
Metrics for Use Cases:
A Survey of Current Proposals

Beatriz Bernárdez1, Amador Durán1 and Marcela Genero2

1 Department of Computer Languages and Systems
University of Seville

Avda. Reina Mercedes, s/n. 41012 Sevilla (Spain)
{beat,amador}@us.es

2ALARCOS Research Group, Department of Computer Science
University of Castilla-La Mancha

Paseo de la Universidad, 4. 13071 Ciudad Real (Spain)
Marcela.Genero@uclm.es

1 Introduction

In this chapter, the current state–of–the–art of use case metrics is presented. Before
describing the different proposals, the concept of use case itself is discussed. This
discussion is necessary because of the different use case approaches that have been
proposed since the original work by Jacobson et al. (1992) was published. These
approaches vary from use cases expressed as informal, plain prose to extremely detailed
message sequence diagrams, causing confusion about the concept and role of use cases in
software development. This confusion has been increased by the ambiguity of the use–case
specification in the UML standards (OMG, 2003), especially by the so–called use case
relationships. Obviously, the concrete form in which use cases are used and expressed
dramatically affects their measuring, as noted in Henderson-Sellers et al. (2002). Therefore,
use case metrics must be always understood in the context of a specific use case format and
purpose.

After introducing the reader to the concept of use case in the next section, several proposals
for use case metrics are discussed. The proposals are grouped depending on their
measurement goal. In section 3, use case metrics for project estimation are presented,
including proposals by Karner (Schneider and Winters, 1998), Marchesi et al. (1998) and
Smith (1999). In section 4 use case metrics for improving the requirements engineering
process are discussed, including proposals by Saeki (2003) and Bernárdez et al. (2004).
Finally, in section 5 the conclusions and a summary of the main proposals are presented.

The reader must always have in mind that the metrics proposals discussed in this chapter
are still in a very early stage. Most of them are only initial proposals that have not been
neither theoretically not empirically validated yet, as commented in the conclusions section.

2 The concept of use case

Use cases are a scenario–based technique initially proposed by Jacobson et al. (1992) that
can be used for different purposes in software development, especially during requirements

engineering. As a scenario–based technique, use cases tell stories describing interactions
between some so–called actors, i.e. people or other systems with some goal to be achieved,
and a system under discussion (SuD) providing some services needed to achieve actors’
goals. The SuD has not necessarily to be a software system, it may be a computer–based
information system encompassing hardware, software and people (see section Dimensions
of use cases for details on use case scoping).

2.1 Roles of use cases in requirements engineering

As commented in Cockburn (2001), one of the best books on use cases, they can play
different roles in the requirements engineering process, the following being the most usual:

 As a mean of understanding and describing current business processes, where they
are called business use cases by some authors like Cockburn (2001) or Leffingwell
and Widrig (2000), or simply scenarios as in Leite et al. (2000).

 As a mean of focusing discussion about the requirements of the system to be built,
but not to be the requirements description, i.e. as a requirements elicitation
technique but not as a requirement documentation or specification technique. In this
case, use cases are eventually transformed into lists of typical functional
requirements.

 As part of the functional requirements of the system to be built, which is probably
the role they play more often. This is the main purpose of use cases as described in
the latest UML specification (OMG, 2003) and in other publications (Cockburn,
2001; Leffingwell and Widrig, 2000; Schneider and Winters, 1998).

Notice that, as stated by Cockburn (2001), "they really are requirements but they
are not all of the requirements". Other kinds of requirements like information
requirements, business rules or non–functional requirements cannot be expressed as
use cases but must be part of any complete requirements specification.

At the moment of writing, use cases are the most popular requirements elicitation technique
in software industry1

 and they are becoming an actual alternative to typical specifications of
functional requirements composed of hundreds of sentences starting with "the system
shall". As discussed in Cockburn (2001), use cases can be considered as contracts for
behavior, thus rising Meyer’s contract concept from programming to requirements.

All of the analyzed proposals for use case metrics assume that the measured use cases are
part of a system or software requirements specification. We will also make the same
assumption in the rest of this chapter for the sake of simplicity.

1 The interested reader can see the article by Weidenhaput et al. (1998) for an excellent survey on how use
cases are applied in European software industry.

2.2 Dimensions of use cases

Other criteria for classifying use cases apart from their purpose are their scoping, goal level
and visibility, as proposed in Cockburn (2001) and graphically depicted in figure 1 as three
orthogonal dimensions.

Figure 1. Cockburn’s dimensions of use cases

2.2.1 Scoping

The scoping of a use case can be at an organizational level if describes stories between
actors and organizations, which is the usual scope of the previously mentioned business use
cases. The scoping is at a system level or component level if actors interact with a
computer–based system or with a subsystem or a component of a computer–based system.
The two latter scoping levels are the usual when writing system or software requirements
specifications.

2.2.2 Goal level

The goal level of a use case indicates its level of abstraction with respect to user goals. For
expressing the goal level, Cockburn proposes a metaphor in which height relative to sea
level resembles goal level. The sea level corresponds to the user goal level, which is the
level at which most use cases are usually described. Those higher–level use cases in which
interactions are themselves user goals are said to be at a summary or very high summary
level, depending on their level of abstraction. Since these use cases are above the sea level,
they are represented by a kite (summary) or by a cloud (very high summary)2. User–goal–
level use cases are usually performed in no more than a few minutes (what Cockburn calls a
single–sitting), whereas summary use cases requires the completion of several user goals to

2 A similar classification is described in Regnell et al. (1996), where environment, structure and event are
proposed as levels of use case detail.

be performed and can take longer to complete.

2.2.3 Visibility

The visibility of a use case indicates whether it describes the internal structure of the SuD
or only its external, observable behaviour. In the former case, the use case is said to have a
white box visibility, whereas in the latter case it is said to have a black box visibility.
Needless to say, the latter is the usual visibility when using use cases as specifications of
functional requirements, following Davis recommendations (Davis et al., 1993).

Most of the metrics proposed for use cases focus on use cases with the underlined
characteristics in figure 1, i.e. use cases at system scope, at user goal level and with a black
box visibility. Because of that, these will be considered as the default values of Cockburn’s
dimensions for the rest of this chapter.

2.3 Specification of use cases

Jacobson et al. (1992) made use cases very popular, but they did not provide much
guidance on how to specify them. As a result, a plethora of use case templates, notations
and writing guidelines have bloomed in the last years. Use cases, as a scenario–based
technique, are fundamentally text–based. Others formats like UML activity and sequence
diagrams or Petri nets can be used for specifying use cases but, as recognized by Cockburn
(2001), Kulak and Guiney (2000) and other practitioners, stakeholders without a software
engineering background usually understand written stories using the vocabulary of the
problem domain better than any other software–oriented diagrammatic notation.

Assuming that use cases are basically text, there are still many possible ways of specifying
them, from plain prose to structured English. Regardless of the writing style, one
commonly agreed point is that any use case specification must describe a sequence of
interactions between actors and the SuD, usually numbering the steps performed during the
interactions in order to achieve some actor’s goals.

A thorough discussion of all the proposed templates for use case specification is out of the
scope of this chapter, but a summary of some of them is essential in order to understand
some of the metrics proposals. Notice that, as actual requirements templates, use cases
templates usually include requirements attributes3

 like a unique identifier, version, status,
stakeholders, writers, dependencies on other requirements, associated non–functional
requirements, etc. As commented in following sections, use–case metrics based on some of
these attributes like the number of stakeholders with a stake on the use case, the number of
dependencies of the use case or the number and type of associated non–functional
requirements, should be taken into consideration when using use cases for effort estimation.

3 The interested reader can see Davis (1993) or Sommerville and Sawyer (1997) for more details on
requirements attributes and requirements management.

