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Heavy ion double charge exchange reactions are described by sequential meson-exchange, corresponding 
to a double single charge exchange (DSCE) reaction mechanism. The theoretical formulation is discussed. 
The fully quantum mechanical distorted wave 2-step calculations are shown to be reproduced very well 
by approximating the intermediate propagator by its pole part. The role of ion-ion elastic interactions 
is discussed. As a first application, calculations are performed for the reaction 40Ca(18O, 18Ne)40Ar at 
15 AMeV. Results are compared to the data measured at LNS by the NUMEN Collaboration. Formal 
analogies between the nuclear matrix elements (NME) involved in DSCE reactions and in double β-decay
are pointed out.
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1. Introduction

Nuclear double charge exchange (DCE) reactions are of large 
current interest after it was realized that they give access to a 
hitherto hardly explored sector of nuclear excitations. In early DCE 
studies, the focus was on aspects of the dynamics of proton and 
neutron pair transfer [1,2] which at that time was thought to be 
the dominant reaction mechanism of heavy ion DCE scattering. 
About a decade later, Blomgren et al. [3] attempted to measure the 
double-Gamow-Teller resonance (DGTR) in a heavy ion DCE reac-
tion which, however, at that time was not successful. Only recently, 
it was realized that under appropriate conditions DCE reactions 
are the perfect tool for spectroscopic nuclear structure investiga-
tions [4,5], being also of high interest for the nuclear structure 
aspects underlying exotic weak interaction processes. That change 
of paradigm relies on the observation that under appropriate con-
ditions isovector nucleon-nucleon (NN) interactions will be the 
driving forces, thus extending the longstanding experience with 
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single charge exchange (SCE) reactions [6–9] to higher order pro-
cesses. By obvious reasons, that conjecture can be explored the 
best by peripheral coherent reactions with complex nuclei, leading 
to ejectiles with particle-stable �Z = ±2 final states. A distinct 
advantage of heavy ion scattering over the former (π+, π−)-DCE 
reactions [10–12] is the much easier experimental availability and 
handling of ion beams.

In this work, we propose a new reaction mechanism for periph-
eral heavy ion DCE reactions at energies well above the Coulomb 
barrier. We investigate the conditions under which such reactions 
can be described as a double single charge exchange (DSCE) pro-
cess, driven by collisional NN interactions, thus extending our in-
vestigations in Refs. [13,14] to higher order processes. We will not 
consider transfer DCE which, in fact, has been found to be neg-
ligible for the reactions considered here [15,16]. A formalism is 
developed for the description of DCE reactions by two consecutive 
�Z = ±1 SCE steps. In a DCE reaction, however, the SCE processes 
are contributing off-the-energy shell as intermediate processes. 
Hence, their description requires special attention. An important 
point is the proper treatment of the strongly absorptive elastic 
ion-ion interactions for which we use a microscopic optical model 
potential. The spectroscopic aspects are described by Hartree-Fock-
Bogoliubov (HFB) and Quasiparticle Random Phase (QRPA) theory 
following the microscopic approach presented in [13].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Schematic representation of a two-step double charge exchange transition as 
two consecutive single charge exchange processes.

As a further new aspect, we explore the prospects for linking 
nuclear matrix elements (NME) extracted from DCE cross sections 
to NME of second order weak processes. We will show that the 
DCE reaction amplitudes have a striking formal similarity to the 
NME of 2ν2β decay. While the latter are rare events, heavy ion 
DCE reactions can be studied suitably under well defined labora-
tory conditions. In particular, the feasibility of measuring a heavy 
ion DCE reaction has been recently proved, on the example of the 
reaction 18O +40Ca →18Ne +40Ar at E/A = 15 AMeV, indeed hint-
ing towards a direct mechanism [17]. A complication to be dealt 
with in a DCE reaction is the convolution of the SCE spectra of the 
intermediate projectile- and target-like nuclei. Since that occurs 
at half off-shell conditions, the knowledge of the corresponding 
on-shell SCE cross sections is only of limited advantage. On the 
theoretical level, the problem is well under control as will be seen 
by the results discussed below, although inevitably hampered by a 
certain degree of model dependence – as is true for SCE reactions 
with light and heavy projectiles as well. For SCE reactions, how-
ever, appropriate methods are already available for the extraction 
of single–beta decay NME [13,18–21].

