
PHYSICAL REVIEW RESEARCH 2, 013012 (2020)

Digital-analog quantum algorithm for the quantum Fourier transform
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Quantum computers will allow calculations beyond existing classical computers. However, current technology
is still too noisy and imperfect to construct a universal digital quantum computer with quantum error correction.
Inspired by the evolution of classical computation, an alternative paradigm merging the flexibility of digital
quantum computation with the robustness of analog quantum simulation has emerged. This universal paradigm
is known as digital-analog quantum computing. Here, we introduce an efficient digital-analog quantum
algorithm to compute the quantum Fourier transform, a subroutine widely employed in several relevant quantum
algorithms. We show that, under reasonable assumptions about noise models, the fidelity of the quantum Fourier
transformation improves considerably using this approach when the number of qubits involved grows. This
suggests that, in the noisy intermediate-scale quantum era, hybrid protocols combining digital and analog
quantum computing could be a sensible approach to reach useful quantum supremacy.
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I. INTRODUCTION

Almost four decades ago, a new paradigm, based on laws
of quantum mechanics, had been put forward by Manin [1]
and Feynman [2]. The new paradigm employed quantum
features to speed up calculations, and it was called quan-
tum simulation or quantum computation (QC). There exist
several computational tasks for which QC offers exponential
speedups over their classical counterparts [3,4]. If we had a
fully functional error corrected quantum computer, we would
be able to solve problems that not even the largest classical
supercomputers can. But, nowadays, we are far from this
point. The first series of commercial digital quantum proces-
sors based on superconducting circuits have been introduced
by companies, such as IBM, Rigetti, Google, and Alibaba.
These devices belong to the so-called noisy intermediate-
scale quantum (NISQ) era in which their performance still
faces multiple technical constraints. These constraints pose a
great challenge when one tries to solve real-world problems,
limiting its size to the small scale [5,6].

Quantum error mitigation (QEM) techniques have been
proposed as a possible method to bypass the NISQ-
era hardware limitations and improve the calculation of
mean values of observables in problems comprising short-

*Corresponding author: ana.martinf@ehu.eus
†Corresponding author: mikel.sanz@ehu.es

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

depth circuits [7]. These techniques, in general, postpro-
cess the information in order to mitigate the effects of the
noise [8–11].

Parra-Rodriguez et al. introduced, in Ref. [12], an
alternative hybrid quantum computation approach which
could reduce the limitations of NISQ devices. This uni-
versal paradigm, called digital-analog quantum computation
(DAQC), merges the flexibility of digital quantum compu-
tation with the robustness of analog quantum simulators. If
our analog resource is the natural interaction Hamiltonian
in the platform, then applying fast single-qubit rotations in
certain order, one can generate an arbitrary Hamiltonian. They
claim that this codification is susceptible to smaller errors
than digital quantum computing when performing quantum
simulations. It is noteworthy to mention that, even though
the Hamiltonian employed is the Ising model, the DAQC
approach is universal with essentially every Hamiltonian [13].

A natural question is whether quantum algorithms with
possible speedup can be efficiently written using this
paradigm. The quantum Fourier transform (QFT) is a key
ingredient for several quantum algorithms, such as Shor’s
algorithm for factorization [3] or the quantum phase esti-
mation algorithm for the estimation of the eigenvalues of a
unitary operator [14]. The latter additionally appears as a
subroutine of other algorithms, such as the Harrow-Hassidim-
Lloyd (HHL) algorithm for linear systems of equations [15]
or the quantum principal component analysis algorithm [16].
The quantum version of the discrete Fourier transform (DFT)
has an exponential speedup over its classical counterpart.
Although, on the classical version, it is necessary to apply
O(n2n) gates, where n refers to the number of bits, on the
quantum approach only O(n2) gates are needed, in this case n
stands for the number of qubits.
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In this article, we show how to efficiently write the QFT
algorithm using the DAQC paradigm and demonstrate that it
achieves better results than the purely digital approach on a
noisy hardware. For that purpose, we considered the homoge-
neous all-to-all (ATA) two-body Ising model as a resource for
DAQC implementation, and we express the Hamiltonian of
the QFT as an inhomogeneous ATA two-body Ising model.
Afterwards, we simulate numerically the cases of a three-,
five-, six-, and seven-qubit device, introducing reasonable
noise models in the interactions. Additionally, we have per-
formed the QFT of a certain family of states using both the
purely digital and the DAQC approaches. The fidelity between
the ideal transformation and the one achieved by the DAQC
behaves qualitatively better with the number of qubits than
the fidelity offered by the digital implementation. Although
this new paradigm has its own noise sources, it eliminates the
errors derived from the entangling two-qubit gates. Getting rid
of these sources of errors allows us to successfully implement
relevant quantum algorithms in the NISQ era.

