
Indag. Mathern., N.S., 19 (3), 359-378

Generalized perfect spaces *

by J.M. Calabuig, O. Delgado and E.A. Sanchez Perez

September, 2008

Instituto Universitario de Matematlca Pura y Aplicada, Universidad Politi!Cnica de Valencia,

46071 Valencia, Spain

Communicated by Prof. H.W Broer

ABSTRACT

Given two Banach function spaces X and Y related to a measure JL, the Y-dual space XY of X is defined
as the space of the multipliers from X to Y. The space XY is a generalization of the classical Kothe
dual space of X, which is obtained by taking Y = LJ(JL). Under minimal conditions, we can consider
the Y-bidual space XYY of X (i.e. the Y-dual of X Y ). As in the classical case, the containment X C X YY

always holds. We give conditions guaranteeing that X comcides with XYY, in which case X is said to be
Y-perfect. We also study when X is isometncally embedded in XYY. Properties involving p-convexity,
p-concavity and the order of X and Y, will have a special relevance.

1. INTRODUCTION

In the theory of function spaces on a measure space (Q, ~,/1), the classical Kothe
dual (or associate) space X' of a Banach function space (briefly, B.f.s.) X, plays
an important role due to the fact that it is identified with the elements x* of X*,
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the topological dual space of X, acting on X as an integral, i.e. there exists a
measurable function g such that x*(f) = Jf g d J-L for all f EX. We can interpret
X' in a different way, as the space of the multipliers from X to L1(J-L), that is, the
measurable functions g defining a multiplication operator from X to L I (J-L). From
this point ofview, a generalization of the Kothe dual is possible by taking any B.f.s.
Y in the place of L 1(J-L). Namely, the Y-dual space of X, denoted by X Y , is the
space ofmultipliers from X to Y, which under an elementary requirement becomes
a B.f.s. when endowed with the usual operator norm.

The Kothe dual of a B.f.s. takes a crucial part in the interplay between the
order and the topology of X. For instance, X is order continuous if and only if
X* coincides with X', or X satisfies the Fatou property if and only if X coincides
with the Kothe bidual X" of X. We pay attention to this second case, in which X
is said to be a perfect space. Is there an analogous result for the general case? Or
in other words, denoting by X YY the Y-bidual space of X (i.e. the Y-dual of X Y ),

when does X coincide with XYY? When it does, it is called Y-perfect. We will study
this question, which was already posed by Maligranda and Persson in [11, p. 337].
In this item they present some properties concerning the generalized duality and
provides a description for the space XY in some special cases, all of them of great
usefulness in the development of this paper.

As in the classical case, the containment X C X YY always holds and is continuous
with IIf11 x Yy ~ IIf11x for all f E X. So, another weaker question will be dealt in
this paper: When X is isometrically embedded in X YY ?

In the following section we analyze in detail the difficulties of solving the above
questions, by comparing with the classical case. Section 3 collects some results
for the Y-dual and the Y-bidual of a B.f.s. In particular, we prove that X Y inherits
some of the order properties of Y as the Fatou property (Proposition 3.3), and that
the property of being an Y -perfect space is transitive (Proposition 3.4). This last
fact will be of special relevance for the proof of our main result in Section 5, where
conditions on X and Y, involving p-convexity and q-concavity properties, are given
for X to be an Y -perfect space (Theorem 5.7). Another important tool used for
proving this result is what we call the p-power of a B.f.s. In Section 4 we study the
Y-perfect property for different p-powers of the same B.f.s. Finally, in Section 6 we
exhibit some couples ofparticular rearrangement invariant B.f.s.' (namely: Lorentz,
Marcinkiewicz and Orlicz spaces) satisfying the generalized perfectness property.

2. PRELIMINARIES

Let (Q, ~,J-L) be a a-finite measure space. We denote by LO(J-L) the space of all
measurable finite real functions on Q, where functions which are equal J-L-a.e.
are identified. A Banach function space related to J-L (briefly B.f.s.) is a Banach
space X ~ LO(J-L) with norm II· IIx, such that if f E LO(J-L), g E X and IfI ~ Igi
f-L-a.e. then f E X and II f II x ~ II g II x. In particular, X is a Banach lattice with the
pointwise J-L-a.e. order. A B.f.s. X has the Fatou property if for every sequence
(fn) ~ X such that 0 ~ fn t f f-L-a.e. and SUPn II fn II x < 00, we have that f E X
and II fn II x t II f II x· A B.f.s. X is order semi-continuous if for every f, fn EX, such
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that 0 ~ In t I /L-a.e., we have that II/nllx t IIf11x. Note that if a B.f.s. X has the
Fatou property, then X is order semi-continuous. For issues related to B.f.s.', see
[17, Ch. 15] considering the function norm p defined as p(f) = IIf11x if I E X and
p(f) = 00 in other case.

Given two B.f.s.' X and Y, the Y -dual space of X is defined as

X Y := {h E LO(/L): hi E Y foraB I EX},

i.e. the space of multipliers from X to Y. The map II . II xy given by

IIhllxY:= sup IIhIIlY, for hE X Y
,

IEBX

defines a natural seminorm on X Y . Note that the supremum above is finite. Indeed,
if0 ~ hEXY , then it defines a positive multiplication operator between two Banach
lattices and so it is continuous, see [9, p. 2]. The same holds for a general h E X Y

by taking positive and negative parts. In order to II . II xY be a norm, it is necessary
and sufficient to require that X to be saturated, that is, there exists no A E ~ with
/L(A) > 0 such that I XA = 0 /L-a.e. for all I EX. Note that X is saturated if and
only if X has a weak unit (i.e. g E X such that g > 0 /L-a.e.). In particular, X =1= {OJ.

Let X, Y be B.f.s.' with X saturated. Then, X Y is a B.f.s. endowed with the norm
II . II xY, see [11, Proposition 2]. The space X Y generalizes the classical Kothe dual
space X' of a B.f.s. X, which is obtained taking Y as the space L 1(/L). In this
classical case, X saturated always implies that X' is saturated, [17, Ch. 15, §71,
Theorem 4]. This fails for the general case. In order to obtain a second Y -dual
space of X with structure ofB.f.s., X Y is needed to be saturated. This fact justifies
the following comments about saturation for this space. First ofall, we note that X Y

may be trivial.

Example 2.1. Suppose (Q,~, /L) is non-atomic. Then, LP(/L)U(/-L) = {OJ whenever
1~ p < q ~ 00. See [11, Theorem 2].

Also, even if X Y is non-trivial, it may be non-saturated. For instance, every B.f.s.
Y satisfies

that is, both spaces coincide with equal norms. This fact, mentioned in [11, §2.(f)],
can be directly proved. Then, when Y is non-trivial and non-saturated, UXJ(/L)Y is
so.

Note that X Y saturated implies that Y is saturated. Indeed, if not, then there exists
A E ~ such that /L(A) > 0 and gXA = 0 /L-a.e. for all g E Y. Sin~e X is saturated,
we can take I E X such that I > 0 /L-a.e. Then, for every hEXY, we have that
hi E Y and so hlxA = 0 /L-a.e. Hence, hXA = 0 /L-a.e., contradicting the fact that
X Y is saturated. The converse does not hold, that is, there exist saturated B.f.s.' X
and Y such that X Y is non-trivial and non-saturated.
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Example 2.2. Consider the measure space ([0,2], /3([0, 2]), A), where /3([0,2]) is
the a-algebra of all Borel sets of [0,2] and Ais the Lebesgue measure on [0,2]. Let
us define the saturated B.f.s.'

