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a b s t r a c t

The energy performance of a building is affected by the periodic thermal properties of the walls, and
reliable methods of characterising these are therefore required. However, the methods that are currently
available involve theoretical calculations that make it difficult to assess the condition of existing walls. In
this study, the characterisation of the periodic thermal variables of walls using experimental measure-
ments and methods as described in ISO 13786 was assessed. Two regression algorithms (multilayer
perceptron [MLP] and random forest [RF]) and input variables obtained using two experimental methods
(the heat flow meter and the thermometric method) were used. The methods gave accurate estimates,
and better statistical parameter values were given by the RF models than the multilayer perceptron
models. For all the periodic thermal variables, the percentage differences between the actual values and
the estimated values given by the RF algorithm were low. The heat flow meter and the thermometric
methods can both be used to characterise accurately the periodic thermal properties of walls using the RF
algorithm. The variables specific to each method, including the wall thickness and the date of con-
struction, affected the accuracies of the models most strongly.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Arguably, the two most important goals of the 21st century are
the prevention of further environmental degradation and a
reduction in the rate of climate change [1]. The latter is becoming
increasingly severe, at least partly due to the large amounts of
greenhouse gases (GHGs) being emitted through energy produc-
tion. The pressing need to decarbonise the production of energy
was recognised at the Paris Climate Conference of 2015, at which
195 countries committed to a marked decrease in GHG emissions.
However, there is still some way to go towards the effective miti-
gation of climate change. Attempts to decrease GHG emissions and
the difficulty of decreasing GHG emissions were described in
“United in Science” [2], a report published as part of the United
Nations Climate Action Summit of 2019. Themain points findings of
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the report were that CO2 emissions are continuing to increase by 1%
each year, fossil fuel is still dominant despite increased renewable
energy production, and CO2, CH4, and N2O concentrations are 146%,
275%, and 122% higher, respectively, compared with the prein-
dustrial period (before 1750).

Countries and communities should therefore set themselves
more stringent goals than at present, to allow the environment to
be protected for future generations. The European Union has
established a roadmap for developing a low-carbon economy in
accordance with the agreement to eliminate virtually all GHG
emissions in all sectors made at the 2015 conference. For the
building sector, the goal is to decrease GHG emissions to the at-
mosphere by 90% compared with 1990 [3]. This goal will have an
important effect on the climate due to the high percentage of en-
ergy consumed by, and GHG emissions from, activities in existing
buildings.

The need to improve the energy performance of existing
buildings is clear. The main energy consumption in existing
buildings is due to heating, ventilation, and air conditioning sys-
tems [4,5], meaning that energy conservation measures focused on
decreasing energy consumption are required in these areas. The
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thermal behaviour of the envelope of a building needs to be char-
acterised in order to identify the most appropriate energy conser-
vation measures for the building and to ensure that the building
meets the energy use regulations in place [6,7]. For many studies,
the aim has been to analyse the effects on the energy demands of
buildings of thermal variables such as stationary thermal trans-
mittance [8,9] and linear thermal transmittance [10]. However, the
importance of thermal inertia and periodic thermal properties of
buildings are of increasing interest. Better understanding of these
properties could make it possible to construct net zero carbon
energy buildings (nZEB) in warm climates in particular, given their
greater applicability to energy consumption in warm than cold
regions [11]. The effects of the periodic thermal properties of
buildings have been investigated by many authors. For example, di
Perna et al. [12] analysed three wall types with different thermal
masses in a school building and determined appropriate combi-
nations of periodic thermal transmittance and internal areal heat
capacity. Rossi and Rocco [13] analysed four heavy and four light
walls to evaluate the appropriateness of the periodic variable limits
set in the Decreto Ministeriale 26/6/2009 [14] and found by Di Perna
et al. [12]. The results reported by Di Perna et al. were found to have
limitations caused by the dependence of internal areal heat ca-
pacity on the external climate, nevertheless Rossi and Rocco were
able to identify ways of decreasing the energy demands of buildings
in general terms. Stazi et al. [15] determined the combined effects
of the decrement factor and internal areal heat capacity in a
windowless room in Italy and found that the best annual perfor-
mance was given by the average thermal inertia properties of a
decrement factor of 0.072 and an internal areal heat capacity of 33
kJ/(m2 K)). Aste et al. [16] studied six facade types using building
model simulations and found that the use of periodic thermal
variables decreased the cooling demand. They found that 20% less
cooling was required for a wall with a high thermal inertia than for
a wall with a low thermal inertia. Baglivo et al. [17] performed
multi-objective optimisations to identify the most acceptable
configurations for nZEB envelopes for buildings in the Mediterra-
nean and found that the surface masses of the external walls
strongly affect the performances of buildings. Fernandes et al. [18]
and Rodrigues et al. [19] found that walls in cold regions should
have high thermal inertia while those in warm regions should have
low thermal inertia. Many building envelope designs using walls
with low thermal inertia can be used to decrease energy demand in
warm regions.

