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ABSTRACT 

Given a vector measure v with values in a Banach space X, we consider the space L l (v) of  real functions 

which are integrable with respect to v. We prove that every order continuous Banach function space Y 
continuously contained in L 1 (v) is generated via a certain positive map p related to v and defined on 

X* x 2,4, where X* is the dual space of  X and AA the space of measurable functions. This procedure 
provides a way of defining Orlicz spaces with respect to the vector measure v. 

1. INTRODUCTION 

Let v be a countably additive vector measure with values in a Banach space X 

and Ll(v)  the space of  classes of real valued functions which are integrable with 

respect to v. Our aim is the study of the following problem: given a Banachfunction 

subspace Y o f  L l (v), is it possible to describe Y in terms o f  the vector measure v? 

Consider for example, the simple case of  Lebesgue measure m on the interval [0, 1]. 

The space L p [0, 1] can be described in terms of  m, as the space of  functions f such 

that f P  is integrable with respect to m. 

The tool for solving this problem is a map p : X* x 3A ~ [0, +oc],  where X* is 

the dual space of  X and 34 is a space of measurable functions which has natural 

properties related to v. We say that p is a v-norm function. From this map p 
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we generate a Banach function space E(pv), the closure of  simple functions with 
respect to the norm given by 

Pv( f )= sup p(x*, f ) .  
x*~Bx* 

This method for generating Banach function spaces allows us to define Orlicz 
spaces with respect to v. In particular, it includes the spaces LP(v) of  functions 
whose pth powers are integrable with respect to v, considered in [13]. 

The aim of  this paper is to establish that every order continuous Banach function 
subspace Y of  L 1 (v) can be represented as a space E(pv), generated by a suitable 
v-norm function (see Theorem 5.1). Hence, Y can be described in terms of  the 
vector measure v. 

2. PRELIMINARIES 

Throughout the paper, (~2, E) will be a fixed measurable space and AA denotes the 
space of  all measurable real valued functions on f2. Since we will be considering 
different measures on 12, we will identify almost everywhere equal functions only 
after fixing a measure. 

Given a finite positive measure/z on I2, a Banachfunction space, in short B.f.s., 
(also called Krthe function space) with respect to /z, is a Banach space Y of  
functions on f2 which are integrable with respect to/x and satisfying: 

(1) I f f  6 M ,  g 6 Y with If[ ~< [g[ #-a.e., then f ~ Y and Ilflh" ~ l/gilt, 
(2) XA E Y for every A 6 I2. 

Of  course, functions which are equal #-a.e. are identified and II • I1~ denotes the 
norm of  Y. Note that a B.£s. with respect to/~ is a Banach lattice for the/z-a.e. 
order. By a Banachfunction subspace (in short, B.f.ss.) of  a B.f.s. Y, we mean a 
B.f.s. continuously contained in Y, with the same order structure. A B.f.s. Y is order 
continuous i f  order botmded increasing sequences are norm convergent. The Krthe 
dual o f a  B.f.s. Y is the space y1 of  measurable functions g such that fg  ~ LI(Iz), 
for every f 6 Y. The space yt is a subspace of Y* (the topological dual space of Y) 
and is equipped with the relative topology from Y*. The spaces Y' and Y* coincide 
with equality of  norms if  and only if  Y is order continuous. The Krthe bidual of  a 
B.f.s. Y is the Krthe dual of  Y'. The above claims and further properties of  B.f.s. 
can be found in [9]. 

Let v : ~ --~ X be a countably additive vector measure with values in a Banach 
space X. For each x* ~ X*, the variation of  the scalar measure x*v is denoted 
by [x*vl. The semivariation of  v is the set function on E defined by Ilu[f(A) = 
sup{Fx*vl(A): x* ~ Bx*}, where Bx* is the unit ball of  X*. A measurable set A is 
v-null i f  IP v rl (A) = 0. A positive measure Z on E is a control measure for v if  v and 
)~ have the same null sets. A Rybakov control measure for v is a control measure of  
the form L = Ix~vl for certain x~ ~ Bx,; see [5, Theorem IX.2.2]. In this case, the 
v-a.e, order is equivalent to the ~.-a.e. order. 
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A function f 6 34 is integrable with respect to v (in the sense of  Lewis [7]) if  it 
satisfies 

(1) f is integrable with respect to x'v, for every x* ~ X*, and 
(2) for each A E N, there is a vector fa f d v  in X such that 

x*(fafdv)=fafd(x*v), for all x* 6 X*. 

