Banach function subspaces of L^1 of a vector measure and related Orlicz spaces

by Olvido Delgado¹

C. Calpe 2, 2 Escalera 6C, 21006, Huelva, Spain

Communicated by Prof. J.J. Duistermaat at the meeting of September 27, 2004

ABSTRACT

Given a vector measure ν with values in a Banach space X, we consider the space $L^1(\nu)$ of real functions which are integrable with respect to ν . We prove that every order continuous Banach function space Y continuously contained in $L^1(\nu)$ is generated via a certain positive map ρ related to ν and defined on $X^* \times \mathcal{M}$, where X^* is the dual space of X and \mathcal{M} the space of measurable functions. This procedure provides a way of defining Orlicz spaces with respect to the vector measure ν .

1. INTRODUCTION

Let v be a countably additive vector measure with values in a Banach space X and $L^1(v)$ the space of classes of real valued functions which are integrable with respect to v. Our aim is the study of the following problem: given a Banach function subspace Y of $L^1(v)$, is it possible to describe Y in terms of the vector measure v? Consider for example, the simple case of Lebesgue measure m on the interval [0, 1]. The space $L^p[0, 1]$ can be described in terms of m, as the space of functions f such that f^p is integrable with respect to m.

The tool for solving this problem is a map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$, where X^* is the dual space of X and \mathcal{M} is a space of measurable functions which has natural properties related to v. We say that ρ is a v-norm function. From this map ρ

E-mail: olvido@us.es.

¹ Partially supported by D.G.I. #BFM2003-06335-C03-01 (Spain).

we generate a Banach function space $E(\rho_{\nu})$, the closure of simple functions with respect to the norm given by

$$\rho_{\nu}(f) = \sup_{x^* \in B_{X^*}} \rho(x^*, f).$$

This method for generating Banach function spaces allows us to define Orlicz spaces with respect to v. In particular, it includes the spaces $L^{p}(v)$ of functions whose *p*th powers are integrable with respect to v, considered in [13].

The aim of this paper is to establish that every order continuous Banach function subspace Y of $L^1(\nu)$ can be represented as a space $E(\rho_{\nu})$, generated by a suitable ν -norm function (see Theorem 5.1). Hence, Y can be described in terms of the vector measure ν .

2. PRELIMINARIES

Throughout the paper, (Ω, Σ) will be a fixed measurable space and \mathcal{M} denotes the space of all measurable real valued functions on Ω . Since we will be considering different measures on Σ , we will identify almost everywhere equal functions only after fixing a measure.

Given a finite positive measure μ on Σ , a *Banach function space*, in short B.f.s., (also called Köthe function space) with respect to μ , is a Banach space Y of functions on Ω which are integrable with respect to μ and satisfying:

(1) If $f \in \mathcal{M}$, $g \in Y$ with $|f| \leq |g| \mu$ -a.e., then $f \in Y$ and $||f||_Y \leq ||g||_Y$, (2) $\chi_A \in Y$ for every $A \in \Sigma$.

Of course, functions which are equal μ -a.e. are identified and $\|\cdot\|_Y$ denotes the norm of Y. Note that a B.f.s. with respect to μ is a Banach lattice for the μ -a.e. order. By a *Banach function subspace* (in short, B.f.s.) of a B.f.s. Y, we mean a B.f.s. continuously contained in Y, with the same order structure. A B.f.s. Y is order continuous if order bounded increasing sequences are norm convergent. The Köthe dual of a B.f.s. Y is the space Y' of measurable functions g such that $fg \in L^1(\mu)$, for every $f \in Y$. The space Y' is a subspace of Y* (the topological dual space of Y) and is equipped with the relative topology from Y*. The spaces Y' and Y* coincide with equality of norms if and only if Y is order continuous. The Köthe bidual of a B.f.s. Y is the Köthe dual of Y'. The above claims and further properties of B.f.s. can be found in [9].

