.
Sci. Paris Sér. A-B 277 (1973), A39–A42.

[22] S. Okada, The dual space of L1(µ) for a vector measure µ, J. Math. Anal. Appl. 177
(1993), 583–599.

[23] S. Okada, W. J. Ricker, Optimal domains and integral representations of convolution
operators in Lp(G), Integral Equations Oper. Theory 48 (2004), 525–546.

[24] W. J. Ricker, Compactness properties of extended Volterra operators in Lp([0, 1]) for
1 ≤ p ≤ ∞, Arch. Math. 66 (1996), 132–140.

[25] S. Rolewicz, Metric linear spaces, Monografie Matematyczne 56, PWN–Polish Sci-
entific Publishers, Warsaw (1972).

[26] S. Rolewicz, Metric linear spaces, 2d ed., PWN–Polish Scientific Publishers, Warsaw
(1984).

[27] S. Rolewicz, C. Ryll-Nardzewski, On unconditional convergence in linear metric
spaces, Colloq. Math. 17 (1967), 327–331.
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