II. DIGITAL-ANALOG QUANTUM COMPUTING

There are two main approaches to implement QC, namely,
the digital quantum computation (DQC) and the analog quan-
tum simulation. A digital quantum computer, which is based
on quantum circuits and the quantum gate model, is a physical
platform, such as trapped ions [17,18] or superconducting cir-
cuits [19–24], which can be programed to efficiently simulate
another dynamics of interest. The drawback of this approach
is that it consumes too many resources to implement useful
applications beyond desired computation so that it can hardly
be considered a viable option with current technology. Some
examples of this approach are in the simulation of quantum
machine learning [25,26], finance [6,27], open quantum sys-
tems [28], quantum chemistry [29], or quantum field theories
[22], among others. On the other hand, analog quantum com-
puting uses a controllable quantum system whose dynamics is
known to mimic the dynamics of another system of interest.
There are multiple results following this approach simulating,
for instance, the quantum Rabi model [30–34], fluid dynamics
[35], or Casimir physics [36–38], among others.

Merging these two approaches, leads to a paradigm known
as digital-analog quantum computation [12,39–41]. A digital-
analog protocol, built combining analog blocks with digital
steps, shows the flexibility of the digital gate model [42]
and the robustness of the analog simulation model. A formal
definition of these elements could be found in Ref. [12]. Here,
we give a practical definition: a digital step is constituted
by single-qubit unitary operations, whereas an analog block
is constituted by the time evolution of a known interaction
Hamiltonian.

The most popular quantum processors are based on super-
conducting circuits where the role of the qubits is played by
transmons. The interactions that appear in such physical sys-
tems are well described by the inhomogeneous ATA two-body
Ising Hamiltonian. Something similar happens with spin-spin
interaction in trapped ions. Therefore, from here on, we will
use the unitary evolution generated by homogeneous ATA

FIG. 1. Comparison between the sDAQC and the bDAQC proto-
cols. The blue blocks Uint (t ) represent the analog blocks, and the
single-qubit gates X refer to the Pauli matrix σx . In the sDAQC
protocol, the digital and the analog blocks alternate with each other.
The evolution of the interaction Hamiltonian is turned on and off
several times. When applying the bDAQC protocol, the analog block
is turned on during the whole simulation, and the digital blocks are
performed on top of the analog evolution.

two-body Ising Hamiltonian as the elementary analog block,

H0 = Hint = g
N∑

j<k

Z ( j)Z (k) → Uint (t ) = eitHint ,

where g is a fixed coupling strength and Z (i) is the Pauli
matrix σ (i)

z applied on the ith qubit. For the digital steps,
we will employ single-qubit unitary rotations around the X
axis with continuous angle θ between 0 and 2π rad. As we
will explain below, our goal is to generate an arbitrary ATA
inhomogeneous Hamiltonian,

HZZ =
N∑

j<k

g jkZ ( j)Z (k) with UZZ = eitF HZZ . (1)

The problem reduces to find an appropriate map between
tF g j,k and gtnm by slicing the homogeneous time-evolution
Uzz(t ) into N (N − 1)/2 analog blocks of different time-
lengths tnm, sandwiched by the local rotations X (n)X (m) as
explained in Ref. [12] and depicted in Fig. 1. This mapping
yields

HZZ =
N∑

j<k

g j,kZ ( j)Z (k)

= g

tF

N∑
j<k

N∑
n<m

tnmX (n)X (m)Z ( j)Z (k)X (n)X (m). (2)
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As X (n)Z (k)X (n) is equal to −Z (n) if n = k, and it is equal to
Z (k) otherwise, then,

