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ABSTRACT

Given two Banach function spaces X and ¥ related to a measure y, the ¥-dual space XY of X is defined
as the space of the multipliers from X to Y. The space XY is a generalization of the classical Kéthe
dual space of X, which is obtained by taking ¥ = L1(1). Under minimal conditions, we can consider
the ¥ -bidual space XYY of X (i.e. the Y-dual of XY). As in the classical case, the containment X ¢ XYY
always holds. We give conditions guaranteeing that X coincides with XYY, in which case X is said to be
Y-perfect. We also study when X is isometrically embedded in X¥¥. Properties involving p-convexity,
p-concavity and the order of X and Y, will have a special relevance.

1. INTRODUCTION

In the theory of function spaces on a measure space (2, X, i), the classical Kéthe
dual (or associate) space X’ of a Banach function space (briefly, B.f:s.) X, plays
an important role due to the fact that it is identified with the elements x* of X*,
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the topological dual space of X, acting on X as an integral, i.e. there exists a
measurable function g such that x*(f) = [ fgdu for all f € X. We can interpret
X’ in a different way, as the space of the multipliers from X to L'(w), that is, the
measurable functions g defining a multiplication operator from X to L!(u). From
this point of view, a generalization of the Kothe dual is possible by taking any B.f.s.
Y in the place of L'(u). Namely, the Y-dual space of X, denoted by X7, is the
space of multipliers from X to ¥, which under an elementary requirement becomes
a B.f.s. when endowed with the usual operator norm.

The Koéthe dual of a B.fs. takes a crucial part in the interplay between the
order and the topology of X. For instance, X is order continuous if and only if
X* coincides with X', or X satisfies the Fatou property if and only if X coincides
with the Kéthe bidual X” of X. We pay attention to this second case, in which X
is said to be a perfect space. Is there an analogous result for the general case? Or
in other words, denoting by XY the Y-bidual space of X (i.e. the Y-dual of X¥),
when does X coincide with X¥¥? When it does, it is called Y -perfect. We will study
this question, which was already posed by Maligranda and Persson in [11, p. 337].
In this item they present some properties concerning the generalized duality and
provides a description for the space X¥ in some special cases, all of them of great
usefulness in the development of this paper.

As in the classical case, the containment X X' always holds and is continuous
with || fllxvy < |Ifllx for all f € X. So, another weaker question will be dealt in
this paper: When X is isometrically embedded in X¥¥?

In the following section we analyze in detail the difficulties of solving the above
questions, by comparing with the classical case. Section 3 collects some results
for the Y-dual and the ¥ -bidual of a B.fs. In particular, we prove that X inherits
some of the order properties of Y as the Fatou property (Proposition 3.3), and that
the property of being an Y -perfect space is transitive (Proposition 3.4). This last
fact will be of special relevance for the proof of our main result in Section 5, where
conditions on X and Y, involving p-convexity and g-concavity properties, are given
for X to be an Y-perfect space (Theorem 5.7). Another important tool used for
proving this result is what we call the p-power of a B.f.s. In Section 4 we study the
Y -perfect property for different p-powers of the same B.f.s. Finally, in Section 6 we
exhibit some couples of particular rearrangement invariant B.f.s.” (namely: Lorentz,
Marcinkiewicz and Orlicz spaces) satisfying the generalized perfectness property.

2. PRELIMINARIES

Let (2, T, u) be a o-finite measure space. We denote by L%(u) the space of all
measurable finite real functions on €2, where functions which are equal p-a.e.
are identified. A Banach function space related to p (briefly B.f.s.) is a Banach
space X C LO%(u) with norm || - ||x, such that if f € L%u), g € X and |f] < |g]
pu-a.e. then f € X and || fllx < llgllx. In particular, X is a Banach lattice with the
pointwise pu-a.e. order. A B.f.s. X has the Fatou property if for every sequence
(fn) € X such that 0 < f, 1+ f w-a.e. and sup, || fxllx < oo, we have that f € X
and || f,llx 1 | fllx. AB.fs. X is order semi-continuous if for every f, f, € X, such
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that 0 < f, 1+ f w-a.e., we have that || f,(lx 1 || f|lx. Note that if a B.f.s. X has the
Fatou property, then X is order semi-continuous. For issues related to B.fs.”, see
[17, Ch. 15] considering the function norm p defined as p(f) = || fllx if f € X and
o(f) = oo in other case.

Given two B.f.s.” X and Y, the Y-dual space of X is defined as

XV :={heL%n): hf €Y forall f e X},
i.e. the space of multipliers from X to Y. The map || - ||yr given by

Ikllxr := sup llaflly, forheX”,
feBx

defines a natural seminorm on XY . Note that the supremum above is finite. Indeed,
if 0 < h € XY, then it defines a positive multiplication operator between two Banach
lattices and so it is continuous, see [9, p. 2]. The same holds for a general & € X¥
by taking positive and negative parts. In order to || - [ yv be a norm, it is necessary
and sufficient to require that X to be saturated, that is, there exists no A € T with
i(A) > 0 such that fxs =0 p-a.e. for all f € X. Note that X is saturated if and
only if X has a weak unit (i.e. g € X such that g > 0 u-a.e.). In particular, X # {0}.