Calculation procedures or simulation processes are required to
allow periodic thermal properties to be characterised [20]. ISO
13786 [21] is a calculation procedure for assessing the periodic
thermal behaviour of a building envelope, and the calculation
procedure has the same limitations as that for calculating the sta-
tionary thermal transmittance described in ISO 6946 [22]. Asan [23]
investigated the effects of thickness and type of material on the
decrement factor and time shift for 26 construction materials. The
layers and their thermal properties must be assessed accurately to
allow periodic thermal properties to be estimated with any confi-
dence. Three main methods can be used to achieve this, namely (i)
endoscopic analysis [22,24], (ii) analysis of technical documents
[25], and (iii) estimation using analogous constructions [22,25].
Analogous constructions provide the least certainty, and smaller
errors are achieved using endoscopy and technical documents
[22,26]. However, correct characterisation of wall layers is limited
for most buildings because endoscopic techniques damage the
building and technical documentation is not usually sufficient.
Several procedures for characterising the stationary thermal
transmittances of existing walls have therefore been developed in
recent years. The most commonly used methods in recent years are
the heat flow meter method (HFM) and the thermometric method
(THM) [27]. The main differences between these are the variables
used in the calculations, which imply a need for different in situ
monitoring procedures. HFM requires heat fluxes and THM requires
internal surface temperatures to be measured. The different vari-
ables used cause the monitoring data to have different errors. Meng
et al. [28] found heat flux measurement errors of up to 26% but
surface temperature measurement errors of only 6%. The most ac-
curate results have been found to be achieved using an appropriate
envelope orientation [29], a high thermal gradient during the tests
[30], and unaltered elements [31].

The stationary thermal transmittance method contains pro-
cedures for making appropriate estimates for existing walls as long
as the walls are in adequate states of repair. Rotilio et al. [32] found
differences of 10%e15% between measured and estimated values
for walls damaged by earthquakes and other eans. There are,
however, no acceptable methods for determining all of the vari-
ables that affect periodic thermal properties, although some
methods using hot boxes have been used to characterise these
types of variables [33]. There are some limitations on the use of hot
boxes for walls, making such methods something of a challenge. In
the study presented here, our aim was to combine different
commonly used procedures to obtain stationary thermal trans-
mittance using estimated periodic thermal variables. The advan-
tages of performing thermal characterisations using these
procedures are that the procedures are widely known and that
stationary thermal transmittance can also be estimated. Two ap-
proaches using different regression algorithms (multilayer per-
ceptron (MLP) and random forest (RF)) are used. Each approach is
based on previous studies using other thermal characterisations
that gave acceptable results [34,35]. First, use of MLPs allows esti-
mates to be made using the results of HFM with THM input vari-
ables (internal surface temperature and air temperature), and
eliminating errors in the results using a theoretical total internal
heat transfer coefficient [36]. Second, the stationary thermal
transmittance data determined using the ISO 6946 method were
analysed using MLPs and RFs [34]. It was necessary to determine
this in order to allow validation of the results obtained by experi-
ment; these results reflect the potential for this variable to be
determined using the algorithms used here.

The potential for the use of regression algorithms to estimate
stationary thermal transmittance using various theoretical and
experimental methods is clear. However, as mentioned above,
methods for determining periodic thermal properties are still
required. Therefore, in this study we assessed the possibility of
determining different thermal variables that would allow the pe-
riodic thermal behaviour of a wall to be represented using regres-
sion algorithms that have been used in previous studies. Periodic
thermal variables (periodic thermal transmittance, periodic ther-
mal transmittance time shift, decrement factor, internal thermal
admittance, internal thermal admittance time shift, external ther-
mal admittance, and external thermal admittance time shift) were
estimated using input variables determined using HFM or THM. The
aim was to develop methods for the in-situ characterisation of the
periodic thermal properties of buildings without knowledge of the
compositions of the existing walls, thereby making these methods
more widely available to engineers and auditors for the correct
characterisation of the behaviours of existing buildings, to allow
effective energy conservation measures to be established, and to
make it easier to meet the goal of decreasing GHG emissions from
buildings by 2050.
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2. Methodology

2.1. ISO 13786: theory and calculation procedure

ISO 13786 [21] allows dynamic thermal characterisation of the
walls of a building to be performed using a series of variables to
determine the thermal behaviour of each wall, including temporal
variations. In the standard, sinusoidal variations in the air tem-
perature outside the envelope are assumed to generate heat fluxes
and sinusoidal variations in the internal temperature (see Fig. 1).
ISO 13786 was developed using the results of a study performed by
Carslaw and Jaeger [37], in which the relationship between the
sinusoidal variations in the external and internal temperatures and
the heat flux were analysed.

The procedure in ISO 13786 requires information on the
Zmn ¼
 
Z11 Z12

Z21 Z22

!
Z11 ¼ Z22 ¼ coshðxÞcosðxÞ þ j,senhðxÞsenðxÞ

Z12 ¼ � d
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(2)
configuration and properties of the wall layers. It therefore requires
the values of three thermophysical properties of the materials to be
known. These are the specific thermal capacity (c), the density (r),
and the thermal conductivity (l). The procedure therefore has the
same limitations as the ISO 6946 method for calculating the sta-
tionary thermal transmittance [38]. In ISO 6946, stationary thermal
transmittance is characterised by considering the element to be a
set of homogeneous and parallel layers. Each layer has a thermal
resistance determined by the thermal conductivity (li) and thick-
ness (di). The stationary thermal transmittance is defined as the
reciprocal of the sum of the resistances of the layers in the element
and the limiting layers,
Fig. 1. Scheme showing the sinusoidal temper
U¼ 1

1
�

he þ
Pn

i¼1
di
li
þ 1

�
hi

(1)

where lililili [W/(m$K)] and di[m] are the thermal conductivity
and thickness of layer i of the wall, respectively, and hi and he[W/
(m2K)] are the total internal and external thermal transmittance
coefficients, respectively, determined as specified in ISO 6946.

