Page 1 of 2	9 Tł	Journal of the Science of Food and Agriculture
	Ag	griculture 98 (6): 2194-2200 (2018), which has been published in final form at https://
1	do w-	pi.org/10.1002/jsfa.8704. This article may be used for non-commercial purposes in accordance with iley Terms and Conditions for Self-Archiving
2 3 4	1	Effects of immediate-release niacin and dietary fatty acids
5 6 7 8	2	on acute insulin and lipid status in individuals with
9 10 11	3	metabolic syndrome
12 13 14	4	
15 16	5	Sergio Montserrat-de la Paz ¹ , Sergio Lopez ¹ , Beatriz Bermudez ² , Juan M.
17 18 19	6	Guerrero ³ , Rocio Abia ¹ and Francisco J.G. Muriana ^{1,*}
20 21	7	
22 23 24	8	¹ Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain;
25 26	9	² Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain; and
27 28	10	³ Department of Clinical Biochemistry, University Hospital Virgen del Rocio,
29 30 31	11	IBiS/CSIC/University of Seville, Seville, Spain
32 33	12	
34 35	13	*Address correspondence to FJG Muriana, Laboratory of Cellular and Molecular Nutrition,
36 37	14	Instituto de la Grasa, CSIC, Ctra. de Utrera km. 1, Edificio 46, Campus Universitario Pablo
38 39 40	15	de Olavide, 41013 Seville, Spain. Telephone number: 95 4611550. Fax number: 95 4616790.
41 42	16	Email: muriana@ig.csic.es
43 44	17	
45 46	18	Dedicated to the memory of Professor Jose Villar Ortiz who died on March 28th, 2016, and is
47 48 49	19	a celebration of his work and contribution to the care and well being of people with MetS and
50 51	20	any kind of person. He always hosted and guided our studies on olive oil and the postprandial
52 53	21	metabolism of dietary fats. He has been and is an inspiration.
54 55	22	
56 57 58 59 60	23	

24	ABSTRACT
25	Background: The nature of dietary fats profoundly affects postprandial hypertriglyceridemia
26	and glucose homeostasis. Niacin is a potent lowering-lipid agent. However, limited data exist
27	on postprandial triglycerides and glycemic control following co-administration of high-fat
28	meals with a single-dose of niacin in subjects with metabolic syndrome (MetS). Thus, the
29	study aim was to explore whether a fat challenge containing predominantly saturated (SFAs),
30	monounsaturated (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs)
31	fatty acids together with a single-dose of immediate-release niacin have a relevant role on
32	postprandial insulin and lipid status in subjects with MetS.
33	Results: In a randomized crossover within-subject design, 16 subjects with MetS were given
34	a single-dose of immediate-release niacin (2 g) and ~15 calorie per kilogram of body weight
35	meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At
36	baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids
37	(FFAs), total cholesterol, HDL-, and LDL-cholesterol were assessed. Co-administered with
38	niacin, high-fat meals significantly increased the postprandial concentrations of glucose,
39	insulin, C-peptide, triglycerides, FFAs, and postprandial indices of β-cell function. However,
40	postprandial indices of insulin sensitivity were significantly decreased. These effects were
41	significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared
42	with SFAs.
43	Conclusion: In the setting of niacin co-administration and compared to dietary SFAs,

44 MUFAs limit the postprandial insulin, triglyceride, and FFA excursions and improve the45 postprandial glucose homeostasis in the MetS.

47 Keywords: niacin, dietary fatty acids, MUFAs, SFAs, postprandial, metabolic syndrome
48

INTRODUCTION

The metabolic syndrome (MetS) is a constellation of interrelated and additive risk factors for cardiovascular disease (CVD) that comprises dysglycemia, dyslipidemia, hypertension, and central obesity.¹ The dyslipidemic state of MetS is characterized by raised triglycerides, low HDL-cholesterol, and abnormal elevation in postprandial, apolipoprotein B48 (apoB48)containing triglyceride-rich lipoproteins (TRLs), mainly composed of dietary fatty acids. Subjects with MetS often have impaired glucose metabolism resulting from defects in insulin secretion, insulin action, or both.

Niacin (also commonly known as nicotinic acid or vitamin B3) is a water-soluble vitamin effective for lowering triglycerides and raising HDL-cholesterol.² Data from recent studies indicated that niacin has long-term benefits in lowering postprandial secretion of apoB48³ and $TRLs^4$ in statin-treated patients with type 2 diabetes. Less evident are the long-term benefits of niacin on postprandial glucose homeostasis in dyslipidemic patients with or without type 2 diabetes.⁵ Of interest, the extended-release form of niacin has been shown to acutely suppress postprandial hypertriglyceridemia in healthy subjects.⁶ However, the role of immediate-release niacin dosed with a high-fat meal on postprandial insulin secretion or action and hypertriglyceridemia, particularly in subjects with MetS, remains largely unknown.

We have previously shown that the nature of the dietary fats in the meal influences on
postprandial triglycerides and control of insulin secretion and sensitivity in subjects with
normal⁷ and high⁸ fasting triglycerides. Our studies provided evidence that subjects had
decreased postprandial β-cell function and became less insulin resistant postprandially as the
proportion of MUFAs compared with SFAs in dietary fats increased. These effects were
specifically associated to the content of MUFA oleic acid and SFA palmitic acid in the meal.⁹