The paper is organized as it follows: In section 2 the theoretical 
framework for DSCE reactions is presented. Two practical descrip-
tions for cross section evaluations are discussed which emphasize 
different aspects of sequential DCE reactions. Results of numerical 
calculations for the afore mentioned reaction 18O +40Ca →18Ne 
+40Ar are discussed in section 3. In section 4 we break down 
the reaction amplitude into a form displaying explicitly the con-
nections to double β-decay. The paper closes with a summary, 
conclusions, and an outlook in section 5.

2. Theoretical framework of DSCE reactions

2.1. General aspects of two-step DCE reactions

The formalism developed here applies to heavy ion DCE reac-
tions of the kind

a
za + A

Z A → a
z±2b + A

Z∓2 B (1)

with special emphasis on the collisional NN-mechanism.
The reaction, leading from the entrance channel α = {a, A} to 

the exit channel β = {b, B}, changes the charge partition by a 
balanced redistribution of protons and neutrons. The two reac-
tion partners are acting mutually as the source or sink, respec-
tively, of the charge-transferring virtual meson fields, as depicted 
in Fig. 1.

The differential DCE cross section is defined as
dσαβ = mαmβ

(2π h̄2)2

kβ

kα

1

(2 Ja + 1)(2 J A + 1)

×
∑

Ma,MA∈α
Mb,MB∈β

∣∣∣M DC E
αβ (kα,kβ)

∣∣∣2
d�, (2)

where kα (kβ ) denotes the relative 3-momentum and mα (mβ ) 
is the reduced mass. { JaMa, J AMA · · · } and { JbMb, J BMB · · · }
account for the full set of (intrinsic) quantum numbers specifying 
the initial and final channel states, respectively.

The DCE reaction mechanism is assumed as a sequence of two 
uncorrelated SCE events, each one mediated by the action of the 
isovector NN-interactions, acting between projectile and target and 
leading to pn−1 and np−1 particle-hole excitations or vice versa, 
respectively. After the first SCE event the system propagates undis-
turbed until the second interaction. Thus, the reaction proceeds 
as a double single charge exchange process, which by the num-
ber of separate projectile-target interactions is a two-step reaction 
[22,23].

The reaction matrix element, connecting incident and final 
channels is readily written down as a quantum mechanical am-
plitude in distorted wave approximation (DWA):

MD SC E
αβ (kα,kβ)≈〈χ(−)

β ,bB|TN NGTN N |aA,χ
(+)
α 〉, (3)

corresponding to second order perturbation theory in the resid-
ual charge-transferring interaction T N N but being non-perturbative 
in the initial state (ISI) and final state (FSI) ion-ion interac-
tions. The latter are accounted for, to all orders, by the distorted 
waves χ(±)

α,β (r) with asymptotically outgoing and incoming spheri-
cal waves, respectively.

The anti-symmetrized nucleon-nucleon T-matrix TN N was dis-
cussed in breadth in [13]. Central and rank-2 tensor interac-
tions are included, covering the full spectrum of spin-independent 
Fermi-type (S = 0, T = 1) and spin-dependent Gamow-Teller-type 
(S = 1, T = 1) operators of all multipolarities.

The off-shell propagation of the system in the intermediate 
�Z = ±1 channels is described by the full many-body Green’s 
function G , expanded in terms of the eigenstates of the intermedi-
ate projectile-like (c) and target-like (C ) nuclei as

G =
∑
γ =cC

|cC〉G(+)
γ (ωα)〈cC |. (4)

The relative motion degrees of freedom are described by the chan-
nel Green’s functions with asymptotically outgoing spherical waves

G(+)
γ (ωα) =

∫
d3kγ

(2π)3
|χ(+)

γ 〉 1

ω
(+)
α − ωγ

〈χ̃ (+)
γ | (5)

where ω(+)
α = ωα + i0+ is located in the upper half of the com-

plex plane, see e.g. [24]. The energy denominator depends on the 
total centre-of-mass energies of the system in the entrance and in-
termediate channels, respectively. In non-relativistic notation, we 
have

ωα = Ma + M A + k2
α

2mα
ωγ = Mc + MC + k2

γ

2mγ
, (6)

where ωα = √
sα is fixed by the Mandelstam variable sα . Ma , 

M A (and Mc , MC ) denote the nuclear masses in the initial and 
intermediate channel, the latter including excitation energies. kγ

indicates the (off-shell) relative momentum in the intermediate 
channel.