HZZ = g

tF

N∑
j<k

N∑
n<m

tnm(−1)δn j+δnk+δm j+δmk Z ( j)Z (k). (3)

Thus, the problem of finding the value of each time tnm is a
matrix-inversion problem,

gβ = tαMαβ

g

tF
→ tα = M−1

αβ gβ

tF
g

, (4)

where α and β are introduced to vectorize each pair of indices
(n, m) and ( j, k) as

α = N (n − 1)−n(n + 1)

2
+m,

β = N ( j − 1)− j( j + 1)

2
+ k, (5)

and M is a sign matrix built up by the elements,

Mαβ = (−1)δn j+δnk+δm j+δmk . (6)

This sign matrix M is a nonsingular matrix ∀ N ∈ Z − {4}.
This means that, for the case of N = 4 qubits, we need a
different set of single-qubit rotations. This case is discussed
in detail in Ref. [12].

The method aforementioned is called stepwise DAQC
(sDAQC) and, under ideal circumstances, i.e., without taking
into account noise sources or experimental errors, would lead
to the same state as the DQC method. There is another variant
of the DAQC method, called the banged DAQC (bDAQC)
protocol. In this case, the analog Hamiltonian is on during the
whole simulation, and the single-qubit rotations are preformed
on top of it. Note that, in the previous case, the analog
evolution is turned off before applying single-qubit rotations.
The total amount of time in which the analog block is on in
the bDAQC is the sum of the different analog blocks in the
sDAQC protocol as shown in Fig. 1.

The bDAQC does not generate the same result as the
sDAQC or the DQC method. There is an intrinsic error on
the bDAQC which does not depend on either the experimental
conditions or the noise sources. This error is due to the
superposition between the Hamiltonians of the single-qubit
rotations and the analog Hamiltonian. However, one could
expect that, if single-qubit rotations are performed in a time
�t much smaller than the intrinsic timescale of the analog
block, the error will be smaller than the one coming from
switching on and off the analog Hamiltonian. Indeed, the
additional error per single-qubit rotation introduced by not
turning off the evolution of the Hamiltonian is on the order
of O[(�)3] [12]. The reason why we aim at using the bDAQC
protocol despite its intrinsic error is because it accumulates
less experimental error. Experimentally, switching on and off
the Hamiltonian is not an exact step function, it takes some
time to stabilize. Quantum control tries to suppress these
errors, but it turns cumbersome when the system scales up and
cannot be solved in a classical computer. If we keep the analog
block on during the evolution, we will avoid these errors. This
will be of great importance when we explore a more realistic
implementation of the DAQC protocol in Sec. IV.

FIG. 2. Digital implementation of the QFT for a n-qubit sys-
tem. The single-qubit gate H corresponds to the Hadamard gate
[see Eq. (9)]. The rest are the controlled rotations defined by
cRk = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Rk , where Rk = |0〉〈0| + e2π i/2k |1〉〈1|.
The swap gates at the end of the circuit needed to correctly read the
transformed state are not shown.

III. QUANTUM FOURIER TRANSFORM: DESCRIPTION
AND IDEAL CASE IMPLEMENTATION

DFT plays an important role in mathematics, engineer-
ing, and physics. This mathematical transformation takes a
complex vector of length N, (x0, x1, . . . , xN−1) and trans-
forms it into another complex vector of the same length
(y0, y1, . . . , yn−1) whose kth element is defined as

yk ≡ 1√
N

N−1∑
j=0

x je
2π i j . (7)

QFT, its quantum counterpart, is a linear operator F with
the following action on the basis states:

F |	〉 ≡ 1√
N

N−1∑
k=0

e2π i	k/N |k〉, (8)

where N = 2n and n is the number of qubits of the system.
The quantum-circuit implementation of the QFT is depicted
in Fig. 2. The only single-qubit gates applied are Hadamard
gates H , whose unitary matrix and Hamiltonian expressions
are

H = eiHH = 1√
2

(
1 1
1 −1

)
, HH = π

2

[
1 − 1√

2
(Z + X )

]
,

(9)

respectively. The entangling two-qubit gates of the circuit
implementation are the controlled-Rk operations with

Rk =
(

1 0
0 e2π i/2k

)
, (10)

cRk = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Rk=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2π i/2k

⎞
⎟⎟⎠.