The procedure in ISO 13786 involves use of a heat transfer
matrix for each layer of the element (Zmn) (see Eq. (2)). A heat
transfer matrix for air gaps (Za) is also used (see Eq. (3)). The spe-
cific thermal capacity of the air gap is disregarded.
Za ¼
� 1
�Ra
0 1

�
(3)

In Eq. (3), x[dimensionless] is the relationship between the
thickness (d) and periodic penetration depth (d) of a thermal wave
in the material in the layer (see Eq. (4)) and Ra [(m2K)/W)] is the
thermal resistance of the air gap.

d¼
ffiffiffiffiffiffiffiffi
lT
prc

s
(4)
ature variations considered in ISO 13786.
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The total heat transfer matrix of an element is obtained by
multiplying the matrices of the different layers together, beginning
with the internal layer (Z1 is to the innermost layer of the element)
(see Eq. (5)). This matrix is used to obtain the matrix for heat
transfer between the two environments (see Eq. (6)) together with
the heat transfer matrices for the internal limit layer (Eq. (7)) and
external limit layer (Eq. (8)).

Z¼
�
Z11 Z12
Z21 Z22

�
¼
Y1
i¼N

Zi (5)

Zee ¼ ZsN,Z,Zs1 (6)

Zs1 ¼
� 1
�1=hi

0 1

�
(7)

ZsN ¼
� 1
�1=he

0 1

�
(8)

The periodic variables used in the standard can be determined
from the elements in the heat transfer matrix. The variables used in
the standard are shown in Table 1. All variables were considered in
this study.

2.2. Regression models

The method used here involved assessing the possibility of
estimating the periodic thermal variables described in Section 2
using two wall monitoring procedures, HFM and THM. Two
Table 1
Periodic thermal variables used in ISO 13786.

Variable Calculation

Periodic thermal transmittance

Y12 ¼ � 1
jZ12j

(9)

Time shift periodic thermal admittance

f¼ T
2p

argðZ12Þ (10)

Decrement factor

f ¼ jY12 j
U

(11)

Internal thermal admittance

Y11 ¼ � jZ11j
jZ12j

(12)

Time shift internal side

f11 ¼
T
2p

argðY11Þ (13)

External thermal admittance

Y22 ¼ � jZ22j
jZ12j

(14)

Time shift external side

f22 ¼
T
2p

argðY22Þ (15)

Internal areal heat capacity

k1 ¼
T
2p

����Z11 � 1
Z12

���� (16)

External areal heat capacity

k2 ¼
T
2p

����Z22 � 1
Z12

���� (17)
regression algorithms were used, which were trained using a
dataset containing the results of 22,820 tests performed in a pre-
vious study. A flowchart of the study procedure is shown in Fig. 2.

2.2.1. Regression algorithms: MLP and RF
Two regression algorithms (MLP and RF) were used, with

different success rates in previous studies [34,35]. The algorithms
and the factors analysed in each algorithm are described below.

2.2.1.1. MLP. MLP is a type of artificial neural network. The MLP
algorithm simulates the structure of the brain in order to solve a
problem [39], and can be used for regression or classification. This
approach is successful because of the universal approximation ca-
pacity that characterises the algorithm [40e42]. The MLP model in
this case had three layer types (see Fig. 3 (a)), an input layer (cor-
responding to the input layer in the model), one or several hidden
layers, and an output layer (corresponding to the output variable of
the model). There were several connected neurons in each layer.
The output value of the model was the sum of the values of the
neurons in the previous layers weighted using synaptic weights
from activation, transfer, and propagation functions. The estimate

given by the model (bYMLP) can be expressed using the equation

bYMLP ¼ s

0@XM
k¼1

wð2Þ
lk s

0@Xd
j¼0

xjw
ð1Þ
kj

1A1Aþwð2Þ
10 y0 (18)

where wð2Þ
lk is the weight of the output layer, sis the activation

function, xjis the value of the input layer, wð1Þ
kj is the weight of a

hidden layer, and wð2Þ
10 and y0 are the weight and the value,

respectively, of the bias neuron in a hidden layer.
Adjustment of the synaptic weights is essential for the model

because this allows the difference between the actual and the
estimated value of each value to be minimised. The MLP models
were therefore trained by back propagation [43,44] using the
BroydeneFletchereGoldfarbeShanno algorithm [45], which is a
quasi-Newtonian method. Similar procedures were used to design
MLPs in previous studies [34,35]. The models were trained using a
10-fold cross validation procedure, which was expected to decrease
substantially the variance of the model results [46]. The 10-fold
cross validation involved dividing the training dataset randomly
into 10 subsets 10 times. In each set of 10 subsets, ninewere used to
train the MLP and the other was used to test the MLP. This process
was repeated 10 times. The MLP performance was determined by
calculating the average value for all 10 times the process was per-
formed. Only models with one hidden layer were considered, and
the number of neurons was varied between one and 15 until the
configuration giving the best performance was identified.