The Green function is given by a bi-orthogonal set of distorted 
waves χ

(±)
γ and their dual counterparts χ̃

(±)
γ [24], accounting 
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properly for the elastic ion-ion-interactions with diffractive and 
strongly absorptive potential components.

We apply to the right hand side of the Eq. (5) the completeness 
relation∫

|χ̃ (−)
γ 〉 d3kγ

(2π)3
〈χ(−)

γ | = 1 (7)

and use

〈χ̃ (+)
γ |χ̃ (−)

λ 〉 = (2π)3 S̃†
γ (kγ )δγ λδ(kγ − kλ) (8)

where S̃γ is the dual S-matrix associated with the hermitian con-
jugate channel Hamiltonian, i.e. with a creative optical potential. 
Thus, the channel propagator becomes

Gγ (ωα) =
∫

d3kγ

(2π)3
|χ(+)

γ 〉 S̃†
γ (kγ )

ω
(+)
α − ωγ

〈χ(−)
γ |. (9)

Inserting Eq. (9) into Eq. (3), the DSCE transition matrix element 
reads

MD SC E
αβ (kα,kβ) =

∑
γ =c,C

∫
d3kγ

(2π)3

×MSC E
γ β (kγ ,kβ)

S̃†
γ (kγ )

ω
(+)
α − ωγ

MSC E
αγ (kα,kγ ) (10)

showing that the DCE transition amplitude can be expressed as 
superposition of reaction amplitudes MSC E

αγ and MSC E
βγ , into and 

out of the intermediate channels γ , respectively.

2.2. The convolution approach

The Cauchy principal value parts of the DSCE amplitudes have 
the tendency to be suppressed because of compensating positive 
and negative contributions. To a good approximation, they can be 
neglected and we may evaluate the convolution integral of the two 
SCE amplitudes in Pole Approximation (PA), amounting to project 
the modulus kγ to its on-shell value, defined by ωγ = ωα :

MD SC E
αβ (kα,kβ) ≈ −iπ

∑
γ =c,C

kγ mγ

×
∫

d�γ

(2π)3
MSC E

γ β (kγ ,kβ) S̃†
γ (kγ )MSC E

αγ (kα,kγ ).

(11)

This kind of approach maintains the character of the DCE reaction 
as a sequence of two independent SCE reactions. In PA the reac-
tion amplitude displays that property by the convolution of two 
on-shell SCE amplitudes which, in principle, are accessible in SCE 
reactions. However, in practice this would mean to identify SCE 
transitions up to very high excitation energies.

As seen below, Eq. (11), leads to an astonishingly good repro-
duction of the full two-step DWA cross sections. However, for the 
sake of a deeper insight into the essentials of the DSCE reaction 
mechanism, further reductions are extremely valuable. For exam-
ple, additional steps are necessary for the extraction of spectro-
scopic information out of measured cross sections, because from 
Eq. (11) the relation of the DSCE reaction amplitude to projec-
tile and target nuclear matrix elements is not immediately clear. 
A caveat is the presence of initial state and final state interactions.

In order to quantify those effects a separation of elastic ion-ion 
interactions and nuclear structure effects is helpful. In momentum 
representation, the SCE amplitudes are given as [13]

MSC E
αγ =

∫
d3 pNαγ (p,kα,kγ )U SC E

αγ (p) (12)
and for the second SCE amplitude accordingly. The transition po-
tential U SC E

αγ = 〈ϕk′ , cC |TN N |aA, ϕk〉 corresponds to the reaction 
amplitudes evaluated with plane waves ϕk and p = k − k′ . Their 
structure for central interactions is

U SC E
αγ (p) =

∑
S=0,1,T =1

V (C)
ST (p2)

×〈c|RST (p,1a)|a〉 · 〈C |RST (p,2A)|A〉, (13)

where the bilinear forms of one-body operators [13]

RST (p,k) = eip·rk (σ k)
S (τ k)

T , (14)

acting in projectile (k =1) or target (k = 2), respectively, have 
been introduced. Expressions for rank-2 spin-tensor interactions 
are found in [13]. The connection of the transition potentials to 
nuclear matrix elements will be discussed in section 4.