74	In addition, omega-3 long-chain PUFAs (LCPUFAs) have long-term benefits in lowering
75	triglycerides, ¹⁰ notably when combined with extended-release niacin, ² in individuals with
76	MetS. Omega-3 LCPUFAs may also attenuate postprandial abnormalities in lipid metabolism
77	associated with MetS. ¹¹ However, recent trials have not produced evidence for additional
78	clinical benefits of omega-3 PUFAs on glucose homeostasis in either the fasting or
79	postprandial period. ^{10,12}
80	
81	Here, we explored the impact of immediate-release niacin co-ingested with a meal rich in
82	SFAs, MUFAs or MUFAs plus omega-3 LCPUFAs on postprandial insulinemic and lipemic
83	responses as well as on postprandial parameters and indices of β -cell function and insulin
84	sensitivity in subjects with MetS.
85	
86	MATERIALS AND METHODS
87	Participants and design
87 88	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist
87 88 89	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma
87 88 89 90	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood
87 88 89 90 91	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1,
87 88 89 90 91 92	Participants and designInclusion criteria for MetS consisted of at least 3 of the following components: waistcircumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasmatriglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic bloodpressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1,the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, and
87 88 90 91 92 93	Participants and designInclusion criteria for MetS consisted of at least 3 of the following components: waistcircumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasmatriglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic bloodpressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1,the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, andblood pressure were above the standard values, while average HDL-cholesterol was below the
87 88 90 91 92 93 94	Participants and designInclusion criteria for MetS consisted of at least 3 of the following components: waistcircumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasmatriglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic bloodpressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1,the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, andblood pressure were above the standard values, while average HDL-cholesterol was below thestandard value, reflecting characteristics of individuals with MetS. None of the participants
87 88 90 91 92 93 94 95	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1 , the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, and blood pressure were above the standard values, while average HDL-cholesterol was below the standard value, reflecting characteristics of individuals with MetS. None of the participants had impaired renal, thyroid or liver function; none had cardiovascular disease or
87 88 90 91 92 93 94 95 96	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1 , the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, and blood pressure were above the standard values, while average HDL-cholesterol was below the standard value, reflecting characteristics of individuals with MetS. None of the participants had impaired renal, thyroid or liver function; none had cardiovascular disease or gastroparesis; none had anemia or pulmonary, psychiatric, immunological or neoplastic
 87 88 89 90 91 92 93 94 95 96 97 	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1 , the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, and blood pressure were above the standard values, while average HDL-cholesterol was below the standard value, reflecting characteristics of individuals with MetS. None of the participants had impaired renal, thyroid or liver function; none had cardiovascular disease or gastroparesis; none had anemia or pulmonary, psychiatric, immunological or neoplastic diseases; none used tobacco, consumed special diets or took medication known to alter gastric
 87 88 90 91 92 93 94 95 96 97 98 	Participants and design Inclusion criteria for MetS consisted of at least 3 of the following components: waist circumference >102 cm, fasting plasma HDL-cholesterol ≤ 1.03 mmol/l, fasting plasma triglycerides ≥1.7 mmol/l, systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, and fasting plasma glucose ≥5.6 mmol/l. ¹³ As shown in Table 1 , the participants' average body mass index (BMI), waist circumference, waist-to-hip ratio, and blood pressure were above the standard values, while average HDL-cholesterol was below the standard value, reflecting characteristics of individuals with MetS. None of the participants had impaired renal, thyroid or liver function; none had cardiovascular disease or gastroparesis; none had anemia or pulmonary, psychiatric, immunological or neoplastic diseases; none used tobacco, consumed special diets or took medication known to alter gastric emptying, insulin secretion or insulin action. Ethics approval was obtained from the Human

JSFA@wiley.com

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
∠∪ ∩4	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
16	
-+U 4-7	
41	
48	
49	
50	
51	
52	
52	
03	
54	
55	
56	
57	
58	
50	
79	
bυ	

99 Clinical Research and Ethics Committee of the University Hospital Virgen del Rocio (UHVR,
100 Seville), and the study complied with the current revision of the Declaration of Helsinki. All
101 subjects gave written informed consent. This study was registered at the ClinicalTrials.gov
102 registry and the clinical trial registration number is NCT02061267.
103

104 The study was designed as a within-subject crossover in which the participants attended the 105 Clinic Experimental Research Unit for Vascular Risk at the UHVR on 4 separate occasions. 106 Fasting blood samples (t = 0) were taken at 0800 after a 12-h overnight fast. The test meals in 107 combination with a single 2 g dose of immediate-release niacin (Twinlab, American Fork, 108 UT) were given in random order with an interval of ~ 1 wk between meals. The high-fat meals consisted in an emulsion prepared according to a method previously described,¹⁴ with water. 109 sucrose (30 g/m² of body surface area), and fat (50 g/m² of body surface area). Dietary fats 110 111 were cow's milk cream, refined olive oil or refined olive oil plus a dose of omega-3 112 LCPUFAs, which consisted of 920 mg of EPA and 760 mg of DHA in the form of ethyl esters. 113 The fatty acid compositions of dietary fats are described in **Table S1** in the Supporting 114 Information. The participants also consumed a test meal prepared as indicated above, but not 115 including fat, as a control meal. After the ingestion of the meals within 10 min, blood samples 116 were collected each 60 min in tubes containing EDTA for the measurement of glucose, 117 insulin, C-peptides, triglycerides, FFAs, total cholesterol, HDL-cholesterol, and LDL-118 cholesterol over 360 min. In this study, each participant served as his own control. Subject 119 flow through the protocol is shown in **Figure S1** in the Supporting Information. 120 121 **Biochemical analyses**

122 Glucose was immediately measured using the glucose/oxidase method (Glucose GOD-PAP;

123 Biolabo, Madrid, Spain). Insulin and C-peptide were measured by using ELISA (Diagnostic

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>40</u>	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

124	System Laboratories, Webster, TX). Total cholesterol and triglycerides were determined by
125	enzymatic methods (CHOD-PAP and GPO-PAP, respectively; Roche Diagnostics, Basel,
126	Switzerland). HDL-cholesterol was determined after precipitation with phosphotungstic acid.
127	LDL-cholesterol was measured using an Advia 2400 Clinical Chemistry System (Siemens
128	Healthcare Diagnostics, Erlangen, Germany). FFAs were measured with an ACS-ACOD
129	assay (Wako Chemicals GmbH, Neuss, Germany). Glycated hemoglobin (HbA1c) was
130	measured according to the Standard Operating Procedure of the IFCC Reference, with an
131	automated HPLC analyzer (Bio-Rad, Milan, Italy).
132	
133	Calculations
134	Fasting β -cell function was estimated by 2 methods: 1) the homeostasis model assessment of
135	insulin secretion (HOMA-B), by using the formula HOMA-B = $I_0 \times 3.33/(G_0 - 3.5)$; and 2)
136	the basal disposition index (DI_0) , which gives an adjusted measure by insulin sensitivity
137	according to the HOMA-IR, by using the formula $DI_0 = HOMA-B \times (1/HOMA-IR)$. ¹⁵
138	
139	Fasting insulin resistance and its reciprocal (fasting insulin sensitivity) were estimated by 4
140	methods: 1) HOMA-IR = $I_0 \times G_0$ divided by 22.5; 2) the revised-quantitative insulin
141	sensitivity check index [rQUICKI = $1/(\log I_0 + \log G_0 + \log FFA_0)$]; 3) the basal insulin
142	sensitivity index (ISI ₀) for glycemia { $ISI(G)_0 = 2/[([I_0 \times G_0) + 1])$; and 4) the basal ISI ₀ for
143	blood FFAs { $ISI(FFA)_0 = 2/[(I_0 \times FFA_0) + 1]$ }. I ₀ , G ₀ , and FFA ₀ refer to fasting
144	concentrations ($t = 0$) of insulin, glucose, and FFAs, respectively.
145	
146	Postprandial β -cell function was estimated by 4 methods: <i>1</i>) the insulinogenic index (IGI),
147	which is a surrogate measure of first-phase insulin secretion and was calculated by using the
148	difference between the postprandial insulin peak ($t = 60 \text{ min}$) and the fasting insulin in