Let X, ¥ be B.fs.” with X saturated. Then, XY is a B.f.s. endowed with the norm
Il - Il xr, see [11, Proposition 2]. The space X Y generalizes the classical Kéthe dual
space X’ of a B.fs. X, which is obtained taking ¥ as the space L!(u). In this
classical case, X saturated always implies that X’ is saturated, [17, Ch. 15, §71,
Theorem 4]. This fails for the general case. In order to obtain a second Y-dual
space of X with structure of B.f:s., X¥ is needed to be saturated. This fact justifies
the following comments about saturation for this space. First of all, we note that X¥
may be trivial.

Example 2.1. Suppose (€2, I, ) is non-atomic. Then, LP(w)L*®™ = {0} whenever
1< p <qg <o0.See[l1, Theorem 2].

Also, even if X7 is non-trivial, it may be non-saturated. For instance, every B.f.s.
Y satisfies

Q) L®w" =7,

that is, both spaces coincide with equal norms. This fact, mentioned in [11, §2.(f)],
can be directly proved. Then, when Y is non-trivial and non-saturated, L>®(u)Y is
S0.

Note that XY saturated implies that Y is saturated. Indeed, if not, then there exists
A € X such that u(A) > 0 and gx4 = 0 u-a.e. for all g € Y. Since X is saturated,
we can take f € X such that f > 0 u-a.e. Then, for every # € XY, we have that
hf €Y and so hf xa =0 pu-a.e. Hence, Ax4 =0 u-a.e., contradicting the fact that
XY is saturated. The converse does not hold, that is, there exist saturated B.f.s.” X
and Y such that XY is non-trivial and non-saturated.
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Example 2.2. Consider the measure space ([0, 2], B([0, 2]), »), where B([0, 2]) is
the o-algebra of all Borel sets of [0, 2] and A is the Lebesgue measure on [0, 2]. Let
us define the saturated B.f.s.’

X:={feL'W): fxoneL' M) and fxuz e L*M)}

with norm | flix := [l fxpo,11l1 + Il fx11.21ll2, and let ¥ = L2(%). Note that X7
is non-trivial, since for instance x[;2; € XY. Let us see that the space X! is
non-saturated. Let & € XY . For every g € L'(1), we have that gxo,1; € X and so
hgxio,1) € Y = L2(x). Then, hx.1] € LI ® = (0} (see Example 2.1), that is,
hxo,1; =0 A-ae.

Remark 2.3. Let X, Y be B.f.s.” with X saturated. A condition guaranteeing
that XY is saturated, is that X C Y. Indeed, this containment holds if and only if
L®(u) € XY and, since L™ () is saturated, XY is so.

As an immediate consequence of Remark 2.3, Y'Y is saturated for every saturated
B.fis. Y. Moreover, from [11, Theorem 1], we have that

) YV =L®).

Let X, Y be B.f:s.” with X saturated. Whenever X? is saturated, we can consider
the Y-bidual space of X, that is, the Y-dual space of X¥, which will be denoted by
XYY Then,

X"V ={eeL®%w: theY forallhe X},

that is the space of multipliers from XY to Y. The space XYY is a B.f:s. endowed
with the norm

[Ellyry == Sup I§R]y-

Byy

Taking Y as the space L' (), we obtain that XYY is just the classical Kéthe bidual
space X” of X. Analogously to X”, the space X*? always contains X and

(3) Iflixry <Nfllx forall feX.

In particular, XYY is saturated. At this point natural questions arise:
Questions 2.4.

(i) When is X isometrically embedded in X¥? (i.e. (3) is an equality)?
(i) When is X a Y-perfect space (i.e. X = X¥YV)?

Note that in the expression “X is Y-perfect” or when XYY appears without any

specification, it must be understood that the minimal requirements which allow to
consider the Y-bidual space of X are satisfied, namely X and X" saturated.
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For a saturated B.f:s. Y, simple examples of Y-perfect spaces follow from (1)
and (2). Namely, L>°(u) and Y are always Y -perfect.

Questions 2.4 are solved for the classical case X”. In this case, (3) is an equality
(i.e. X’ is a norming subspace of X*) if and only if X is order semi-continuous.
Moreover, X = X” if and only if X has the Fatou property (see for instance [9,
Proposition 1.b.18] and [17, Ch. 15, §71, Theorem 1]).

In the general case, X having the Fatou property is neither a necessary nor
sufficient condition for X to be Y -perfect. Indeed, X is X-perfect, even if X does not
have the Fatou property. For the converse implication, we can consider the following
counterexample.

Example 2.5. If 1 < p < g < o0, then (¢7)% = ¢ (see [11, Theorem 2]). So,
£7 has the Fatou property but is not £9-perfect, since

(7)Y = (1) =42 D ¢v.

Similarly, the order semi-continuity of X is neither a necessary nor sufficient
condition for (3) to be an equality. Indeed, (3) is an equality whenever X and Y
coincide, even if X is not order semi-continuous. Conversely, in Example 2.5, €7 is
order semi-continuous but (3) is not an equality for ¥ = £9.

Trying to solve Questions 2.4 in the general case by giving equivalent conditions
turns out to be a very difficult (if not impossible) task, due to the fact already shown
that the general duality includes plenty of cases totally different to the classical
one. We only need to notice that every saturated B.fs. Y is Y -perfect, without any
kind of requirement on Y. Therefore, we will not look for equivalent conditions but
conditions guaranteeing that X is Y perfect or that X is isometrically embedded in
XYY Before that, we will exhibit some properties of the generalized dual spaces
which will be used throughout this paper.