(11)

They appear in (n − 1) different blocks of controlled rota-
tions, all of them preceded by a Hadamard gate as shown in
Fig. 2.

In order to apply the DAQC protocol to implement the
QFT, we express the unitary matrices defined in Eq. (11) in
terms of an inhomogeneous ATA two-body Ising Hamiltonian.
Indeed,

UQFT =
[

n−1∏
m=1

USQG,mUTQG,m

]
UH,m, (12)
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where

USQG,m = exp

[
i

n−(m−1)∑
k=2

θk (1N×N − Z (k+m−1) − Z (m) )

]

× exp

[
iπ

2

(
1 − Z (m) + X (m)

√
2

)]
, (13)

UTQG = exp

(
i

n∑
c<k

αc,k,mZ (c) ⊗ Z (k)

)
, (14)

UH,m = exp

(
iπ

2

[
1(m) − (Z (m) + X (m) )√

2

])
, (15)

θk = π

2k+1
and αc,k,m = δc,m

π

2k−m+2
. (16)

The superindices in brackets specify the qubit in which the
unitary operation is performed.

In Fig. 3, we depict the DQC implementation of the QFT
using Eqs. (13)–(15). As one can see, each controlled-rotation
block can be implemented by applying first a set of single-
qubit gates, and then a set of two-qubit gates. This is why
we decompose the complete unitary transformation into three
different operations. The subindices SQG and TQG stand for
single-qubit gates and two-qubit gates, respectively.

Every two-qubit gate is applied following the ATA DQC
protocol and using a fixed π/4 phase,

eiϕμν

jk σ
j
μσ k

ν = ei(π/4)σ j
y ei(π/4)σ j

μσ k
ν eiϕμν

jk σ
j

y e−i(π/4)σ j
μσ k

ν e−i(π/4)σ j
y .

(17)
In our case, μ = ν = Z and the phase ϕ

μν

jk correspond to the
coefficient αc,k,m, given in Eq. (16),

eiαc,k,mZcZk = ei(π/4)Y c
ei(π/4)ZcZk

eiαc,k,mY c
X k

× ei(π/4)ZcZk
X ke−i(π/4)Y c

. (18)

The inhomogeneous ATA two-body Ising Hamiltonian
which we want to write in the DAQC framework [see Eq. (14)]
represents a complete block of controlled rotations, and it is
different for each block. This means that we need to apply
the DAQC protocol (n − 1) times, one time per controlled-
rotation block as depicted in Fig. 3.

In order to compare each protocol (DQC, sDAQC, and
bDAQC), we compute the QFT of the family of states |ψ0〉 =
sin β|Wn〉 + cos β|GHZn〉, where β runs from 0 to π and n
refers to the number of qubits of the system. We perform this
for a three-, five-, six-, and seven-qubit system to grasp the
behavior of the fidelity when the number of qubits scales up.
As a figure of merit, we have calculated the fidelity between
the states after the exact transformation and the ones obtained
by the applied different methods,

Fmethod = ∣∣〈ψexact
F ψmethod

F
∣∣〉2. (19)

The results obtained are depicted in Fig. 4(a). According to
the aforementioned arguments, the expected fidelity for both
the digital case and the stepwise case is FDQC = FsDAQC = 1
since the implementation is exact and ideal. This holds inde-
pendently of the number of qubits of the system. The fidelity
obtained when applying the bDAQC is always FbDAQC < 1
due to the intrinsic error associated with this method. The
fidelity decreases with the number of qubits, but F 3,5–7

bDAQC >

0.90 for n = 3, 5–7 qubits.

IV. REALISTIC IMPLEMENTATION WITH
EXPERIMENTAL ERRORS

Impurities in the materials comprising superconductive
circuits and spurious interactions among superconducting
qubits (cross talk) and with two-level fluctuators modify the
dynamics of the system, directly affecting the results of an
experiment. Additionally, there are relevant control errors in
the pulses when applying the gates. In order to make a fair
comparison among different methods, we must introduce the
effects of errors in the dynamics.