149	relation to the difference in glucose (IGI = $\Delta I_{0-60}/\Delta G_{0-60}$); 2) the ratio of the IGI to the
150	HOMA-IR, which gives an adjusted measure of β -cell function that accounts for variations in
151	insulin sensitivity; 3) the ratio of the insulin to glucose areas under the curve
152	(AUC_{INS}/AUC_{GLU}) , which significantly correlates with glucose sensitivity and early-phase
153	insulin secretion, calculated by using the trapezoidal method from 0 to 120 min; and 4) the
154	total disposition index from 0 to 120 min (DI_{120}) by using the product of AUC _{INS} /AUC _{GLU}
155	with the Matsuda insulin sensitivity index, ¹⁶ which incorporates both the hepatic and muscle
156	components of insulin resistance and correlates well with the euglycemic insulin clamp.
157	
158	Postprandial insulin sensitivity was estimated by 4 methods: 1) the insulin sensitivity index
159	$IS_{0-\infty}$; 2) the postprandial insulin sensitivity index ($ISI_{0-\infty}$) for glycemia [$ISI(G)_{0-\infty}$]; and 3) the
160	$ISI_{0-\infty}$ for blood FFAs $[ISI(FFA)_{0-\infty}]$. The infinity symbol represents the values at any
161	postprandial time. The details of the equations and additional references using this
162	multisampling protocol were previously described. ⁷
163	
164	Statistical analyses
165	The summary data (the fasting and postprandial response) were analyzed by using one-factor
166	repeated-measures ANOVA. The incremental AUC (iAUC) was calculated by the trapezoidal
167	rule. The postprandial time courses after the test meals were analyzed by using 2-factor
168	repeated-measures ANOVA, and Bonferroni correction was applied for the post hoc detection
169	of significant pairwise differences. When indicated, hypothesis testing for differences
170	between groups was performed by the one-sample t test for independent samples. The data
171	were analyzed by using STATVIEW for WINDOWS (SAS Institute, Cary, NC). $P < 0.05$ was
172	considered significant.
173	

174 RESULTS	174	RESULTS
-------------	-----	---------

175 Basal conditions of participants

176	There were no significant differences between fasting values for plasma glucose, insulin, C-
177	peptide, triglycerides, and FFAs at the beginning of each of the four intervention periods
178	(Table S2 in the Supporting Information). Neither were differences in fasting plasma total
179	cholesterol, HDL-cholesterol, and LDL-cholesterol (data not shown). Likewise, we found no
180	significant differences in the basal values for HOMA-B, DI_0 , HOMA-IR, rQUICKI, and the
181	basal Belfiore indices for glycemia and blood FFAs (Table S3 in the Supporting Information).
182	These data indicated that all of the participants had similar basal β -cell function and insulin
183	sensitivity prior to the ingestion of the high-fat meals and the pharmacological dose of
184	immediate-release niacin.
185	
186	Effect of co-ingestion of immediate-release niacin with meals on plasma lipids, glucose,
187	insulin, and C-peptide
188	The plasma concentrations of postprandial glucose, insulin, C-peptide, triglycerides, FFAs,
189	total cholesterol, HDL-cholesterol, and LDL-cholesterol after the meal with no fat and the
190	meals enriched in SFAs, MUFAs or MUFAs+omega-3 LCPUFAs plus niacin are shown in
191	Figures 1A-1H. As expected, no changes in plasma triglycerides were observed when fat was
192	not included in the meal. The plasma total cholesterol, HDL-cholesterol, and LDL-cholesterol
193	were also not affected during the postprandial period. The high-fat meals markedly increased
194	$(P < 0.05)$ plasma triglycerides to a peak at 60 min $(3.02 \pm 0.26 \text{ mmol/l with SFAs}, 3.05 \pm 0.05)$
195	0.18 mmol/l with MUFAs, and 2.87 ± 0.23 mmol/l with MUFAs+omega-3 LCPUFAs vs.
196	1.79 ± 0.16 mmol/l with no fat), and the iAUC values (0-6 h) for triglycerides also increased
197	(+544% with SFAs, +428% with MUFAs, and +408% with MUFAs+omega-3 LCPUFAs vs.
198	no fat, 100%) (Table S2 in the Supporting Information). All of the meals co-administered