3. SOME PROPERTIES RELATED TO GENERALIZED DUALITY

Given two B.f.s” X and Y, we will use the expression “X <>, ¥ to mean that X
is continuously contained in ¥ with {| f|ly < c||f|x for all f € X. The expression
“X «; ¥” will mean that X is continuously contained in ¥ with || fllx = || flly
for all f € X. In the case when X =Y as sets, the identity map between X and
Y is an order isomorphism, since it is a positive linear operator between Banach
lattices, see [9, p. 2]. As in the previous section, we will write X = Y whenever the
isomorphism is an isometry, that is, the norms coincide.

Lemma 3.1. Let X, Y, Z be Bf.s’ with X saturated. Then,

@) Yo Z= XY o) X7,
b)) X—>.Z=272" > X7,

Moreover, if' Y is order semi-continuous,
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©) X, Z=27Z¥ —; XY,

Proof. Parts (a) and (b) can be directly proved. Suppose Y is order semi-
continuous. If X —; Z, from (b) we have that Z¥ < X¥. Let h € Z¥. Given
f € Bz, consider a sequence of simple functions (v,,) satisfying that 0 < ¢, 1 | f1.
Note that since X is saturated, it has a weak unit, which is equivalent to the
existence of a sequence (A,) C X such that @ =|J, A, and xa, € X. Taking
On 1= ‘/’nXU"A € X, we have that 0 < ¢, 1 | f1. Then, 0 < ¢, |k| 4 |fh| € Y. Since
Y is order seml-contmuous

Ifhlly = hm fgahlly <lIRllxr Him flenllx
—IIthY Jim Jlgallz < ||h||xY||f||z IAllxy .

Then, ||A|lzv < llklixy- So, (c) holds. O

Lemma 3.1(b) and other properties related to generalized duality can be found in

[11, §2].

Remark 3.2. As a consequence of (3) and Lemma 3.1(b), we obtain that X? is
always Y -perfect, for each couple of B.f.s.” X, ¥ with X and X! being saturated.

An special feature of the Kéthe dual space X’ of a saturated B.f.s. X follows by
taking ¥ = L'(u1) in Remark 3.2: X’ always has the Fatou property (see also [9,
p-30]). This does not hold in the general case. For instance, we can take a B.fs.
Y which does not satisfy the Fatou property and then L°°(;L)Y Y fails in having
this property. However, if Y has the Fatou property (as L'(u)), this property is
transferred to XY for every saturated B.f.s. X. The analogous for ¥ being order
semi-continuous also holds.

Proposition 3.3. Let X, Y be B.fs.” with X being saturated.

(@) If'Y has the Fatou property then XY also does.
(b) IfY is order semi-continuous then XY is so.

Proof. Let us prove (a), and a similar argument works for (b). Let (h,) be a
sequence in XY such that 0 < 4, 4 h p-a.e. and sup, ||h, |l yy < oc. Then, for every
f € X,wehavethat 0 < |f|h, 1| f|h n-a.e., where (fh,) C Y with

SuPIIfh ly < fllx - SuPIIhnllXY<00

Hence, if ¥ has the Fatou property, it follows that f4 € Y and
I fhlly =Um | fhnlly <l fllx - Hm |lAn]lxy .

Therefore, h € XY and IRl xr < kim, ||k, xr. This fact, together with [|A, [l yr <
(Rllxy for all n, implies that ||h,| yv 1 ||l xr. So, XY has the Fatou property. O
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The converse of Proposition 3.3 does not hold. For instance, consider a saturated
B.f.s. ¥ which does not satisfy the Fatou property (or is not order semi-continuous)
and take the space YY = L (u) which has the Fatou property.

Note that in the case when X" is saturated, Proposition 3.3 can be obtained as a
particular case of the following more general result by taking Z = L1().

Proposition 3.4. Let X, Y, Z be B.f:s” with X, X¥ and X¥Z saturated.

(@) IfY is Z-perfect then XY is so.
(b) IfY =, Y?Z then XY —, X¥Y22,

Proof. For (a)see [11, §2(h)]. Suppose that ¥ Z is saturated. Let us show that

) X o x" o x77

The first inclusion follows from (3). Let us prove the second one. Consider n €
XYZ2Z Forevery f € X and & € Y7, we have that f£ € X2, since f&h € Z for all

h e X¥. Then nf€ € Z and so nf € YZZ. Hence, n € X*°. Moreover,

Il yyzz = sup lInfllyzz = sup sup |nfé|z

feByx feBy §€B, 7
< nllxrzz - sup sup [ f&lxrz
feBy SEBYZ

=|lnllxvzz - sup sup sup | f&h|z
fGBXgEByZ hEBXy

<Anllxrzz - sup sup || fhlly <linllyrzz.
feByx heBXy

If Y <, Y22, from Lemma 3.1(a) we have that XY <; XY?% This fact together
with (4) gives X¥ —; X¥%Z_So (b) holds. O

Let us see that being a generalized perfect space is a transitive property. In
Section 5, this fact will allow us to recognize B.f.s.” X, Y such that X is Y-perfect
passing through an LP-space. As can be expected, p-convexity and p-concavity
properties must be required for the spaces X and Y.

Proposition 3.5. Let X, Y, Z be B.fs.” with X and X% saturated.

(a) If X is Y-perfect and Y is Z-perfect, then X is Z-perfect.
(b) If X —; XYY and Y —; Y?Z, then X —, X?%

Proof. Suppose that X' and YZ are saturated. Then,
(5) X‘—>1XZZ;>1XYYZZ

This can be directly checked in the same line of the proof of (4).
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If X is Y-perfect and Y is Z-perfect, then XYY = X and Y%Z =Y, and so
XYY?? = X This, together with (5), gives X = XZZ, that is X is Z-perfect. So
(a) holds.