Let $v: \Sigma \to X$ be a countably additive vector measure with values in a Banach space X. For each $x^* \in X^*$, the variation of the scalar measure x^*v is denoted by $|x^*v|$. The *semivariation* of v is the set function on Σ defined by ||v||(A) = $\sup\{|x^*v|(A): x^* \in B_{X^*}\}$, where B_{X^*} is the unit ball of X^* . A measurable set A is v-null if ||v||(A) = 0. A positive measure λ on Σ is a control measure for v if v and λ have the same null sets. A *Rybakov control measure* for v is a control measure of the form $\lambda = |x_0^*v|$ for certain $x_0^* \in B_{X^*}$; see [5, Theorem IX.2.2]. In this case, the v-a.e. order is equivalent to the λ -a.e. order. A function $f \in \mathcal{M}$ is *integrable* with respect to v (in the sense of Lewis [7]) if it satisfies

- (1) f is integrable with respect to x^*v , for every $x^* \in X^*$, and
- (2) for each $A \in \Sigma$, there is a vector $\int_A f d\nu$ in X such that

$$x^*\left(\int\limits_A f \, dv\right) = \int\limits_A f \, d(x^*v), \quad \text{for all } x^* \in X^*.$$

For $A = \Omega$ we simply write $\int f dv$ for $\int_{\Omega} f dv$.

The space $L^{1}(v)$ of integrable functions with respect to v, equipped with the norm

$$||f||_{\nu} = \sup_{x^* \in B_{X^*}} \int |f| \, d|x^* \nu|,$$

is an order continuous B.f.s. with respect to any Rybakov control measure λ for ν ; [2, Theorem 1]. The space $L_w^1(\nu)$ of functions satisfying just condition (1) in the definition of integrability with respect to ν , equipped with the norm $\|\cdot\|_{\nu}$, is a B.f.s. with respect to λ , [14, Theorem 9]. A function f in $L_w^1(\nu)$ is in $L^1(\nu)$ if and only if $\lim_{\|\nu\|(A)\to 0} \|f\chi_A\|_{\nu} = 0$; [7, Theorem 2.6]. Note that $L_w^1(\nu) = L^1(\nu)$ whenever X does not contain a copy of c_0 , [6, Theorem II.5.1]. It is known, for arbitrary X, that $L_w^1(\nu) = L^1(\nu)$ if and only if $L_w^1(\nu)$ is order continuous, if and only if $L^1(\nu)$ is weakly sequentially complete, if and only if $L_w^1(\nu)$ is weakly sequentially complete; see [14, Theorem 10] and also [2, Theorem 3].

We refer to the work of Kluvánek and Knowles [6], Curbera [2–4], Ricker [12] and Okada [10] for other results concerning the space $L^{1}(\nu)$.

3. Spaces generated by a $\nu\text{-}\text{NORM}$ function

Let $\nu : \Sigma \to X$ be a vector measure. In this section we construct a B.f.ss. of $L^1(\nu)$ from a given positive map closely related to ν .

Definition 3.1. A *v*-norm function is a map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$ with the following properties:

- (a) For each $x^* \in X^*$, the map $\rho_{x^*} : \mathcal{M} \to [0, +\infty]$ given by $\rho_{x^*}(f) = \rho(x^*, f)$, satisfies:
 - (a1) $\rho_{x^*}(f) = 0$ if and only if $f = 0 |x^*\nu|$ -a.e.,
 - (a2) $\rho_{x^*}(af) = |a|\rho_{x^*}(f)$, for all $a \in \mathbb{R}$ and $f \in \mathcal{M}$,
 - (a3) $\rho_{x^*}(f+g) \leq \rho_{x^*}(f) + \rho_{x^*}(g)$, for all $f, g \in \mathcal{M}$,
 - (a4) if $f, g \in \mathcal{M}$ and $|f| \leq |g|, |x^*\nu|$ -a.e., then $\rho_{x^*}(f) \leq \rho_{x^*}(g)$,
 - (a5) if $f, f_n \in \mathcal{M}$ and $0 \leq f_n \uparrow f |x^*\nu|$ -a.e., then $\rho_{x^*}(f_n) \uparrow \rho_{x^*}(f)$,
 - (a6) $\rho_{x^*}(\chi_\Omega) < +\infty$,

(a7) there exists $C = C(x^*) > 0$ such that for all $f \in \mathcal{M}$

$$\int |f| \, d|x^* \nu| \leqslant C \rho_{x^*}(f).$$

- (b) For each $f \in \mathcal{M}$, the map $\rho_f : X^* \to [0, +\infty]$ given by $\rho_f(x^*) = \rho(x^*, f)$, satisfies:
 - (b1) $|a|\rho_f(x^*) \leq \rho_f(ax^*)$, for all $a \in \mathbb{R}$, $|a| \leq 1$ and $x^* \in X^*$,
 - (b2) for $f = \chi_{\Omega}$ we have $\sup_{x^* \in B_{X^*}} \rho_f(x^*) < +\infty$.