2.2.1.2. RF. The RF algorithm is a tree-type algorithm. Models using
RF algorithms are effective for large datasets [47] and give smaller
errors and variances than other algorithms [48,49]. A RF algorithm
creates a set of classification and regression tree (CART) models.
The output value of a RF model is the mean estimate for each tree
(see Fig. 3(b)). A CART model is a predictor model with a reverse
tree structure (inwhich the internal nodes are the input variables of
the dataset, the arches are the possible values of the variables, and
the leaves are the CART variables). Like MLPs, CART models can be
used for classification and regression.

To train an RF model, the training dataset is divided into
Nbootstrapped sample sets [49], each of which generates a CART
model. Each node of each CART is divided using a subset of
randomly selected m predictors, which decreases the influences of



Fig. 2. Flowchart of the study.

Fig. 3. Schemes of the (a) multilayer perceptron regression model and (b) random forest regression model.
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the strongest predictors [50]. The estimate given by the RF model is
obtained by calculating the average of the estimates given by the
set of CARTs (see Eq. (19)). The estimate given by the model
therefore depends on the number of trees used in the RF model
[51]. Therefore, the RF models used in this study had between two
and 50 trees. The most appropriate number of trees was defined as
the number above which the model did not improve but the
computing time required to train the model increased.

bYRF ¼
1
T

XT
t¼1

cYt (19)

In Eq. (19),cYt is the output of the t-th tree and T is the number of
trees.



Fig. 4. Schemes for the in-situ measurement models used to determine the input variables.

Table 2
Input and output variables used in each approach.

Approach Algorithm Input variables Output variables

HFM MLP, RF Tint , maxðTintÞ, minðTintÞ, Text , maxðTextÞ, minðTextÞ, q, maxðqÞ, minðqÞ, thickness, time, period Y12; f; f ;Y11 ;f11;

Y22;f22 ;k1;k2
THM MLP, RF Tint , maxðTintÞ, minðTintÞ, Text , maxðTextÞ, minðTextÞ, Ts;int , maxðTs;intÞ, minðTs;intÞ, thickness, time, period Y12; f; f ;Y11 ;f11;

Y22;f22 ;k1;k2
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2.2.2. Dataset and approaches used
As mentioned in Section 1, the aim of the study was to identify a

method for making in-situ estimates of the periodic thermal
properties of walls by combining different stationary thermal
transmittance monitoring approaches to avoid the limitations of
previously developed methods. Such a method would correctly
estimate the stationary and periodic thermal properties of a wall.
Two approaches were used to deal with the input variables to the
regression model, one for each of the monitoring procedures used
(the HFM and the THM), as shown in Fig. 4. The main difference
between the methods was that HFM involved measuring the heat
flux but THM involved measuring the internal surface temperature
of the element. The different approaches gave different input var-
iables (see Table 2). The relationships between the input variables
for the internal and external air temperatures were therefore
considered. The input variables had the same structure for both
approaches. The mean, minimum, and maximum values deter-
mined by performing instantaneous measurements were used.
Three input variables were used, as in previous studies, namelywall
thickness, test duration, and date of construction. Given the context
of the study (in Spain), it was important to identify three different
periods of construction, namely P1 (before the normative NBE-CT-
79 standard [52]), P2 (after the NBE-CT-79 standard but before the
Spanish Technical Building Code [53]), and P3 (after the Spanish
Technical Building Code). The output variables for each approach
corresponded to the periodic thermal variables shown in Table 1,
i.e., Y12; f; f ; Y11; f11; Y22; f22; k1; and k2. Separate MLP and RF
models were designed for each variable using both approaches. The
MLP and RF models were assessed until the optimum configura-
tions for the criteria shown in Subsection 3.1 had been identified.

The envelope elements of key interest here are the walls,
because these are of primary relevance in determining the effec-
tiveness of the thermal characterisation procedure. They are easier
to characterise than other envelope elements such as roofs, which
may have different thicknesses. The dataset was similar to that used
in a previous study [35] and was obtained by performing two-
dimensional transitory simulations. The simulations were based
on real tests using simulated facade models (see Fig. 5). A total of
140 different types of facade were modelled. The designs of the
facades were based on types described in the Catalogue of Con-
struction Elements [54] and types derived from various studies in
which the facades of Spanish real estate parks were catalogued
[55,56]. The models used were therefore suitable for the types of
facades used in the construction periods typical of housing estates
in Spain. For walls with insulating material layers, several layers
were used, in particular, expanded polystyrene, mineral wool,
polyurethane, and extruded polystyrene. These materials were
selected because they are the most common types of insulation
used in buildings [57]. The fact that the walls were designed during
the simulation process meant that the characteristics of the layers
(material, thickness, and thermal properties) were fully under-
stood. A dataset accurately reflecting the periodic thermal proper-
ties of each simulated facade was therefore available. Each of the
140 types of facade was used with 163 real-time indoor and out-
door air temperatures. Therefore, 22,820 different combinations of
wall types and times were used. The surface thermal resistances
contained in ISO 6946:2007 were used as the horizontal heat flux
boundary conditions. These were 0.13 m2 K/W for internal condi-
tions and 0.04 m2 K/W for external conditions. This was because it
is recommended in ISO 6946:2007 that these surface thermal
resistance values are used for typical building envelopes under
normal operating conditions (i.e., the interior temperature is within
an acceptable range for comfort).