Suppose that X <—; XYY and ¥ <, Y4Z. Then, from Lemma 3.1(a),

X <, xtY <, XYYZZ.
This fact, together with (5), gives X <; X?Z. So, (b) holds. O
Remark 3.6. Taking Z = L'(w) in Proposition 3.5, it follows:
(1) Inthe case when Y has the Fatou property, X being Y -perfect implies that X has
the Fatou property.

(ii) In the case when Y is order semi-continuous, X <>; XYY implies that X is
order semi-continuous.

The converse of (i) and (ii) does not hold as Example 2.5 shows.
The following useful result, mentioned in [11, §2(b)], can be directly proved.

Lemma 3.7. Let X,Y, Z be B.f.s” with X and Y saturated. Then,
XYZ = YXZ.

As a consequence of Lemrzna 3.7, for B.fs.’ X, Z such that X and X% are
saturated, we have that XX°° = (x%)X? = L(u). Then, for every Bfs. Y
satisfying X <> ¥ <> XZZ_ we have that

LP() = XX < XY o> XX = 1),
and so
(6) XV =L%®w).

In particular, X is Y -perfect in the only case of X =Y, since X/ = L®(u)Y =Y.
For instance, taking Z = L!(u) and ¥ = X”, if X does not have the Fatou property
then X is not X”-perfect.

Note that if any of the inclusions in X € Y € X%Z is continuous with other
constant different of 1, then XY = L°(u) with equivalent norms.

4. PERFECT SPACES INVOLVING P-POWERS OF A B.F.S.

Let X be a saturated B.f.s. The maximal normed extension of X is the B.f.s. defined
as

[X1:={g € L(w): sup(li fllx: f € X,0< f <lgl} < oo},
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endowed with the norm

liglixy :==supfll fllx: feX,0< f<|gl}, forgelX]

We always have that X <, [X] < X”. In particular, [X] is saturated. Note that
[X] is the largest B.f.s. having X as a closed subspace. Then, [X] = X” if and only
if X is order semi-continuous. These topics appear in [11, §1], where [1] is referred
as original source.

From (6), we have that

(7 XX = xX¥ = xX" = 1),
Let 0 < p < oo. The p-power of X is the space defined as
XP={feLo%: /1P e X},

endowed with the quasi-norm || f||xr = || | f|? |I§(/”, for fe XP.For1<p,| - llxr
is a norm, {11, Proposition 1]. In the case when 0 < p < 1, if X is (1/p)-convex
with constant 1 (see Section 5 for this concept), then || - ||xr is also a norm. This
follows from [5, Lemma 3] noting that there our space X? is denoted by X'/7. We
will only consider these cases, for which X7 is a B.f.s. Note that X? is saturated,
since X is so, and [X 7] = [X]?. Moreover, X7 has the Fatou property if and only if
X has the Fatou property. Similarly, X7 is order semi-continuous if and only if X is
5O.
Let1 < g < p < 00. Then,

®) [x]* =x and (x7)* =[x7]*=[x"],

where } = % — %, see [11, Theorem 5]. In particular, since p and r play the same

role, we have that

(X7 = ()" = [x7] and (x7)" = [x] =2
That is, [XP] and X? are X?-perfect.
Example 4.1. For every 1 < g < p < oo, we have that

LPM® =1 (W

with 1 = i %. In the case ¢ < p < 00, this follows from (8) by taking X = L' ().
Note that, L!(u) = [L'(w)] = L'(u)", since L'(u) has the Fatou property. The
remaining cases follow from (1) and (2). See also [11, Proposition 3]. Then, L?(u)
is L9 (u)-perfect.

There is another possibility left of generalized dual space as combination of

p-powers and maximal normed extension of X, namely (XP)[X], We give a
description for this space when X satisfies certain conditions.
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Proposition 4.2. Let 1 < g < p < oo and suppose that X is order semi-continuous.
Then, taking r such that % =

1_1
g p’

9) (Xp)[xq] = [Xr].

Proof. From (8) and Lemma 3.1(a) we have that [X"] = (X?)X? —; (XP)IX], Let
h e (XP)X'1 and consider a sequence of simple functions (¢,) C X" such that
0< g 11k (.8 0n =Yy XU A, with ¢, simple functions such that 0 < y,, 1 |A]
and (A,) C T such that Q = U A, and x4, € X). Note that X" is order semi-
continuous, since X is so. Thus, (¢,) C X" —; [X"] = (X")". Moreover,

”§0n”(X’)” = |len ”[X’] = |l@n "(Xp)Xq = ”‘pn”(Xp)[Xq] “h”(xp)[Xq]

Then, since (X")” has the Fatou property, it follows that 2 € (X")’ =[X"]. O
Note that under conditions of Proposition 4.2, since
(Xp)[Xq][Xq] [Xr][Xq] [Xp]
XP? is [X4]-perfect if and only if X =[X].