2.3.1 Cockburn’s template

One of the first, most widely used templates for use case specification was initially
proposed in (Cockburn, 1997) and later reviewed by its author in (2001). Its most relevant
elements are the following:

 Name, scope, level and visibility: the name of the use case is the primary actor’s
goal in a short, active verb phrase. The primary actor is the actor requesting services
from the system, usually triggering the use case. In Cockburn’s template, the use
case name is decorated with the corresponding scope, level and visibility icons (see
figure 1).

 Preconditions: the preconditions of a use case are assertions about the state of the
SuD and its environment — the state of the world in Cockburn’s words — that will
be checked before letting the use case start and that will not be checked again
during the use case execution.

 Minimal and success guarantees: Cockburn considers two different groups of
postconditions depending on whether the use case ends successfully or not, i.e.
whether the primary actor’s goal is achieved or abandoned. Minimal guarantees
must hold regardless of the success or failure of primary actor’s goal. Success
guarantees must hold only when the use case concludes successfully.

 Trigger: a trigger is an event that fires the execution of a use case. Depending on
the writing style, it can be considered as the first step of the use case or specified
outside the main success scenario.

 Main success scenario: the main success scenario is a numbered sequence of steps
performed during the execution of a use case that leads to a situation in which the
primary actor’s goal is achieved. Apart from including another use case, Cockburn
considers three possible kinds of action to be performed in a step: an interaction
between two actors (considering the SuD as a special kind of actor), a validation
step, and a internal change of the SuD (even if the visibility of the use case is black
box). The number of actions to be included in a single step depends on the writing
style4, although one or two actions are the usual number. Cockburn also
recommends not using conditional steps in the main success scenario but
considering them as extensions.

 Extensions: extensions are branches of the main success scenario depending on a
particular condition — the extension condition — in a given step. Some of these
branches can lead to success while other can lead to failure of the use case.
Cockburn recommends using extensions for handling both situations, while other
authors like Leite et al. (2000) or Durán et al. (2002) use conditional steps for
successful, usual branches and exceptions for branches triggered by exceptional
conditions usually leading to use case failure.

4 See Cockburn (2001), pages 93–95, for details about including a reasonable set of actions in a single step.

 Technology and data variations: Cockburn considers different ways of performing
a step as variations, like using different payment methods, different data during an
identification of a user, etc. They are not considered to be alternative branches, i.e.
they have neither condition nor steps.

2.3.2 RUP template

The Rational Unified Process (RUP) (Kruchten, 2000) is a software engineering
methodology developed by the Rational company (now a company of IBM) after the
Unified Process (UP) (Jacobson et al., 1999). One of its defined artefacts is the RUP use
case template, including the following elements:

 Name: like in Cockburn’s template, the name of the use case in the RUP template is
a short description of primary actor’s goal, although is augmented with a brief
description in which a short summary of the use case is provided.

 Pre– and postconditions: in the RUP template, a precondition is defined as the
state of the system that must be present before the use case starts. Postconditions are
defined as a list of the possible states the system can be in after a use case has
finished. Kruchten (2000) does not specify if postconditions must always hold or if
they must only hold on successful ending of the use case, which seems to be the
usual semantics. Notice that unlike in Cockburn’s template, pre– and postconditions
in the RUP template do not take the SuD environment into consideration.

 Basic flow: the basic flow is a numbered sequence of steps describing what actors
do and what the system does in response. In the RUP template, conditional branches
are allowed provided they are composed of only a few steps. In case of complex
alternative branches, using an alternative flow is preferred. As in Cockburn’s
template, the action of a step can be a inclusion of another use case (or an extension
if the step is conditional).

 Alternative flows: alternative flows describe alternative behavior usually due to
exceptions that occur in specific steps in the main flow. When an alternative flow
ends, the main flow is resumed unless otherwise stated. If needed, alternative flows
can be divided into alternative subflows at arbitrary depth, although that use is
discouraged.

 Extension points: in the UML 1.5 specification (OMG, 2003), an extension point is
defined as a reference to one or a collection of locations in a use case where the use
case may be extended. An extend relationship defines that a use case may be — i.e.
depending on a extension condition— augmented with some additional behavior
defined in another use case.

From our point of view, one of the problems of this vague description of, a probably
unnecessary, concept is that extensions points are not related to any step in neither
the basic flow nor the alternative flow. In other words, they seem to be unattached

labels for the starting points of alternative flows expressed as separate use cases.

2.3.3 Leite’s template

Leite et al. (2000) proposes not only a scenario template but also a whole process for
scenario construction. A important difference in this approach is that Leite’s scenarios are
tightly coupled with a lexicon containing concepts from the problem domain. In this way,
Leite ensures that scenarios are written using the vocabulary of customers and users, thus
enforcing their communicability. The most relevant elements of this template are the
following:

 Title and goal: Leite’s template includes both a name and a goal. Usually, the
former is a short form of the latter.

 Context and resources: in Leite’s template, preconditions are part of the context of
the scenario, which describes a geographical location, a temporal location and
preconditions. Leite also includes information about relevant resources, i.e. physical
elements or information, that must be available during the scenario performance.
Postconditions are not considered in this template.

 Episodes: the episodes of Leite’s scenario template are basically the same as the
numbered sequences steps of previously discussed templates. In this template,
episodes can include other scenario or describe a simple interaction. Conditions can
be included in the episode sequence, but they affect only one episode. For
conditional branches composed of more than one episode, scenario inclusion must
be used. Leite also considers optional episodes, i.e. steps that may or may not be
performed depending on conditions that cannot be explicitly detailed. Notice that
groups of non–sequential episodes can also be defined in a Leite’s template, thus
allowing a parallel or indistinct sequential order.

 Exceptions: this section of Leite et al.’s template contains the specifications of
exceptional situations due to the lack or malfunction of some of the previously
mentioned resources. The main differences with other templates are that exceptions
are not associated to specific steps, and that only one action can be specified as the
exception treatment, although that action can be a scenario inclusion.

2.3.4 Durán’s template

Durán’s template for use cases, formerly published in Durán et al. (1999), is one of the
results of the PhD. thesis of one of the authors of this chapter (Durán, 2000). The most
relevant characteristic of this template is that for a number of its elements some linguistic
patterns are provided, thus easing use case writing5. Another interesting aspect of this
template is that is fully supported by the free requirements management tool REM (Durán,

5 A description of linguistic patterns is out of the scope of this chapter. The interested reader can see Durán et
al. (1999) for details. A more extensive work on the use of linguistic patterns for use cases can be found in
Ben Achour et al. (1999), one of the results of the CREWS project.

2003), as shown in figure 2. Its basic elements are the following:

Figure 2. Support for use cases in REM

 Name: the name of the use case is, as in Cockburn’s template, a short verb phrase
stating the goal of the use case from the primary actor’s point of view.

 Description: the description is based on a linguistic pattern including the triggering
event of the use case. The simplified structure of this linguistic pattern is "the
system shall behave as described in the following use case when <triggering
event>". Notice that Durán considers the triggering event at the business level,
whereas the first step of the ordinary sequence is usually a request of service from
an actor to the system (see figure 3 for an example).

 Preconditions: preconditions include assertions that must be true in order to reach
the goal of the use case. Like in Cockburn’s and Leite’s templates, preconditions are
expressed not only on the system state but also on its environment.

 Ordinary sequence: the ordinary sequence describes the steps performed to
achieve the use case goal when everything goes right, including single conditional
steps like in Leite’s template. The actions performed in any step can be actor actions
(actor–to–actor or actor–to–system actions), system actions (usually only externally
observable actions) or the performance of another use case (an UML inclusion or
extension, depending on whether the step is conditional or not).

 Postcondition: postconditions include assertions about the system and its
environment that must hold provided the use case ends successfully.

 Exceptions: exceptions have the same structure than in Leite’s template plus

additional information specifying if the use case is resumed or canceled after
exception treatment.