For A = fl we simply write f f dv for f~ f dr. 

The space Ll(v) of integrable functions with respect to v, equipped with the 
norm 

Ilfllv = sup f Ifldlx*vl, 
x*CBx, 

is an order continuous B.f.s. with respect to any Rybakov control measure )~ for v; 
[2, Theorem 1]. The space L~(v) of functions satisfying just condition (1) in the 
definition of integrability with respect to v, equipped with the norm II - l[ ~, is a B.f.s. 
with respect to )~, [14, Theorem 9]. A function f in L~(v) is in Ll(v) if  and only 
if lim kl ~ II (A)----~0 [I f XA [1 v = 0 ,  [7, Theorem 2.6]. Note that L ~ (v) : L 1 (V) whenever 
X does not contain a copy of co, [6, Theorem II.5.1]. It is known, for arbitrary X, 
that L 1 (v) = L 1 (v) if and only if L ~ (v) is order continuous, if and only if L 1 (v) is 
weakly sequentially complete, if and only if L ~ (v) is weakly sequentially complete; 
see [14, Theorem 10] and also [2, Theorem 3]. 

We refer to the work of  Kluvfinek and Knowles [6], Curbera [2~4], Ricker [12] 
and Okada [10] for other results concerning the space L 1 (v). 

3. SPACES GENERATED BY A v-NORM FUNCTION 

Let v : ~2 ~ X be a vector measure. In this section we construct a B.f.ss. of  L 1 (v) 
from a given positive map closely related to v. 

Definition 3.1. A v-norm function is a map p:X* x 34 --~ [0, +ec]  with the 
following properties: 

(a) For each x* • X*, the map px* : M  -+ [0, +ec]  given by Px*(f) = p(x*, f) ,  
satisfies: 
(al) Px* ( f )  = 0 if and only if f = 0 ]x*v [-a.e., 
(a2) px*(af) = lalpx*(f), for all a ~ R and f E M ,  
(a3) Px* ( f  + g) <~ px* ( f )  + Px* (g), for all f ,  g ~ 34, 
(a4) if f,  g ~ 34 and Ifl ~< Lg[, I x * v l - a . e . ,  then Px*(f) <~ px*(g), 
(a5) if f,  fn • M and 0 <~ fn 1" f Ix*v[-a.e., then px*(f~) t px*(f), 
(a6) Px*(Xa) < + 2 ,  
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(a7) there exists C = C(x*) > 0 such that for all f ~ .A// 

f [fld[x*v[ <<. Cpx*(f). 

(b) For each f E A4, the map pf  :X* ---> [0, + ~ ]  given by IOf(X*) = p(X*, f ) ,  
satisfies: 
(bl)  lalpf(x* ) ~ pf(ax*), for all a ~ R, la[ ~< 1 and x* ~ X*, 

(b2) for f = X~ we have SUpx.eBx. pf(X*) < +CO. 

An example of  a v-norm function is the map p : X* x .M ~ [0, +e~] given by 

p(x*, f )  = f If[ dlx*vl. 
J 

Remark  3.2. Property (a4) of  Definition 3.1 implies that Px* ( f)  = Px* (l f I) for 
every f E Ad and x* 6 X*. 

Remark  3.3. The definition we have given of  Banach function space is the one 
in [9, Definition 1.b. 17]. In [1, Definition I. 1.3] a different definition of  Banach 
function space is given. Namely, for .M + the cone of  positive functions in .M 
and ~ :A//+ ~ [0,+oo] a map satisfying properties (al)-(a7) of  Definition 3.1 
for a finite positive measure/z,  a Banach function space is defined as {f  6 .~¢/: 
~(]fl)  < +o0}. The map ~ is called a function norm. Although coming from 
different approaches, the two definitions only differ in property (a5), called the 
Fatou property; see [9, p. 30], [1, Theorem 1.1.7]. Hence, in both cases we can 
speak of  Banach function spaces. 