Example 4.3. Let m be a vector measure on ¥ with the same null sets as u
and consider the B.fs’ L!(m) and L. (m) of real measurable functions on Q
which are integrable and weakly integrable with respect to m, respectively. For
details on these spaces see for instance [3,16] and the references therein. The
containments L>®(m) C L'(m) C L} (m) hold, where L>(m) denotes the space of
m-a.e. bounded functions (of course it coincides with L°°(u)). An important fact is
that L!(m)” = L (m) ([4, Proposition 2.4]). The space L!(m) is order continuous
(i.e. order bounded increasing sequences are convergent in norm), and L (m) has
the Fatou property. In particular, both spaces are order semi-continuous. Hence,
[L'(m)] = L'(m)" = L. (m). The spaces LP(m) and L% (m) are defined in [14]
as the p-power of L!(m) and L (m) respectively (see also [7]). Let us apply the
previous results to this setting. Let 1 < ¢ < p < oo and take r such that } = ql - %.
From (8) and Proposition 4.2, it follows:

(i) L”(m)”""’ L (m).
(i) LP(m)Lo™ = LP(m)L?0m = LD (m)Lhtm) = L (m).

In particular, L% (m) and LP(m) are always L9 (m)-perfect and, L” (m) is LY (m)-
perfect in the only case of LY, (m) = L9 (m), that is, in the only case of L!(m) having
the Fatou property. Moreover, given 1 < p < 0o, from (7) we have that

(i) L (m)Lotm = L% (u) = L™®(m).

Note that (i), (ii) for ¢ = 1 and (iii) which have been proved in [6, Theorem 4, 5
and 8] have been obtained here from a more general context.
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5. P-CONVEXITY, P-CONCAVITY AND PERFECT SPACES

Let 1 < p < 00. AB.fs. X is p-convex if there exists C > 0 such that

” (Z Iﬁl”) C- (; ||ﬁn§;)l/p

when 1 < p < 00, and

X

sup | fillx
i=l1,..,n

| sup 151

i=1,..n

when p = oo, for every (f;)]_; C X. A Bfs. X is p-concave if it satisfies the
converse inequalities of a p-convex B.f.s. Note that a B.f.s. X is always 1-convex
and oo-concave with constant C = 1. The spaces X? are always p-convex with
constant 1. For the particular case of L?(u), it also is p-concave with constant 1.
A relevant note regarding the next results is that, from [9, Proposition 1.d.8], every
p-convex (p-concave) B.f.s. X has an equivalent norm for which X is p-convex
(p-concave) with constant 1.

Lemma 5.1. Let X, Y be B.f.s. with X saturated and 1 < p < 00. If Y is p-convex,
then XY is p-convex with the same constant.

The proof of Lemma 5.1 is a simple check. Note that the analogous statement of
Lemma 5.1 for ¥ p-concave does not hold. Indeed, for any p-concave B.fis. ¥ we
have that Y¥ = L°°(u) which is not p-concave for p < 0o.

Lemma 5.2. Let X, Y be Bfs. with X and XY saturated and 1 < p < o0.

(i) X is Y-perfect if and only if XP is Y P-perfect.
(i) X <; XYY ifand only if XP —, (XP)¥*Y”

In particular,

(iii) X has the Fatou property if and only if XP is LP (u)-perfect.
(iv) X order semi-continuous if and only if XP «—; (XP)LWLP (W),

Proof. From [11, §2.(g)], we always have that
10 (x)"" = (x").

In particular, (X7 y? is saturated. Then,

an )" = (@) =y

Note that XYY = X if and only if (X¥Y)? = X”, and by (11), this is equivalent to
X7 being Y P -perfect. So, (i) holds.
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Similarly, X <, X¥¥ ifand only if X? <, (X¥¥)?. Then, (ii) follows from (11).
For the particular case ¥ = L! (1), we obtain (iii) and (iv). O

A characterization of the B.f.s.” which are L? (u)-perfect and of those which are
isometrically embedded in its L? (u)-bidual, is possible.

Proposition 5.3. Let X be a saturated B.f.s. and 1 < p < 00. Then,

(i) X is LP(u)-perfect if and only if X is p-convex with constant 1 and has the
Fatou property.

(i) X <>, XLPWLPW ifand only if X is p-convex with constant 1 and order semi-
continuous.

Proof. (i) Suppose X is L?(u)-perfect. Since LP(u) is p-convex with constant 1,
has the Fatou property and X = X "L from Lemma 5.1 and Proposition 3.3,
we have that X is p-convex with constant 1 and has the Fatou property.

Conversely, if X is p-convex with constant 1 and has the Fatou property, we can
consider the B.f:s. X!/? which also has the Fatou property. From Lemma 5.2(iii),
we have that X = (X'/?)? is L (u)-perfect.

(ii) Suppose X < ; XLPWLPW Gince XLPWLPG) i p-convex with constant 1
and the norm of this space coincides with the norm of X, then X is also p-convex
with constant 1. Thus, we can consider the B.f.s. X1/7 which satisfies

(Xl/p)P =X, XLPWLP () = ((Xl/p)P)LP(M)LP(It).

Then, by Lemma 5.2(iv), X!/? is order semi-continuous and hence X is so.

Conversely, suppose that X is p-convex with constant 1 and order semi-
continuous. Then, we can consider the B.fs. X!/? which is also order semi-
continuous. From Lemma 5.2(iv), we have that

X = (Xl/p)P <, ((Xl/p)P)Lp(lt)Lp(lL) = xLPWLP W) O

Note that in Proposition 5.3 it has been implicity used the fact that X" is
saturated for every p-convex (with constant 1) saturated B.f.s. X. This fact is due
to XLPW = (xV/pyPyLP ) = (X1/Py)yP (see (10) for Y = L1(w)).