X := {J E L D(A): fX[O,I] ELI (A) and f X[l,2] E L2(A)}

with norm IIfllx := IIfX[D,l]lll + IIfX[l,2]1I2, and let Y = L2(A). Note that X
y

is non-trivial, since for instance X[I,2] E X Y . Let us see that the space X Y is
non-saturated. Let h E X Y . For every g E LI(A), we have that gX[O,I] E X and so
hgX[o,I] E Y = L 2(A). Then, hX[o,I] E L I (A)L

2
(Al = {OJ (see Example 2.1), that is,

hX[O, I] = 0 A-a.e.

Remark 2.3. Let X, Y be B.f.s.' with X saturated. A condition guaranteeing
that XY is saturated, is that X s; Y. Indeed, this containment holds if and only if
L 00 (M) S; XY and, since L 00 (M) is saturated, XY is so.

As an immediate consequence ofRemark 2.3, Y Y is saturated for every saturated
B.f.s. Y. Moreover, from [11, Theorem 1], we have that

Let X, Y be B.f.s.' with X saturated. Whenever XY is saturated, we can consider
the Y -bidual space of X, that is, the Y -dual space of XY, which will be denoted by
X YY . Then,

that is the space of multipliers from XY to Y. The space XYY is a B.f.s. endowed
with the norm

IIH xYY:= sup lI~hlly.

hEBxY

Taking Y as the space L I (M), we obtain that X YY is just the classical Kothe bidual
space X" of X. Analogously to X", the space XYY always contains X and

(3) IIfllxYy :::; IIflix for all f E X.

In particular, X YY is saturated. At this point natural questions arise:

Questions 2.4.

(i) When is X isometrically embedded in X YY (i.e. (3) is an equality)?
(ii) When is X a Y-perfect space (i.e. x:; X YY )?

Note that in the expression "X is Y-perfect" or when X YY appears without any
specification, it must be understood that the minimal requirements which allow to
consider the Y -bidual space of X are satisfied, namely X and XY saturated.
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For a saturated B.f.s. Y, simple examples of Y -perfect spaces follow from (l)
and (2). Namely, L 00(11-) and Yare always Y -perfect.

Questions 2.4 are solved for the classical case X". In this case, (3) is an equality
(i.e. X' is a norming subspace of X*) if and only if X is order semi-continuous.
Moreover, X == X" if and only if X has the Fatou property (see for instance [9,
Proposition l.b.18] and [17, Ch. 15, §71, Theorem 1]).

In the general case, X having the Fatou property is neither a necessary nor
sufficient condition for X to be Y-perfect. Indeed, X is X -perfect, even if X does not
have the Fatou property. For the converse implication, we can consider the following
counterexample.

Example 2.5. If 1 ~ p < q ~ 00, then (£P/
q

== £00 (see [11, Theorem 2]). SO,
£P has the Fatou property but is not £q -perfect, since

Similarly, the order semi-continuity of X is neither a necessary nor sufficient
condition for (3) to be an equality. Indeed, (3) is an equality whenever X and Y
coincide, even if X is not order semi-continuous. Conversely, in Example 2.5, £P is
order semi-continuous but (3) is not an equality for Y = £q.

Trying to solve Questions 2.4 in the general case by giving equivalent conditions
turns out to be a very difficult (ifnot impossible) task, due to the fact already shown
that the general duality includes plenty of cases totally different to the classical
one. We only need to notice that every saturated B.f.s. Y is Y -perfect, without any
kind of requirement on Y. Therefore, we will not look for equivalent conditions but
conditions guaranteeing that X is Y perfect or that X is isometrically embedded in
XYY. Before that, we will exhibit some properties of the generalized dual spaces
which will be used throughout this paper.

3. SOME PROPERTIES RELATED TO GENERALIZED DUALITY

Given two B.f.s.' X and Y, we will use the expression "X~ c Y" to mean that X
is continuously contained in Y with II f II y ~ c II f II x for all f EX. The expression
"X ~ i Y" will mean that X is continuously contained in Y with II fII x = II f II y

for all f EX. In the case when X = Y as sets, the identity map between X and
Y is an order isomorphism, since it is a positive linear operator between Banach
lattices, see [9, p. 2]. As in the previous section, we will write X == Y whenever the
isomorphism is an isometry, that is, the norms coincide.

Lemma 3.1. Let X, Y, Z be Bfs.' with X saturated. Then,

(a) Y ~c(i) Z => X
y
~c(i) X Z

,

(b) X ~c Z => zY ~c X y
.

Moreover, ifY is order semi-continuous,
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Proof. Parts (a) and (b) can be directly proved. Suppose Y is order semi­
continuous. If X "--+ i Z, from (b) we have that Z y "--+ 1 Xy. Let h E Z Y. Given
fEB z, consider a sequence of simple functions (0/n) satisfying that 0 :::::; 0/n t If I·
Note that since X is saturated, it has a weak unit, which is equivalent to the
existence of a sequence (An) C ~ such that n = Un An and XAn E X. Taking
CPn := o/nXUn A E X, we have that 0:::::; CPn t III. Then, 0 ~ CPnlhl t Ilhl E Y. Since

1 ]
Y is order semi-continuous,

II/hlly = lim IICPnhily ~ IlhllxY lim IICPnlix
n----'J-oo n----+oo

= IlhllxY lim IICPnliz ~ Ilhllxrllfllz:::::; II h ll x Y'
n~oo

Then, IIhllzy ~ IlhllxY. So, (c) holds. 0

Lemma 3.1(b) and other properties related to generalized duality can be found in
[11,§2].

Remark 3.2. As a consequence of (3) and Lemma 3.1(b), we obtain that X y is
always Y-perfect, for each couple of Rf.s.' X, Y with X and X Y being saturated.

An special feature of the Kothe dual space X' of a saturated B.f.s. X follows by
taking Y = L1(J-L) in Remark 3.2: X' always has the Fatou property (see also [9,
p. 30]). This does not hold in the general case. For instance, we can take a Rf.s.
Y which does not satisfy the Fatou property and then L 00 (J-L)Y == Y fails in having
this property. However, if Y has the Fatou property (as L 1(J-L)), this property is
transferred to X Y for every saturated Rf.s. X. The analogous for Y being order
semi-continuous also holds.

Proposition 3.3. Let X, Y be Bfs.' with X being saturated.

(a) /fY has the Fatou property then X Y also does.
(b) /fY is order semi-continuous then X Y is so.

Proof. Let us prove (a), and a similar argument works for (b). Let (hn ) be a
sequence in X Y such that 0 ~ hn t h J-L-a.e. and sUPn IIhn II x Y < 00. Then, for every
f E X, we have that 0:::::; Iflhn t I/lh J-L-a.e., where (fhn) C Y with

sup II fh n lIy :::::; IIflix . sup IIhnII x Y < 00.
n n

Hence, if Y has the Fatou property, it follows that f hEY and

IIfhll y = lim IIfhnllY ~ IIf11x ·limllhnllxY'
n n

Therefore, hE X Y and IIhlixY ~ limn IlhnllxY. This fact, together with IlhnllxY ~

IlhllxY for all n, implies that IIhn IlxY t IIhll x Y. So, X Y has the Fatou property. 0
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(c) X ~i z::::} Zy ~i X Y .

Proof. Parts (a) and (b) can be directly proved. Suppose Y is order semi­
continuous. If X ~ i Z, from (b) we have that Z y ~ 1 XY. Let h E Z Y. Given
fEBz, consider a sequence of simple functions (0/n) satisfying that 0 :::::; 0/n t If I·
Note that since X is saturated, it has a weak unit, which is equivalent to the
existence of a sequence (An) C ~ such that n = Un An and XAn E X. Taking
CPn := o/nXUnA E X, we have that 0:::::; CPn t III. Then, 0 ~ CPnlhl t Ilhl E Y. Since

1 ]
Y is order semi-continuous,

II/hlly= lim IICPnhlly:::::;IlhllxY lim IICPnlix
n----'J-oo n----+oo

= IlhllxY lim IICPnllz:::::; Ilhllxrllfllz:::::; II h ll x Y'
n~oo

Then, IIhllzy :::::; IlhllxY. So, (c) holds. 0

Lemma 3.1(b) and other properties related to generalized duality can be found in
[11,§2].