Two datasets were used because two different approaches were
used. One dataset was suitable for HFM and the other for THM.
Accurate information was available for the layers and the thermal



Fig. 5. Flowchart of the simulation process.
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properties of the 140 walls, therefore periodic thermal properties
could be determined using ISO 13786 (see Eqs. (9)e(17)). Each test
was used as an observation of the relevant dataset, so the sum of
the durations of the randomly selected instances was the full test
duration. Each dataset was randomly divided into smaller datasets
for training and testing. The training dataset contained 17,115 in-
stances (75% of the full dataset) and the testing dataset contained
5705 instances (25% of the full dataset). Three walls in any dataset
were not considered (see Table 3). Each wall belonged to a different
representative period for buildings in Spain. The estimates made
using the models for the three case studies were assessed by ana-
lysing the estimates made for the three walls that were not
considered.

The accuracy of each model was assessed using three statistical
parameters, namely the coefficient of determination (R2) (Eq. (20)),
the mean absolute error (MAE) (Eq. (21)), and the root-mean-
square error (RMSE) (Eq. (22)). These parameters were selected
because they are widely used to assess regressions [58,59].

R2 ¼100
�
1�

Pn
i¼1ðai � piÞ2Pn
i¼1ðai � aiÞ2

�
(20)

MAE¼
Pn

i¼1jai � pij
n

(21)
RMSE¼
�Pn

i¼1ðai � piÞ2
n

�1=2

(22)

In Eqs. (20)e(22), aiis the actual value, pi is the predicted value,
and nis the number of instances in the dataset (training or testing).

3. Results and discussion

The procedures used to calculate the periodic thermal variables
had the same limitations as that used to calculate stationary ther-
mal transmittance in ISO 6946 because accurate information on the
thermal properties of each layer in the element was required. As for
existing buildings, correct characterisation of the periodic thermal
properties of the envelope elements is a considerable challenge.

As mentioned in Section 3, the estimated periodic thermal
properties were analysed using different approaches for the HFM
and THM monitoring procedures. Both procedures were analysed
using the MLP and RF regression algorithms.

First, the variability described by the statistical parameters R2,
MAE, and RMSE was analysed using different MLP and RF config-
urations (by varying the number of nodes in the hidden layer for
the MLP models and varying the number of trees for the RF
models). The evolutions of the statistical parameters in the models
for the HFM approach are shown in Figs. 6 and 7. The RF model
performance improved as the number of trees increased until a
plateau was reached. The optimal number of trees in the RF models
of the periodic variables was generally between 40 and 45. The



Table 3
Thermophysical properties of the walls selected for individual analysis.

Wall Layer Thickness
[m]

Thermal conductivity
[W/(mK)]

Thermal capacity [J/
(kgK)]

Density [kg/
m3]

Thermal properties Sketch

W-A Cement mortar 0.015 1.000 1.000 1.700 U ¼
1:310 W=ðm2KÞ
Y12 ¼
0:370 W=ðm2KÞ
f ¼ 8:506 h
f ¼ 0:283
Y11 ¼
5:192 W=ðm2KÞ

f11 ¼ 1:171 h
Y22 ¼
3:826 W=ðm2KÞ
f22 ¼ 2:940 h
k1 ¼
57:657 kJ=ðm2KÞ
k2 ¼
75:638 kJ=ðm2KÞ

Solid brick 0.115 0.850 1.000 2300
Cement mortar 0.015 1.000 1.000 1.700
Air gap
Hollow brick

0.100 e e e

0.070 0.320 1.000 770
Gypsum plaster 0.015 0.570 1.000 1.100

WeB Cement mortar 0.015 1.000 1.000 1.700 U ¼
0:69 W=ðm2KÞ
Y12 ¼
0:277 W=ðm2KÞ
f ¼ 8:364 h
f ¼ 0:402
Y11 ¼
3:817 W=ðm2KÞ

f11 ¼ 2:146 h
Y22 ¼
4:031 W=ðm2KÞ
f22 ¼ 3:673 h
k1 ¼
59:238 kJ=ðm2KÞ
k2 ¼
56:035 kJ=ðm2KÞ

Perforated
brick

0.115 0.350 1.000 780

Cement mortar 0.015 1.000 1.000 1.700
Air gap 0.010 e e e

MW insulation 0.020 0.038 1.450 20
Hollow brick 0.070 0.320 1.000 770
Gypsum plaster 0.015 0.570 1.000 1.100

WeC Cement mortar 0.015 1.000 U ¼
0:57 W=ðm2KÞ
Y12 ¼
0:244 W=ðm2KÞ
f ¼ 6:522 h
f ¼ 0:428
Y11 ¼
3:846 W=ðm2KÞ

f11 ¼ 2:137 h
Y22 ¼
1:184 W=ðm2KÞ
f22 ¼ 3:268 h
k1 ¼
19:191 kJ=ðm2KÞ
k2 ¼
55:096 kJ=ðm2KÞ