UC–0015 Register Book Loan
Dependencies • OBJ–0001 To manage book loans (objective)

• OBJ–0005 To know library users’ preferences (objective)
• CRQ–0003 Maximum number of simultaneous loans (business rule)
• CRQ–0014 Return date for a loan (business rule)

Description The system shall behave as described in the following use case when a library user requests
a loan of one or more books.

Precondition The library user has been identified by means of his or her identity card and has picked up
the books to loan from the shelves.

Ordinary
sequence

Step Action
1 The librarian requests the system for starting the book loan registering process.
2 The system requests for the identification of the library user requesting a loan.
3 The librarian provides identification data of the library user to the system.
4 The system requests for the identification of the books to be loaned.
5 The librarian provides identification data of the books to be loan to the system.
6 The system displays the return date for each of the books to be loan and requests loan

confirmation for each of them.
7 The librarian tells the user library the return dates displayed by the system and ask

him/her if he or she still wants to loan each book.
8 The library user confirms the librarian which books he or she wants to loan after

knowing return dates.
9 If some of the confirmed books have an associated multimedia item, then use case

“Add item multimedia to loan” is performed.
10 The librarian re–confirms the book loans confirmed by the library user to the system.
11 The system informs that the book loans have been successfully registered.

Postcondition The library user can take the loaned books away and the system has registered the book
loans

Exceptions Step Action
3 If the library user has already reached the maximum number of simultaneous loans or

has a penalty, the system informs of the situation, then this use case cancelled.
Comments The maximum number of simultaneous book loans and the loan period depend on the library

policy and can change in the future. See business rules CRQ–0003 y CRQ–0014.

Figure 3. Use case example using a simplified version of Durán’s template

2.4 Use case diagrams

Apart from their textual specification, use cases, their actors and their relationships can be
depicted in the so–called use case diagrams. Use case diagrams were part of the initial
proposal by Jacobson et al. (1992) and, with minor changes, they are also present in the
current UML specification (OMG, 2003).

As commented by some authors like Cockburn (2001) or Kulak and Guiney (2000), use
case diagrams must be understood only as a table of contents of use cases, not as an
alternative of their textual specification. In use case diagrams, only the name of the use
cases, the participating actors and some use case relationships are shown. The essence of
use cases, i.e. their sequence of actor–system interactions, cannot be in anyway derived
from use case diagrams. An example of a use case diagram can be seen in figure 4, where
the system boundary is represented as a box containing some use cases. Actors are

represented as stick men and their participations in use cases are depicted as association
lines.

Figure 4. Use case diagram example

2.5 Use cases in the UML specification

As commented in the introduction of this chapter, the UML specification has caused
confusion about some concepts related to use cases. Apart from focusing only in the
diagrammatic notation, the introduction of three different kinds of use case relationships,
i.e. inclusion, extension and generalization (see figure 5 for their graphical notation), has
led many developers to build extremely complex use case models impossible to understand
for their customers and users because of an excessive use these relationships.

Figure 5. UML notation for use case relationships

We agree with Cockburn and other authors about the meaning of the so–called include and
extend relationships. They must be considered as a means of avoiding redundancy in use
cases specifications, but always taking into account communicability and understandability

as the primary goals of use cases. In other words, a certain degree of redundancy is
acceptable if it makes communication easier. Their counterparts in textual specification are
those steps invoking or calling other use cases. Unconditional invocations are considered as
inclusions and conditional invocations, i.e. conditional steps or exceptions, are considered
as extensions.

Without a doubt, the most confusing use case relationship in UML is use case
generalization. There are no clear semantics about the relationships of the sequence of steps
of two use cases when one is a generalization of the other. In the UML specification, the
semantics of use-case generalization are described in this way:

Generalization between use cases means that the child is a more specific form of
the parent. The child inherits all features and associations of the parent, and may
add new features and associations (page 2-132).
[…]
A generalization relationship between use cases implies that the child use case
contains all the attributes, sequences of behaviour, and extension points defined in
the parent use case, and participates in all relationships of the parent use case. The
child use case may also define new behaviour sequences, as well as add additional
behaviour into and specialize existing behaviour of the inherited ones. One use case
may have several parent use cases and one use case may be a parent to several
other use cases (page 2-138).

As the reader can see in the previous definition of use-case generalization, its semantics are
extremely ambiguous. On one hand, child use cases must contain the whole sequence of the
parent use case. On the other hand, child use cases may define new sequences, add new
behaviour and specialize exisiting behaviour. It is not clear at all how a child use case can
redefine the sequence of steps of its parent use case — not to mention if the child use case
has more than one parent!

Ambler (2001) interprets use case generalization in a different way:

Inheritance between use cases should be applied whenever a single condition would
result in the definition of several alternate courses.
[…]
The inheriting use case is much simpler than the use case from which it inherits. It
should have a name, description, and identifier, and it should also indicate from
which use case it inherits in the “Inherits From” section. This includes any section
that is replaced, particularly the pre-conditions and post-conditions as well as any
courses of action. If something is not replaced, then leave that section blank,
assuming it is inherited from the parent use case (you might want to put text, such
as “see parent use case,” in the section).

Ambler's definition of use-case generalization is more concrete than the official one. It
seems that use-case generalization should be use when a single condition is responsible of
several alternate courses. In other words, if you find several — more than three, perhaps?
— non-contiguous, conditional steps, all of them sharing the same condition, you should

consider extracting all affected steps and create a child use case.

An obvious alternative to Ambler's proposal is using conditional steps — action steps or
inclusion steps, i.e. extensions — instead of introducing a new kind of use-case
relationship.

Cokburn (2001) recognises the problems of use-case generalization and proposes a
completely different use:

In general, the problem with the generalizes relation is that the professional
community has not yet reached an understanding of what it means to subtype and
specialize behaviour, that is, what properties and options are implied. Since use
cases are descriptions of behaviour, there can be no standard understanding of
what it means to specialize them.

If you use the generalizes relation, my suggestion is to make the generalized use
case empty […]. Then the specializing use case will supply all the behaviour […].

What Cockburn does not say is what is the reason for keeping the empty generalized use
case, which seems to be useless.

As the reader can see, there is no consensus about what use-case generalization means. This
situation is reflected in the fact that, as far as we know, no use-case metrics proposal takes
use-case generalization into account.

2.6 Conclusions on the concept of use case

After analysing the concept of use case, their roles in software development, and some
templates for their specification6, we have reached the following conclusions:

 Although other uses are possible, use cases are mainly used as textual specifications
of functional requirements. Hence, they can be considered as partial specifications
of the system to be built for estimation purposes.

 Use–case templates usually include the use–case goal, preconditions, trigger, main
successful scenario, postconditions, successful alternative branches and failure
alternative branches. Some of them distinguish between usual and abnormal, i.e.
exceptional, conditions of alternative branches. Some of them include information
about the environment whereas other focus only on the software system.

 The usual number of actions specified in each step is usually one or two. Step
actions are usually of one of three possible classes: actor action, system action and
use case inclusion/extension.

6 The interested reader can see other use case templates proposals (Schneider and
Winters,1998), (Kulak and Guiney, 2000), and (Coleman, 1998).

 Use–case relationships must be used carefully, keeping use case specifications clear
and easy to understand. Inclusion and extension should be used only as means of
avoiding redundancy. Generalization should be used only when non ambiguous
semantics were commonly agreed.

Taking these considerations into account, the different proposals for use–case metrics are
analysed in the following sections.

3 Metrics for project estimation

As Smith (1999) commented, “Intuitively, it seems as though it should be possible to form
estimates of size and effort that development will require based on characteristics of the
use case model. After all, the use case model captures the functional requirements…”

In this section the main proposals to estimate size, effort and complexity of the system
based on use cases will be presented.