Remark 3.2. As a consequence of (3) and Lemma 3.1(b), we obtain that X y is
always Y-perfect, for each couple of Rf.s.' X, Y with X and X Y being saturated.

An special feature of the Kothe dual space X' of a saturated B.f.s. X follows by
taking Y = L1(J-L) in Remark 3.2: X' always has the Fatou property (see also [9,
p. 30]). This does not hold in the general case. For instance, we can take a Rf.s.
Y which does not satisfy the Fatou property and then L 00 (J-L)Y == Y fails in having
this property. However, if Y has the Fatou property (as L 1(J-L)), this property is
transferred to X Y for every saturated Rf.s. X. The analogous for Y being order
semi-continuous also holds.

Proposition 3.3. Let X, Y be Bfs.' with X being saturated.

(a) lfY has the Fatou property then X Y also does.
(b) lfY is order semi-continuous then X Y is so.

Proof. Let us prove (a), and a similar argument works for (b). Let (hn ) be a
sequence in X Y such that 0:::::; hn t h J-L-a.e. and sUPn IIhnII xY < 00. Then, for every
f E X, we have that 0:::::; Iflhn t I/lh J-L-a.e., where (fhn) C Y with

sup II fhn lIy :::::; IIflix . sup IIhnII xY < 00.
n n

Hence, if Y has the Fatou property, it follows that f hEY and

IIfhlly = lim IIfhnlly :::::; IIf11x ·limllhnllxY'
n n

Therefore, hE X Y and IIhlixY :::::; limn Ilhnllxy.This fact, together with Ilhnllxy :::::;
IlhllxY for all n, implies that IIhnIlxY t IIhllxY. So, X Y has the Fatou property. 0
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The converse of Proposition 3.3 does not hold. For instance, consider a saturated
B.f.s. Y which does not satisfy the Fatou property (or is not order semi-continuous)
and take the space Y y == L 00 (Il) which has the Fatou property.

Note that in the case when X Y is saturated, Proposition 3.3 can be obtained as a
particular case of the following more general result by taking Z = L I (Il).

Proposition 3.4. Let X, Y, Z be Bfs.' with X, X Y and X YZ saturated.

(a) IfY is Z-perfect then X Y is so.
(b) IfY "-+, y ZZ then X Y "-+, XYZz.

Proof. For (a) see [11, §2(h»). Suppose that y Z is saturated. Let us show that

The first inclusion follows from (3). Let us prove the second one. Consider TJ E

X Yzz . For every I E X and ~ E y Z , we have that I~ E X YZ , since nh E Z for all
hE X Y . Then TJ/~ E Z and so TJI E y Zz . Hence, TJ E X

Yzz
. Moreover,

IITJllxyzz = sup IITJfIIyzz = sup sup IITJnllz
JEBx jEBx~EByZ

:::;; IITJllxYzz' sup sup IInllxYz
JEBx ~EByZ

= IITJll xYzz' sup sup sup II/~hllz
JEBx ~EByZ hEBxY

:::;; IITJll xYzz' sup sup II/hlly:::;;IITJll xYzz.
JEBx hEBxY

If Y "-+, y ZZ , from Lemma 3.1(a) we have that X Y "-+i X
Yzz

. This fact together
with (4) gives X Y "-+i XYZz. So (b) holds. D

Let us see that being a generalized perfect space is a transitive property. In
Section 5, this fact will allow us to recognize B.f.s.' X, Y such that X is Y -perfect
passing through an LP -space. As can be expected, p-convexity and p-concavity
properties must be required for the spaces X and Y.

Proposition 3.5. Let X, Y, Z be Bfs.' with X and XZ saturated.

(a) If X is Y-perfectand Y is Z-perfect, then X is Z-perfect.
(b) If X "-+i X YY and Y "-+i y ZZ , th~n X "-+, X ZZ

Proof. Suppose that X Y and Y Z are saturated. Then,

This can be directly checked in the same line of the proof of (4).
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The converse of Proposition 3.3 does not hold. For instance, consider a saturated
B.f.s. Y which does not satisfy the Fatou property (or is not order semi-continuous)
and take the space Y y == L 00 «(.1.) which has the Fatou property.

Note that in the case when X Y is saturated, Proposition 3.3 can be obtained as a
particular case of the following more general result by taking Z = L 1«(.1.).

Proposition 3.4. Let X, Y, Z be Bfs.' with X, X Y and X YZ saturated.

(a) IfY is Z-perfect then X Y is so.
(b) IfY "-+, y ZZ then X Y "-+, X Yzz .

Proof. For (a) see [II, §2(h»). Suppose that y Z is saturated. Let us show that

(4) X Y
"-41 X YZZ

"-+1 X
yZZ

.

The first inclusion follows from (3). Let us prove the second one. Consider 17 E

XY Zz. For every I E X and ~ E Y z, we have that I ~ E XY Z , since I ~ h E Z for all
hE X Y . Then 17/~ E Z and so 171 E yZz. Hence, 17 E X Yzz

. Moreover,

1I17ll xyzz = sup lI17fII y zz = sup sup II17/Hz
IEBx IEBx~EByZ

~ 1l17llxYzz' sup sup 1IJ;llxyz
IEBx ~EByZ

= 1I17ll xYzz' sup sup sup II/~hllz
IEBx ~EByZ hEBxY

~ 1I17ll xYzz' sup sup IIfhlly~ 1I17ll xYzz.
IEBx hEBxY

If Y "-+, yZZ, from Lemma 3.l(a) we have that X Y "-+i X Yzz
. This fact together

with (4) gives X Y "-+i X Yzz . So (b) holds. D

Let us see that being a generalized perfect space is a transitive property. In
Section 5, this fact will allow us to recognize B.f.s.' X, Y such that X is Y -perfect
passing through an LP -space. As can be expected, p-convexity and p-concavity
properties must be required for the spaces X and Y.

Proposition 3.5. Let X, Y, Z be Bfs.' with X and X Z saturated.

(a) If X is Y -perfect and Y is Z-perfect, then X is Z-perfect.
(b) If X "-+i X YY and Y "-+i y ZZ, th~n X "-+, X ZZ

Proof. Suppose that XY and Y Z are saturated. Then,

(5) X "-+1 X ZZ "-+( x yyZZ

This can be directly checked in the same line of the proof of (4).
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If X is Y-perfect and Y is Z-perfect, then X YY == X and y ZZ == Y, and so
x yyZZ == X. This, together with (5), gives X == X ZZ , that is X is Z-perfect. So
(a) holds.

Suppose that X Y-i X YY and Y Y-i y Zz . Then, from Lemma 3.1 (a),

This fact, together with (5), gives X Y-i X ZZ . SO, (b) holds. 0

Remark 3.6. Taking Z = L I (JL) in Proposition 3.5, it follows:

(i) In the case when Y has the Fatou property, X being Y-perfect implies that X has
the Fatou property.

(ii) In the case when Y is order semi-continuous, X Y-i XYY implies that X is
order semi-continuous.

The converse of (i) and (ii) does not hold as Example 2.5 shows.

The following useful result, mentioned in [11, §2(b)], can be directly proved.

Lemma 3.7. Let X, Y, Z be Bfs.' with X and Y saturated. Then,

As a consequence of Lemma 3.7, for B.f.s.' X, Z such that X and XZ are
d, h h xZz - Z x Z - 00 h fi fsaturate we ave t at X = (X) = L (JL). T en, or every B. .s. Y

satisfying X Y-l Y Y-l X ZZ , we have that

and so

In particular, X is Y-perfect in the only case of X = Y, since X YY == LOO(JL)Y == Y.
For instance, taking Z = L 1(JL) and Y = X", if X does not have the Fatou property
then X is not X"_perfect.