From the previous remark, for a fixed x* e X*, the space 

Ex* = I f  E All: Px*([f]) < +oo}, 

where Ix*v I-a.e. equal functions are identified, is a B.f.s. with respect to the measure 
]x*vl with norm Px*. 

Definition 3.4. Given a v-norm function p, we define the map pv : ~4 ~ [0, +c~] 
by 

p v ( f ) =  sup Px*(f), f 6.h/l, 
x*~Bx* 

and the space Ew(pv) = { f  E .A4: Pv(lf[) < +c~}, where v-a.e, equal functions are 
identified. By Remark 3.2, pv(f)  = Pv([f]) for all f c A,4. 

Proposition 3.5. The space Ew(pv) with norm Pv is a Bfss.  o f  L lw(v). 

Proof. Let ~. = Ix~v] be a fixed Rybakov control measure for v. We first show that 
p~ is a function norm for the measure )~. Properties (al)-(a5) for p~ follow from the 
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corresponding properties for each Px*. Property (a6) for p~ is property (b2) for p. 
Property (a7) is satisfied for the constant C = C(x~). Then, from Remark 3.3, the 
space Ew(pv) is a B.f.s. with respect to ~.. 

For each x* ~ Bx*, from property (a7) for Px*, we have 

f l f l  dtx*vl <. C(x*)px , ( f )  <. C(x*)pu( f ) ,  

so the integration operator with respect to [x*v[ can be defined in E~ (Pv) by 

f E Ew(pv) w-~ lx*(f)  =ffdlx*vl e~e, 

and is continuous. Moreover, Ew (p,) is contained in L 1 (v), and the embedding is 
continuous. This follows from the fact that positive linear maps between Banach 
lattices are continuous (see [9, p. 2]) and, as noted before, B.f.s. are Banach 
lattices. [] 

For each x* E X*, the measure Ix*v[ is absolutely continuous with respect to the 
Rybakov control measure )~. So, from the definition of  pv and from property (bl), 
the natural inclusion from Ew(pv) into Ex* is well defined and continuous. 
Moreover, it is one to one if and only if  Ix*vl is also a control measure for v. 

We always have 

(1) Ew(pv) C{fEAd:px*(lfl)<+cx~f°rallx*EX*} = A Ex*. 
x*EX* 

Observe that the two vector spaces will coincide, after identifying functions which 
are equal v-a.e., if  pf(Bx*) is a bounded set whenever f satisfies pf(X*) C 
[0, +ec) .  

Proposition 3.6. Let p be a v-norm function. I f  for every simple function q), the 
map pe : X* ~ [0, +oc) is subadditive and continuous, then 

Ew(pv) = { f  EAd: Px*([f[) < +oo for all x* E X*}. 

Proof. Let f 6 .M be such that Px*(Ifl) < +oo for all x* E X*. Given a sequence 
(~0n) of  simple functions with 0 ~< ~on "[" I f  I, for each n we consider the map 
Tn :X* ~ [0, +oe) defined by Tn(x*) = pen(x*), for x* E X*. By hypothesis, Tn 
is subadditive and continuous, and from property (b 1) of  p, Tn satisfies laITn (x*) <<. 
Tn(ax*) for lal ~< 1 and x* E X*. Also, (Tn) is a pointwise bounded family of 
functions, since Tn (x*) = Px* (~P,) ~< Px* (I f I) < +oc for all n. These properties of  
(T,) allow us, as in the proof of  the classical Banach-Steinhaus theorem, to get a 
constant M > 0 such that SUpx.eSx. T~(x*) <. M for all n. From property (a5) of  p, 
for each x* E X* we can take nx* such that Px* (l f I) - Px* (q)'x*) ~< 1, then 

p v ( l f [ ) =  sup p x , ( l f l ) ~ < l +  sup px*(~Onx,)<~l+M. 
x*EBx, x*EBx, 
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Hence, f ~ Ew(Pv). [] 

For each u-norm function p we have constructed a B.Ess. Ew(Pv) of  Llw(v). We 
are now interested in similar subspaces of  the smaller space L 1 (u). In order to obtain 
such spaces we introduce the following definition. 

Definition 3.7. The space E(pv) is defined to be the closure of  the simple functions 
in the Banach space Ew(pv). 

Proposition 3.8. The space E(pv) with norm p~ is a Bfss. of L l(v). 