In single-qubit gates, we have introduced a magnetic-field
noise �Bγ by adding to the Hamiltonian of the single-qubit
gate a random variable taken from a uniform probability
distribution centered in 1, i.e., U (1 − SQGN, 1 + SQGN). We
have chosen SQGN = 0.0005. For the two-qubit gates, we
add a Gaussian phase noise ε ∈ N (0, TQGN) with variance
TQGN = 0.2000 to the π/4 phases in the DQC protocol.
Finally, to model the experimental control error on the analog
blocks, we include a Gaussian coherent noise to the time those
blocks are applied, this is t → t + δ, where δ ∈ N (0, ABN).
The value of the variance ABN depends on which DAQC
protocol we are using. The value used on the sDAQC is
double the value used for the bDAQC case. The values we
have considered are ABNs = 0.0200 for the sDAQC case and
ABNb = 0.0100 for the bDAQC case. Thus, each ideal gate
transforms as

eiθkZ → eiθk�B Z , (20)

ei(π/4)ZZ → ei(π/4)(1+ε)ZZ , (21)

eitαHint → ei(tα+δ)Hint . (22)

To test how the fidelity behaves for each case, we have com-
puted the QFT of the family of states |ψ0〉 = sin β|Wn〉 +
cos β|GHZn〉. We repeated the simulation 1000 times and
calculate the average for a three-, five-, six-, and seven-qubit
system. Both the sDAQC and the bDAQC perform better
than the DQC protocol under realistic conditions as depicted
in Fig. 4(b). The best result corresponds to the bDAQC, a
completely different situation from the ideal case. The reason
is that turning on and off the interaction Hamiltonian is
much more prone to suffer from experimental errors than
keeping it on until the end of the computation. Note that the
fidelity of the DQC decreases faster than the fidelity of the
DAQC protocols with the number of qubits of the system. An
extrapolation of these results to larger systems might indicate
the convenience of this paradigm to foster near-term quantum
computation. This shows the convenience of this paradigm
to foster near-term quantum computation. The reason why
the fidelity in Fig. 4(b) decays so fast with the number of
qubits N is the quadratic increment O(N2) in the depth of the
algorithm. This is an exponential speedup with respect to the
classical algorithm, but the errors accumulate very fast with
the system size. As a consequence, the implementation of the
QFT, which is a key subroutine in many other quantum algo-
rithms, is a challenge when compared against algorithms with
logarithmic scaling. This shows the importance of exploring
alternative approaches, such as our DAQC, to optimize the
implementation of this quantum algorithm.
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FIG. 3. Implementation of the QFT for a three-qubit system using three different protocols: DQC, sDAQC, and bDAQC. Digital
implementation: We show the transformation between the usual DQC implementation of the QFT (see Fig. 2) and the one that follows
the Hamiltonian described by Eq. (14). Following Eq. (11), the controlled-rotation cR2 and cR3 correspond to the controlled-phase gate cS and
the controlled-π/8 gate cT , respectively. For the implementation that follows the Hamiltonian described by Eq. (14), each entangling two-qubit
gate is applied according to the ATA DQC protocol using a fixed π/4 phase [see Eq. (18)]. DAQC implementation: The blue blocks Uint (t )
represent the analog blocks, and each of them is applied during different times t . The single-qubit gates X refer to the Pauli matrix σx and act
for a time �t . We apply the DAQC protocol for each block of controlled rotations of the DQC implementation, which is detailed by the red
line over each of those blocks. The sDAQC switches on and off the analog evolution before applying the single-qubit rotations X . In contrast,
in the bDAQC protocol, the single-qubit rotations are performed on top of the analog evolution. Since we are applying a Suzuki-Lie-Trotter
decomposition to minimize the error, between the single-qubit rotations, each analog block acts for different times ti − �t , except for the first
and the last block, which act for times ti − 3

2 �t .