222	insulin sensitivity
221	Effect of co-ingestion of immediate-release niacin with meals on β -cell function and
220	
219	Information).
218	and +253% with MUFAs+omega-3 LCPUFAs vs. no fat, 100%) (Table S2 in the Supporting
217	iAUC values (0-6 h) for C-peptide also increased (+442% with SFAs, +271% with MUFAs,
216	155 pmol/l with MUFAs+omega-3 LCPUFAs vs. 2029 ± 136 pmol/l with no fat), and the
215	peak at 60 min (2608 \pm 229 pmol/l with SFAs, 2219 \pm 120 pmol/l with MUFAs, and 2235 \pm
214	insulin were close to those observed on C-peptide, with a marked increase ($P < 0.05$) to a
213	100%) (Table S2 in the Supporting Information). These effects of fat-enriched meals on
212	with SFAs, +474% with MUFAs, and +493% with MUFAs+omega-3 LCPUFAs vs. no fat,
211	301 ± 26 pmol/l with no fat), and the iAUC values (0-6 h) for insulin also increased (+812%
210	353 ± 15 pmol/l with MUFAs, and 352 ± 23 pmol/l with MUFAs+omega-3 LCPUFAs vs.
209	markedly increased ($P < 0.05$) plasma insulin to a peak at 60 min (452 ± 44 pmol/l with SFAs,
208	0.05) and returning to basal values between 120 and 180 min. However, the high-fat meals
207	8.15 ± 1.01 mmol/l with MUFAs+omega-3 LCPUFAs vs. 8.11 ± 0.86 mmol/l with no fat, $P > 1.01$
206	to a peak at 60 min (7.94 \pm 1.39 mmol/l with SFAs, 8.51 \pm 1.14 mmol/l with MUFAs, and
205	similar after ingestion of any of the meals plus niacin, increasing from a basal concentration
204	100%) (Table S2 in the Supporting Information). The postprandial glucose response was
203	with SFAs, +111% with MUFAs, and +110% with MUFAs+omega-3 LCPUFAs vs. no fat,
202	values. The high-fat meals increased ($P < 0.05$) the iAUC values (0-6 h) for FFAs (+120%)
201	μ mol/l with no fat, $P < 0.05$). Thereafter, plasma FFAs rebounded but not reaching basal
200	25 $\mu mol/l$ with MUFAs, and 159 \pm 64 $\mu mol/l$ with MUFAs+omega-3 LCPUFAs vs. 138 \pm 22
199	with niacin induced a decrease in plasma FFAs at 240 min (174 \pm 32 $\mu mol/l$ with SFAs, 173 \pm

JSFA@wiley.com

2	
3	
4	
5	
6	
7	
Ω	
0	
9	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
51	
20	
59	
60	

1 2

223 Estimates of postprandial β -cell function, including IGI (0-60 min), IGI/HOMA-IR, 224 AUC_{INS}/AUC_{GLU} (0-120 min), and DI_{120} (0-120 min) were higher (P < 0.05) after the high-fat 225 meals than after the meal containing no fat plus niacin, and these estimates were higher (P <226 0.05) after the SFA meal when compared to the MUFA and MUFA+omega-3 LCPUFA meals (Table 2). In addition, estimates of postprandial insulin sensitivity, including $IS_{0-\infty}$ (0-480 227 228 min) and the postprandial Belfiore indices for glycemia and blood FFAs (0-480 min), were 229 lower (P < 0.05) after the high-fat meals than after the meal containing no fat plus niacin. 230 These estimates were also lower (P < 0.05) after the SFA meal when compared to the MUFA 231 and MUFA+omega-3 LCPUFA meals. 232

233 DISCUSSION

234 This randomized and within-subject crossover study is the first to demonstrate the time course 235 of changes in plasma glucose, insulin, C-peptide, and lipids —triglycerides, FFAs, total 236 cholesterol, HDL-cholesterol, and LDL-cholesterol— and the extent of β -cell function and 237 insulin sensitivity dysregulation after a single pharmacological dose of immediate-release 238 niacin in combination with SFA, MUFA or MUFA+omega-3 LCPUFA meals in individuals 239 with MetS. All of the participants had similar fasting β -cell function and insulin sensitivity, 240 and all of the meals co-administered with niacin elicited similar postprandial glucose 241 responses. However, the high-fat meals increased postprandial β -cell function and decreased 242 postprandial insulin sensitivity compared to the meal containing no fat. Most importantly, our 243 results showed that individuals with MetS had lower insulinemic and lipemic responses and 244 were less insulin resistant postprandially when given a meal containing MUFAs or 245 MUFAs+omega-3 LCPUFAs rather than SFAs in the setting of niacin co-ingestion. 246

Page 11 of 29

247	The treatment targeted at postprandial glucose homeostasis, which is involved in the
248	prediction of CVD and all-cause mortality, has been reported to reduce the progression of
249	atherosclerosis and CVD events. ¹⁷ Previous studies have demonstrated the potential of high-
250	fat meals to induce β -cell dysfunction and insulin resistance in healthy subjects ^{7,18} and in
251	individuals with high fasting plasma triglycerides, ⁸ type 2 diabetes ¹⁹ or MetS. ²⁰ The evolution
252	of type 2 diabetes may be related to the progressive deterioration of glucose homeostasis,
253	starting during the postprandial period in subjects whose glycemic profiles are normal at
254	fasting. ²¹ It is also hypothesized ²² that the nature of the postprandial lipid excursions may
255	influence the transition from normal to impaired glucose tolerance and to overt diabetes.
256	However, little is currently known about the postprandial insulin secretion and action
257	following specific fatty acid intake co-administered with niacin in humans. In earlier studies
258	of patients with type 2 diabetes, ²³ insulin release was found to be stimulated by dietary SFAs
259	but not by dietary MUFAs. More recent studies found higher postprandial plasma insulin
260	following a SFA meal when compared with a MUFA meal in healthy subjects ⁷ or individuals
261	with high fasting triglycerides. ⁸ Until now, it was only addressed the impact of a SFA meal on
262	parameters of postprandial glucose metabolism after long-term pharmacological use of
263	extended-release niacin to establish that niacin is innocuous on fasting insulin action in statin-
264	treated patients with type 2 diabetes. ⁴ The limited relevance of niacin on glucose homeostasis
265	was also assessed in dyslipidemic patients with or without type 2 diabetes ⁵ or MetS, ²⁴ and in
266	sedentary, nondiabetic postmenopausal women. ²⁵ The mechanisms underlying the link
267	between the predominant class of fatty acid in high-fat meals, niacin, and acute insulin
268	hypersecretion (or impaired insulin sensitivity) require further elucidation. This is of
269	particular importance in individuals with MetS. ²⁶ The present study contributes to the
270	understanding of this issue and reveals that postprandial β -cell function and insulin sensitivity
271	are improved with dietary MUFAs, with or without omega-3 LCPUFAs, when compared to