Proof. The space E(pv) is clearly a Banach subspace of  Ew(Pv). Also, E(pv) 
satisfies the lattice property, that is, given f E .A4 and g E E(pv) with [fl <~ [gl 
u-a.e., then f ~ E(pv) and Pv(f)  ~< pv(g); see [1, Theorem 1.3.11]. So, E(pv) is a 
B.f.ss. of Ew(Pv). 

From the fact that the simple functions are dense in both spaces E(pv) and L 1 (u), 
and Proposition 3.5, we see that E(pv) is continuously included in L t (u). [] 

The order continuity of  an abstract Banach lattice Y with weak unit (see [9, p. 9]), 
is a strong property which allows one to obtain important results, e.g., such as 
representing Y as a space L 1 (v) for a suitable vector measure ~; see [2, Theorem 8]. 
In the case of  a B.f.s. Y with respect to a finite positive measure /z, Y is order 
continuous if and only if  all functions f 6 Y have absolutely continuous norm, that 
is, [[fxallr -+ 0 whenever/z(A) -+ 0. This follows from [1, Proposition 1.3.5] (the 
proof holds for Banach function spaces without the Fatou property). Moreover, if 
the simple functions are dense in Y, then Y is order continuous if and only if  X~ has 
absolutely continuous norm; see [1, Theorem 1.3.13] (the proof holds for Banach 
function spaces without the Fatou property). Moreover, if Y is an order continuous 
B.f.s., then 

Y = { f E M :  lim IIfXAIIy=O]. 
#(A)-->O 

Indeed, suppose that f 6 .L4 satisfies [IfXA lit ~ 0 whenever #(A) --+ 0 and each 

function fn = Iflxtlft~nl ~ Y. Then fn 1" If[ and I[fm - fnllr  = [[fX[n<lfl<<.m]llY --+ 
0 whenever m > n --+ +cx~, since/z([n < Ifl ~< m]) --+ 0. So, f e Y. 

Remark  3.9. Let p be a u-norm function. Since II v II (A) ~ 0 if  and only if~.(A) --+ 
0, with ~ a Rybakov control measure for u, the above comments imply that: 

(a) E(pv) is order continuous if  and only if  pv(XA) --+ 0 when [lull(A) ~ 0. 
(b) If E(pv) is order continuous, then 

E(pv) = { f E .A4: ilvll~iAm O pv(f  XA) = O]. 
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Example 3.10. Given p 6 [1, +cx~), the map p : X* x A4 --+ [0, +c~]  defined by 

p(x*,f)=(f [flPdlx*vl) 1/p, 

is a v-norm function. For x* 6 X*, the space Ex* is precisely the space LP(Ix*vl). 
Moreover, 

(f p v ( f ) =  sup p x . ( f ) =  sup [flPd[x*v[ =[[fPlllJ p, 
x*EBx* x*EBx* \ J 

shows that Ew(p~) = {f ~ jk/l: fP  E L~(v)},  and so equality holds in (1). Ac- 
cordingly, the space E(pv) is just the space LP(v) = {f  E ~'[: fP  C Ll(v)},  since 
LP(v) endowed with the norm p~ is a Banach space in which the simple functions 
are dense; see [13, Proposition 4]. From Remark  3.9(a), the space LP(v) is order 
continuous, since 

lim pv(XA)= l i m  I]XA][lv/p= lim ]Iv]I(A)I/P=O; 
/Iv H (A)--+0 IlvH (a)--+0 llvFl(a)-+0 

see also [13, Proposition 6]. 

4. ORLICZ SPACES WITH RESPECT TO VECTOR MEASURES 

The previous construction o f  B.f.s. through a v-norm function also gives a proce- 
dure for defining Orlicz spaces with respect to a vector measure. 

Let v : E -+ X be a vector measure and q~ : [0, +cx~) ~ [0, + ~ )  be a convex 
continuous increasing function such that q~(t) = 0 if  and only if  t = 0. For results 
concerning Orlicz spaces; see [11]. The map p : X* x M --+ [0, +cx~] defined by 

(2) p(x*,f)=inflk>o: f ~(~)dlx*v,<<. l}, 

is a v-norm function. Actually, the inf imum in (2) is a minimum,  whenever  it is 
positive, [1, p. 268]. Observe, for a fixed x* 6 X*, that the space Ex* = {f  E M: 
Px*(Ifl) < + ~ }  is a classical Orlicz space. 