Perforated
brick

0.115 0.350 1.000 780

Cement mortar 0.015 1.000 1.000 1.700
Air gap 0.005 e e e

MW insulation 0.040 0.038 1.450 20
Laminated
plasterboard

0.015 0.250 1.000 1.100

Fig. 6. Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) for the periodic thermal transmittance, decrement factor, and periodic thermal transmittance time shift
for the heat flow meter method models. R2 values are shown in black, MAEs in green, and RMSEs in purple. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 7. Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) for the external thermal admittance, external thermal admittance time shift, internal thermal admit-
tance, internal thermal admittance time shift, external areal heat capacity, and internal areal heat capacity for the heat flow meter method models. R2 values are shown in black,
MAEs in green, and RMSEs in purple. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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most appropriate number of nodes for the MLPs was between 11
and 15, depending on the periodic thermal variable being
considered.

The RF models performed better than the MLP models (see
Tables 4 and 5). The periodic variables in the RF models had
determination coefficients >95%, but the periodic variables in the
MLP models had determination coefficients <70%. The RF models
had determination coefficients between 0.44% and 39.08% better
than the MLP models, but had MAE and RMSE values that were, on
average, 75.62% and 65.65%, respectively, lower than for the MLP
models. This indicates that the statistical parameters were better
for the RF models than for the MLP models. The configurations and
performances of the models were similar regardless of whether
THM or HFM was used, but there were some differences. First, the
determination coefficients were 0.13%e2.11% lower for the THM
models than for the HFM models. Second, the MAEs and RMSEs
were 16.09% and 41.27% higher, respectively, for the THM models
than for the HFM models. As mentioned in Section 3, THM uses



Table 4
Performances of the optimal multilayer perceptron models for the heat flow meter method models and thermometric method models.

Variable HFM THM

R2 [%] MAE RMSE R2 [%] MAE RMSE

Periodic thermal transmittance 96.62 0.0477 0.0691 96.02 0.0531 0.0757
Decrement factor 80.46 0.0658 0.0779 75.26 0.0751 0.0862
Periodic thermal transmittance time shift 94.04 0.4463 0.6519 93.79 0.5067 0.6725
External thermal admittance 99.49 0.0716 0.1334 98.88 0.1000 0.1998
External thermal admittance time shift 98.10 0.0871 0.1289 97.76 0.0912 0.1400
Internal thermal admittance 60.61 0.4976 0.5679 47.23 0.5671 0.6294
Internal thermal admittance time shift 56.31 0.3596 0.4090 34.54 0.4304 0.4771
External areal heat capacity 99.22 1.5214 2.3667 98.47 1.9103 3.3239
Internal areal heat capacity 60.27 6.7024 7.7119 49.74 7.3093 8.3316

Table 5
Performances of the optimal random forest models for the heat flow meter method models and thermometric method models.

Variable HFM THM

R2 [%] MAE RMSE R2 [%] MAE RMSE

Periodic thermal transmittance 99.68 0.0107 0.0214 99.36 0.0153 0.0302
Decrement factor 97.89 0.0140 0.0272 96.65 0.0195 0.0341
Periodic thermal transmittance time shift 99.47 0.0895 0.1959 99.20 0.1222 0.2419
External thermal admittance 99.93 0.0301 0.0503 99.80 0.0384 0.0856
External thermal admittance time shift 99.81 0.0208 0.0415 99.63 0.0289 0.0571
Internal thermal admittance 95.54 0.1079 0.2153 93.59 0.1470 0.2582
Internal thermal admittance time shift 95.39 0.0777 0.1521 93.28 0.1076 0.184
External areal heat capacity 99.92 0.3811 0.7526 99.77 0.5420 1.2815
Internal areal heat capacity 95.63 1.4320 2.8094 93.82 1.9433 3.3481

Fig. 8. Percentage differences between the actual and estimated values of the periodic thermal transmittance, decrement factor, and periodic thermal transmittance time shift made
by the heat flow meter method models. The histogram bin width is 0.50%.
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internal surface temperature variables and HFM uses heat flux
variables, and the use of different input variables affected the
performances of the twomodels. However, the performances of the
RF models were satisfactory, because they both had determination
coefficients >93% and acceptable MAEs and RMSEs.