272	dietary SFAs, therefore extending metabolic benefits of MUFA-rich meals to a population of
273	individuals with MetS in the setting of co-administration with immediate-release niacin.
274	
275	Postprandial hypertriglyceridemia is considered an important and residual risk factor of CVD
276	and all-cause mortality, particularly in patients with MetS. ²⁷ However, the relative effects of
277	SFA, MUFA or MUFA+omega-3 LCPUFA meals on postprandial triglycerides and FFAs
278	have been investigated in only a small number of studies to date, ^{7,8,28-30} and none of these
279	studies included the co-administration of high-fat meals with a single-dose of immediate-
280	release niacin or subjects with MetS. Our study showed a significant attenuation of
281	incremental triglyceride and FFA responses following the MUFA and MUFA+omega-3
282	LCPUFA meals compared to the SFA meal, particularly at the late postprandial period where
283	more atherogenic remnant particles are formed. ³¹ Our new data extend the interplay between
284	MUFA-rich meals and immediate-release niacin, and emphasize their acute benefits on acute
285	TRL and FFA metabolism to a population of men with MetS. In line with this notion, recent
286	studies have shown the short-term benefits of extended-release niacin in lowering
287	postprandial secretion of TRLs in healthy subjects, ⁶ and the long-term benefits of extended-
288	release niacin in lowering postprandial secretion of apoB48 ³ and TRLs ⁴ in statin-treated
289	patients with type 2 diabetes and in increasing the fractional catabolic rate of apoB48 in
290	subjects with combined hyperlipidemia. ³² It is also likely that the suppression of adipose
291	tissue lipolysis by the early postprandial hyperinsulinemia ^{7,8,33} was only partial and that niacin
292	cooperated to further prevent FFA appearance due to its efficacy at suppressing adipocyte
293	intracellular lipolysis. ³⁴ We do not exclude the possibility of niacin also acting as a promoter
294	of FFA clearance in the postprandial period because of an insulin-mediated translocation of
295	fatty acid transport proteins and favorable concentration gradient for adipocyte FFA uptake
296	and storage. ³⁵ This mechanism of FFA clearance has been reported to be less efficient in

297	adipose tissue of obese than lean men. ³⁶ In addition, the content of multiple transferable
298	apoCs in postprandial TRLs have been proposed to be pivotal in postprandial triglycerides
299	and FFAs via their roles in regulating TRL lipolysis and hepatic removal of remnant TRLs. ³⁷
300	Because each participant served as his own control and no differences were found in fasting
301	triglycerides prior to ingestion of the high-fat meals and immediate-release niacin, we
302	excluded any influence of fasting triglycerides on postprandial lipid concentrations and
303	clearly established that MUFAs, with or without omega-3 LCPUFAs, are superior to SFAs in
304	reducing the dysregulation of postprandial lipid metabolism in individuals with MetS and that
305	this effect may be facilitated by the co-ingestion of niacin.
306	
307	The study had several limitations. First, because the participants were men, our results may
308	not be generalizable to women. Second, our analyses were restricted to the fat tolerance test
309	used. Third, we do not exclude the possibility that participants perceived the taste of any
310	dietary fat in the meals.
311	
312	In summary, this study demonstrates that the co-administration of immediate release niacin
313	and dietary MUFAs, compared to dietary SFAs, improves the postprandial glucose and lipid
314	homeostasis by reducing postprandial insulin (and C-peptide), triglyceride, and FFA
315	responses and insulin resistance in individuals with MetS.
316	
317	ACKNOWLEDGMENT
318	We thank Aceites Coosur SA (Aceites del Sur-Guillen, Seville) for supplying olive oil and the
319	participants who donated their time. We are also grateful to Arturo Navarro for his technical
320	expertise. A special thank you must also go to all participants who took the time to take part.

2	
3	
Δ	
т 5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ 24	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34 25	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
73 50	
50	
บ I ธา	
5Z	
53	
54	
55	
56	
57	
58	
59	
60	

322 FUNDING SOURCES

- 323 This study was supported by the research Grant AGL2011-29008 (Spanish Ministry of
- 324 Science and Innovation, MICINN). S.M. has the benefit of a FPI fellowship (BES-2012-
- 325 056104) of MICINN. S.L. and B.B. acknowledge financial support from the Spanish
- 326 Research Council (CSIC)/Juan de la Cierva and "V Own Research Plan" (University of
- 327 Seville), respectively.
- 328

1

329 CONFLICT OF INTEREST

- 330 The authors declare no competing financial interest.
- 331

332 **REFERENCES**

- 333 1. Grundy SM. Metabolic syndrome update. *Trends Cardiovasc Med* **26**:364-373 (2016).
- 2. Savinova OV, Fillaus K, Harris WS and Shearer GC. Effects of niacin and omega-3 fatty
- acids on the apolipoproteins in overweight patients with elevated triglycerides and

reduced HDL cholesterol. *Atherosclerosis* **240**:520-525 (2015).

- 337 3. Pang J, Chan DC, Hamilton SJ, Tenneti VS, Watts GF and Barrett PH. Effect of niacin
- on triglyceride-rich lipoprotein apolipoprotein B-48 kinetics in statin-treated patients with
- 339 type 2 diabetes. *Diabetes Obes Metab* **18**:384-391 (2016).
 - 340 4. Ooi EM, Watts GF, Chan DC et al. Effects of extended-release niacin on the postprandial
- 341 metabolism of Lp(a) and apoB-100-containing lipoproteins in statin-treated men with
- 342 type 2 diabetes mellitus. *Arterioscler Thromb Vasc Biol* **35**:2686-2693 (2015).
- 343 5. Goldberg RB and Jacobson TA. Effects of niacin on glucose control in patients with
 344 dyslipidemia. *Mayo Clin. Proc* 83:470-478 (2008).
- 345 6. Usman MH, Qamar A, Gadi R *et al*. Extended-release niacin acutely suppresses
- 346 postprandial triglyceridemia. *Am J Med* **125**:1026-1035 (2012).