In this setting, we denote the B.f.s. Ew(p~) and E(p~) by L~(v) and L~(v), 
respectively, and call the last one the Orlicz space with respect to the vector  measure  
v and the function q~. The spaces L*(v) generalize the spaces LP(v), that are 
obtained by taking the function ~ ( t )  = t p . 

Propos i t ion  4.1. For the space Lw(v), the containment (1) is an equality. 
Moreover, the space L ~ (v) is order continuous. 

Proof .  Let f be a function bounded v-a.e, by a constant C > O. Given e > O, we 
have 

f ~ ( J ~ - ) d l x * v l ~  ~ ( C ) [ x * v l ( ~ ) ~  ~ ( C )  Ilvll(~)llx*lIx, ~ 1 
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whenever IIx*llx* ~ 8~ = (llvll(g2)~(f/e)) -1. Hence, from (2) we conclude that 
/gf :X* --+ [0, "+'co) satisfies/gf (X*) ~ ~ for all x* with IIx* IIx* ~< ~ and thus, p f  is 
continuous at x* = 0. Since pf is subadditive, we deduce that pf is continuous at 
every x* ~ X*. Therefore, from Proposition 3.6, the containment (1) is an equality. 

To obtain the second claim, by Remark 3.9(a) it suffices to show that iOv(Xa) "+ 0 
whenever Ilvll(A) --+ 0. Given e > 0, for every x* ~ Bx* we have 

f ~ ( ~ ) d l x * v l  =~(~)lx*vl(A)<~ ~(~) l l v l l (A)  ~< 1 

whenever II v II (A) ~< 3e = • ( l /e )  -1. From (2) we conclude that Px* (XA) ~ 6. Hence, 
Pv(Xa) <~ e whenever Ilvll(A) ~< ~ .  [] 

An important property of  Orlicz functions is the A2-property, that is, there exists 
a constant b > 0 such that ~(2t)  ~< b~(t) for all t ~> 0. In our case, this property 
allows us to give a simple description, in terms of  v, of  the spaces L w (v) and L°(v). 
If  qb has the A2-property then, for each x* ~ X* and f ¢ .k//, we have that Px* (f)  < 
+o0 if  and only i f fcb(Ifl)dlx*vl < +oo. So, by the first part of  Proposition 4.1, 
we have 

* * ( I f  I) E L w ( v ) = { f  EA/I: Ll(v)} .  

Proposition 4.2. Let the function • possess the A2-property. A sequence (fn) 
converges to zero in the norm of Lw(V ) if and only if the sequence (qb(If~l)) 
converges to zero in the norm of L lw (v). 

Proof. Suppose that (f~) converges to zero in L~* (v). Then, for large enough n, we 
have Px*(fn) <<. P~(fn) <~ 1 for x* E Bx*. If Px*(f~) > 0, from the convexity of  q5 
and by using the fact that (2) is a minimum, it follows that 

f f *( If.l \Px*(fn) ) dlx*vl <~ Px*(fn) <~ Pv(fn). 

For the case Px*(f,) = 0, we have that fn = 0 Ix*vl-a.e. Then ~(lfnl)  = 0 
Jx*vl-a.e. and so f~(Ifnl)dlx*vl = 0 <~ p~(fn). Hence, IIqS(If~l)ll~ ~< p~(f~) and 
so (~(If~l)) converges to zero in Ll(v). Conversely, suppose that (~(If~l)) 
converges to zero in the norm I1" I1~. Given e > 0 we take k~ 6 N such that 1/2 k' < e. 
By the A2-property of q5, we have 

for all x* ~ Bx* and for large enough n (only depending on s). Hence, P,(fn) <~ 
1/2 k~ < e for large enough n. [] 

Remark  4.3. As seen from the proof, necessity in Proposition 4.2 holds for any 
q~. If  the A2-property holds for t 1> to > 0, then sufficiency is only obtained for a 
subsequence (fnk), but the following result still holds. 
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Proposition 4.4. I f  ~p has the A2-property, then 

:(~) = { :  ~ M :  , (1 :1 )  ~ L' (v ) } .  