We have solved Questions 2.4 for the particular case ¥ = L?(u). Now, we
consider the “dual” problem: When LP(u) is Y-perfect? We will give conditions
guaranteeing L? (u) is Y -perfect, using the following result obtained by Reisner [12,
Theorem 1] as a generalization of the case p = 1, ¢ = 0o due to Lozanovskii [10,
Theorem 6]. Denote by L% (1) the space of all functions in L*(u) with support
having finite measure and by Llloc(u) the space of all functions which are locally
integrable (i.e. integrable on measurable sets with finite measure).

Theorem 5.4. Let Y be a Bfs. such that L¥(u) €Y € L _(n). Given 1< p <
g < 00, consider r defined as % = % - é. Then, Y is p-convex and q-concave if
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and only if there exists K > 0 such that for every g € L' (u) and & > 0, there exist
s e L4(w)Y and hs € YL' W satisfying that g = hehS and

(12)  |Bf] ey 193] yren < A+ Kligher -

Moreover; if K is the p-convexity constant of Y and K is the g-concavity constant
of Y, we can take K = K| K. Also, if K satisfies (12), then it follows K1 K, < K.

Remark 5.5. For 1 < g < oo, every g-concave B.fs. Y with LP(u) C Y C
L} (u), satisfies that L9(u)Y is saturated. Indeed, from Theorem 5.4 applied for
p =1, taking 0 < g € L"(u) and any & > 0, there exist h{ € Li(w)Y and h§ ey’
satisfying g = h{hS and (12). In particular, it must be 2§ > 0 and so it is a weak unit
of Li(u)Y.

Proposition 5.6. Let Y be a Bfs. suchthat L¥(u) €Y € Ll (1) and 1 < g < oo.
If'Y is g-concave with constant 1, then L9 (w) is Y -perfect.

Proof. The space LI(u)Y is saturated by Remark 5.5, so L9 () <> L9(u)¥Y. Let
z € L9(u)YY. Applying Theorem 5.4 for p = 1, g and r = § with %-{-% =1, we have

that, for every £ > 0 and g € L4(w), there exist hieL? (w)¥ and h§ € Y’ satisfying
g = h5hj and (12). Then,

[ testan= [ leninslan < fens 155],

Szl g yry ”hi ”Lq(u)Y ||h§|| Y/
< ||Z||Lq(u)YY(1 +8)||g||Lé(u)-

So, z € L9(u) = L9(w) and ||zllzaqu) < Izll L4 (yry - That is, L2 (u)¥Y <> L9(w).
Hence, L9(u) is Y-perfect. O

Finally, using the transitivity of the fact of being a generalized perfect space
with LP(u) as intermediary space, we give conditions on two B.f.s” X and Y
guaranteeing that X is Y-perfect.

Theorem 5.7. Let X, Y be B.fs. with X, XY saturated and 1 < p < oo. Suppose
that X is p-convex, Y is p-concave (both with constant 1) and LY (u) €Y C

Ll (w.

(i) If X has the Fatou property, then X is Y-perfect.
(i) If X is order semi-continuous, then X <, X¥Y.

Proof. If X has the Fatou property, from Proposition 5.3(i) we have that X is
L?(u)-perfect. On other hand, from Proposition 5.6, L? (1) is Y -perfect. Then, from
Proposition 3.5(1), it follows that X is Y-perfect. So (i) holds.
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If X is order semi-continuous, from Proposition 5.3(ii) we have that X —,
XLPWOLP W) Since LP () is ¥ -perfect then, from Proposition 3.5(ii), it follows that
X —, XYY, So (i) holds. O

6. GENERALIZED DUALITY FOR REARRANGEMENT INVARJANT BF S.°

Let 7 =0, a) with 0 < a < oo and consider the measure space (I, B(I), »), where
B(I) is the o-algebra of the Borel sets of 7 and A is the Lebesgue measure on I.
A B.fs. X is said to be rearrangement invariant (r.i.) whenever f € X if and
only if f* € X and in this case || f*|lx = || f|lx. Here, f* denotes the decreasing
rearrangement of f,that is,

¥y =inf{r > 0: A({x € I: | f(x)] >r}) <s}.

For issues related to r.i. B.f.s.” see [2,8,9]. Remark that (/, B(I), 1) is considered

here in order to simplify. Actually, the analogous of this section for a non-atomic

o -finite measure space (2, ¥, u) holds since, in this case, every r.i. B.f.s. related to

w 1s order isometric to an r.i. B.f.s. related to the Lebesgue measure on [0, 1 (2)), via

composition with a measure homomorphism from € to [0, 1(2)), see [9, Ch. 2a].
A non-trivial r.i. B.f.s. X always satisfies that

(13) LI NL®M) < X S LYW + L=().

In particular, X is saturated. As noted in [11, §3] (see also [13]), for every non-
trivial ri. B.fs’ X and ¥ we have that XY is r.i. The following result gives an
equivalent condition to X” being non-trivial, and so saturated. Let X denote the
space of functions in X with support having finite measure.

Lemma 6.1. Let X, Y be non-trivial r.i. B.f.s.". Then,
XV £{0) < XpcCv.

Proof. Only note that X¥ is an r.i. B.f:s., L% (1) € L*°(A) N L'(}) and, as it can be
directly checked, X € ¥ ifand only if L¥(A) € X¥. O

Note that, from Lemma 6.1, X*®) =£ {0} implies that X C L®(A).