3.1 Size and complexity estimation

3.1.1 Fectcke’s et al. proposal

The function points (Albrecht, 1979) is one of the method that allows measuring the
functional size of software systems. One of the main reasons for its use is because function
points measures the functionality of software from the user viewpoint independently of
technology used for implementation. With OO methods implantation it is advisable to adapt
the functions points for the OO conceptual models.

In order to allow this goal, in Fetcke et al. (1997) a method to calculate function points
based on conceptual models is shown. These conceptual models are use cases model,
domain model and analysis objects model.

In order to calculate function points, previously it was necessary to know unadjusted
function points that are calculated by adding the number of internal files and external files
of the application, together with the inputs, outputs and inquiries from and to the user.

In particular, for the use cases model, Feckte et al. (1997) assume that some use cases will
be mapped to direct interaction user-system and others will not because of the different
possible detail levels of the use cases.

In order to correctly select use cases, the method proposed by these authors explains that
first we have to apply the mapping actors rules that lie in choosing those actors (human or
not) that are not part of the system under consideration, i.e. the system users and the others
systems. Afterward, the use cases that are related with some of the selected actors will be
chosen. Furthermore, we have to add the use cases that are related with a particular one by
means of extend relationship.

Those use cases will be counted as systems interactions and will be added to the rest of
elements selected in the analysis model or domain model in order to obtain unadjusted
function points.

Fetcke et al. (1997) state how the method is applied to three development projects getting
system size in unadjusted functions points. The main advantage is that the method is based
on system requirements, collected at the very beginning of the system development process.
The disadvantage is that it is only applicable when you use OOSE (Object Oriented
Software Engineering) (Jacobson et al., 1992).

3.1.2 Marchesi et al.’s proposal

Also based on the use case model, metrics are defined to estimate system complexity. One
of these proposal, explained in (Marchesi, 1998), which is based on possible mapping
between use case and function points assures that the number of use cases (CUN), the
number of actors (aN) and the number of include and extend relationships are good
indicators of system complexity.

To estimate system complexity based on the metrics mencioned above Marchesi proposes
the metric 4UC of which the equation is as following:

 EsmmCsmmKUCUCKUC 2
2

1 314

Where:
 The coefficients K1 and K2 are constants (less than one) and must be calculated

empirically.
 UC1 represents the number of use cases in the requirements specification.

According to Henderson-Sellers et al. (2002), it is unknown why UC1 appears
squared. The author argues reasons of homogeneity because the other parts of the
equation are proportional to Na NCU and UC1 is only NCU.

 UC3 is the total amount of communications among use cases and actors without
redundancies introduced by extend and include relationships, taking into account the
fact that the complexity of a use case increases more than linearly with of the
number its communications.

 [C] is a matrix (with dimension Na NCU) and the element cik of [C] has value 1 if
the actor i has a relationship with use case k , and value 0 otherwise.

 [E] is a matrix (Na NCU) representing the relationships between use cases after
eliminating the redundancies due to include and extend relationships. Assuming a
matrix [M], then Msmm is defined as the sum of all elements of matrix [M],
taking into account that the difference EsmmCsmm is a measurement of
the communications inherited by all use cases extending or using other use cases.

In our point of view, once the metric 4UC is defined it is advisable to try to empirically
validate it in order to establish a correlation between this metric and system complexity, for

example, doing a correlational study according to (Briand and Wüst, 2002). In the results
of this study, it would be possible to establish the coefficients values (1K and 2K). On
the other hand, it is difficult to fix the measure unit of 4UC and how the value bears upon
project schedule.

3.1.3 Feldt’s proposal

Feldt (2000) studies how the complexity and size of use cases influence system complexity
and size.

In order to specify use cases, this author proposes to use UML sequence diagrams (OMG,
2003). For this reason, the metrics proposed in this section are suitable when it works with
low level use cases. The only participants in the sequence diagrams used by Feldt are actor
and system. They interchange messages as “calls to procedures” which can have
parameters. Furthermore, repetition sequences and alternatives can appear as well as other
elements usually seen in these types of diagrams (stimulus and interruptions).

In our opinion, it is preferable to specify functional requirements with some of the textual
use case proposals (summarised in section 2.3. Specification of use cases) to make the
communication between software developers and clients and users possible. Nevertheless,
this proposal is interesting to see the aspects of use cases considered necessary to estimate
size and system complexity.

In order to characterize the size and complexity of use cases, Feldt proposes the following
metrics:

 Number of stimulus (external events that have influences in the use case
performance).

 Number of alternative branches.
 Number of interruptions.
 Number of system responses (calls to procedures).
 Number of system actions (relationships with other use cases).
 Number of exceptions.
 Number of actors.

It is convenient to take into account that Feldt (2000) considers size and complexity as
attributes that can be measured as a whole. Furthermore, it is interesting to study how he
approximates the system complexity through the time invested in writing the sequence
diagram.

3.2 Estimation of system effort

It is difficult to determine a priori the effort required to implement a use case. This is
because use cases are used in different ways depending on engineers requirements or on the
active rules in the organization. Consequently, use cases can have different abstraction
levels.

In order to solve this problem there are some alternatives. Some of them suggest to classify
use cases according to their detail level and then estimate the effort to implement them
according to their assigned level. Other proposals count the number of analysis classes,
which correspond to each use case, and based on this, they can estimate the effort of
implementing it.

3.2.1 Karner’s proposal

The proposal done by Karner (Rational Software) and collected in Schneider and Winters
(1998) defines the concept use case points, analogue to the function points concept. Use
case points is useful to estimate the effort (in man-hours) of development project.

The metric use case points (UCP) is defined as:

EFTCFUUCPUCP

Where:

 UUCP is the metric called unadjusted use case points. This metric is calculated as
the weighted sum in number of actors and number of use cases in the requirements
specification. Each actor and use case can have a different complexity. This
provokes the weighing in the calculation of UUCP . The weights of the actors
figure in table 1. The complexity of use cases depends on one of two factors: the
number of steps, and the number of analysis classes corresponding to the use case.
Tables 2 and 3 show the possible weights of the use case.

 TCF represents a technical complexity factor. This factor increases if there are
complex non-functional requirements, for example, if the system is distributed, the
code must be reusable or easy to change, etc. In table 4 you can see which factors
have influence in TCF . Those factors have a weight between 0.5 and 2. According
to the importance of this factor in the system, this weight will be multiplied by a
number between 0 and 5 (0 means that the factor is not present in the system).

 EF represents the level of experience of the technical personnel that work in the
project. The stability of the project also has influence on the value of EF .

Once the value of UCP is calculated, in order to estimate system effort Karner
suggests applying the factor 20 man-hours per UCP . However, data obtained of its
application in real projects advises that it is convenient to adjust this quantity.

One of these revisions is shown in Schneider and Winters (1998) which comments that
it would be beneficial to adjust this quantity depending on the EF value. If the EF is
highly affected by change in staff, this will provoke more effort in training team
members or provoke the convenience of solving instability problems. In this case
Schneider advises to use 28 man-hours per UCP .

In Banerjee (2001) it is also provided another possibility: to increase the number of
man-hours to 36 per UCP . The reason for this approach is that negative numbers mean
extra effort spent on training team members or problems due to instability. However,
using this method of calculation means that even small adjustments of an environmental
factor, for instance by half a point, can make a great difference in the estimate.

Furthermore the use case points method has been applied to different types of projects.
Thus, in Arnold and Pedross (1998) how to use in large-scale software systems is
explained. Experiences, based on empirical data of a productivity benchmark of 23
measured projects, have revealed the usefulness of the method in order to measure the
size of a software system.

The method has also been applied in building Web Application Systems (Stoica, 2000)
coming to the conclusion that this technique can be used by adding front-ends to the
best existing cost models.

Furthermore, some CASE tools solve the calculation of UCP . One of them is
Enterprise Architect (Systems, 2003) a modelling UML tool.