Proof .  Since L'~(v) is order continuous, f rom Remark  3.9(b) we have 

,:<v> = { : . M :  = 0 } 

I f  • has the A2-property, then f rom Proposit ion 4.2 we have 

,.*(v> = { : .  M: ®(l:J)xA : 0} 

= { :  ~M: ®0:)) ~ L'(v)}, 
where the last equality is obtained f rom Remark  3.9(b) applied to the space 
Ll(v).  

5. R E P R E S E N T A T I O N  OF B.F.SS.  OF Ll(v) AS SPACES E(pv) 

The aim o f  this final section is to establish our main result, namely, 

T h e o r e m  5.1. Let v be a vector measure and Y be an order continuous Banach 
function subspace of  L 1 (v). Then there exists a v-norm function p such that Y = 

E(pv) and I[fl lr  = pv(f) ,  for every f ~_ Y. 

Let v : E ~ X be a vector measure and ~ -- [x~vl be a fixed Rybakov control 
measure for v. 

Definition 5.2. For each x* c X*, define the space 

Yx'* = {g ~ Y:: gx[G,=0] = 0 X-a.e.} C Y:, 

where Y' is the K6the dual o f  Y (with respect to X) and hx* is the R a d o n - N i k o d y m  
derivative of  the measure Ix*v] with respect to X. O f  course, Yx'* is equipped with 
the norm from Y:. Note that Y ~ Ll(v)  ~ L~(x*v) implies that hx* ~ Yx'*. 

The space Yx~, is a closed ideal o f  Y:, that is, a closed subspace for which f ~ Y: X* 
whenever [f l  ~< Ig] v-a.e, for some g c Yx/,. In general, the simple functions may  
not be included in ~ , .  In fact, this inclusion holds if  and only if  X is absolutely 
continuous with respect to Ix*vl, or equivalently, ~ ,  = Y'. 

The spaces Yx'* allow us to define a v-norm function p for which the space E~ (p~) 
is just Y' ,  the K6the bidual o f  Y. 

Proposition 5.3. The map p : X* x A/[ --~ [0, +oe]  defined by 

p(x*, f ) =  sup f lgfldX, 
gEBYIx, 

is a v-norm function. 
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Proof. Fix x* ~ X*. We show that the map px* satisfies part (a) of  Definition 3.1. 

If  f = 0 Ix*vl-a.e., then L([lfl # 0] M [hx* ~ 0]) = 0 and so fX[hx,#O ] = 0 )~-a.e. 
Hence, f g  = 0 L-a.e. for every g 6 Yx~, and thus px* ( f )  = 0. Conversely, suppose 
that px*(f) = 0. Since hx* ~ ~ , ,  we have 0 = f Iflhx* d)~ = f Ifl dlx*vl and so 
f = 0 Ix*vl-a.e. Therefore Px* satisfies property (al). Properties (a2)-(a5) are also 
satisfied by px* and can be checked directly. For all A ~ E we have Px* (XA) ~< 
I1 XA II Y; this establishes property (a6). Property (a7) holds, since 

f l f l  dlx*vl = f Iflhx* dX <~ IIh: IIv, Px* ( f ) .  

Fix f ~ .M. Since hax* = [a[hx* X-a.e. for all a 6 N, we have that Y~x* = Y~x* 
whenever a ~ 0 and so pf(ax*) = p f ( x * ) .  Hence, property (bl)  for the map ,of 
holds for a # 0 with Lal ~< 1. The case a = 0 is obvious. Property (b2) holds, since 

SUPx*e~x, Pxa(X*) <<. IlxallY. [] 

For each x* ~ X*, we have 

Px*(f) = sup f 
gEBYtx, gEBy: 

since Y'x~ = Y'" Then p~(f)  = Px~(f) and so Ew(pv) = Y". Hence, E(p~) is just the 

closure of  the simple functions in Y'. 
Finally we are in a position to prove Theorem 5.1. In the case when Y is order 

continuous, we noted earlier that Y: and Y* coincide and hence, 

f 
[[fllY= sup ] g f d ~ ,  =[If l lY' ,  f e Y .  

gEByi d 

Also, in this case, the simple functions are dense in Y. So, Y is the closure of  the 
simple functions in Y'. These observations, together with Proposition 5.3, complete 
the proof of  Theorem 5.1. 
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