In the case of finite measure (i.e. a < c0), in which L (1) N L® (1) = L*®°(A), the
L% (u)-dual space of every non-trivial r.i. B.f.s. X is the trivial space, except if X
is L (k) itself.

Propesition 6.2. Let X be a non-trivial ri. B.fs. and suppose that A is finite. If
X # L%®(X) then XL7W = {0}.

Proof. Note that L*(A) € X = X, since X is r.i. and A is finite. Suppose X #
L%(3). Then X ¢ L>® () and so from Lemma 6.1, X:™® = (0}. O
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Note that if X = L>(X) as sets (with A finite), even if the norms are only
equivalent, we always have XL™™ = L%(3). This is due to the following: L>(}) is
oo-convex with convexity constant equal to 1, so by Lemma 5.1 we have that X -
is oo-convex with constant 1. Then, since every B.f.s. is co-concave with constant 1,
from Remark 2 after Proposition 2.b.3 in [9] we have that XL™®) = L),
Consequently, a non-trivial r.i. B.fs. X satisfies that XL ML=} = X if and only if
X = L*()) isomorphically.

Also, in the context of the r.i. B.f.s.” related to a finite measure, Section 4
concerning p-powers is complemented by the following result. Note that the
p-power of an r.1. B.fs. is always r.i.

Proposition 6.3. Let X be a non-trivial r.i. B.fs. and suppose that A is finite. If
X # L)) then (XP)X? = {0} whenever 1 < p < q < .

Proof. Given 1 < p < g < oo we can consider r € (1, 00) such that % = % L

Since x, € L*(A) C X", by [11, Lemma 1] it follows that f = fx, € X” for evegy
f € X4. Thatis, X9 C XP.

Suppose that (X?)X? # {0}. From Lemma 6.1 and the above comment we have
that X7 = X? and so X?/? = X. Let n € N be such that 2 < (%)". Then, X4/P" ¢

X2 and X@/PV" = (xa/pya/p)""" = x@/p""' — ... — X Since X2 C X, it follows
that X = X2. Then, using (8) we obtain that

L*0 cx ciX]1=[x*]=(x)* =x¥=L>m),
which contradicts X # L™®(A). O

Let us show now some particular cases of generalized perfect spaces involving
classical r.i. B.f:s..

6.1. Lorentz and Marcinkiewicz spaces

Let ¢:I — [0,00) be an increasing concave map vanishing only at zero. The
Lorentz space related to ¢ is the r.i. B.f.s. defined as

Ay:i= {f e LO): /f*(t)dso(t) < 00},

endowed with the norm || f i, := f [*@)dy(t). The Marcinkiewicz space related
to ¢ is the r.i. B.f.s. defined as

t
1
M, = LO): —/ *(s)d }
o=t o o [ 1<

endowed with the norm || fla, :=supg;es ﬁ fot f*(s)ds.
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Every ri. B.fis. X is an intermediate space between a Lorentz and a Marcinkie-
wicz space. Namely,

A(px 1 X Mt/‘px’

where ¢, is the fundamental function of X (i.e. ¢, (t) := || x0,nllx for t € I, which
can be assumed to be concave). The spaces A, and M, have fundamental function
¢ and ¢ /¢ respectively.

An r.i. B.fs. X has the majorant property if whenever g € L°(A), f € X and
Jo 85 ()ds < [, f*(s)ds forall 0 <1 € 1, it follows that g € X and ligllx < Il fx-
For instance, this property is satisfied if X is separable (which is equivalent to being
order continuous in the setting of r.i. B.f.s.”) or has the Fatou property. The Fatou
property holds for A, and M, and so does the majorant property.

Proposition 6.4. Let X be an ri. Bfs. such that (My)r C X. Then, Mjfx =M,
with equivalent norms if and only if there exists k > 0 satisfying

t
(14) ) <k(ng,‘X (t), forall0<tel.

Moreover, M, is X-perfect if and only if (14) holds for k = 1.

Proof. Suppose that M(ff X = M,,. Then, the fundamental functions of both spaces
are equivalent and in particular, (14) holds. Note that if M, ;‘ X = M,, then (14) holds
fork=1.

Conversely, suppose that (14) holds. Then,

XX
M(/J > Mt/‘ng,‘X > M.

Since we always have M, <> M(ffx , it follows that Mij = M, with equivalent
norms. If k = 1 then, M(ffX =M, O

Note that, under conditions of Proposition 6.4, if X has the majorant property,
@(01) =0, p(o0) = oo (in the case of @ = 00) and k > O satisfies

t
(15) o xro.11lx <k<px(t)%), forall0<rel,
then (14) holds for k. Indeed, since x[o,] € M(f and || x0,1] ||Mé( = |l¢x[0,1111 x, Where

¢’ denotes the derivative function of ¢ (see [11, Theorem 3]), then

xpo.qllx

© vy @& = sup |lhxpnlx > .
uyX he [ ~ e X101 x

B, x
Mp

Example 6.5. Let ¢, ¢ : I — [0, 00) be increasing concave maps vanishing only at
zero with ¢(0%) =0, g(00) = 0o (if @ = 00) and satisfying that {1‘} is increasing.
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Then, every f € M, with « := A(Supp f) < oo belongs to My with I fllm, <

L1 fllm, for @ > 0. That is, (M) My Moreover,

u

¢ x[0.1 a1, = sup @' () x[0.11(s) ds
v

O<uel ¥ (u)
0

_e0 _ 90
_w(t)—¢Mw(t) o

for every 0 <t € I. That is, (15) holds for X = My, and k = 1. Since My has
the majorant property, then (14) holds for X = My, and k = 1. Therefore, from
Proposition 6.4, it follows that M, is My -perfect.