An example of a *v*-norm function is the map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$ given by

$$\rho(x^*, f) = \int |f| d|x^* v|.$$

Remark 3.2. Property (a4) of Definition 3.1 implies that $\rho_{x^*}(f) = \rho_{x^*}(|f|)$ for every $f \in \mathcal{M}$ and $x^* \in X^*$.

Remark 3.3. The definition we have given of Banach function space is the one in [9, Definition 1.b.17]. In [1, Definition I.1.3] a different definition of Banach function space is given. Namely, for \mathcal{M}^+ the cone of positive functions in \mathcal{M} and $\xi : \mathcal{M}^+ \to [0, +\infty]$ a map satisfying properties (a1)-(a7) of Definition 3.1 for a finite positive measure μ , a Banach function space is defined as $\{f \in \mathcal{M}:$ $\xi(|f|) < +\infty\}$. The map ξ is called a *function norm*. Although coming from different approaches, the two definitions only differ in property (a5), called the Fatou property; see [9, p. 30], [1, Theorem I.1.7]. Hence, in both cases we can speak of Banach function spaces.

From the previous remark, for a fixed $x^* \in X^*$, the space

 $E_{x^*} = \left\{ f \in \mathcal{M}: \rho_{x^*} \left(|f| \right) < +\infty \right\},\$

where $|x^*v|$ -a.e. equal functions are identified, is a B.f.s. with respect to the measure $|x^*v|$ with norm ρ_{x^*} .

Definition 3.4. Given a ν -norm function ρ , we define the map $\rho_{\nu} : \mathcal{M} \to [0, +\infty]$ by

$$\rho_{\nu}(f) = \sup_{x^* \in B_{X^*}} \rho_{x^*}(f), \quad f \in \mathcal{M},$$

and the space $E_w(\rho_v) = \{f \in \mathcal{M}: \rho_v(|f|) < +\infty\}$, where v-a.e. equal functions are identified. By Remark 3.2, $\rho_v(f) = \rho_v(|f|)$ for all $f \in \mathcal{M}$.

Proposition 3.5. The space $E_w(\rho_v)$ with norm ρ_v is a B.f.ss. of $L^1_w(v)$.

Proof. Let $\lambda = |x_0^*\nu|$ be a fixed Rybakov control measure for ν . We first show that ρ_{ν} is a function norm for the measure λ . Properties (a1)–(a5) for ρ_{ν} follow from the

corresponding properties for each ρ_{x^*} . Property (a6) for ρ_{ν} is property (b2) for ρ . Property (a7) is satisfied for the constant $C = C(x_0^*)$. Then, from Remark 3.3, the space $E_w(\rho_{\nu})$ is a B.f.s. with respect to λ .

For each $x^* \in B_{X^*}$, from property (a7) for ρ_{x^*} , we have

$$\int |f| d|x^* \nu| \leq C(x^*) \rho_{x^*}(f) \leq C(x^*) \rho_{\nu}(f),$$

so the integration operator with respect to $|x^*\nu|$ can be defined in $E_w(\rho_\nu)$ by

$$f \in E_w(\rho_v) \mapsto I_{x^*}(f) = \int f d|x^*v| \in \mathbb{R},$$

and is continuous. Moreover, $E_w(\rho_v)$ is contained in $L^1_w(v)$, and the embedding is continuous. This follows from the fact that positive linear maps between Banach lattices are continuous (see [9, p. 2]) and, as noted before, B.f.s. are Banach lattices. \Box

For each $x^* \in X^*$, the measure $|x^*\nu|$ is absolutely continuous with respect to the Rybakov control measure λ . So, from the definition of ρ_{ν} and from property (b1), the natural inclusion from $E_w(\rho_{\nu})$ into E_{x^*} is well defined and continuous. Moreover, it is one to one if and only if $|x^*\nu|$ is also a control measure for ν .

We always have

(1)
$$E_w(\rho_v) \subset \left\{ f \in \mathcal{M}: \ \rho_{x^*}(|f|) < +\infty \text{ for all } x^* \in X^* \right\} = \bigcap_{x^* \in X^*} E_{x^*}.$$

Observe that the two vector spaces will coincide, after identifying functions which are equal ν -a.e., if $\rho_f(B_{X^*})$ is a bounded set whenever f satisfies $\rho_f(X^*) \subset [0, +\infty)$.