Additionally, we have studied how the fidelity behaves with
different values for the errors. We have computed the QFT of
state |ψ0〉 = sin π

4 |Wn〉 + cos π
4 |GHZn〉 for n = 3, 5–7 qubits

employing the three protocols. Again, the fidelity obtained
when we use the bDAQC protocol behaves better than the
one obtained by using the DQC protocol. For the three-qubit

case, the fidelity is higher than 99%, for five qubits, it stays
above 85%, and for six qubits, it is greater than 70%. For
seven qubits, we obtain significantly lower fidelity than in the
previous systems for the three protocols, but the one offered
by the bDAQC remains above those offered by the DQC and
the sDAQC. These results are depicted in Fig. 4(c). Similar
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FIG. 4. Fidelity of the transformation of the family of states |ψ0〉 = sin β|Wn〉 + cos β|GHZn〉 using the three protocols. (a) Ideal
implementation. Both the DQC and the sDAQC protocols perform the QFT with fidelity FDQC = FsDAQC = 1. The bDAQC has an intrinsic
error due to the fact that the analog block is applied during the whole process. In this case, the fidelity is FbDAQC ∈ (0.90, 1). (b) Realistic noisy
implementation. In this situation, the intrinsic error of the bDAQC is less significant than the experimental errors of the DQC and the sDAQC.
The fidelity of the DQC decreases fast with the number of qubits. For a six-qubit system, the fidelity is around 50%, so the DQC protocol is
no longer useful. The fidelity of both DAQC protocols behaves better than the one of the DQC with the number of qubits and remains above
70% for the sDAQC and over 80% for the bDAQC. For the case of a seven-qubit system, we obtain a similar fidelity for both the DQC and the
sDAQC protocols, but the one obtained for the bDAQC remains remarkably higher. This shows that the bDAQC protocol is the best option if
one wants to implement the QFT on a system built up from several qubits. (c) Fidelity evolution with growing errors. We want to show how the
fidelity behaves if the errors we have estimated are slightly different. We have computed the QFT of state |ψ0〉 = sin π

4 |Wn〉 + cos π

4 |GHZn〉
for a system of three, five, six, and seven qubits. The fidelity of the two DAQC protocols is better than the fidelity obtained with the DQC, no
matter what the errors are. Note that, in the DQC protocol, the error of the two-qubit gates dominates in the total error. Similarly, the fidelity
in the DAQC is mainly affected by the errors in the analog blocks,

to the DQC case in which the error of the two-qubit gates
dominates in the total error, the fidelity in the DAQC is mainly
affected by the errors in the analog blocks. The results of
the simulations shown in Fig. 4 should not be understood
as the expected fidelity arising from an experiment since
it will strongly depend on the fabrication, architecture, and
materials, among other factors. The actual result is that the
distance between the fidelities of the bDAQC and the DQC
are always remarkable in favor of the bDAQC. Even though
we have considered a sensible choice for the noise model of
the DAQC implementation, this model will not be accurate
until comparing it against experimental data.

We would like to point out that, although the connectivity
of most quantum systems is not ATA, with the remarkable
exception of trapped ions and NMR, we have chosen it for
the sake of simplicity. It can be shown that, using the DAQC
paradigm, one can simulate a N-qubit ATA Ising Hamiltonian
making use of, at most, 1

2 N (N − 1) nearest-neighbor (NN)
Hamiltonians. This quadratic overhead holds in the worst-case
scenario, but it can be substantially reduced if there exists
some pattern in our couplings (see the Appendix). However,

this overhead (or worse) also holds for the DQC paradigm.
Consequently, the values of the fidelities could change in the
case of considering NN Hamiltonians, but the comparison
shown between DQC and DAQC is fair, and the conclusion
related to the better performance of the bDAQC with respect
to the DQC still holds.

V. CONCLUSIONS AND PERSPECTIVES

We have shown that the DAQC paradigm can enhance
the depth of the implementation of a quantum algorithm. In
particular, we have provided a digital-analog algorithm for the
QFT, a ubiquitous quantum subroutine, which is a relevant
part of several quantum algorithms. Improving the fidelity of
the implementation of QFT, consequently, enhances applica-
bility of other quantum algorithms, such as Shor’s algorithm
for prime number factorization or the HHL algorithm for
solving linear systems of equations.

The main problem of the digital approach for the QFT in
a real NISQ chip is that its fidelity decays fast when scaling
up since the depth of the algorithm grows quadratically with
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the number of qubits. Although there exist QEM techniques to
reduce the DQC implementations, they are restricted to short-
depth quantum algorithms, which constrains the achievable
quantum volume of the algorithms, consequently restricting
the original problem to a size in which DQC offers a reliable
fidelity. In this paper, we have shown that DAQC could allow
us to attain larger algorithm volumes, whereas keeping the
fidelity under control. Indeed, we have simulated the QFT
for three, five, six, and seven qubits, keeping the fidelity of
the algorithm above 80%. In a similar situation, the fidelity
provided by the DQC protocol is between 50% and 65%.