Elastic ion-ion interactions are accounted for by the distortion 
coefficient

Nαγ (p,kα,kγ ) = 1

(2π)3
〈χ(−)

γ |eip·r|χ(+)
α 〉

which can be considered as a half off-shell extension of the S-
matrix, approaching in the plane wave (PW) limit N (P W )

αγ = δ(p +
kα − kγ ). In [13], the distortion coefficients were investigated in 
detail for SCE reactions. For the present case, it is important that 
Nαγ can be decomposed into a forward component, given by an 
absorption factor nαγ and a residual distortion form factor which 
we neglect in the following. Hence, we use in forward scattering 
approximation

Nαγ (kα,kγ ) � nαγ δ(p + kα − kγ ). (15)

That leads in Eq. (10) to a product of two distortion residues and 
the dual S-matrix. The absorptive effects from the intermediate 
channels are cancelled to a large extent by the dual S-matrix which 
allows to replace the product of the two distortion coefficients 
and the dual S-matrix by the residue Nαβ = 〈nγ β S̃†

γ nαγ 〉γ , ap-
propriately averaged over the intermediate channels. Thus, at low 
momentum transfer the DSCE amplitude is given approximately by

MD SC E
αβ (kα,kβ) ≈ Nαβ(kα,kβ)

∑
γ =c,C

×
∫

d3kγ

(2π)3
U SC E

γ β (kγ − kβ)
1

ωα − ωγ + iη
U SC E

αγ (kα − kγ )

(16)

by which one can separate nuclear and reaction dynamics. This ex-
pression can be reduced further by the pole approximation as in 
Eq. (11). Finally, Eq. (16) implies that, at small momentum trans-
fer, ISI and FSI effects are restored into the matrix elements by 
replacing the PW amplitudes U SC E

κλ by amplitudes evaluated with 
distorted waves in the incoming α and the outgoing β channel, 
but retaining the plane waves in the intermediate channels γ .

2.3. The separation approach

In this section, an approach is presented which allows the sep-
aration of the DCE reaction amplitude into a nuclear structure and 
a reaction part by exploiting the distorted wave completeness re-
lation. That requires to go somewhat deeper into the multipole 
structure of DCE reaction amplitudes. The SCE transition form fac-
tors, expressed in coordinate representation, as a function of the 
distance between projectile and target centres of mass, read:

Fαγ (r) =
∑

〈cC |V (C)
ST (σ a · σ A)Sτ a · τ A |aA〉 (17)
S=0,1
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They are expanded into multipole form factors

Fαγ (r) =
∑
λμ

∑
λcλC

AλcλC
Sλ F(SλcλC )λμ(r) (18)

where angular momentum coupling coefficients involving the nu-
clear spins are not shown explicitly, but for which we refer to 
Ref. [13]. The A-coefficients contain the remaining coupling of the 
projectile and target multipoles (λc and λC , respectively) to the re-
sulting total angular momentum transfer λ with projection μ. The 
form factors are parameterized in terms of transition amplitudes 
βSλk and reduced form factors of unit transition strength:

F(SλcλC )λμ(r) =
[
βac

Sλc
β AC

SλC

]
U Sλμ(r), (19)

as practised successfully in the Multi Step Direct Reaction (MSDR)-
theory of [27–29]. For practical purposes, it is useful to define the 
coupled spectroscopic amplitudes

β
ac,AC
Sλ =

∑
λcλC

AλcλC
Sλ βac

Sλc
β AC

SλC
(20)

With corresponding expressions for the second step form factor, 
the summation over the intermediate states leads to the spectro-
scopic densities

ρ
S1 S2
λ1λ2

(ωα,kγ )