Note that if any of the inclusions in X ~ Y ~ X ZZ is continuous with other
constant different of 1, then XY = L00 (JL) with equivalent norms.

4. PERFECT SPACES INVOLVING P-POWERS OF A B.F.S.

Let X be a saturated B.f.s. The maximal normed extension of X is the B.f.s. defined
as

[X]:= {g E LO(JL): sup{lIf11x: f E X, 0 ~ f ~ Igil < oo},
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If X is Y-perfect and Y is Z-perfect, then xyy == X and yZZ == Y, and so
x yyZZ == X. This, together with (5), gives X == X ZZ , that is X is Z-perfect. So
(a) holds.

Suppose that X Y-i X YY and Y Y-i y Zz . Then, from Lemma 3.1 (a),

X Y-, X YY
Y-, xyyzz

.

This fact, together with (5), gives X Y-i X ZZ . SO, (b) holds. 0

Remark 3.6. Taking Z = L I (JL) in Proposition 3.5, it follows:

(i) In the case when Y has the Fatou property, X being Y -perfect implies that X has
the Fatou property.

(ii) In the case when Y is order semi-continuous, X Y-i XYY implies that X is
order semi-continuous.

The converse of (i) and (ii) does not hold as Example 2.5 shows.

The following useful result, mentioned in [11, §2(b)], can be directly proved.

Lemma 3.7. Let X, Y, Z be Bfs.' with X and Y saturated. Then,

X
yZ

== y
Xz

As a consequence of Lemma 3.7, for B.f.s.' X, Z such that X and XZ are
saturated, we have that Xx

zz == (Xz)x
z == L'x'(JL). Then, for every B.f.s. Y

satisfying X Y-l Y Y-l X ZZ , we have that

L OO(JL) == XX Y-I X Y Y-I Xx
zz == L 00 (JL) ,

and so

(6) X Y == L00 (JL).

In particular, X is Y -perfect in the only case of X = Y, since XYY == L 00 (JL)Y == Y.
For instance, taking Z = L 1(JL) and Y = X", if X does not have the Fatou property
then X is not X"_perfect.

Note that if any of the inclusions in X ~ Y ~ X ZZ is continuous with other
constant different of 1, then XY = L00 (JL) with equivalent norms.

4. PERFECT SPACES INVOLVING P-POWERS OF A B.F.S.

Let X be a saturated B.f.s. The maximal normed extension of X is the B.f.s. defined
as

[X]:= {g E LO(JL): sup{lIf11x: f E X, 0 ~ f ~ Igl} < oo},

366



endowed with the norm

IIgll[Xj := sup{lIf11x: f E X, 0 (f (igil. for g E [Xl

We always have that X ~, [X]~ I X". In particular, [X] is saturated. Note that
[X] is the largest B.f.s. having X as a closed subspace. Then, [X] == X" if and only
if X is order semi-continuous. These topics appear in [II, § I], where [1] is referred
as original source.

From (6), we have that

(7) XX == X[Xj == XX" == L00 (J1-).

Let 0 < p < 00. The p-powerof X is the space defined as

endowed with the quasi-norm IIf11xp = IIlflPII~P, for f E XP. For 1(p, 11·llxp
is a norm, [11, Proposition 1]. In the case when 0 < p < 1, if X is (1/p )-convex
with constant 1 (see Section 5 for this concept), then II . IIxp is also a norm. This
follows from [5, Lemma 3] noting that there our space XP is denoted by XI/p. We
will only consider these cases, for which XP is a B.f.s. Note that XP is saturated,
since X is so, and [XP] == [X]P. Moreover, XP has the Fatou property ifand only if
X has the Fatou property. Similarly, X P is order semi-continuous if and only if X is
so.

Let 1 ( q < p < 00. Then,

where ~ = ~ - i, see [11, Theorem 5]. In particular, since p and r play the same
role, we have that

That is, [XP] and XP are Xq-perfect.

Example 4.1. For every 1 ( q ( p ( 00, we have that

with ~ = ~ - i. In the case q < p < 00, this follows from (8) by taking X = L I (J1-).

Note that, L I (J1-) == [LI(/L)] == L1(/Lt, since L1(/L) has the Fatou property. The
remaining cases follow from (I) and (2). See also [11, Proposition 3]. Then, LP(J1-)
is U (/L)-perfect.

There is another possibility left of generalized dual space as combination of
p-powers and maximal normed extension of X, namely (XP)[xqj. We give a
description for this space when X satisfies certain conditions.
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endowed with the nonn

IlglI[x] := suplllfllx: f E X, 0 ~ f ~ IglL for g E [X].

We always have that X ~ I [X]~ I X". In particular, [X] is saturated. Note that
[X] is the largest B.f.s. having X as a closed subspace. Then, [X] == X" if and only
if X is order semi-continuous. These topics appear in [11, §1], where [1] is referred
as original source.

From (6), we have that

(7) XX == X[X] == XX" == LOO (J.1).

Let 0 < p < 00. The p-powerof X is the space defined as

XP={JELO(J.1): IfIPEX },

endowed with the quasi-norm IIf11xp = IIlfl P II~P, for f E XP. For 1 ~ p, II ·lIxp
is a nonn, [11, Proposition 1]. In the case when 0 < p < 1, if X is (1/P)-convex
with constant 1 (see Section 5 for this concept), then II . IIxp is also a nonn. This
follows from [5, Lemma 3] noting that there our space XP is denoted by XI/p. We
will only consider these cases, for which XP is a B.f.s. Note that XP is saturated,
since X is so, and [X P] == [X]p. Moreover, XP has the Fatou property if and only if
X has the Fatou property. Similarly, X P is order semi-continuous if and only if X is
so.

Let 1 ~ q < p < 00. Then,

(8) [XP]x
q

== xr and (XP)x
q

== [XP][x
qj

== [Xr],

where ~ = ~ - i, see [11, Theorem 5]. In particular, since p and r play the same
role, we have that

[Xpr
qXq

== (Xr(q == [XP] and (XP)xqx
q

== [xrrq==XP.

That is, [XP] and XP are XLperfect.

Example 4.1. For every 1 ~ q ~ p ~ 00, we have that

LP(J.1)U (11-) == Lr (J.1)

with ~ = ~ - i. In the case q < p < 00, this follows from (8) by taking X = L I (J.1).

Note that, L I (J.1) == [L I (J.1)] == L I (J.1'>;', since L I (J.1) has the Fatou property. The
remaining cases follow from (1) and (2). See also [II, Proposition 3]. Then, U(J.1)
is U (J.1)-perfect.

There is another possibility left of generalized dual space as combination of
p-powers and maximal nonned extension of X, namely (XP)[x

q
]. We give a

description for this space when X satisfies certain conditions.
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Proposition 4.2. Let 1 ~ q < p < 00 andsupposethat X is ordersemi-continuous.

Then. takingr such that ~ = i - -J;,

Proof. From (8) and Lemma 3.l(a) we have that [X'] == (XP)x
q

'---+; (XP)[xqJ. Let
h E (XP)[x

qj and consider a sequence of simple functions (CfYn) C X' such that
o~ CfYn t Ihl (e.g. CfYn = VrnXUn A with Vrn simple functions such that 0~ Vrn t Ihl

I )
and (An) C ~ such that Q = Un An and XAn E X). Note that X' is order semi-
continuous, since X is so. Thus, (CfYn) C X' '---+; [X'] == (X')". Moreover,

IICfYnll(Xr)/I = IICfYnll[X'j = IICfYnll(xp)xq = IICfYnll(xp)[xqj ~ Ilhll(xp)[xq).