As a future work, it would be useful to include other types
of errors, such as decoherence, and study the behavior of the
fidelity with these errors. Taking into account the advantages
that the DAQC paradigm offers, the next step is to study the
implementation of quantum algorithms comprising the QFT
as a subroutine. Additionally, it would also be interesting
to implement other quantum algorithms, such as Grover’s
algorithm. The successful implementation of these algorithms
would pave the way for achieving useful quantum supremacy
in the NISQ era.
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APPENDIX: ENHANCING CONNECTIVITY IN QUANTUM
PROCESSORS

The connectivity of many quantum systems is not ATA as
assumed in this paper. For the aim of this paper, this is not
important since we are trying to compare the performance
of the DAQC approach against the DQC one, and we are
assuming ATA gates for the DQC. The choice of the ATA
connectivity in this paper is, therefore, made for the sake of
simplicity since it can be shown [43] that, using the DAQC
paradigm, one can simulate a L-qubit ATA Ising Hamiltonian
making use of, at most, L(L − 1)/2 NN Hamiltonians. Indeed,
the quadratic overhead holds in the worst-case scenario, but
it can be substantially reduced if there exists any pattern in
the couplings [43]. Consequently, this transformation from
the NN to ATA layout is physically equivalent to enhance the

connectivity of the chip in the software level without changing
the architecture of the hardware or employing ancillary qubits.
In the following, we present a brief description on how to
proceed to attain this transformation. For a more detailed
explanation, see Ref. [43].

We can understand the Ising Hamiltonian for L qubits as a
weighted graph of L vertices where the weight of the edge
that connects the vertex i to the vertex j is the coupling
constant gi j . If two vertices i and j are not connected, then
gi j = 0. Using this interpretation, an ATA Ising Hamiltonian
of L qubits corresponds to a complete graph KL, which is
a graph with edges among every possible vertex with no
repetition. The NN Ising Hamiltonian is then represented as
a path that visits all the possible vertices only once. This is
called the Hamiltonian path (HP). The problem reduces to the
decomposition of a KL graph into a set of HPs using a NN
Hamiltonian as a resource. For simplicity, we will assume that
we are dealing with unweighted graphs, which are equivalent
to homogeneous Ising Hamiltonians.

To obtain an efficient decomposition, we require a set of
at most L(L − 1)/2 HPs. This set of k HPs is generated by a
vertex permutation P, given by

Pk
L ( j) =

{(
k − 1 + j

2

)
mod L + 1, if j even,(

k − 1 − j−1
2

)
mod L + 1, if j odd,

(A1)

with L as the number of qubits, k ∈ Z such that 0 � k � L/2,
and j represents the jth position of the vertex permutation.

We will obtain each HP employing a NN Hamiltonian as
a resource. For this, we will change the connection of the
resource using an ISWAP gate, which performs the following
operations:

U (Z ⊗ 1)U † = 1 ⊗ Z,

U (1 ⊗ Z )U † = Z ⊗ 1. (A2)

The ISWAP gate Ui j changes a gate Z acting on qubit i to act
on qubit j. Thus, if we sandwich a Z (k)Z (l ) term with the Ui j

ISWAP gate, we obtain

Ui jZ
(k)Z (l )U †

i j = Z (τi j (k))Z (τi j (l )), (A3)

where τi j represents the permutation of the indices i and j. If
k 
= i, j, then τi j (k) = k, otherwise τi j (i) = j and τi j ( j) = i.

Without applying the ISWAP gate, the initial vertex per-
mutation of the system is P = [1, 2, . . . L]. After the ISWAP

operation, the system is defined by the new permutation
P′ = [τi j (1), τi j (2), τi j (3), . . . , τi j (L)]. This approach can be
generalized to a system with arbitrary connections.

To sum up, the ATA Ising Hamiltonian KL graph is the sum
of, at most, L(L − 1)/2 HPs, each of them built by applying
different permutations to a NN Ising Hamiltonian graph.
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