=
∑
cC

β
cb,C B
S2λ2

β
ac,AC
S1λ1

ω
(+)
α − Mc − MC − k2

γ /2mγ

(21)

In the energy denominator, we replace kγ by an average value k̄. 
By this manipulation, the propagator and the kγ –integration are 
decoupled. The latter leads to the DW completeness relation in the 
intermediate channel, so that the reaction amplitude becomes

MD SC E
αβ ≈

∑
S1λ1μ1,S2λ2μ2

ρ
S1 S2
λ1,λ2

(ωα, k̄)

×〈χ(−)
β |U S2λ2μ2 U S1λ1μ1 |χ(+)

α 〉. (22)

An irreducible representation is obtained by further coupling the 
two reduced form factors to total angular momenta. Thus, the DCE 
process is described by a reduced DWA reaction amplitude fully ac-
counting for the reaction dynamics. The two-step character of the 
DCE process leads to the special kind of form factor. The nuclear 
structure aspects of the sequential DCE process are contained in 
the spectroscopic density combining the SCE response of projectile 
and target. The β-amplitudes are related to the reduced beta-decay 
matrix elements in the same way as known from the so-called col-
lective model for inelastic scattering [24]. Theoretically, they are 
fixed by the nuclear SCE response functions as fractions of multi-
pole sum rules which in parallel determine also the reduced form 
factors U Sλμ [27–29].

3. Results

3.1. Numerical details

The theory is of general applicability without constraints nei-
ther on the kind of transition nor on the multipolarity.

The nuclear ingredients are obtained on the basis of the Giessen 
EDF (GiEDF) approach [25,26] with Hartree Fock Bogolubov (HFB) 
ground state densities and on top of them charged current QRPA 
(ccQRPA) calculations. In the reaction calculations, microscopic op-
tical potentials are used. They were obtained by folding the HFB 
one-body ground-state densities of projectile and target with the 
isoscalar and isovector parts of the (anti-symmetrized) NN T-
matrix of Ref. [30]. As discussed in [13,14] ccQRPA calculations 
are performed to evaluate the SCE projectile and target transition 
densities. The projectile and target transition form factors were ob-
tained by folding the ccQRPA transition densities with the central 
and rank-2 tensor parts of the anti-symmetrized NN T-matrix of 
Ref. [30]. All folding calculations were done in momentum repre-
sentation.

Two kinds of reaction calculations were performed: The full 
partial wave two-step formalism, as discussed e.g. in [27–29], was 
used in solving the set of inhomogeneous scattering equations by 
direct numerical integration, as available by the computer code 
FRESCO [31]. These results serve as benchmark calculations for 
the approximations discussed in section 2. In parallel, independent 
calculations using the perturbation theoretical formalism were per-
formed: Single charge exchange form factors, the DWA reaction 
amplitudes and the corresponding cross sections were calculated 
by our standard DWA-SCE computer code package HIDEX [32]. As 
found in Ref. [13], the calculation of the SCE reaction amplitudes 
requires a quite involved angular momentum algebra to couple the 
intrinsic nuclear angular momenta to the resulting total orbital an-
gular momentum, by which the multipolarity observed at the level 
of the cross section is determined. In general, one finds

MSC E
αβ (kα,kβ) =

∑
�α,�β ;�m

C
�α�β�

Ja J A Jb J B

×M�α�β�(kα,kβ)
[
Y�α (�α)Y�β (�β)

]
�m

(23)

where the C-coefficients describe the recoupling of nuclear spins 
Ja,b and J A,B , respectively, to the angular momenta � acting in the 
ion-ion relative motion sector. The situation simplifies, however, 
for the DCE (0+

a , 0+
A ) → (0+

b , 0+
B ) case as here. Then, the transitions 

into and out of the intermediate states necessarily must proceed 
through the same kind of multipolarity �, leading to a total angular 
momentum transfer L = 0. In particular, for (0+

a , 0+
A ) → (0+

b , 0+
B )

transitions, the total angular momentum transfer in projectile and 
target JP ,T = LP ,T + SP ,T is constrained to J P ,T = 0 where each 
of the angular momenta is the (vectorial) sum of the angular mo-
menta of the first and second transition. This allows a total spin 
transfer of S P ,T = 0, 2 and consequently L P ,T = 0, 2. Finally, pro-
jectile and target always combine to a total spin transfer S = 0
and, correspondingly, to a total angular momentum transfer L = 0.