The internal areal heat capacity, internal thermal admittance,
and internal thermal admittance time shift showed worse perfor-
mances than the other periodic thermal variables, meaning the
models could not predict these variables well. The percentage
differences between the actual and the estimated values for these
variables for the 5705 instances in the testing dataset were deter-
mined. Histograms for the percentage differences for the MLP and
RF models using the HFM approach are shown in Figs. 8 and 9. The
percentage differences were lower for the RF models than the MLP
models. Most of the periodic thermal variables had percentage
differences <25%, and for many instances the percentage differ-
ences were <10%. This was also the case for the other periodic
thermal variables (internal areal heat capacity, internal thermal



Fig. 9. Percentage differences between the actual and estimated values of the external thermal admittance, external thermal admittance time shift, internal thermal admittance,
internal thermal admittance time shift, external areal heat capacity, and internal areal heat capacity made by the heat flowmeter method models. The histogram bin width is 0.50%.
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admittance, and internal thermal admittance time shift), which had
slightly worse performances in terms of the statistical parameters.
Only the decrement factor had percentage differences >25% for
large numbers of instances. However, this was only the case for
instances with low decrement factors (close to 0) because a very
small difference between the actual and estimated decrement
factor (e.g., an actual value of 0.097 and an estimated value of 0.122)
gave a large percentage difference. The histograms indicate that the
RF algorithm gave accurate estimates of periodic thermal variables.
The percentage differences were higher and there were fewer in-
stances with percentage differences <10% for the estimates made
by the MLP models than for the estimates made by the RF models.
High percentage differences were found for the periodic thermal
transmittance, decrement factor, and internal thermal admittance
for the MLP models. The MLP models gave acceptable estimates for
some periodic thermal variables (e.g., external thermal admit-
tance), but the RF models gave better estimates for all of the peri-
odic thermal variables considered.
The estimates obtained using the RF model designed using the
THM and HFM approaches were similar. Violin plots of the per-
centage differences are shown in Fig.10. Aviolin plot is a type of box
plot with a kernel density curve added [60]. The percentage dif-
ference distributions were similar for the RFmodels designed using
the THM and HFM approaches. However, fewer instances with
percentage differences <1% were found for the THM models than
for the HFM models, and the limit values of the violin plots were
higher for the THM models than for the HFM models. The same
trends were found in the estimates of the periodic thermal vari-
ables for the walls made using the RF models designed using the
THM and HFM approaches. The estimates made using the HFM and
THM models are shown in Tables 6 and 7, respectively. The differ-
ences between the estimated and actual values are shown. The
percentage differences were all <7%, and many estimates had
percentage differences <2%. The percentage differences were
between �6.83% and 2.92% for the HFM approach and �5.81% and
4.21% for the THM approach. More acceptable estimates were



Fig. 10. Violin plots of the percentage differences between the actual and estimated values obtained using the heat flow meter method (HFM) and thermometric method (THM)
approaches.

Table 6
Estimates of the periodic thermal properties obtained using the heat flow meter method models to analyse the individual walls.

Variable W-A WeB WeC

Actual Predicted Deviation [%] Actual Predicted Deviation [%] Actual Predicted Deviation [%]

Periodic thermal transmittance 0.370 0.374 0.97 0.277 0.267 �3.68 0.244 0.250 2.26
Decrement factor 0.283 0.284 0.40 0.402 0.390 �2.90 0.428 0.427 �0.18
Periodic thermal transmittance time shift 8.506 8.502 �0.05 8.364 8.434 0.83 6.522 6.508 �0.22
External thermal admittance 3.826 3.842 0.42 4.031 3.946 �2.10 1.184 1.191 0.55
External thermal admittance time shift 2.940 2.940 0.00 3.673 3.660 �0.35 3.268 3.249 �0.59
Internal thermal admittance 5.192 5.123 �1.34 3.817 3.867 1.30 3.846 3.842 �0.09
Internal thermal admittance time shift 1.171 1.186 1.31 2.146 1.999 �6.83 2.137 2.099 �1.77
External areal heat capacity 57.657 57.737 0.14 59.238 59.101 �0.23 19.191 19.349 0.82
Internal areal heat capacity 75.638 74.944 �0.92 56.035 57.672 2.92 55.096 55.575 0.87
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Table 7
Estimates of the periodic thermal properties obtained using the thermometric method models to analyse the individual walls.

Variable W-A WeB WeC

Actual Predicted Deviation [%] Actual Predicted Deviation [%] Actual Predicted Deviation [%]

Periodic thermal transmittance 0.370 0.386 4.21% 0.277 0.277 �0.07% 0.244 0.251 2.67%
Decrement factor 0.283 0.291 2.88% 0.402 0.384 �4.40% 0.428 0.427 �0.18%
Periodic thermal transmittance time shift 8.506 8.407 �1.17% 8.364 8.392 0.33% 6.522 6.554 0.49%
External thermal admittance 3.826 3.864 0.99% 4.031 3.952 �1.95% 1.184 1.196 0.97%
External thermal admittance time shift 2.940 2.945 0.17% 3.673 3.639 �0.92% 3.268 3.230 �1.18%
Internal thermal admittance 5.192 5.096 �1.86% 3.817 3.898 2.12% 3.846 3.927 2.12%
Internal thermal admittance time shift 1.171 1.185 1.23% 2.146 2.021 �5.81% 2.137 2.099 �1.77%
External areal heat capacity 57.657 57.986 0.57% 59.238 59.230 �0.01% 19.191 19.460 1.40%
Internal areal heat capacity 75.638 73.366 �3.00% 56.035 57.589 2.77% 55.096 56.668 2.85%
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obtained using the THM than the HFM, and more acceptable esti-
mates for WeB and WeC were obtained using the THM than the
HFM, but the estimates obtained using the HFM for WeB andWeC
also had acceptable percentage differences. The internal thermal
admittance time shift obtained using the HFM and the periodic
thermal transmittance, decrement factor, and internal thermal
admittance time shift obtained using the THM had percentage
differences >4%. This agreed with the results described above in
that the variables estimated using each approach had low numbers
Fig. 11. Heat maps of the percentage decreases in the determination coefficients (R2) found
meter method and thermometric method approaches were used.
of observations with percentage differences <1% (see Figs. 9 and
10). It is worth noting that the differences for these variables may
have been large because the values of the variables were generally
low. The differences between the actual values and the values
estimated using the RF model using the THM approach for W-A
were 0.0186W/(m2 K) for the periodic thermal transmittance, 0.018
for the decrement factor, and 0.125 h for the internal thermal
admittance time shift. The errors associated with the estimates of
these variables were therefore acceptable for correct
when input variables were removed and the random forest models using the heat flow