Then, since (X')" has the Fatou property, it follows that hE (X')" == [X']. D

Note that under conditions of Proposition 4.2, since

XP is [Xq]-perfectif and only if X == [X].

Example 4.3. Let m be a vector measure on ~ with the same null sets as p,

and consider the B.f.s.' LI(m) and L~(m) of real measurable functions on Q

which are integrable and weakly integrable with respect to m, respectively. For
details on these spaces see for instance [3,16] and the references therein. The
containments LO'\m) S; LI(m) S; L~(m) hold, where UX)(m) denotes the space of
m-a.e. bounded functions (of course it coincides with UX) (p,)). An important fact is
that L I (m)" == L~(m) ([4, Proposition 2.4]). The space L I (m) is ordercontinuous
(i.e. order bounded increasing sequences are convergent in norm), and L~(m) has
the Fatou property. In particular, both spaces are order semi-continuous. Hence,
[LI(m)] == LI(m)" == L~(m). The spaces LP(m) and L~(m) are defined in [14]
as the p-powerof LI(m) and L~(m) respectively (see also [7]). Let us apply the
previous results to this setting. Let 1 ~ q < p < 00 and take r such that ~ = i - -J;.
From (8) and Proposition 4.2, it follows:

(i) L~(m)U(m) == F(m).
(ii) LP(m)L'!n(m)== LP(m)Lq(m) == L~(m)L~,(m) == L~(m).

In particular, L~(m) and LP(m) are always U(m)-perfect and, LP(m) is L?v(m)­
perfect in the only case of L?v(m) == U(m), that is, in the only case of LI(m) having
the Fatou property. Moreover, given 1 ~ p ~ 00, from (7) we have that

Note that (i), (ii) for q = 1 and (iii) which have been proved in [6, Theorem 4, 5
and 8] have been obtained here from a more general context.
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Proposition 4.2. Let 1 ~ q < p < 00 and suppose that X is order semi-continuous.
Then. taking r such that ~ = i - -J;,

(9) (XP)[x
q
] == [X'].

Proof. From (8) and Lemma 3.l(a) we have that [X'] == (XP)x
q

'---+; (XP)[x
q

]. Let
h E (XP)[x

qj and consider a sequence of simple functions (CfYn) C X' such that
o~ CfYn t Ihl (e.g. CfYn = VrnXUn A with Vrn simple functions such that 0~ Vrn t Ihl

I )
and (An) C ~ such that Q = Un An and XAn E X). Note that X' is order semi-
continuous, since X is so. Thus, (CfYn) C X' '---+; [X'] == (X')". Moreover,

IICfYnll(Xr )/I = IICfYnll[X'j = IICfYnll(xp)xq = IICfYnll(xp)[xqj ~ Ilhll(xp)[xq).

Then, since (X')" has the Fatou property, it follows that hE (X')" == [X']. D

Note that under conditions of Proposition 4.2, since

(XP)[xq]fx
q
] == [x,][x

q
] == [XP],

XP is [Xq]-perfectif and only if X == [X].

Example 4.3. Let m be a vector measure on ~ with the same null sets as p,
and consider the B.f.s.' LI(m) and L~(m) of real measurable functions on Q

which are integrable and weakly integrable with respect to m, respectively. For
details on these spaces see for instance [3,16] and the references therein. The
containments LO'\m) S; LI(m) S; L~(m) hold, where UX)(m) denotes the space of
m-a.e. bounded functions (of course it coincides with UX) (p,)). An important fact is
that L I (m)" == L~(m) ([4, Proposition 2.4]). The space L I (m) is order continuous
(i.e. order bounded increasing sequences are convergent in norm), and L~(m) has
the Fatou property. In particular, both spaces are order semi-continuous. Hence,
[LI(m)] == LI(m)" == L~(m). The spaces LP(m) and L~(m) are defined in [14]
as the p-powerof LI(m) and L~(m) respectively (see also [7]). Let us apply the
previous results to this setting. Let 1 ~ q < p < 00 and take r such that ~ = i - -J;.
From (8) and Proposition 4.2, it follows:

(i) L~(m)U(m) == F(m).
(ii) LP(m)L'!n(m)== LP(m)Lq(m) == L~(m)L~,(m) == L~(m).

In particular, L~(m) and LP(m) are always U(m)-perfect and, LP(m) is L?v(m)­

perfect in the only case of L?v(m) == U(m), that is, in the only case of LI(m) having
the Fatou property. Moreover, given 1 ~ p ~ 00, from (7) we have that

(iii) LP(m)Lf:,(m)== V:XJ(p,) == LOO(m).

Note that (i), (ii) for q = 1 and (iii) which have been proved in [6, Theorem 4, 5
and 8] have been obtained here from a more general context.
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5. P-CONVEXITY, P-CONCAVITY AND PERFECT SPACES

Let 1 :s; P :s; 00. A B.f.s. X is p-convex if there exists C > 0 such that

when 1 :s; P < 00, and

11._sup 11z11lx:s;c .._sup Ilf,llx
,-1. . ,n ,-1, .. ,n

when p = 00, for every (/;)7=1 C X. A B.f.s, X is p-concave if it satisfies the
converse inequalities of a p-convexB.f.s. Note that a B.f.s. X is always I-convex
and oo-concave with constant C = 1. The spaces XP are always p-convex with
constant 1. For the particular case of LP(f.L), it also is p-concave with constant 1.

A relevant note regarding the next results is that, from [9, Proposition I.d.8], every
p-convex (p-concave) B.f.s. X has an equivalent norm for which X is p-convex
(p-concave) with constant 1.

Lemma 5.1. Let X, Y be Bfs. with X saturated and 1 :s; P :s; 00. If Y is p-convex,
then XY is p-convex with the same constant.

The proof of Lemma 5.1 is a simple check. Note that the analogous statement of
Lemma 5.1 for Y p-concave does not hold. Indeed, for any p-concave B.f.s. Y we
have that yY == V:'O(f.L) which is not p-concave for p < 00.

Lemma 5.2. Let X, Y be Bfs.' with X and X Y saturated and 1 :s; p < 00.

(i) X is Y -perfect ifand only ifX P is Y P-perfect.
(ii) X "-+; xYY ifand only ifXP "-+, (XP)YPYP

In particular,

(iii) X has the Fatou property ifand only ifXP is LP(f.L)-perfect.
(iv) X order semi-continuous ifand only ifXP "-+; (XP)£P(/l)£P(/l).

Proof. From [11, §2.(g)], we always have that

In particular, (XP)YP is saturated. Then,

Note that X YY == X if and only if (XYY)P == XP, and by (11), this is equivalent to
XP being YP-perfect. So, (i) holds.
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5. P-CONVEXITY, P-CONCAVITY AND PERFECT SPACES

Let 1 :s; P :s; 00. A B.f.s. X is p-convex if there exists C > 0 such that

11(~'f,'Jl~C(~lIftll~r
when 1 :s; P < 00, and

11._sup 11z11lx:s;c .._sup Ilf,llx
,-1. . ,n ,-1, .. ,n

when p = 00, for every (/;)7=1 C X. A B.f.s, X is p-concave if it satisfies the
converse inequalities of a p-convexB.f.s. Note that a B.f.s. X is always I-convex
and oo-concave with constant C = 1. The spaces XP are always p-convex with
constant 1. For the particular case of LP(f.L), it also is p-concave with constant 1.

A relevant note regarding the next results is that, from [9, Proposition I.d.8], every
p-convex (p-concave) B.f.s. X has an equivalent norm for which X is p-convex
(p-concave) with constant 1.

Lemma 5.1. Let X, Y be Bfs. with X saturated and 1 :s; P :s; 00. If Y is p-convex,
then XY is p-convex with the same constant.