3.2. The reaction 18 O  + 40Ca → 18Ne + 40 Ar

As an illustrative application, we consider the data available for 
the reaction 18O +40Ca →18Ne +40Ar at Tlab = 270 MeV, which 
has been the object of recent experimental investigations [17]. We 
focus on the simplest case, namely 0+

gs → 0+
gs transitions both in 

projectile and target. The intermediate channels of this DCE re-
action are defined by the odd-odd nuclei 18 F and 40 K , which 
are both of a quite complex spectroscopic structure: rather dense 
spectra with a number of high-spin levels are observed close to 
18 F (1+, g.s.) as well as in close vicinity to 40 K (4−, g.s.). A detailed 
survey of the corresponding spectra and their rather successful 
description by our ccQRPA is found in [13,14]. Here, the ccQRPA 
spectral distributions and transition densities for 18 O (0+, g.s.) →
18 F ( Jπ , Ex) and 40Ca(0+, g.s.) → 40 K ( Jπ , Ex) are used to calcu-
late form factors, transition potentials, and the SCE reaction ampli-
tudes.

We start following the convolution approach. For the sake of 
simplicity, to check the quality of our calculations and to investi-
gate the relevance of the distortion effects, we first include only 
one single intermediate channel. In particular, we consider the 
transition with total angular momentum and parity transfer Jπ =
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Fig. 2. Angular distribution of the differential cross section for the DCE reaction 
18O + 40Ca → 18Ne + 40Ar at 15 AMeV, as obtained within PWA (black thin lines) 
and DWA (red thick lines). Only one intermediate channel is considered (see text). 
Our simulations (dashed lines) are compared to the results of the FRESCO code (full 
lines). The dot-dashed blue curve refers to an hybrid calculation with plane waves 
in the intermediate channel, thus modelling the separation approach, Eq. (16).

1+ for both projectile and target nuclei, leading to the ground state 
of 18 F and to the first excited 1+ state at Ex = 2.29 MeV of 40 K . 
These states correspond to the Gamow-Teller transitions discussed 
in Ref. [13]. The SCE amplitudes were used to construct the sec-
ond order integral of Eq. (11) which was evaluated numerically. An 
instructive exercise is to compare results of calculations in plane 
wave approximation (PWA) and in DWA, giving insight on the ef-
fects of elastic ion-ion interactions in DCE reactions. In Fig. 2 we 
show the angular distributions obtained by second order PWA and 
DWA calculations for the reaction considered.

That figure contains a number of important messages for fu-
ture research on heavy ion DCE reactions. First of all, ISI and FSI 
effects suppress cross sections by many orders of magnitudes as 
a result of the strong absorption, showing that |Nαβ |2 ∼ 10−5. 
As discussed in [13], the quenching will increase rapidly with in-
creasing target and/or projectile mass. The suppression decreases 
with incident energy which, however, at realistically accessible en-
ergy scales hardly compensates the mass-dependent quenching. 
One can also observe that our numerical calculations, based on 
Eq. (11), i.e. adopting the PA (dashed lines), reproduce quite well 
the FRESCO results (full lines).

The results show a strong influence of the optical model po-
tentials on the diffraction structure of angular distributions, super-
imposing those reflecting the reaction form factor properties. In 
Fig. 2, this is realized by comparing the DWA results (dashed red 
line) to the results which were obtained considering plane waves 
in the intermediate channel (dot-dashed blue line). The latter cal-
culation is able to reproduce the DWA cross section at very small 
angles, but exhibits a quite flat angular distribution. These results 
indicate both the virtue and the limitations of the scaling ap-
proach, Eq. (16): At vanishing momentum transfer, the magnitude 
of the full DWA two-step cross section is rather well described, 
but the scaling approach is unable to account for the diffraction 
structure at larger momentum transfer, thus restricting that kind 
of approach to forward angles.