In our opinion, the most relevant thing of this approach is the consideration of the
technical factors TCF and EF . More or less, this shows that it is insufficient in
regards to the information collected in requirements specification to estimate effort
because there are other factors whose influence is essential to take into account.

Actor Type Description Factor
Simple Program interface 1
Average Interactive, or protocol-

driven interface
2

Complex Graphical interface 3
Table 1. Actor weighting factors

Use case type Description Factor
Simple 3 or fewer transactions 5
Average 4 to 7 transactions 10
Complex More than 7 transactions 15

Table 2. Transaction- based weights factors

Use case type Description Factor
Simple Fewer than 5 analysis

classes
5

Average 5 to 10 analysis classes 10
Complex More than 10 analysis

classes
15

Table 3.Analysis class-based weighting factors

Factor number Factor description Weight
T1 Distributed system 2
T2 Response or throughput perfomance

objectives
1

T3 End-user efficiency(online) 1
T4 Complex internal processing 1
T5 Code must be reusable 1
T6 Easy to install 0.5
T7 Easy tu use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Includes special security features 1
T12 Provides direct access for third

parties
1

T13 Special user training Facilities are
required

Table 4. Technical factors for system and weights

3.2.2 Smith’s proposal

The approach described in this section presents a fundamental difference with the one
described in the previous section; which is the detail level of the use cases object of the
estimation. In the Karner’s proposal, it is necessary that use cases have sufficient detail
level, in order to know how many analysis classes correspond to each use case.

In brief, Smith (1999) defines four possible types of use cases according to detail level:
Subsystem (L1), Group of subsystem (L2), System (L3) and System of subsystem (L4).
A concrete use case can belong to a sole level, or to several of them in a concrete
percentage.

The concept of subsystem coincides with the concept proposed by UML (OMG, 2003).
The concept of subsystem group coincides with CSCI7 (Computer Software
Configuration Item) (DoD, 1993).

7 A configuration item for computer software, where a Configuration Item is an aggregation of hardware or
software that satisfies an end use function and is designed by the acquirer for separate configuration
management.

The basic idea is that a use case of level L(i) needs less effort than a level L(1i) to
be implemented in C++ language. This is because a use case of level L(1i)
comprises several use cases of level L(i). On the other hand, the type of system also
has influence in the effort of implementation of the use case. Thus, three types of
systems are considered: simple business system, scientific system and complex
command and control system.

Table 5 shows the level size in SLOCS (Source Lines of Code). In order to build table
5, the following sentences are assumed, whose justification are in Smith (1999):
 A subsystem (L1) implements 8 classes.
 To implement a class in C++ approximately 850 SLOCS are necessary.
 The level L(1i) is composed by 8 components of the level L(i).

Level Size (SLOCS)
L1 7,000
L2 56,000
L3 448,000
L4 3,584,000

Table 5. Size of system (in SLOCS)

Once the level size is known it is necessary to take into account the following statements:
 to describe the functionality of 8 classes 300 scenarios are necessary.
 10 use cases of level L1 can describe 300 scenarios.

Now, if models like COCOMO and SLIM are applied, the results obtained in table 6 show
the effort in hours/use case (h/UC) necessary to implement a use case of level and type of a
system in particular.

Level Effort h/UC simple bu-
siness system

Effort h/UC scientific
system

Effort h/UC complex
command and control
system

L1 55 (range 40-75) 120 (range 90-160) 260 (range 190-350)
L2 820 (range 710-950) 1,700 (range 1,500-

2,000)
3,300(range 2,900-3,900)

L3 12,000 21,000 38,000
L4 148,000 252,000 432,000

Table 6. Effort of use case depending on detail level and system type

In order to apply this estimation technique, we would have to take the set of use cases of
the requirements specification and fit each of them in the suitable level L(i) or partially in
several of them. Furthermore, it is convenient to take into account the number of pages that
fill each use case. Subjectively, Smith exposed that a use case of a simple business system
must occupy an average length of 5 pages, a use case of a scientific system, 9 pages, and a
complex command or control system, 12 pages.

One example in Smith (1999) assumes a scientific system where the actual use cases count
was 5, and one of them split at L4 and 4 at L3, further, the L4 use case is 12 pages and the
L3 use cases average 10 pages, then the effort is: 28009102100049122501

staff months. The quotients 912 and 910 are used to account for the apparent
complexity due to the 9 pages represented as the average length use case because the
system is a scientific type.

3.2.3 Henderson-Sellers’s proposal

Henderson-Sellers (2002) provides some metrics for size and complexity of use cases.
According to the authors they could be useful for estimating external attributes (Fenton and
Pfleeger, 1997), such as system effort and maintainability.
In order to measure the size of a use case, the following metrics are suggested:

 Number of atomic actions in the main flow.
 Number of atomic actions in each alternative flow.
 The longest path between the first atomic action of the use case to the final atomic

action of the use case.
 Number of alternative flows (alternative flows are measured from the start of the

use case to its termination).

On the other hand, the following environment factors contribute to the use cases complexity
independently of size metrics shown above:

 Number of stakeholders.
 Number of actors.
 Total number of goals.

The author argues that these metrics measure complexity in the presence of two use case
models with similar values in defined size metrics, but different values in environment
metrics, probably the one with greater values requires more effort in doing any change.
This is because there are more elements that must be reviewed to solve possible conflicts.

Other indirect metrics can be derived from the above metrics and include:
 Total number of atomic actions in the alternative flows.
 Total number of atomic actions in all flows.
 Number of atomic actions per actor.
 Number of atomic actions per goal.
 Number of goals per stakeholder.

After showing different proposed metrics to measure use cases size and complexity, most of
the authors coincide that the main factor that has influence in the use cases complexity is
the increase of the resources required to do a change in the use case. The greater the effort
required to do a change the greater the complexity of the specification will be.

In these circumstances, also dependencies between requirements increase complexity.
These dependencies appear in traceability matrix and in our point of view must be included
as a factor to measure use cases complexity.

4 Metrics for Requirements Engineering

Leaving aside the project estimation and focussing on requirements engineering
process, there are reasons to think that it would be beneficial to define metrics.
Nevertheless, because the requirements engineering is a recent discipline, there are not
too many proposals. The reasons mentioned are as follows:

 In Kamstiems and Rombach (1997) the importance of early detection of
requirements problems is recognized to improve the quality in the software
development process. This is because the cost of repairing defects increases as the
project moved forward (Boehm, 1975).

 In order to increase the control and monitoring during the development of this task,
it is necessary to know in detail the requirements engineering process. The fact of
control in the process allows knowing early needs for change. This has advantages
because one of the main problems in the development process is changing
requirements and specifications, as TSG (1995) shows. These changes affect
technology, schedule, budget and staff organization as commented in Costello and
Liu (1995) quoting the paper of Glaseman and Davis (1980).

4.1. Quality in requirements specification

At the moment, there are not too many proposals, which specify how to predict quality
requirements based on use cases. In spite of that, there are some proposals to evaluate
quality of natural requirements. Generally, some of them can be applied to evaluate use
cases quality. In this area, the following approaches exist:

 Manual verification of requirements: these approaches study aspects as stability,
ambiguity or traceability of requirements. Some of them can be consulted in Davis
et al. (1993), Costello and Liu (1995) or Hyatt and Rosemberg (1996).

 Automated verification of requirements: these proposals generally are based on
NLP (Natural Language Processing). According to Fabbrini et al. (1998), the goal of
NLP applied to requirements engineering is to know the vocabulary used, writing
style, ambiguity (degree of syntactic and semantic uncertainty of the sentence),
information conveyed by requirements, discovering underspecifications, missing
information and unconnected statements.