Proposition 3.6. Let ρ be a v-norm function. If, for every simple function φ , the map $\rho_{\varphi}: X^* \to [0, +\infty)$ is subadditive and continuous, then

$$E_w(\rho_v) = \left\{ f \in \mathcal{M}: \ \rho_{x^*}(|f|) < +\infty \text{ for all } x^* \in X^* \right\}.$$

Proof. Let $f \in \mathcal{M}$ be such that $\rho_{x^*}(|f|) < +\infty$ for all $x^* \in X^*$. Given a sequence (φ_n) of simple functions with $0 \leq \varphi_n \uparrow |f|$, for each *n* we consider the map $T_n: X^* \to [0, +\infty)$ defined by $T_n(x^*) = \rho_{\varphi_n}(x^*)$, for $x^* \in X^*$. By hypothesis, T_n is subadditive and continuous, and from property (b1) of ρ , T_n satisfies $|a|T_n(x^*) \leq T_n(ax^*)$ for $|a| \leq 1$ and $x^* \in X^*$. Also, (T_n) is a pointwise bounded family of functions, since $T_n(x^*) = \rho_{x^*}(\varphi_n) \leq \rho_{x^*}(|f|) < +\infty$ for all *n*. These properties of (T_n) allow us, as in the proof of the classical Banach–Steinhaus theorem, to get a constant M > 0 such that $\sup_{x^* \in B_{X^*}} T_n(x^*) \leq M$ for all *n*. From property (a5) of ρ , for each $x^* \in X^*$ we can take n_{x^*} such that $\rho_{x^*}(|f|) - \rho_{x^*}(\varphi_{n_{x^*}}) \leq 1$, then

$$\rho_{\nu}(|f|) = \sup_{x^* \in B_{X^*}} \rho_{x^*}(|f|) \leq 1 + \sup_{x^* \in B_{X^*}} \rho_{x^*}(\varphi_{n_{x^*}}) \leq 1 + M$$

Hence, $f \in E_w(\rho_v)$. \Box

For each ν -norm function ρ we have constructed a B.f.ss. $E_w(\rho_\nu)$ of $L_w^1(\nu)$. We are now interested in similar subspaces of the smaller space $L^1(\nu)$. In order to obtain such spaces we introduce the following definition.

Definition 3.7. The space $E(\rho_v)$ is defined to be the closure of the simple functions in the Banach space $E_w(\rho_v)$.

Proposition 3.8. The space $E(\rho_{\nu})$ with norm ρ_{ν} is a B.f.ss. of $L^{1}(\nu)$.

Proof. The space $E(\rho_{\nu})$ is clearly a Banach subspace of $E_w(\rho_{\nu})$. Also, $E(\rho_{\nu})$ satisfies the lattice property, that is, given $f \in \mathcal{M}$ and $g \in E(\rho_{\nu})$ with $|f| \leq |g|$ ν -a.e., then $f \in E(\rho_{\nu})$ and $\rho_{\nu}(f) \leq \rho_{\nu}(g)$; see [1, Theorem I.3.11]. So, $E(\rho_{\nu})$ is a B.f.ss. of $E_w(\rho_{\nu})$.

From the fact that the simple functions are dense in both spaces $E(\rho_{\nu})$ and $L^{1}(\nu)$, and Proposition 3.5, we see that $E(\rho_{\nu})$ is continuously included in $L^{1}(\nu)$. \Box

The order continuity of an abstract Banach lattice Y with weak unit (see [9, p. 9]), is a strong property which allows one to obtain important results, e.g., such as representing Y as a space $L^1(\tilde{v})$ for a suitable vector measure \tilde{v} ; see [2, Theorem 8]. In the case of a B.f.s. Y with respect to a finite positive measure μ , Y is order continuous if and only if all functions $f \in Y$ have *absolutely continuous norm*, that is, $||f \chi_A||_Y \to 0$ whenever $\mu(A) \to 0$. This follows from [1, Proposition I.3.5] (the proof holds for Banach function spaces without the Fatou property). Moreover, if the simple functions are dense in Y, then Y is order continuous if and only if χ_{Ω} has absolutely continuous norm; see [1, Theorem I.3.13] (the proof holds for Banach function spaces without the Fatou property). Moreover, if Y is an order continuous B.f.s., then

$$Y = \left\{ f \in \mathcal{M}: \lim_{\mu(A) \to 0} \|f \chi_A\|_Y = 0 \right\}.$$

Indeed, suppose that $f \in \mathcal{M}$ satisfies $||f\chi_A||_Y \to 0$ whenever $\mu(A) \to 0$ and each function $f_n = |f|\chi_{[|f| \le n]} \in Y$. Then $f_n \uparrow |f|$ and $||f_m - f_n||_Y = ||f\chi_{[n < |f| \le m]}||_Y \to 0$ whenever $m > n \to +\infty$, since $\mu([n < |f| \le m]) \to 0$. So, $f \in Y$.