We now move to discuss the results obtained considering an 
extended spectrum of intermediate states. We have taken into ac-
count intermediate transitions up to Ex = 15 MeV and 0± ≤ Jπ ≤
5± , for both 18 F and 40 K , using the ccQRPA results discussed 
in Ref. [13]. In total, the DCE spectrum includes the mixture of 
double S1 = S2 = 0 (non-spinflip) and S1 = S2 = 1 (spinflip) tran-
Fig. 3. Experimental angular distribution for the DCE reaction 18Ogs + 40Cags →
18Negs + 40Args at 15 AMeV [17] compared with DSCE calculation performed with 
only one intermediate state (red dashed line), and considering the full virtual in-
termediate state integration (blue full line). Both cross sections are folded with the 
experimental angular resolution (�θexp = 0.6◦).

sitions (where the indices 1 and 2 refer to first and second step, 
respectively), both coupled to total S = 0 when combining projec-
tile and target. The calculations include rank–2 tensor interactions. 
According to the considered Jπ range, several multipolarities can 
be excited in the intermediate state, for both projectile and target, 
provided they are compatible with the DCE 0+ → 0+ transition in 
both nuclei. It has been checked that our choice leads to conver-
gent results. Calculations have been performed following the (more 
easy to handle) formalism provided by Eq. (22), where energy con-
servation has been imposed to determine the average value k̄.

Results are shown in Fig. 3 and compared to the NUMEN ex-
perimental data, where the theoretical angular distributions were 
folded with the experimental angle resolution. The DWA results 
of Fig. 2, with only one intermediate state, are also shown for 
comparison. By the inclusion of the full spectrum of intermediate 
channels, the calculations come close to the data without addi-
tional adjustment. The shape of the angular distribution is domi-
nated by the L = 0 characteristics. The diffraction structure of the 
DWA angular distributions is more pronounced than observed ex-
perimentally. Also, a slight apparent underestimation of the data 
at certain forward angles is seen. Since we can exclude admixtures 
of transfer processes, with all care, these remaining discrepancies 
may indicate contributions of processes of an origin different from 
the DSCE reaction mechanism, e.g. the two-nucleon scenario dis-
cussed in [14].

4. Analogies to double β–decay

We emphasize that the DSCE theory introduced above is a suit-
able approach for the quantitative description of (sequential) DCE 
reactions. This microscopic approach is self–contained in the sense 
that nuclear structure and reaction dynamics are described in a 
fully compatible manner. The same nuclear structure will enter of 
course into calculations of NME for single and double beta–decay 
matrix elements – which, however, is not an issue for this let-
ter. The aim of this section is to elucidate the connections of DSCE 
theory to nuclear spectroscopy on a more formal level and to point 
more explicitly to the physics content.

The ccQRPA calculations are done by the polarization propa-
gator method which amounts to avoid setting up large matrices 
but solves the Dyson–equation for the QRPA–Green function – as 
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used for the SCE investigations in [13]. Within that formalism and 
the convolution approach, the reaction amplitude, Eq. (16), can be 
written as:

MD SC E
αβ (kα,kβ) ≈

Nαβ

∑
S S ′

∫
d3kγ

(2π)3
�

(C)

S S ′(qγ β,qαγ )

∮

C+

dω

2iπ

�
(ab)

S S ′ (Tα − ω − Tγ |qγ β,qαγ ) ⊗ �
(AB)

S S ′ (ω|qγ β,qαγ ) (24)

where the expression given in Eq. (13) for the transition potential 
U SC E has been used, and projectile and target contributions are 
contracted to a total spin–scalar reaction amplitude. Tα = k2

α/2mα

and Tγ = k2
γ /2m̄γ denote the kinetic energy in the entrance and 

intermediate channels, respectively. The energy integral is per-
formed over a closed path C+ in the upper half complex plane. 
The products of interaction form factors have been replaced by the 
spin-spin coupling tensor

�
(C)

S S ′(q1,q2) = V (C)

S ′T (q2
1)V (C)

ST (q2
2). (25)

The key quantities are the elements of the nuclear polarization 
tensor. In Lehmann–representation, they are

�
(AB)

S S ′ (ω|q1,q2) =
∑

C

〈B|RS ′T (q2)|C〉〈C |RST (q1)|A〉
ω − (MC − M A) + iη

, (26)

hence given as a bilinear form of the transition form factors, 
weighted by the energy denominator. �(ab)