347	7.	Lopez S, Bermudez B, Pacheco YM, Villar J, Abia R and Muriana FJ. Distinctive
348		postprandial modulation of beta cell function and insulin sensitivity by dietary fats:
349		monounsaturated compared with saturated fatty acids. Am J Clin Nutr 88:638-644 (2008).
350	8.	Lopez S, Bermudez B, Ortega A et al. Effects of meals rich in either monounsaturated or
351		saturated fat on lipid concentrations and on insulin secretion and action in subjects with
352		high fasting triglyceride concentrations. Am J Clin Nutr 93:494-499 (2011).
353	9.	Bermudez B, Ortega-Gomez A, Varela LM et al. Clustering effects on postprandial
354		insulin secretion and sensitivity in response to meals with different fatty acid
355		compositions. Food Funct 5:1374-1380 (2014).
356	10.	Oh PC, Koh KK, Sakuma I et al. Omega-3 fatty acid therapy dose-dependently and
357		significantly decreased triglycerides and improved flow-mediated dilation, however, did
358		not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J
359		<i>Cardiol</i> 176 :696-702 (2014).
360	11.	Jimenez-Gomez Y, Marin C, Perez-Martinez P et al. A low-fat, high-complex
361		carbohydrate diet supplemented with long-chain (n-3) fatty acids alters the postprandial
362		lipoprotein profile in patients with metabolic syndrome. J Nutr 140:1595-1601 (2010).
363	12.	Chen C, Yu X and Shao S. Effects of omega-3 fatty acid supplementation on glucose
364		control and lipid levels in type 2 diabetes: A meta-analysis. PLoS One 10:e0139565
365		(2015).
366	13.	Alberti KG, Eckel RH, Grundy SM et al. Harmonizing the metabolic syndrome: a joint
367		interim statement of the International Diabetes Federation Task Force on Epidemiology
368		and Prevention; National Heart, Lung, and Blood Institute; American Heart Association;
369		World Heart Federation; International Atherosclerosis Society; and International
370		Association for the Study of Obesity. Circulation 120:1640-1645 (2009).
	 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 	3477.348

371	14.	Bermudez B, Pedroche JJ, Varela LM et al, inventors. Emulsified composition of
372		saturated fat in water, its preparation and its use for assessing tolerance to triglycerides.
373		Patent PCT/ES2014/070427, WO/2014/191597 (2014).
374	15.	Cobelli C, Toffolo GM, Man CD et al. Assessment of β-cell function in humans,
375		simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral
376		glucose tests. Am J Physiol Endocrinol Metab 293:1-15 (2007).
377	16.	Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK and Zinman B. Hyperbolic
378		relationship between insulin secretion and sensitivity on oral glucose tolerance test.
379		<i>Obesity</i> 16 :1901-1907 (2008).
380	17.	Pillarisetti S. Potential drug combinations to reduce cardiovascular disease burden in
381		diabetes. Trends Pharmacol Sci 37:207-219 (2016).
382	18.	Pedrini MT, Niederwanger A, Kranebitter M et al. Postprandial lipaemia induces an
383		acute decrease of insulin sensitivity in healthy men independently of plasma NEFA levels.
384		<i>Diabetologia</i> 49 :1612-1618 (2006).
385	19.	Rijkelijkhuizen JM, Girman CJ, Mari A et al. Classical and model-based estimates of
386		beta-cell function during a mixed meal vs. an OGTT in a population-based cohort.
387		Diabetes Res Clin Pract 83:280-288 (2009).
388	20.	Khoury DE, Hwalla N, Frochot V, Lacorte JM, Chabert M and Kalopissis AD.
389		Postprandial metabolic and hormonal responses of obese dyslipidemic subjects with
390		metabolic syndrome to test meals, rich in carbohydrate, fat or protein. Atherosclerosis
391		210 :307-313 (2010).
392	21.	Monnier L, Colette C, Dunseath GJ and Owens DR. The loss of postprandial glycemic
393		control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care
394		30 :263-269 (2007).

JSFA@wiley.com

Journal of the Science of Food and Agriculture

2 3	395	22.	Lopez S, Bermudez B, Abia R and Muriana FJ. The influence of major dietary fatty acids
4 5 6	396		on insulin secretion and action. Curr Opin Lipidol 21:15-20 (2010).
7 8	397	23.	Rasmussen O, Lauszus FF, Christiansen C, Thomsen C and Hermansen K. Differential
9 10	398		effects of saturated and monounsaturated fat on blood glucose and insulin responses in
11 12	399		subjects with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 63:249-253 (1996).
13 14	400	24.	Blond E, Rieusset J, Alligier M. et al. Nicotinic acid effects on insulin sensitivity and
15 16 17	401		hepatic lipid metabolism: an in vivo to in vitro study. Horm Metab Res 46:390-396
18 19	402		(2014).
20 21	403	25.	Koh Y, Bidstrup H and Nichols DL. Niacin increased glucose, insulin, and C-peptide
22 23	404		levels in sedentary nondiabetic postmenopausal women. Int J Womens Health 6:913-920
24 25 26	405		(2014).
27 28	406	26.	Malin SK, Finnegan S, Fealy CE <i>et al.</i> β -Cell dysfunction is associated with metabolic
29 30	407		syndrome severity in adults. Metab Syndr Relat Disord 12:79-85 (2014).
31 32	408	27.	Nakamura K, Miyoshi T, Yunoki K and Ito H. Postprandial hyperlipidemia as a potential
33 34 35	409		residual risk factor. J Cardiol 67:335-339 (2016).
36 37	410	28.	Robertson MD, Jackson KG, Fielding BA, Williams CM and Frayn KN. Acute effects of
38 39	411		meal fatty acid composition on insulin sensitivity in healthy post-menopausal women. Br
40 41	412		J Nutr 88:635-640 (2002).
42 43 44	413	29.	Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P and Williams CM. Acute effects
45 46	414		of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for
47 48	415		insulin sensitivity and lipoprotein regulation? Br J Nutr 93:693-700 (2005).
49 50	416	30.	Xiao C, Giacca A, Carpentier A and Lewis GF. Differential effects of monounsaturated,
51 52 53	417		polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion,
55 55	418		sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia
56 57	419		49 :1371-1379 (2006).
58 59			

JSFA@wiley.com

420	31.	Campos H, Khoo C and Sacks FM. Diurnal and acute patterns of postprandial
421		apolipoprotein B-48 in VLDL, IDL, and LDL from normolipidemic humans.
422		Atherosclerosis 181:345-351 (2005).
423	32.	Lamon-Fava S, Diffenderfer MR, Barrett PH et al. Extended-release niacin alters the
424		metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins.
425		Arterioscler Thromb Vasc Biol 28:1672-1678 (2008).
426	33.	Campbell PJ, Carlson MG, Hill JO and Nurjhan N. Regulation of free fatty acid
427		metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol
428		263 :E1063-E1069 (1992).
429	34.	Carpentier AC, Frisch F, Cyr D et al. On the suppression of plasma nonesterified fatty
430		acids by insulin during enhanced intravascular lipolysis in humans. Am J Physiol
431		Endocrinol Metab 289:E849-E856 (2005).
432	35.	Ali AH, Mundi M, Koutsari C, Bernlohr DA and Jensen MD. Adipose tissue free fatty
433		acid storage in vivo: effects of insulin versus niacin as a control for suppression of
434		lipolysis. Diabetes 64:2828-2835 (2015).
435	36.	McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F and Frayn KN. Femoral
436		adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified
437		fatty acids. Diabetes 59:2465-2473 (2010).
438	37.	Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P and Williams CM. Increased
439		enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III
440		following saturated compared with unsaturated fatty acid-rich meals. Am J Clin Nutr
441		81 :25-34 (2005).
442		
443		
444		

Journal of the Science of Food and Agriculture

 Table 1. Baseline clinical and biochemical characteristics of participants.