Remark 3.9. Let ρ be a ν -norm function. Since $||\nu||(A) \to 0$ if and only if $\lambda(A) \to 0$, with λ a Rybakov control measure for ν , the above comments imply that:

(a) E(ρ_ν) is order continuous if and only if ρ_ν(χ_A) → 0 when ||ν||(A) → 0.
(b) If E(ρ_ν) is order continuous, then

$$E(\rho_{\nu}) = \left\{ f \in \mathcal{M} : \lim_{\|\nu\|(A) \to 0} \rho_{\nu}(f \chi_A) = 0 \right\}.$$

Example 3.10. Given $p \in [1, +\infty)$, the map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$ defined by

$$\rho(x^*, f) = \left(\int |f|^p d|x^*\nu|\right)^{1/p},$$

is a ν -norm function. For $x^* \in X^*$, the space E_{x^*} is precisely the space $L^p(|x^*\nu|)$. Moreover,

$$\rho_{\nu}(f) = \sup_{x^* \in B_{X^*}} \rho_{x^*}(f) = \sup_{x^* \in B_{X^*}} \left(\int |f|^p \, d|x^* \nu| \right)^{1/p} = \|f^p\|_{\nu}^{1/p},$$

shows that $E_w(\rho_v) = \{f \in \mathcal{M}: f^p \in L^1_w(v)\}$, and so equality holds in (1). Accordingly, the space $E(\rho_v)$ is just the space $L^p(v) = \{f \in \mathcal{M}: f^p \in L^1(v)\}$, since $L^p(v)$ endowed with the norm ρ_v is a Banach space in which the simple functions are dense; see [13, Proposition 4]. From Remark 3.9(a), the space $L^p(v)$ is order continuous, since

$$\lim_{\|\nu\|(A)\to 0} \rho_{\nu}(\chi_A) = \lim_{\|\nu\|(A)\to 0} \|\chi_A\|_{\nu}^{1/p} = \lim_{\|\nu\|(A)\to 0} \|\nu\|(A)^{1/p} = 0;$$

see also [13, Proposition 6].

4. ORLICZ SPACES WITH RESPECT TO VECTOR MEASURES

The previous construction of B.f.s. through a ν -norm function also gives a procedure for defining Orlicz spaces with respect to a vector measure.

Let $v: \Sigma \to X$ be a vector measure and $\Phi: [0, +\infty) \to [0, +\infty)$ be a convex continuous increasing function such that $\Phi(t) = 0$ if and only if t = 0. For results concerning Orlicz spaces; see [11]. The map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$ defined by

(2)
$$\rho(x^*, f) = \inf\left\{k > 0: \int \Phi\left(\frac{|f|}{k}\right) d|x^*\nu| \leq 1\right\},$$

is a ν -norm function. Actually, the infimum in (2) is a minimum, whenever it is positive, [1, p. 268]. Observe, for a fixed $x^* \in X^*$, that the space $E_{x^*} = \{f \in \mathcal{M}: \rho_{x^*}(|f|) < +\infty\}$ is a classical Orlicz space.

In this setting, we denote the B.f.s. $E_w(\rho_v)$ and $E(\rho_v)$ by $L_w^{\Phi}(v)$ and $L^{\Phi}(v)$, respectively, and call the last one the Orlicz space with respect to the vector measure v and the function Φ . The spaces $L^{\Phi}(v)$ generalize the spaces $L^p(v)$, that are obtained by taking the function $\Phi(t) = t^p$.

Proposition 4.1. For the space $L_w^{\Phi}(v)$, the containment (1) is an equality. Moreover, the space $L^{\Phi}(v)$ is order continuous.