The proof of Lemma 5.1 is a simple check. Note that the analogous statement of
Lemma 5.1 for Y p-concave does not hold. Indeed, for any p-concave B.f.s. Y we
have that yY == V:'O(f.L) which is not p-concave for p < 00.

Lemma 5.2. Let X, Y be Bfs.' with X and X Y saturated and 1 :s; p < 00.

(i) X is Y -perfect ifand only ifX P is Y P-perfect.
(ii) X "-+; xYY ifand only ifXP "-+, (XP)YPYP

In particular,

(iii) X has the Fatou property ifand only ifXP is LP(f.L)-perfect.
(iv) X order semi-continuous ifand only ifXP "-+; (XP)£P(/l)£P(/l).

Proof. From [11, §2.(g)], we always have that

(10) (XP)YP == (XY)P.

In particular, (XP)YP is saturated. Then,

(11) (XP)YPYP == ((XY)P)YP == (Xyyy.

Note that X YY == X if and only if (XYY)P == XP, and by (11), this is equivalent to
XP being YP-perfect. So, (i) holds.
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Similarly, X "-+, X YY if and only if XP "-+, (XYY)P. Then, (ii) follows from (11).
For the particular case Y = L 1(J1-), we obtain (iii) and (iv). 0

A characterization of the B.f.s.' which are LP(J1-)-perfectand of those which are
isometrically embedded in its U(J1-)-bidual, is possible.

Proposition 5.3. Let X be a saturatedB.fs. and 1 ~ p < 00. Then,

(i) X is U(J1-)-perfectifand only ifX is p-convexwith constant1 and has the
Fatouproperty.

(ii) X "-+, XLP(/L)LP(/L) ifandonlyifX is p-convexwithconstant1 andordersemi­

continuous.

Proof. (i) Suppose X is LP(J1-)-perfect.Since LP(J1-) is p-convex with constant 1,
has the Fatou property and X == XLP(/L)LP(/L), from Lemma 5.1 and Proposition 3.3,
we have that X is p-convex with constant 1 and has the Fatou property.

Conversely, if X is p-convex with constant 1 and has the Fatou property, we can
consider the B.f.s. X1/p which also has the Fatou property. From Lemma 5.2(iii),
we have that X == (X1/P)P is LP(J1-)-perfect.

(ii) Suppose X "-+i XLP(/L)LP(/L). Since XLP(/L)LP(/L) is p-convex with constant 1
and the norm of this space coincides with the norm of X, then X is also p-convex
with constant 1. Thus, we can consider the B.f.s. X1/p which satisfies

Then, by Lemma 5.2(iv), X1/p is order semi-continuous and hence X is so.
Conversely, suppose that X is p-convex with constant 1 and order semi­

continuous. Then, we can consider the B.f.s. X1/p which is also order semi­
continuous. From Lemma 5.2(iv), we have that

Note that in Proposition 5.3 it has been implicity used the fact that XLP(/L) is
saturated for every p-convex (with constant 1) saturated B.f.s. X. This fact is due
to XLP(/L) == «X1/P)P)LP(/L) == «X1/P)')P (see (10) for Y = L 1(J1-».

We have solved Questions 2.4 for the particular case Y = LP(J1-). Now, we
consider the "dual" problem: When LP(J1-) is Y -perfect? We will give conditions
guaranteeing U (J1-) is Y -perfect, using the following result obtained by Reisner [12,
Theorem 1] as a generalization of the case p = 1, q = 00 due to Lozanovskii [10,
Theorem 6]. Denote by L';'(J1-) the space of all functions in L 00 (J1-) with support
having finite measure and by Lfoc(J1-) the space of all functions which are locally
integrable (i.e. integrable on measurable sets with finite measure).

Theorem 5.4. Let Y be a B.fs. such that L';'(J1-) £ Y £ Lfoc(J1-). Given 1 ~ p <
q ~ 00, considerr definedas ~ = i - ~. Then, Y is p-convexand q-concaveif
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guaranteeing U (J1-) is Y -perfect, using the following result obtained by Reisner [12,
Theorem 1] as a generalization of the case p = 1, q = 00 due to Lozanovskii [10,
Theorem 6]. Denote by L';'(J1-) the space of all functions in L 00 (J1-) with support
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Theorem 5.4. Let Y be a B.fs. such that L';'(J1-) £ Y £ Lfoc(J1-). Given 1 ~ p <
q ~ 00, considerr definedas ~ = i - ~. Then, Y is p-convexand q-concaveif
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and only ifthere exists K > 0 such that for every g E L'(/l) and E > 0, there exist
h~ E U(/ll and h~ E y LP (Il) satisfying that g = h~h~ and

Moreover, ifK, is the p-convexity constant ofY and K2 is the q-concavity constant

ofY, we can take K = K, K2. Also, ifK satisfies (12), then itfollows K, K2 ~ K.

Remark 5.5. For 1 < q ~ 00, every q-concave B.f.s. Y with L'j;?(/l) ~ Y ~

L1'0//l), satisfies that Lq(p,l is saturated. Indeed, from Theorem 5.4 applied for
p = I, taking 0 < g E L'(p,) and any E > 0, there exist h~ E U(p,l and h~ E Y'

satisfying g = h~ h~ and (12). In particular, it must be h~ > 0 and so it is a weak unit
of U(p,l.

Proposition 5.6. Let Y be a Bfs. such that L'j;? (p,) ~ Y ~ Ltoe (p,) and 1 < q ~ 00.

IfY is q-concave with constant 1, then Lq(p,) is Y-perfect.

Proof. The space U(p,l is saturated by Remark 5.5, so U(p,) '--+, U(p,)YY. Let
z E U(p,)YY. Applying Theorem 5.4 for p = 1, q and r = qwith ~ +t= 1, we have

that, for every E > 0 and g E Lq(p,), there exist h~ E Lq(p,)Y and h~ E Y' satisfying
g = h~h~ and (12). Then,

f Izgldp, = flzh~h~ldP, ~ IIzh~llyllh~lly,

~ IIzII H (Il)YY Ilh~ IIH(Il)Y Ilh~lly,

~ IIzIl H (Il)YY(l + E)llgII Lq (ll)"

So, Z E Lq(p,)' == U(p,) and IIzIlLq(ll) ~ IIzIl LQ(Il)YY' That is, U(p,)YY '--+, U(p,).
Hence, U (p,) is Y -perfect. 0

Finally, using the transitivity of the fact of being a generalized perfect space
with LP(p,) as intermediary space, we give conditions on two B.f.s.' X and Y
guaranteeing that X is Y -perfect.

Theorem 5.7. Let X, Y be Bfs.' with X, X Y saturated and 1 < p < 00. Suppose
that X is p-convex, Y is p-concave (both with constant 1) and L'j;? (p,) ~ y ~

Ltoe(p,)·

(i) IfX has the Fatou property, then X is Y -perfect.
(ii) IfX is order semi-continuous, then X '--+ I XYY.

Proof. If X has the Fatou property, from Proposition 5.3(i) we have that X is
LP (p,)-perfect. On other hand, from Proposition 5.6, LP (p,) is Y -perfect. Then, from
Proposition 3.5(i), it follows that X is Y -perfect. So (i) holds.

371

and only ifthere exists K > °such that for every g E U (Ji) and c > 0, there exist
hi E U(Ji)Y and h~ E yLP(/l) satisfying that g =hih~ and

(12) IIhiIILq(/l)YIlh~11 yU(JL) ~ (1 + c)KIIgllu(/l)'

Moreover, ifK ( is the p-convexity constant ofY and K2 is the q-concavity constant

ofY, we can take K = K( K2. Also, ifK satisfies (12), then itfollows K( K2 ~ K.