	Value
Participants, n	16
Age (y)	38.5 ± 4.3
Examination	
Body mass index (kg/m ²)	31.8 ± 4.2
Waist circumference (cm)	124.5 ± 16.1
Waist-to-hip ratio	1.18 ± 0.12
Systolic blood pressure (mmHg)	134.1 ± 8.2
Diastolic blood pressure (mmHg)	84.9 ± 8.8
Investigations	
Total cholesterol (mmol/l)	5.2 ± 0.5
HDL-cholesterol (mmol/l)	1.01 ± 0.11
LDL-cholesterol (mmol/l)	3.49 ± 0.28
Triglycerides (mmol/l)	1.49 ± 0.16
Glucose (mmol/l)	5.34 ± 0.65
Insulin (pmol/l)	135 ± 18
C-peptide (pmol/l)	1192 ± 120
HbA_{1c} (%) ^a	5.2 ± 0.4

Data are mean \pm SD. These values were not statistical different when compared with those obtained in each occasion before the ingestion of the dose of immediate-release niacin and the corresponding high-fat meal or the meal with no fat. ^a33.0 \pm 0.2 in mmol/mol.

Table 2. Postprandial indices of β -cell function (IGI, IGI/HOMA-IR, AUC_{INS}/AUC_{GLU}, and DI_{120}) and insulin sensitivity [$IS_{0-\infty}$, $ISI(G)_{0-\infty}$, and $ISI(NEFA)_{0-\infty}$] after the test meals co-administered with a single-dose of immediate-release niacin.

	Meal with no fat	SFA meal	MUFA meal	MUFA + omega-3 LCPUFA meal
IGI 0-60 min ^a	60.4 ± 6.5	130.1 ± 15.9*	$75.8 \pm 10.2*$ †	85.2 ± 11.1*†
IGI/HOMA-IR ^b	1.89 ± 0.19	$4.46 \pm 0.55*$	$2.52 \pm 0.26*$ †	$2.78 \pm 0.37*$ †
AUC _{INS} /AUC _{GLU} 0-120 min ^a	31.4 ± 2.8	$46.2 \pm 4.1*$	$34.7 \pm 2.5*$ †	$37.2 \pm 3.9*$ †
<i>DI</i> ₁₂₀ 0-120 min ^c	85.3 ± 6.1	106.9 ± 8.5*	92.0±5.6*†	94.8 ± 7.9*†
$IS_{\theta-\infty}$ 0-360 min ^d	486 ± 37	$138 \pm 13*$	225 ± 16*†	216 ± 20 *†
Postprandial-Belfiore index for glycemia $[ISI(G)_{\theta-\infty}]$ 0-360 min ^c	1.00 ± 0.08	$0.68 \pm 0.06*$	0.80 ± 0.07 *†	$0.78 \pm 0.08*$ †
Postprandial-Belfiore index for blood NEFA [<i>ISI(NEFA</i>) _{0-∞}] 0-360 min ^c	1.00 ± 0.09	$0.55 \pm 0.05*$	$0.68 \pm 0.06*$ †	$0.69 \pm 0.09*$ †

Data are mean \pm SD (n = 16). Statistical differences are based on repeated-measures ANOVA

with a Bonferroni correction. *P < 0.05 vs. meal with no fat; *P < 0.05 vs. SFA meal;

^apmol/mmol; ^bl/mmol; ^cno units; ^dmin⁻¹ × dl × kg⁻¹/ μ U/ml.

Figure 1. Postprandial graphs for (A) glucose, (B) insulin, (C) C-peptide, (D) triglycerides, (E) FFAs, (F) total cholesterol, (G) HDL-cholesterol, and (H) LDL-cholesterol after the ingestion of the dose of immediate-release niacin and the meal with no fat, control meal

(white circle), rich in SFAs (black circle), rich in MUFAs (white square) or rich in MUFAs+omega-3 LCPUFAs (black square). *P < 0.05 between the high-fat meals and the control meal; $\dagger P < 0.05$ between the MUFA meals and the SFA meal. The time effect and meal × time interaction were significant (P < 0.05), except for glucose, total cholesterol, HDL-cholesterol, and LDL-cholesterol.

SUPPORTING INFORMATION

- Fatty acid composition of dietary fats.
- Fasting values on triglycerides, free fatty acids, glucose, insulin, and C-peptide.
- Fasting values on β-cell function and insulin action.

ONLINE SUPPORTING INFORMATION

Supporting Table 1. Fatty acid composition of dietary fats.

	Cow's milk cream	Olive oil	Olive oil + omega-3 LCPUFAs
Fatty acid		g/100 g of fatty acid	
4:0, butyric	0.83 ± 0.16	-	-
6:0, caproic	0.25 ± 0.02	-	-
8:0, caprylic	0.61 ± 0.07	-	-
10:0, capric	2.47 ± 0.13	-	-
12:0, lauric	3.09 ± 0.42	-	-
14:0, myristic	10.9 ± 0.91	-	-
16:0, palmitic	35.50 ± 0.82	20.44 ± 0.89	20.48 ± 0.64
16:1(ω-7), palmitoleic	3.60 ± 0.32	0.97 ± 0.17	0.82 ± 0.12
18:0, stearic	11.54 ± 0.75	5.70 ± 0.11	4.49 ± 0.36
18:1(\u00fc-9), oleic	25.33 ± 0.71	61.90 ± 1.23	61.51 ± 0.97
18:2(ω-6), linoleic	4.27 ± 0.82	7.97 ± 0.65	8.04 ± 0.53
18:3(ω-3), α-linolenic	0.39 ± 0.05	1.04 ± 0.13	0.94 ± 0.03
20:5(ω-3), eicosapentaenoic	-		0.92 ± 0.09
22:6(ω-3), docosahexaenoic	-	- 6	0.72 ± 0.10
Others	0.96 ± 0.42	2.05 ± 1.08	2.01 ± 0.88

Data are mean \pm SD (n = 3).