S S ′ is defined accordingly. 
For example, for |C〉 = |1+

n 〉 (where n refers to the energy), we find 
at vanishing momentum transfer

�
(AB)
GT (ω|q,q)|q=0 =

∑
n

〈B|στ±|1+
n 〉〈1+

n |στ±|A〉
ω − (Mn − M A) + iη

. (27)

Comparing this result to the 2ν2β–NME’s, e.g. [33–35], the striking 
formal analogy is obvious. Of course, there are differences, be-
cause here we are dealing with the full momentum structure of 
the transition currents and their matrix elements. Moreover, the 
reaction probes at the same time projectile and target NME which 
requires additional theoretical efforts to disentangle the two kinds 
of contributions. As a matter of fact, DCE reactions in general are 
probing a larger part of the nuclear wave functions than ever can 
be achieved by beta–decay studies. The cross section shown in 
Fig. 3 covers in the measured angular range momentum transfers 
qαβ � 400 MeV/c – as otherwise expected for 0ν2β–decay. More-
over, in a DCE transition, several multipolarities can be excited in 
the intermediate states. From this point of view, DCE reactions can 
be considered as a perfect test range for scrutinizing nuclear mod-
els used in double beta–decay studies.

5. Summary and outlook

Heavy ion double charge exchange reactions have been investi-
gated with the focus on the reaction dynamics of this special class 
of two-step reactions. The reaction mechanism was described as a 
double-SCE reaction given by two consecutive SCE reaction steps 
which are promoted by the projectile-target residual isovector NN-
interaction. The DCE reaction amplitude was constructed accord-
ingly as a second order distorted wave matrix element. Broad 
space was given to disentangle nuclear matrix elements and ion-
ion initial and final state interactions.

The DSCE reaction amplitude, Eq. (10), has the formal struc-
ture of a matrix element in second order perturbation theory, de-
scribing here the next-to-leading-order contribution of the a + A
residual isovector interactions. Hence, on the formal level, the DCE 
amplitude resembles the NME of 2ν2β decay. The central message 
is that DCE reactions cover at the same time dynamical aspects 
typical for 2ν2β but covering a large spectrum of momentum 
transfers. A consequence of the enhanced momentum content is 
a non–selectivity on intermediate states: in general, a multitude of 
intermediate states of both parities and with a large range of spins 
is excited.

We emphasize that excitations of DCE modes will proceed in 
general by mixtures of S = 0 non-spinflip and S = 1 spinflip tran-
sitions, thus lifting the strict selection rules known for SCE tran-
sitions. One reason is that the final nuclear configurations in pro-
jectile and target are of 2p2h-character with respect to the parent 
nuclei which allow a broad spectrum of interactions [36]. Thus, 
the simplicity of SCE reactions, allowing to extract single-beta de-
cay NME from cross section data, is not maintained in the same 
way for DCE reactions. Accessing DCE-NME’s in full detail requires 
to consider additional observables which are sensitive to the spin-
character of the transitions. This does not exclude exceptional, yet 
to be discovered cases where special configurational properties are 
enhancing a certain spin channel.

Significant simplifications occur when one considers specific 
cases, such as 0+

gs → 0+
gs transitions both in projectile and target. 

Illustrative results have been presented in this case, for the reac-
tion 18 O  + 40Ca → 18Ne + 40 Ar, together with a comparison to 
available experimental data.

DCE processes are determined by many new aspects of nu-
clear structure and reaction dynamics which have not been under 
scrutiny until now. Both experiment and theory are entering into 
hitherto unexplored territory, posing unexpected challenges but 
opening a new field of nuclear research. In a forthcoming paper, 
a competing DCE reaction mechanism will be studied of different 
dynamical origin, as discussed by preliminary results in [14,23]. 
In [37] a new approach to DCE processes, based on an extended 
version of the Interacting Boson Model (IBM), was presented. An 
important message of the present work is that heavy ion DCE re-
actions are indeed the ideal tools to scrutinize nuclear DCE models 
under realistic conditions. Our results are encouraging systematic 
studies in this direction.
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