Remark 5.5. For 1 < q ~ 00, every q-concave B.f.s. Y with L 'f:?(Ji) S; Y S;

Ltoc(Ji), satisfies that U(J1)y is saturated. Indeed, from Theorem 5.4 applied for
p = 1, taking °< g E U(J1) and any c > 0, there exist hi E U(J1l and h~ E Y'

satisfying g = hih~ and (12). In particular, it must be hi > °and so it is a weak unit
of LQ(J1)Y.

Proposition 5.6. Let Y be a Bjs. such that L 'f:?(J1) S; Y S; L
J
1
oc (J1) and 1 < q ~ 00.

IfY is q-concave with constant 1, then LQ(J1) is Y-perfect.
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So, Z E LQ(J1)' == U(J1) and IIzIlLq(/l) ~ Ilzllu(/l)YY'That is, U(J1)YY "--+1 U(J1).
Hence, U (J1) is Y -perfect. 0

Finally, using the transitivity of the fact of being a generalized perfect space
with LP(J1) as intermediary space, we give conditions on two Rf.s.' X and Y

guaranteeing that X is Y-perfect.

Theorem 5.7. Let X, Y be Bjs.' with X, X Y saturated and 1 < P < 00. Suppose

that X is p-convex, Y is p-concave (both with constant 1) and L 'f:?(J1) S; Y S;

LtocCJ1)·

(i) IfX has the Fatou property, then X is Y -perfect.

(ii) If X is order semi-continuous, then X "--+, xyy
.

Proof. If X has the Fatou property, from Proposition 5.3(i) we have that X is
LP (J1)-perfect. On other hand, from Proposition 5.6, LP (J1) is Y -perfect. Then, from
Proposition 3.5(i), it follows that X is Y -perfect. So (i) holds.
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If X is order semi-continuous, from Proposition 5.3(ii) we have that X "--+1

X LP(J1)LP(J1). Since LP (p.,) is Y -perfect then, from Proposition 3.5(ii), it follows that
X "--+ I X YY. SO (ii) holds. 0

6. GENERALIZED DUALITY FOR REARRANGEMENT INVARIANT B F s.'

Let I = [0, a) with 0 < a :( 00 and consider the measure space (I, B(l), )..), where
B(I) is the a -algebra of the Borel sets of I and A is the Lebesgue measure on I.
A B,f.s. X is said to be rearrangement invariant (r.i.) whenever I E X if and
only if 1* E X and in this case II 1* II x = II I II x. Here, 1* denotes the decreasing
rearrangement of I, that is,

I*(s) := inf{r > 0: )..({x E I: I/(x)1 > r}) :( s}.

For issues related to r.i. B.f.s.' see [2,8,9]. Remark that (I, B(l),)..) is considered
here in order to simplify. Actually, the analogous of this section for a non-atomic
a-finite measure space (Q, 1:, p.,) holds since, in this case, every d. B.f.s. related to
p., is order isometric to an r.i. B.f.s. related to the Lebesgue measure on [0, p.,(Q», via
composition with a measure homomorphism from Q to [0, p.,(Q», see [9, Ch. 2a].

A non-trivial r.i. B.f.s. X always satisfies that

In particular, X is saturated. As noted in [11, §3] (see also [13]), for every non­
trivial r.i. B.f.s.' X and Y we have that X Y is r.i. The following result gives an
equivalent condition to XY being non-trivial, and so saturated. Let XF denote the
space of functions in X with support having finite measure.

Lemma 6.1. Let X, Y be non-trivial r.i. B.fs.'. Then,

Proof. Only note that X Y is an r.i. B.f.s., Lc;()..) ~ UXJ()..) n L I ()..) and, as it can be
directly checked, XF ~ Y if and only if Lc; ()..) ~ XY • 0

Note that, from Lemma 6.1, XLOO(J,.) =I=- {OJ implies that X C L OO ()..).

In the case of finite measure (i.e. a < (0), in which L I ()..) n L OO()..) = L 00 ()..), the
L 00 (p.,)-dual space of every non-trivial r.i. B.f.s. X is the trivial space, except if X
is LOO(A) itself.

Proposition 6.2. Let X be a non-trivial r.i. B.fs. and suppose that).. is finite. If
X i= L OO ()..) then XLOO(J,.) = {OJ.

Proof. Note that L OO ()..) ~ X = XF, since X is r.i. and).. is finite. Suppose X i=
L OO ()..). Then X %LOO(A) and so from Lemma 6.1, XLOO(J,.) = {OJ. 0
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trivial r.i. B.f.s.' X and Y we have that X Y is r.i. The following result gives an
equivalent condition to XY being non-trivial, and so saturated. Let XF denote the
space of functions in X with support having finite measure.

Lemma 6.1. Let X, Y be non-trivial r.i. B.fs.'. Then,

XY#{O} ~ XF~Y.

Proof. Only note that X Y is an r.i. B.f.s., Lc;(A) ~ LOO(A) n LI(A) and, as it can be
directly checked, XF ~ Y if and only if Lc; (A) ~ XY • 0

Note that, from Lemma 6.1, XLOO(J,.) # {O} implies that X C LooO... ).
In the case of finite measure (i.e. a < (0), in which L I (A) n L OO(A) = L OO(A), the

L 00 (p.,)-dual space of every non-trivial r.i. B.f.s. X is the trivial space, except if X
is LOO(A) itself.

Proposition 6.2. Let X be a non-trivial r.i. B.fs. and suppose that A is finite. If
X # LOO(A) then XLOO(J,.) = {O}.

Proof. Note that LOO(A) ~ X = XF, since X is r.i. and A is finite. Suppose X #
LOO(A). Then X %LOO(A) and so from Lemma 6.1, XLOO(J,.) = {O}. 0
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Note that if X = LOop.. ) as sets (with A finite), even if the norms are only
equivalent, we always have XLoo(A) == LOO(A). This is due to the following: LOO(A) is
oo-convex with convexity constant equal to 1, so by Lemma 5.1 we have that XL 00 (A)

is oo-convex with constant 1. Then, since every Rf.s. is oo-concave with constant 1,
from Remark 2 after Proposition 2.b.3 in [9] we have that XLoo(A) == LOO(A).
Consequently, a non-trivial r.i. Rf.s. X satisfies that XLoo(A)Loo(A) = X ifand only if
X = LOO(A) isomorphically.

Also, in the context of the r.i. Rf.s.' related to a finite measure, Section 4
concerning p-powers is complemented by the following result. Note that the
p-powerof an r.i. Rf.s. is always r.i.

Proposition 6.3. Let X be a non-trivial r. i. Bjs. and suppose that A is finite. If
X i= LOO(A) then (XP)x

q = {O} whenever 1 ~ p < q < 00.

Proof. Given 1 ~ p < q < 00 we can consider r E (l, (0) such that ~ = i - ~.

Since Xl E L 00 (A) C X r
, by [11, Lemma 1] it follows that! = ! Xl E XP for every

! E xq. That is, xq c X P.

Suppose that (XP)x
q i= {O}. From Lemma 6.1 and the above comment we have

that xq = XP and so X q/ p = X. Let n EN be such that 2 < (~)n. Then, X(q/p)n C
p

X2 and X(q/p)n = (Xq/P)(q/p)n-l = X(q/p)n-l = ... = X. Since X2 C X, it follows

that X = X 2 . Then, using (8) we obtain that

which contradicts X i= LOO(A). D

Let us show now some particular cases of generalized perfect spaces involving
classical r.i. Rf.s.'.