Supporting Table 2. Fasting values on the day of administration of the test meals and responses (iAUC) to the test meals¹ co-administered with a single-dose of immediate-release niacin at early (0-t₁ min), late (t₁-t₂ min), and complete (t₂-360 min) postprandial periods for triglycerides, FFAs, glucose, insulin, and C-peptide.

	Meal with no fat	SFA meal	MUFA meal	MUFA + omega- 3 LCPUFA meal
Fasting triglycerides ²	1.49 ± 0.16	1.53 ± 0.23	1.51 ± 0.18	1.53 ± 0.22
Triglycerides iAUC _{0-60 min} ³	18.6 ± 2.4	$89.0 \pm 12.5*$	$90.9\pm10.1*$	$80.4 \pm 9.6*$
Triglycerides iAUC _{60-360 min} ³	35.4 ± 4.2	$204.7 \pm 28.6*$	$140.2 \pm 19.6*$ †	$139.7 \pm 22.5*$ †
Triglycerides iAUC _{0-360 min} ³	54.0 ± 5.0	$293.7 \pm 49.2*$	$231.1 \pm 30.0*$ †	$220.1 \pm 28.1*$ †
Fasting FFAs ⁴	441 ± 35	447 ± 45	462 ± 37	453 ± 69
FFA iAUC _{0-120 min} ⁵	-60177 ± 7203	$-50226 \pm 5195*$	$-51348 \pm 4070*$	$-50148 \pm 6052*$
FFA iAUC _{120-360 min} ⁵	-20490 ± 2451	$-14670 \pm 1318*$	-20790 ± 1455 †	-22218 ± 2433 †
FFA iAUC _{0-360 min} ⁵	-80667 ± 7550	$-64896 \pm 6001*$	$-72138 \pm 6512*$ †	$-72366 \pm 7091*$ †
Fasting glucose ²	5.34 ± 0.65	5.36 ± 0.63	5.48 ± 1.01	5.44 ± 0.86
Glucose iAUC _{0-60 min} ³	166 ± 19	152 ± 21	171 ± 36	159 ± 24
Glucose iAUC _{60-360 min} ³	-144 ± 13	-129 ± 15	-147 ± 21	-135 ± 23
Glucose iAUC _{0-360 min} ³	21.5 ± 2.9	23.7 ± 2.9	23.8 ± 4.2	23.5 ± 3.6
Fasting insulin ⁶	135 ± 18	122 ± 14	122 ± 19	127 ± 14
Insulin iAUC _{0-60 min} ⁷	10000 ± 1289	46853 ± 4650	26377 ± 4615*†	$26996 \pm 3778*$ †
Insulin iAUC _{60-360 min} ⁷	-5896 ± 702	13514 ± 1784	$6259 \pm 924*$ †	$6734 \pm 578*$ †
Insulin iAUC _{0-360 min} ⁷	4104 ± 507	33339 ± 4010	19458 ± 3173*†	20262 ± 2182*†
Fasting C-peptide ⁶	1192 ± 86	1169 ± 153	1194 ± 75	1242 ± 142
C-peptide iAUC _{0-60 min} ⁷	50244 ± 4094	$73830 \pm 8456*$	$61526 \pm 6383*$ †	$59580 \pm 7642*$ †
C-peptide iAUC _{60-360 min} ⁷	-14029 ± 1231	$86317 \pm 11002*$	$36599 \pm 3193*$ †	32225 ± 3115*†
C-peptide iAUC _{0-360 min} ⁷	36215 ± 2722	$160147 \pm 19891*$	98125 ± 10775*†	91805 ± 11872*†

¹Participants ingested either a control meal (containing no fat) or a meal enriched in SFAs, MUFAs or MUFAs+omega-3 LCPUFAs. Data are mean \pm SD (n = 16). Statistical differences are based on repeated-measures ANOVA with a Bonferroni correction. *P < 0.05 vs. meal

with no fat, $\dagger P < 0.05$ vs. SFA meal; ²mmol/l; ³mmol/min/l; ⁴µmol/l; ⁵µmol/min/l; ⁶pmol/l; ⁷pmol/min/l.

Supporting Table 3. Fasting indices of β -cell function (HOMA-B and DI_0), insulin resistance (HOMA-IR and rQUICKI), and insulin sensitivity (*ISI*₀ for glycemia and *ISI*₀ for blood NEFAs) on the day of administration of the test meals and a single-dose of immediate-release niacin.¹

	Prior to the meal with no fat	Prior to the SFA meal	Prior to the MUFA meal	Prior to the MUFA + omega-3 LCPUFA meal
HOMA-B ²	244 ± 29	219 ± 30	208 ± 30	218 ± 34
$D{I_0}^3$	7.6 ± 0.8	7.5 ± 0.9	6.9 ± 0.8	7.1 ± 1.0
HOMA-IR ⁴	32.0 ± 3.4	29.2 ± 3.9	30.1 ± 4.3	30.6 ± 4.2
rQUICKI ⁵	0.60 ± 0.07	0.61 ± 0.08	0.60 ± 0.09	0.60 ± 0.10
Basal-Belfiore index for glycemia $[ISI(G)_0]^6$	1.00 ± 0.09	1.10 ± 0.13	1.06 ± 0.14	1.04 ± 0.12
Basal-Belfiore index for blood NEFAs [ISI(NEFA)]	1.00 ± 0.07	1.08 ± 0.11	1.04 ± 0.09	1.04 ± 0.14

¹Data are mean \pm SD (n = 16). Statistical differences are based on repeated-measures

ANOVA with a Bonferroni correction. There were no significant differences between the

groups for all of the indices; ²pmol/mmol; ³mmol⁻² × l^{-2} ; ⁴pmol × mmol × l^{-2} ; ⁵pmol × mmol ×

1⁻²; ⁶no units.

Supporting Figure 1. Overview of subject recruitment and flow through the protocol. NA, niacin