Fig. 12. Heat maps of the percentage increases in the mean absolute errors (MAEs) found when input variables were removed and the random forest models using the heat flow
meter method and thermometric method approaches were used.
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characterisation of the periodic thermal transmittances of the
walls. Three of the variables that had good estimates had per-
centage differences <2% when either the THM or HFM approach
was used. (i) The periodic thermal transmittance time shift had
percentage differences between �0.22% and 0.83% for the HFM and
between �1.17% and 0.49% for the THM. (ii) The external thermal
admittance time shift had percentage differences between �0.59%
and 0% for the HFM and between�1.18% and 0.17% for the THM. (iii)
The external areal heat capacity had percentage differences
between �0.23% and 0.82 for the HFM and between �0.01% and
1.40% for the THM.

These results indicate the accuracies of the estimates given by
themodels and the potential for using themodels to investigate the
periodic thermal characteristics of the elements of building enve-
lopes. The performances of the RF models when some unknown
input variables were used were analysed, in order to assess the
limitations of the models under actual test conditions caused either
by operational errors during monitoring (e.g., a probe being
disconnected) or by it not being possible to measure some input
variables (e.g., identifying the building period). The analysis was
performed by assessing the percentage decrease in the determi-
nation coefficient and MAE relative to the estimates performed
using the test dataset (see Figs. 11 and 12). The effects of not
knowing some input variables were different when estimating
different periodic thermal variables. The loss of accuracy was
greatest for the variables specific to each approach (i.e., heat flux for
the HFM and internal surface temperature for the THM) and for the
wall thickness and building period. These variables had percentage
decreases in values of R2 of up to 36.51%, but for the other variables
the percentage decreases were up to 1.88%. These results indicate
that the building period strongly affects the results, as also found in
a previous study [35]. Not knowing the thickness of a wall strongly
affected the percentage increase in the MAE, and increases of
2824.9% and 2905% were found for the MAEs of the external ther-
mal admittance and external areal heat capacity. This indicates that
wall thickness and building period and the variables specific to
each approach (heat flux and internal surface temperature) need to
be well understood if the models are to perform well. The RF
models give the most accurate estimates when these variables are
well understood. The other variables used in the models (external
and internal temperatures and time) allow the estimates of the
different periodic variables to be fine-tuned, but erroneous or
missing values for these variables do not necessarily cause large
errors in the estimates of the different periodic variables.
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4. Conclusions

Results from a modelling study of thermal performance of
buildings indicate that it is possible to characterise periodic ther-
mal variables experimentally using regression algorithms. Two
methods (HFM and THM) were used to characterise stationary
thermal transmittance, with two regression algorithms (MLP and
RF). The results indicate that all of the approaches gave good esti-
mates of the periodic thermal properties. However, the results
given by the different models were not the same. Assessment of the
performances of the two regression algorithms showed that the RF
method was found to give better estimates than the MLP method.
This finding was supported by the statistical parameters and the
percentage differences between the actual and estimated values for
each observation in the test dataset. The coefficients of determi-
nation were between 0.44% and 39.08% higher for the RF models
than for the MLP models, and the error parameters were 65.65%e
75.62% lower for the RF models than for the MLP models. It is
therefore more appropriate to use the RF method than the MLP
method to estimate periodic thermal variables.

HFM and THM gave equally good estimates. The percentage
differences and statistical parameters for the two methods were
similar, but slightly less good statistical parameters were found for
THM than for HFM. However, THM gave more accurate estimates
than HFM for two out of the three walls that were analysed indi-
vidually, indicating that both approaches allowed the periodic
thermal properties to be characterised accurately.

Not knowing some of the input variables for the RF models
affected the errors in different ways. Uncertainty in the variables
specific to each approach (i.e., heat flux for the HFM and internal
surface temperature for the THM) and the wall thickness and the
building period gave the largest percentage differences.

The methods presented here for characterising the periodic
thermal properties of building envelopes using RF models are
important because they avoid the limitations of the calculations
specified in ISO 13786, which require accurate information on each
layer in a wall. These methods therefore represent new resources
that will allow technicians responsible for improving the energy
efficiencies of buildings to ensure that appropriate energy conser-
vation measures are selected and implemented. This will allow
more building renovations aimed at improving the energy effi-
ciencies of buildings to be performed than at present, andwill make
it more likely that the goal of decreasing GHG emissions from
buildings by the mid-21st century is met.
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