Proof. Let f be a function bounded ν -a.e. by a constant C > 0. Given $\varepsilon > 0$, we have

$$\int \Phi\left(\frac{|f|}{\varepsilon}\right) d|x^* \nu| \leqslant \Phi\left(\frac{C}{\varepsilon}\right) |x^* \nu|(\Omega) \leqslant \Phi\left(\frac{C}{\varepsilon}\right) \|\nu\|(\Omega)\|x^*\|_{X^*} \leqslant 1$$

whenever $||x^*||_{X^*} \leq \delta_{\varepsilon} = (||\nu|| (\Omega) \Phi(C/\varepsilon))^{-1}$. Hence, from (2) we conclude that $\rho_f : X^* \to [0, +\infty)$ satisfies $\rho_f(x^*) \leq \varepsilon$ for all x^* with $||x^*||_{X^*} \leq \delta_{\varepsilon}$ and thus, ρ_f is continuous at $x^* = 0$. Since ρ_f is subadditive, we deduce that ρ_f is continuous at every $x^* \in X^*$. Therefore, from Proposition 3.6, the containment (1) is an equality.

To obtain the second claim, by Remark 3.9(a) it suffices to show that $\rho_{\nu}(\chi_A) \to 0$ whenever $\|\nu\|(A) \to 0$. Given $\varepsilon > 0$, for every $x^* \in B_{X^*}$ we have

$$\int \Phi\left(\frac{\chi_A}{\varepsilon}\right) d|x^*\nu| = \Phi\left(\frac{1}{\varepsilon}\right)|x^*\nu|(A) \leqslant \Phi\left(\frac{1}{\varepsilon}\right)||\nu||(A) \leqslant 1$$

whenever $\|\nu\|(A) \leq \delta_{\varepsilon} = \Phi(1/\varepsilon)^{-1}$. From (2) we conclude that $\rho_{x^*}(\chi_A) \leq \varepsilon$. Hence, $\rho_{\nu}(\chi_A) \leq \varepsilon$ whenever $\|\nu\|(A) \leq \delta_{\varepsilon}$. \Box

An important property of Orlicz functions is the Δ_2 -property, that is, there exists a constant b > 0 such that $\Phi(2t) \leq b\Phi(t)$ for all $t \geq 0$. In our case, this property allows us to give a simple description, in terms of ν , of the spaces $L_w^{\Phi}(\nu)$ and $L^{\Phi}(\nu)$. If Φ has the Δ_2 -property then, for each $x^* \in X^*$ and $f \in \mathcal{M}$, we have that $\rho_{x^*}(f) < +\infty$ if and only if $\int \Phi(|f|) d|x^*\nu| < +\infty$. So, by the first part of Proposition 4.1, we have

$$L_w^{\Phi}(\nu) = \left\{ f \in \mathcal{M} \colon \Phi(|f|) \in L_w^1(\nu) \right\}.$$

Proposition 4.2. Let the function Φ possess the Δ_2 -property. A sequence (f_n) converges to zero in the norm of $L_w^{\Phi}(v)$ if and only if the sequence $(\Phi(|f_n|))$ converges to zero in the norm of $L_w^{\Phi}(v)$.

Proof. Suppose that (f_n) converges to zero in $L_w^{\Phi}(v)$. Then, for large enough *n*, we have $\rho_{x^*}(f_n) \leq \rho_v(f_n) \leq 1$ for $x^* \in B_{X^*}$. If $\rho_{x^*}(f_n) > 0$, from the convexity of Φ and by using the fact that (2) is a minimum, it follows that

$$\int \Phi(|f_n|) d|x^*\nu| \leq \rho_{x^*}(f_n) \int \Phi\left(\frac{|f_n|}{\rho_{x^*}(f_n)}\right) d|x^*\nu| \leq \rho_{x^*}(f_n) \leq \rho_{\nu}(f_n).$$

For the case $\rho_{x^*}(f_n) = 0$, we have that $f_n = 0 |x^*\nu|$ -a.e. Then $\Phi(|f_n|) = 0 |x^*\nu|$ -a.e. and so $\int \Phi(|f_n|) d|x^*\nu| = 0 \leq \rho_{\nu}(f_n)$. Hence, $\|\Phi(|f_n|)\|_{\nu} \leq \rho_{\nu}(f_n)$ and so $(\Phi(|f_n|))$ converges to zero in $L^1_w(\nu)$. Conversely, suppose that $(\Phi(|f_n|))$ converges to zero in the norm $\|\cdot\|_{\nu}$. Given $\varepsilon > 0$ we take $k_{\varepsilon} \in \mathbb{N}$ such that $1/2^{k_{\varepsilon}} < \varepsilon$. By the Δ_2 -property of Φ , we have

$$\int \Phi(2^{k_{\varepsilon}}|f_n|) d|x^* v| \leq b^{k_{\varepsilon}} \int \Phi(|f_n|) d|x^* v| \leq b^{k_{\varepsilon}} \left\| \Phi(|f_n|) \right\|_{v} \leq 1$$

for all $x^* \in B_{X^*}$ and for large enough *n* (only depending on ε). Hence, $\rho_{\nu}(f_n) \leq 1/2^{k_{\varepsilon}} < \varepsilon$ for large enough *n*. \Box