Functions satisfying the above required conditions are for instance ¢(t) = ¢'/?
and ¥ (1) =119 with 1 < p < g < co. Note that in this case, M,, and My, are just
the Lorentz spaces L7 (1) and L% % () respectively, with % + % = ql + ;11- =1 (see
[2, Theorem 1V.4.6]).

Example 6.6. Let ¢, ¢ : I — [0, oo) be increasing concave maps vanishing only at
zero with @(01) =0, ¢(00) = oo (if @ = 00) and satisfying:

) fob 5"—(52 dr(s) < oo for all (some) 0 < b < a.
(ii) There exists k > 0 such that f(; @' (s)dyr(s) < kw forall0<rel.

Condition (i) implies that (M,)r € Ay. Indeed, given f € M, with « :=
A(Supp f) < oo we have that

o o 1 5
f FH(s)dp(s) = / FH5)dv(s) < f : f £ dud(s)
0 0 0
< nfnm/@dwm.

0

Note that, since £ is decreasing, if (i) holds for some b < oo then it holds for all
b < oo. Condition (ii) is just (15) for X = Ay which has the majorant property, so
(14) holds for X = Ay Then, from Proposition 6.4 we have that Mé\ vhv M,
with equivalent norms. It can be proved that (ii) holds for Xk = 1 only in the case
@(t) =1, for which M, = L*>(}) and so M,, is obviously Aw-perfect.

The functions ¢(¢) =t/? and ¢ (t) =¢/9 with 1 < p<ocoand 1 < g < #,
satisfy the conditions (i) and (ii) with constant k = (g + p —gp)~!. In this case, Ay
is just the Lorentz space L9-1(1) (see [2, Theorem IV4.3]).
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6.2. Orlicz spaces

Let @ be a Young function, i.e. :[0, 00) — [0, 00) is continuous, convex, increas-
ing, ®(0) = 0 and lim,_, oo $(r) = co. The Orlicz space related to P is the r.i. B.fs.
defined as

@ ={feL0(A): fd>(‘cﬂ)dk<ooforsomec>0},

endowed with the Luxemburg norm

1fll e :=inf{c>0: f@(l—f—,)d)\ < 1}‘

The following result about generalized duality of Orlicz spaces is a little variation
of [11, Theorem 4] (the constant % in (i)) and the proof is almost the same, so we
omit it. Note that the reason of this variation is for the representation obtained to be
isometric.

Theorem 6.7. Let ®, &g, 1 be Young functions satisfying:

(D) ®(st) < $(Dols) + @1(t)), forall s,t >0,
(i) ') < o5 ()P (1), forallt > 0.

Then, (L®)L® = %1,

The hypothesis of Theorem 6.7 are satisfied for instance if ¥, ®y are Young
functions such that 0 is increasing and, for any s > 0,

P
(16) lim sup (1) =limsu Po(®)

ool Bo(1) a0t ®GD

s

by taking & (z) :=sup,. (2P (sr) — Po(s)) for all + > 0. Again, the reason of this
fact can be found in [11, Example 2], noting that in the notation there, our & is
just (29) © dy.

Remark 6.8. Let ® be a Young function such that ¢(, ) is increasing and

t b
(17) lim sup CD_(S = limsup —;t—) =0.

t—00 t 10

Then, taking <f>(t) = sup,..o(2st — ®(s)) for all ¢ > 0, we obtain that (LYY = L?.
Note that this improves the representation obtained for (L?®)’ via the complemen-
tary Young function ¥ of &.

The Young function t? (1 < p < oo) whose Orlicz space is just the classical L?
(order isometrically), and the Young functions ¢ log* (¢) and exp(t) — 1 whose Orlicz
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spaces, in the case of finite measure, are (order isomorphically) the Zygmund spaces
LlogL and Ly, respectively (see [2, Definition IV.6.1]), satisfy the conditions of
Remark 6.8.

As a corollary of Theorem 6.7 we obtain that L% is L®-perfect.

Corollary 6.9. Let &, &g be Young functions satisfying the conditions (i) and (ii)
of Theorem 6.7 for some other Young function ®1. Then,

(L2 = 1%,

Proof. Note that the Young functions ®¢, & play the same role in the hypothesis
of Theorem 6.7. Hence, it follows that (L®0):® = L®1 and (L®)L® = L%, So,
(L(D())L(I)Ld> E(Lq)l)l‘d) ELd)O. 0

Note that under the assumptions of Corollary 6.9, L®! is also L®-perfect, since
it can be interchanged with L®o,

Finally let us show an example of functions satisfying the hypothesis of Corol-
lary 6.9. Consider ¢ (¢) := ¢* log‘ﬁ (2+1) and ¢o(2) := exp(¢t*) — 1 which are Young
functions for 2 < p < 00,0 <8< p~2and |1 < a < oo. In the case when p < a,
the function ¢g/¢ is increasing and (16) is satisfied. So, L% is L?-perfect. Note
that if the measure is finite, for these Young functions, L? and L% are order
isomorphic to the Zygmund spaces LP(log L)"#/7 and Li3 respectively (see [2,
Definition IV.6.11]).

Note. Just before submission for publication of this paper we became aware of the
preprint by A.R. Schep [15] in which some of our results concerning p-convexity
and p-concavity, have been independently obtained in the setting of products of
Banach function spaces.
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