One of these proposals applied to use cases was collected in Fantechi et al. (2002). The idea
of this proposal is to automatically identify defects in requirements specification. In order
to achieve this goal, a tool CASE automatically identifies words in the text of use cases that

denote lack of expressiveness (due to ambiguity or incompressibility), lack of consistency
or incompleteness.

On the other hand, some proposals to evaluate the design quality of use cases models have
been done.For example, these metrics have been proposed:

 NumAss: The number of associations the use case participates in.
 ExtPts: The number of extension points of the use case.
 Including: The number of use cases which this one includes.
 Included: The number of use cases which include this one.
 Extended: The number of use cases which extend this one.
 Extending: The number of use cases which this one extends.

Some of these metrics were automated by the tool SDMetrics (SDMetrics, 2003).

4.1.1. Saeki’s proposal

The modifiability is one of the desiderable properties of the requirements specification.
IEEE (1993) defines a modifiable requirements specification as one whose structure and
style is so that any change can be performed in an easy, complete and consistent way
maintaining its structure and style.

In Saeki (2003) a set of metrics for use cases diagrams are defined. Based on these, the rate
of modifiability can be calculated. The basic idea of the defined metrics is that if a use case
needs a change, probably other use cases will also need a change: those that have a
relationship with the originally changed use case. In short, include and extend relationships
and the control8 and data9 dependency relationships are considered. The intuition suggests
that, the more existing relationships in the model, the more difficult it will be to make any
change.

Another factor that has influence in the modifiability of use cases is the type of use case.
Simplifying the idea, if a use case has several goals (types to Saeki), it is more susceptible
of changing than if it only has one goal.

In order to approximate the modifiability, the defined metrics are NOD (Number Of
Dependencies) and NUCT (Number of Use Case Types).

The next equation is the pattern that stands for extendsNO _ , usesNO _ , CDNO _ and DDNO _

metrics. These metrics express the modifiability index due to extend, include, control
dependency and control data relationships, respectively.

8 Control dependency expresses the order of execution of use cases.
9 Data dependency expresses that one use case gives data to another.

nciesAllDepende

DependencynciesAllDepende
NOD

#

Where S# stands for the number of the elements of the set S , UseCase stands for the

set of all use cases in the diagram, 2/))1(#(# UseCaseUseCasenciesAllDepende is the set of all the

possible dependencies that exist. In our opinion, term nciesAllDepende is a teorethical
term since semantically it would not make sense that all use cases are connected between
them in the model.

On the other hand, the equation shown below expresses the modifiability index due to the
fact that a use case covers more than one goal (types).

)}},(|{{#

1

utuaggregateseUseCaseTyput
NUCT

AVE
UseCaseu

Where UseCaseu represents one of the use cases in the diagram,),(utuaggregates

means that a use case u has a type ut ,)}({)(xsAVE xp means the average value of a set
of numbers)(xs constructed from x such that)(xp . NUCT is the reciprocal number of
an average of attached use case types for each use case.

Based on these metrics the rate of modifiability (ITYMODIFIABIL) of the use cases
diagram is computed as:

NUCTwDDNOwCDNOwusesNOwextendsNOwITYMODIFIABIL 54321 ____

where each iw represents the weighting factor of the corresponding metric and the sum
54321 wwwww may be equal to 1 and)5,...,1(10 iwi . One possible solution

is proposed by Saeki: iwi 2,0

This manner of defining the metrics is not obvious but it is justifiable in our point out view.
The goal achieved by the author was to find an indicator rate (10 ITYMODIFIABIL)
that would reveal the modifiability degree of a use cases model.

This proposal is interesting because of its capability to measure one of the desiderable
properties in requirements specifications, the modifiability. The traces existing between use
cases should also be included in the calculation of modifiability because the traced
requirements can change with the original requirements. In general, the coupling between
use cases is caused by include and extend relationships and by the use cases connected in a
traceability matrix which should be considered in the modifiability calculation. The control
and data dependencies reveal that use cases technique has been used in an inferior
specification level, close to the sequence diagram.

4.1.2. Bernárdez and Durán’s proposal

Bernárdez et al. (2004) have empirically revised a set of heuristics to identify use cases that
potentially can have defects.

These heuristics, presented in Durán et al. (2002), are based on a set of use case metrics
defined for the use cases model of REM (Durán, 2003). In this use cases model, a use case
is seen as a sequence of steps that can be action-step, system-step or realize another use
case as commented in section 2.3.4: Durán’s template. An example of a use case of this
model can be seen in figure 3.

The heuristics, based on the metrics shown in table 7, rely on a basic concept: there is a
normal range of values for each metric m 21,mm , out of which the probability of a use

case c presenting defects (cPdef) increases.

 cPcPmmcm defdef 1, 21

Metric Description
NOS Number of steps of the use case (NOS=NOAS+NOSS+NOUS)
NOAS Number of actor action steps of the use case
NOSS Number of system action steps of the use case
NOUS Number of use case action steps of the use case (inclusion or extension)
NOCS Number of conditional steps of the use case
NOE Number of exceptions of the use case
NIE Number of times the use case is included or extends other use cases
NOAS/NOS Rate of actor action steps of the use case
NOSS/NOS Rate of system action steps of the use case
NOUS/NOS Rate of use case action steps of the use case
CC Cyclomatic complexity of use case (NOCS+NOE+1)

Table 7. Use case metrics which Durán’s heuristics are based

In table 8, we will apply the outlined metrics to the use case example shown in figure 3.

Metrics Value Explanation
NOS 11 There are 11 steps in use case “Ordinary sequence”
NOAS 6 There are 6 actor (librarian and library user) steps
NOSS 4 There are 4 system steps
NOUS 1 There is one include in step 9
NOCS 1 There is only a conditional step (step 9)
NOE 1 There is only an exception associated to step 3
NIE 0 This use case is not performed during another use case

execution
(The “Description” of the use case not include other use cases)

NOAS/NOS 0.54 6 divided by 11
NOSS/NOS 0.37 4 divided by 11
NOUS/NOS 0.09 1 divided by 11
CC 3 NOCS+NOE+1 (=1+1+1)

Table 8. Use case metric values for the use case of figure 3

The normal range of values (see table 9) was set using data from 414 non-verified (i.e.
containing defects) use cases from students of Computer Science at the University of
Seville.

Metrics Normal range
NOS [3,9]
NOAS/NOS [30%,70%]
NOSS/NOS [40%,80%]
NOUS/NOS [0%,25%]
CC [1,4]

Table 9. Use case metrics normal range

In order to consolidate the intuition of these heuristics, Bernárdez et al. (2004) have verified
8 requirements specifications from their students, containing 127 use cases. Some of the
results achieved reveal that use cases outside of the normal range are fault—prone
requirements. This fact is confirmed in figure 6, which shows the percentage of use cases
that have defects in and out of the normal range.

Figure 6. Empirical results on heuristics reviews

The main source of defects in use cases, which are revealed by the empirical data, are
incompressibility, incompleteness (both defined by Davis et al.(1993) and the incorrect use
of the use cases technique (according to Lilly (1999)). If data collected in figure 11 is
confirmed by a controlled experiment, the most interesting result in the empirical study is
that these metrics really allow the prediction of potential defects in requirements.

4.2 Progress of requirements engineering process

Some authors like (Costello and Liu, 1995) advise the calculation of some metrics as
indicators of the requirements engineering process. As commented above, this would be
beneficial because it would permit project managers and requirements engineers to monitor
and better control the requirements engineering process.

4.2.1 Kim and Boldyreff’s proposal

Kim and Boldyreff (2002) propose the following metrics:

 NAU (Number of Actors associated with a Use case): The goal of this metric is to
measure importance of the requirement. If there are many actors interested in
performing the use case, it must be very important to the system.

 NMU (Number of Messages associated with a Use case): This metric is calculated
from a UML interaction diagram (OMG, 2003). NMU is useful to trace
requirements to design elements.