Remark 4.3. As seen from the proof, necessity in Proposition 4.2 holds for any Φ . If the Δ_2 -property holds for $t \ge t_0 > 0$, then sufficiency is only obtained for a subsequence (f_{n_k}) , but the following result still holds.

Proposition 4.4. If Φ has the Δ_2 -property, then

$$L^{\Phi}(\nu) = \left\{ f \in \mathcal{M}: \Phi(|f|) \in L^{1}(\nu) \right\}.$$

Proof. Since $L^{\Phi}(v)$ is order continuous, from Remark 3.9(b) we have

$$L^{\Phi}(\nu) = \left\{ f \in \mathcal{M} \colon \lim_{\|\nu\|(A) \to 0} \rho_{\nu}(f \chi_A) = 0 \right\}.$$

If Φ has the Δ_2 -property, then from Proposition 4.2 we have

$$L^{\Phi}(\nu) = \left\{ f \in \mathcal{M}: \lim_{\|\nu\|(A) \to 0} \left\| \Phi(|f|) \chi_A \right\|_{\nu} = 0 \right\}$$
$$= \left\{ f \in \mathcal{M}: \Phi(|f|) \in L^1(\nu) \right\},$$

where the last equality is obtained from Remark 3.9(b) applied to the space $L^{1}(\nu)$. \Box

5. REPRESENTATION OF B.F.SS. OF $L^{1}(\nu)$ AS SPACES $E(\rho_{\nu})$

The aim of this final section is to establish our main result, namely,

Theorem 5.1. Let v be a vector measure and Y be an order continuous Banach function subspace of $L^1(v)$. Then there exists a v-norm function ρ such that $Y = E(\rho_v)$ and $||f||_Y = \rho_v(f)$, for every $f \in Y$.

Let $\nu: \Sigma \to X$ be a vector measure and $\lambda = |x_0^* \nu|$ be a fixed Rybakov control measure for ν .

Definition 5.2. For each $x^* \in X^*$, define the space

 $Y'_{x^*} = \{g \in Y': g \chi_{[h_{x^*}=0]} = 0 \ \lambda \text{-a.e.}\} \subset Y',$

where Y' is the Köthe dual of Y (with respect to λ) and h_{x^*} is the Radon–Nikodym derivative of the measure $|x^*\nu|$ with respect to λ . Of course, Y'_{x^*} is equipped with the norm from Y'. Note that $Y \hookrightarrow L^1(\nu) \hookrightarrow L^1(x^*\nu)$ implies that $h_{x^*} \in Y'_{x^*}$.

The space Y'_{x^*} is a closed ideal of Y', that is, a closed subspace for which $f \in Y'_{x^*}$ whenever $|f| \leq |g|$ ν -a.e. for some $g \in Y'_{x^*}$. In general, the simple functions may not be included in Y'_{x^*} . In fact, this inclusion holds if and only if λ is absolutely continuous with respect to $|x^*\nu|$, or equivalently, $Y'_{x^*} = Y'$.

The spaces Y'_{x^*} allow us to define a ν -norm function ρ for which the space $E_w(\rho_{\nu})$ is just Y'', the Köthe bidual of Y.

Proposition 5.3. The map $\rho: X^* \times \mathcal{M} \to [0, +\infty]$ defined by

$$\rho(x^*, f) = \sup_{g \in B_{Y'_{x^*}}} \int |gf| \, d\lambda,$$

is a v-norm function.