6.1. Lorentz and Marcinkiewicz spaces

Let cp: I --+ [0, (0) be an increasing concave map vanishing only at zero. The
Lorentz space related to cp is the r.i. Rf.s. defined as

Arp:= {! E LO(A): f !*(t)dcp(t) < oo},

endowed with the norm II!IIA\' := f !*(t)dcp(t). The Marcinkiewicz space related
to cp is the r.i. B.f.s. defined as

I

Mrp:={!ELO(A): sup -1-f!*(S)dS<oo},
O<IEI cp(t)

°
endowed with the norm II filM\' := sUPO<IEI rptt) f~ f*(s)ds.
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Every r.i. Rf.s. X is an intermediate space between a Lorentz and a Marcinkie­
wicz space. Namely,

where CPx is thefundamentalfunction of X (i.e. cpx(t):= IIX[o.t]lIx for tEl, which
can be assumed to be concave). The spaces Arp and Mrp have fundamental function
cp and t / cp respectively.

An r.i. Rf.s. X has the majorant property if whenever g E LOU... ), f E X and
f~ g*(s)ds ~ f~ f*(s)ds for all °< tEl, it follows that g E X and IIglix ~ IIfllx·
For instance, this property is satisfied if X is separable (which is equivalent to being
order continuous in the setting of r.i. Rf.s.') or has the Fatou property. The Fatou
property holds for Arp and Mrp and so does the majorant property.

Proposition 6.4. Let X be an r.i. Bfs. such that (Mrp)F <; X. Then, M;x = Mrp
with equivalent norms ifand only ifthere exists k > °satisfying

(14)
t
-~kcp xx (t), forallO<tEI.
cp(t) Mq;

Moreover, Mrp is X-perfect ifand only if (14) holds for k = 1.

Proof. Suppose that M;x = Mrp. Then, the fundamental functions of both spaces
are equivalent and in particular, (14) holds. Note that if M;x == Mrp, then (14) holds
for k = l.

Conversely, suppose that (14) holds. Then,
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Then, every f E Mcp with ex := A(SUpp f) < 00 belongs to M1fr with IlfIIM1{f ~
~i~i IIfliMcp for ex> O. That is, (Mcp)F S; M1fr. Moreover,

U

,If'1I<p x[o.tJIIM1{f= sup ,I,() <p (S)X[O,/](s)ds
O<uEI 'f/ U

o

<p(t) <pet)
= ljr(t) = <PM1{f (t)-t-'

for every 0 < tEl. That is, (15) holds for X = M 1fr and k = 1. Since M 1fr has
the majorant property, then (14) holds for X = M1fr and k = 1. Therefore, from
Proposition 6.4, it follows that Mcp is Mrperfect.

Functions satisfYing the above required conditions are for instance <p(t) = t1/ p

and ljr(t) = t 1/ q with I ~ p ~ q ~ 00. Note that in this case, Mcp and M1fr are just
the Lorentz spaces LP,OO(A) and Lq,OO(A) respectively, with 1 +..\. = 1 + 1 = I (see

p p q q
[2, Theorem IY.4.6]).

Example 6.6. Let <P, ljr:1-+ [0,00) be increasing concave maps vanishing only at
zero with <p(0+) = 0, <p(oo) = 00 (if a = 00) and satisfYing:

(i) Ii Pip dljr(s) < 00 for all (some) 0 < b < a.

(ii) There exists k > 0 such that I~ <p'(s)dljr(s)~ k 1fr(t~cp(t) for all 0 < tEl.

Condition (i) implies that (Mcp)F S; 1I.1fr. Indeed, given f E Mcp with ex '­
A(SUpp f) < 00 we have that

a a sff*(s)dljr(s)= ff*(s)dljr(s)~f ~ff*(u)dudljr(s)

o 0 0

a

f <pes)
~ IlfIIMcp -s- dljr(s).

o

Note that, since ~ is decreasing, if (i) holds for some b < 00 then it holds for all
b < 00. Condition (ii) is just (15) for X = 1I.1fr which has the majorant property, so

(14) holds for X = 1I.1fr. Then, from 1>roposition 6.4·we have that M:1{f,A1{f = Mcp
with equivalent norms. It can be proved that (ii) holds for k = ~ only in the case
<pet) = t, for which Mcp == L 00 (A) and so Mcp is obviously 1I.rperfect.

The functions <pet) = t 1/ p and ljr(t) = t 1/ q with 1 < p < 00 and 1 ~ q < /-1'

satisfY the conditions (i) and (ii) with constant k = (q +p - qp)-l. In this case, 1I.1fr
is just the Lorentz space U,l(A) (see [2, Theorem 1Y.4.3]).
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6.2. Orlicz spaces

Let <P be a Youngfunction, i.e. <P: [0, 00) ~ [0,00) is continuous, convex, increas­
ing, <p(0) = 0 and liml--+oo <p(t) = 00. The Orlicz space related to <P is the r.i. B.f.s.
defined as

endowed with the Luxemburg norm

The following result about generalized duality ofOrlicz spaces is a little variation
of [II, Theorem 4] (the constant! in (i» and the proof is almost the same, so we
omit it. Note that the reason of this variation is for the representation obtained to be
isometric.

Theorem 6.7. Let <P, <Po, <PI be Youngfunctions satisfYing:

(i) <p(st) ~ !(<Po(s) + <PI (t»,for all s, t ? 0,
(ii) <p- I (t) ~ <POl (t)<pjI (t),for all t ? O.

The hypothesis of Theorem 6.7 are satisfied for instance if <P, <Po are Young
functions such that ~o is increasing and, for any s > 0,

(16)
. <p(st). <po(t)
hmsup-- =hmsup-- =0,

1--+00 <po(t) 1--+0 <p(st)

by taking <PI(t):= suPs>0(2<p(st) - <po(s» for all t? O. Again, the reason of this
fact can be found in [II, Example 2], noting that in the notation there, our <PI is
just (2<p) G <Po.

Remark 6.8. Let <P be a Young function such that <Pit) is increasing and

(17)
. t . <P (t)
hmsup-- =hmsup-- =0.
t~oo <p(t) t~O t

Then, taking 4>(t) = suPs>0(2st - <p(s» for all t ? 0, we obtain that (L <p)' = L cP.
Note that this improves the representation obtained for (L<p)' via the complemen­
tary Young function Wof <P.

The Young function t P (1 < p < 00) whose Orlicz space is just the classical LP

(order isometrically), and the Young functions t log+(t) and exp(t)-I whose Orlicz
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spaces, in the case offinite measure, are (order isomorphically) the Zygmund spaces
L log Land Lexp respectively (see [2, Definition IV6.l D, satisfy the conditions of
Remark 6.8.

As a corollary of Theorem 6.7 we obtain that L <1>0 is L <I> -perfect.

Corollary 6.9. Let <1>, <1>0 be Young functions satisfYing the conditions (i) and (ii)
ofTheorem 6.7 for some other Young function <1> 1. Then,

Proof. Note that the Young functions <1>0, <1>1 play the same role in the hypothesis
of Theorem 6.7. Hence, it follows that (L <l>O)L ¢> == L <1>] and (L <l>1)L ¢> == L <1>0. So,
(L <l>O)L¢>L¢> == (L <PI )L¢> == L <1>0. 0

Note that under the assumptions of Corollary 6.9, L <1>1 is also L <I> -perfect, since
it can be interchanged with L <1>0.

Finally let us show an example of functions satisfying the hypothesis of Corol­
lary 6.9. Consider cP(t) := t P log-.B (2 + t) and cPo(t) := exp(ta) - I which are Young
functions for 2 < p < 00, 0 < f3 ::::;; p - 2 and I ::::;; ex < 00. In the case when p < ex,
the function cPo/¢ is increasing and (16) is satisfied. So, 1'1>0 is 1'1>-perfect. Note
that if the measure is finite, for these Young functions, L¢ and L¢o are order
isomorphic to the Zygmund spaces LP(logL)-.B/p and L:~~ respectively (see [2,
Definition IV6.11D.

Note. Just before submission for publication of this paper we became aware of the
preprint by A.R. Schep [15] in which some of our results concerning p-convexity
and p-concavity, have been independently obtained in the setting of products of
Banach function spaces.
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