 NSCU (Number of System Classes associated with a Use case): This metric
measures the number of classes of which objects take part in a use case scenario.
This metric goal is to know the impact of the change in a use case.

4.2.2 Alexander’s proposal

Alexander (2001) proposes some metrics to learn the status and progress of requirements
engineering and some metrics to reveal possible problems in requirements. Those metrics
(that are shown below) can be calculated using the Scenario Plus Use Case Toolkit (Plus,
2003).

The first group of metrics points out status and progress of the requirements engineering
process:

 The number of use cases.
 The number of actors.
 The number of alternative steps of the use case.
 The number of exceptions.
 The number of constraints.

The second group reveals problems in requirements:

 The number of use cases without exceptions.
 The number of use cases without steps.
 The number of use cases isolated.
 The number of relationships between use cases.

5. Conclusions

In this chapter, the basic main ideas to learn the use cases technique have been
presented, also the main proposals to estimate software project attributes (in brief, size,
complexity and effort) based on use case metrics has been collected. Furthermore, the
main proposals to improve the requirements engineering process based on use cases
metrics have been presented.

Tables 7 and 8 sumarise the most relevant proposals analysed in this chapter. The first
column contains the author of the proposal. The second column contains the use cases
metrics defined in the proposal The third column lists the external attributes to be
estimated. The fourth column indicates whether the proposal provides a prediction
equation or not. The fifth column indicates whether computation of the proposed
metrics and estimated attributes is supported by any CASE tool or not.

Looking at table 7, we can see that the more estimated attribute is development effort.
In order to estimate this attribute, authors usually measure attributes like size and
complexity of use cases. Nevertheless, most of the proposals do not provide a
prediction equation and they are not supported by CASE tools.

Author What is measured? What is estimated? Prediction
equation?

CASE tool
support?

Marchesi
(1998)

Number of use
cases, number of
actors, number of
include and extend
relationships

System complexity No No

Schneider et
al. (1998)

Use case points Development effort Yes Yes (Sparx
System)

Smith (1999) Number of use cases
in each detail level,
number of pages of
the use case

Development effort Yes No

Feldt (2000) Use cases
complexity and size

System complexity and
size

No No

Software
Solutions on
Time (2001)

Number and type of
use cases

Development time Yes Yes (Metric
Data)

Henderson-
Sellers et al.
(2002)

Use cases
complexity and size

Development effort or
maintainability

No No

In et al.
(2003)

Number of actors
and number of use
cases

Development effort Yes Yes
(OSMAT)

Table 7. Summary of use case metrics proposals for project management

Table 8 reveals that the relationships in use case models and use cases themselves can
be used to predict attributes like modifiability and the existence of potential problems
and defects in requirements. There is not any prediction equation, but there are some
CASE tools available to calculate the proposed metrics.

At the moment, there are no proposals to deal with the theoretical validation of these
metrics. Concerning empirical validation, there are no thorough studies that guarantee
the causal relationship between the use cases metrics and the external attributes , such
as development time, development effort, system complexity, etc., i.e. internal validity
according to Wohlin et al. (2000). However some of the estimation methods explained
in this chapter have been applied to real projects.

In order to empirically validate the metrics to estimate effort, it is suitable to perform
experiments in a real environment because the experiment will cover several phases of
the life cycle. But in real environments it is difficult to do controlled experiments and
moreover too many resources are needed.

We have reached to the conclusions that there is a general intuition among several
authors who think that some metrics regarding use cases are useful to project estimation
or to improve the requirements engineering process, increasing thus quality in
requirements specifications. On the other hand, the different metrics explained here are
based on different use cases models and this makes the possibility of adapting the
proposal to other situations difficult.

Furthermore, there are other proposals which have not been deeply investigated in this
chapter, that define use cases metrics to estimate project cost or development time
instead of effort. For example, the proposal presented in In et al. (2003), which presents
a CASE tools called OSMAT (Ontology Software Metrics Analysis Tool). This tool is
useful to estimate project cost based on UML models. In particular, the proposed
metrics to use cases are: Number Of Actors (NOA) and Number of Use Cases (NOUC).
On the other hand, there are some development CASE tools companies that propose
techniques of project estimation based on use cases. For example, Software Solutions
on Time (2001) estimates the time that will be invested in each use case along each
phase of the development process.

Author What is measured? What is estimated? Prediction
equation?

CASE tool
support?

Alexander
(2001)

Number of use cases,
number of actors, number
of use cases without
exceptions, etc.

Status of requirements
and potential
problems

No Yes
(DOORS)

Kim et al.
(2002)

Number of actors, number
of messages in the
interaction diagram
associated with the use
case, number of system
classes associated with the
use case

Importance of the
requirement, impact
caused by change a
requirement

No No

Saeki
(2003)

Number of relationships
and dependencies between
use cases

Modifiability No No

Bernárdez
et al.
(2004)

Number of steps of use case
steps, rate of each type of
step and ciclomatic
complexity

Fault-proneness No Yes (REM)

Table 8. Summary of use case metrics proposals for improving the requirements
engineering process

Acknowledgements

This research is part of the AgilWeb project (TIC200302737C0201) financed by
“Subdirección General de Proyectos de Investigación, Ministerio de Ciencia y
Tecnología” (Spain), the TAMANSI project (PCB02001) financed by “Consejería de
Ciencia y Tecnología de la Junta de Comunidades de CastillaLa Mancha” and the MUML
project (011.100623) financed by the University of CastillaLa Mancha.

References

Albrecht, A. J. (1979). Measuring Application Development Productivity. Proceedings of
the IBM Application Development Symposium. Monterey, CA, pp. 83–92.

Alexander, I. (2001). Visualising Requirements in UML. Telelogic Newsbyte. Available in
http://easyweb.easynet.co.uk/˜iany/consultancy/reqts_in_uml/reqts_in_uml.htm.

Ambler, S.W. (2001) The Object Primer. Cambridge University Press. 2nd edition.

Arnold, M., and Pedross, P. (1998). Software Size Measurement and Productivity Rating in
Large–Scale Software Development Department. Proceedings of the 1998 International
Conference on Software Engineering. Los Alamitos, CA, USA, pp. 490–493.

Barnejee, G. (2001). Use Case Points. White paper, Isavix.

Ben Achour, C., Rolland, C., Maiden, N. A. M., and Souveyet, C. (1999). Guiding use case
authoring: Results of an empirical study. Proceedings of the Fourth IEEE International
Symposium on Requirements Engineering. Limerick, pp. 36–43.

Bernárdez, B., Durán, A., and Genero, M. (2004). An empirical review of use cases metrics
for requirements verification. Proceedings of the SOFTWARE MEASUREMENT
EUROPEAN FORUM (SMEF’04). Rome. Accepted for publication.

Boehm, B. W. (1975). Some Experience with Automated Aids to the Design of Large–Scale
Reliable Software. IEEE Transactions on Software Engineering,Vol. 1 No. 1, March, pp.
125–133.

Briand, L. C., and Wüst, J. (2002). Empirical Studies of Quality Models in Object–
Oriented Systems. Advances in Computers, Academics Press, Vol. 59, pp. 97–166.

Cockburn, A. (1997). Structuring use cases with goals. Journal of Object–Oriented
Programming, Sep-Oct 1997.

Cockburn, A. (2001). Writing effective use cases. Addison–Wesley.

Coleman, D. (1998). A use case template: Draft for discussion. Available in

http://www.bredemeyer.com/pdf_files/use_case.pdf

Costello, R. J. and Liu, D. (1995). Metrics for Requirements Engineering. Journal Systems
Software, Vol. 29, pp. 39–63.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., A.Dinh, Kincaid, G.,
Ledeboer, G., Reynols, P., Sitaran, P., Ta, A., and Theofanos, M. (1993). Identifying and
measuring quality in software requirements specification. Proceedings of the 1st

International Software Metrics Symposium. Los Alamitos, California: IEEE Computer
Society Press, pp. 164–175.