Proof. Fix $x^* \in X^*$. We show that the map ρ_{x^*} satisfies part (a) of Definition 3.1. If $f = 0 |x^*\nu|$ -a.e., then $\lambda([|f| \neq 0] \cap [h_{x^*} \neq 0]) = 0$ and so $f\chi_{[h_{x^*}\neq 0]} = 0$ λ -a.e. Hence, fg = 0 λ -a.e. for every $g \in Y'_{x^*}$ and thus $\rho_{x^*}(f) = 0$. Conversely, suppose that $\rho_{x^*}(f) = 0$. Since $h_{x^*} \in Y'_{x^*}$, we have $0 = \int |f| h_{x^*} d\lambda = \int |f| d |x^*\nu|$ and so $f = 0 |x^*\nu|$ -a.e. Therefore ρ_{x^*} satisfies property (a1). Properties (a2)–(a5) are also satisfied by ρ_{x^*} and can be checked directly. For all $A \in \Sigma$ we have $\rho_{x^*}(\chi_A) \leq$ $\|\chi_A\|_Y$; this establishes property (a6). Property (a7) holds, since

$$\int |f| \, d |x^* v| = \int |f| h_{x^*} \, d\lambda \leq ||h_{x^*}||_{Y'} \rho_{x^*}(f).$$

Fix $f \in \mathcal{M}$. Since $h_{ax^*} = |a|h_{x^*} \lambda$ -a.e. for all $a \in \mathbb{R}$, we have that $Y'_{ax^*} = Y'_{x^*}$ whenever $a \neq 0$ and so $\rho_f(ax^*) = \rho_f(x^*)$. Hence, property (b1) for the map ρ_f holds for $a \neq 0$ with $|a| \leq 1$. The case a = 0 is obvious. Property (b2) holds, since $\sup_{x^* \in B_{X^*}} \rho_{\chi_\Omega}(x^*) \leq ||\chi_\Omega||_Y$. \Box

For each $x^* \in X^*$, we have

$$\rho_{x^*}(f) = \sup_{g \in B_{Y'_{x^*}}} \int |fg| d\lambda \leq \sup_{g \in B_{Y'}} \int |fg| d\lambda = \rho_{x_0^*}(f),$$

since $Y'_{x_0^*} = Y'$. Then $\rho_{\nu}(f) = \rho_{x_0^*}(f)$ and so $E_w(\rho_{\nu}) = Y''$. Hence, $E(\rho_{\nu})$ is just the closure of the simple functions in Y''.

Finally we are in a position to prove Theorem 5.1. In the case when Y is order continuous, we noted earlier that Y' and Y^* coincide and hence,

$$||f||_{Y} = \sup_{g \in B_{Y'}} \left| \int gf \, d\lambda \right| = ||f||_{Y''}, \quad f \in Y.$$

Also, in this case, the simple functions are dense in Y. So, Y is the closure of the simple functions in Y''. These observations, together with Proposition 5.3, complete the proof of Theorem 5.1.

ACKNOWLEDGEMENTS

This work arises from the Ph.D. Thesis that I am preparing at the University of Sevilla under the supervision of Professor G.P. Curbera whom I would like to thank deeply for his guidance and support.

I would also like to thank the referee for his thorough reading and his suggestions.

REFERENCES

- [1] Bennett C., Sharpley R. Interpolation of Operators, Academic Press, Boston, 1988.
- [2] Curbera G.P. Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992) 317-330.
- [3] Curbera G.P. When L¹ of a vector measure is an AL-space, Pacific J. Math. 162 (1994) 287–303.
- [4] Curbera G.P. Banach space properties of L^1 of a vector measure, Proc. Amer. Math. Soc. 123 (1995) 3797–3806.

- [5] Diestel J., Uhl Jr. J.J. Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [6] Kluvánek I., Knowles G. Vector Measures and Control Systems, North-Holland, Amsterdam, 1976.
- [7] Lewis D.R. Integration with respect to vector measures, Pacific J. Math. 33 (1970) 157-165.
- [8] Lewis D.R. On integration and summability in vector spaces, Illinois J. Math. 16 (1972) 294-307.
- [9] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, vol. II, Springer-Verlag, Berlin, 1979.
- [10] Okada S. The dual space of $L^{1}(\mu)$ for a vector measure μ , J. Math. Anal. Appl. 177 (1993) 583–599.
- [11] Rao M.M., Ren Z.D. Theory of Orlicz Spaces, Dekker, New York, 1991.
- [12] Ricker W.J. Compactness properties of extended Volterra operators in $L^p([0, 1])$ for $1 \le p \le \infty$, Arch. Math. **66** (1996) 132–140.
- [13] Sánchez Pérez E.A. Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue–Bochner spaces, Illinois J. Math. 45 (2001) 907–923.
- [14] Stefansson G.F. L₁ of a vector measure, Le Matematiche 48 (1993) 219–234.

(Received October 2003)