Davis, A. M. (1993). Software requirements: Objects, functions and states. Prentice–Hall.
2nd edition.

DoD (1993). DoD-STD-2167, Defense System Software Development. Departament of
Defense of the United States of America.

Durán, A. (2000). A methodological framework for requirements engineering of
information systems (in spanish). Doctoral dissertation, University of Seville.

Durán, A. (2003). REM web site. http://klendathu.lsi.us.es/REM.

Durán, A., Bernárdez, B., Ruiz, A., and Toro, M. (1999). A requirements elicitation
approach based in templates and patterns. Proceedings of the 2nd Workshop on Requirements
(WER’99). Buenos Aires, pp. 17–29.

Durán, A., Ruiz-Cortés, A., Corchuelo, R., and Toro, M. (2002). Supporting requirements
verification using XSLT. Proceedings of the IEEE Joint International Requirements
Engineering Conference (RE’02). Essen, pp. 165–172.

Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., and Ruggieri, S. (1998). Achieving Quality
in Natural Language Requirements. Proceedings of the 11th International Software Quality
Week. San Francisco.

Fantechi, A., Gnesi, S., Lami, G., and Macari, A. (2002). Application of Linguistic
Techniques for Use CAse Analysis. Proceedings of the IEEE Joint International
Requirements Engineering Conference (RE’02). Essen, Germany, pp. 157–164.

Feldt, P. (2000). Requirements metrics based on use cases. Master’s thesis, Department of
Communication Systems, Lund Institute of Technology, Lund University, Box 118, S-221
00 Lund, Sweden.

Fenton, N., and Pfleeger, S. (1997). Software Metrics: A Rigorous and Practical Approach.
PWS Publisher.

http://klendathu.lsi.us.es/REM
http://www.bredemeyer.com/pdf_files/use_case.pdf

Fetcke, T. A., Abran, A., and Nguyen, T. (1997). Mapping the OO–Jacobson Approach into
Function Point Analysis. Proceedings of the 23th Technology of Object–Oriented
Languages and Systems (TOOLS–23). Santa Barbara, California, pp. 1–11.

Glaseman, S., and Davis, M. (1980). Software Requirements for Embedded Computers: A
Preliminary Report. Document R-2567-AF. U. S. Air Force.

Henderson-Sellers, B., Zowghi, D., Klemola, T. and Parasuram, S. (2002). Sizing use cases:
How to create a standard metrical approach. Proceedings of the 8th Object–Oriented
Information Systems 2002. Montpellier, France. Springer–Verlag, pp. 409–421.

Hyatt, L., and Rosenberg, L. (1996). A Software Quality Model and Metrics for Identifiying
Proyect Risk ans Assessing Software Quality. Proceedings of the 8th Software Technology
Conference. Available in
http://satc.gsfc.nasa.gov/support/STC_APR96/quality/sct_qual.html.

IEEE (1993). IEEE Recommended Practice for Software Requirements Specifications
(IEEE/ANSI Standard 830–1993). Institute of Electrical and Electronics Engineers.

In, P., Kim, S., and Barry, M. (2003). Uml–based object–oriented metrics for architecture
complexity analysis. Proceedings of Ground System Architectures Workshop. El Segundo,
CA. Available in http://sunset.usc.edu/gsaw/gsaw2003/s8e/in.pdf.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The unified software development
process. Addison–Wesley.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992). Object–oriented
software engineering: A use case driven approach. Addison–Wesley.

Kamsties, E., and Rombach, H. D. (1997). A Framework for Evaluating System and
Software Requirements Specification Approaches. Proceedings of Requirements Targeting
Software and Systems Engineering. Bernried, Germany, pp. 203–222.

Kim, H., and Boldyreff, C. (2002). Developing Software Metrics Applicable to UML
Models. Proceedings of the 6 th International Workshop on Quantitative Approaches in
Object–Oriented Software Engineering. Málaga, Spain, pp. 67–76.

Kruchten, P. (2000). The rational unified process: An introduction. Addison–Wesley. 2 nd

edition.

Kulak, D., and Guiney, E. (2000). Use cases: Requirements in context. Addison–Wesley.

Leffingwell, D., and Widrig, D. (2000). Managing software requirements: A unified
approach. Addison–Wesley.

Leite, J. C. S. P., Hadad, H., Doorn, J., and Kaplan, G. (2000). A scenario construction
process. Requirements Engineering Journal, Vol. 5 No. 1, pp. 38-61.

http://sunset.usc.edu/gsaw/gsaw2003/s8e/in.pdf
http://satc.gsfc.nasa.gov/support/STC_APR96/quality/sct_qual.html

Lilly, S. (1999). Use Case–Based Requirements: Review Checklist (Technical Report). SRA
International, Inc.

Marchesi, M. (1998). OOA Metrics for the Unified Modeling Language. Proceedings of the
2 nd EUROMICRO Conference on Software Manteinance and Reengineering, pp. 67–73.

Meyer, B. (1997). Object–oriented software construction. Prentice–Hall. 2 nd edition.

OMG (2003). OMG Unified Modeling Language Specification, v1.5.

Regnell, B., Anderson, M., and Bergstrand, J. (1996). A hierarchical use case model with
graphical representation. Proceedings of the IEEE International Symposium and Workshop
on Engineering of Computer–Based Systems. Friedrichshafen, pp. 65–84.

Plus, S. (2003). Use Case Toolkit for DOORS. Available in http://www.scenarioplus.org.uk.

Saeki, M. (2003). Embedding Metrics into Information System Development Methods: An
Application of Method Engineering Technique. Lecture Notes in Computer Science, Vol. 2681, pp.
374–389.

Schneider, G., and Winters, J. P. (1998). Applying use cases: a practical guide. Addison–
Wesley.

SDMetrics (2003). SDMetrics: The Software Design Metrics tool for the UML. Available in
http://www.sdmetrics.com/.

Smith, J. (1999). The Estimation of Effort based on Use Cases (Rational Software white paper).
Rational Software. Available in http://www.rational.com/media/whitepapers/finalTP171.PDF.

Software Solutions on Time (2001). A fresh and innovative approach to systems development and
software project management. Available in http://www.tassc-
solutions.com/omx/pages/metric_data.htm#usecase-metrics.

Sommerville, I., and Sawyer, P. (1997). Requirements engineering: A good practice guide.
Wiley.

Stoica, A. (2000). Aspect of Building Web Application Systems Using the MBASE
Approach. Proceedings of the 15th International Forum on SCM/Focused Workshop. USC–
CSE.

Systems, S. (2003). Enterprise Architect: UML modeling and design tool. Available in
http://www.sparxsystems.com.au.

TSG (1995). The CHAOS Report. The Standish Group. Available in
http://www.standishgroup.com/chaos.html.

Weidenhaput, K., Pohl, K., Jarke, M., and Haumer, P. (1998). Scenarios in system

http://www.sparxsystems.com.au/
http://www.tassc-solutions.com/omx/pages/metric_data.htm#usecase-metrics
http://www.tassc-solutions.com/omx/pages/metric_data.htm#usecase-metrics
http://www.sdmetrics.com/
http://www.scenarioplus.org.uk/

development: Current practice. IEEE Software, Vol. 15 No. 2 , pp. 34–45.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2000).
Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

View publication statsView publication stats

https://www.researchgate.net/publication/279404900

	Beatriz Bernárdez1, Amador Durán1 and Marcela Genero2
	1 Department of Computer Languages and Systems
	Description
	Table 2. Transaction- based weights factors
	Table 3.Analysis class-based weighting factors
	Factor description

	Table 4. Technical factors for system and weights

	Number of actor action steps of the use case
	Acknowledgements
	References

