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A general formulation of the partial destruction of a liquid object in vacuum after the sudden deposition
of a very large amount of energy is proposed. That energy instantaneously raises the pressure of a portion of
the liquid to extreme values and changes its state, which causes its explosive expansion into vacuum and
against the rest of the liquid object. When the deformable object is a liquid capillary column, the model
reduces to a universal equation for the evolution of the expanding gap between the two sides of the
exploding liquid column. The theoretical analysis contemplates two asymptotic stages for small and large
times from the initiation of the blast, whose asymptotic solutions are fitted to available experimental data.
A universal approximate analytical solution is obtained. A complete dimensional analysis of the problem
and an optimal collapse of experimental data reveal that the proposed solution is in remarkable agreement
with experiments of a jet exploding after being irradiated by an ultrashort and intense x-ray pulse from an
x-ray free electron laser.
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The interaction of high energies with matter is a subject
of fundamental importance in applied physics [1,2]. There
is ample research literature on the reaction of condensed
matter to the localized deposition of a very large energy
density by diverse means (e.g., by large electric shocks,
laser and ion beams, etc.), especially in the area of inertial
confinement fusion. Extensive related research on the
hydrodynamic processes due to the very fast local vapori-
zation, like shock-driven hydrodynamics, liquid compress-
ibility phenomena, bubble implosion, etc., appears in the
literature for spherical [3,4] and cylindrical geometries
[5,6]. In these latter cases, the energy fluxes ranged from
1010 to 1012 W=cm2. The advent of powerful energy
sources like the free electron lasers (XFELs) has raised
the energy fluxes above 1022 W=cm2, with the top >
1023 W=cm2 mark announced by the project ELI-NP at
Magurele [7], the largest known so far in our planet. The
local ultrafast (femto- and attosecond-scale) deposition of
these extreme energy densities have been crucial to observe
and test new phenomena and more diverse geometries [8],
overcoming the effects of the energy release history of
previous slower deposition means [5,6].
The physics of intense blasts against deformable (liquid)

objects is of fundamental importance in areas as varied as
nanosurgery [9], serial femtosecond crystallography (SFX)
[10], the study of extreme physical properties and strange
phases of matter [11,12], or testing the equations of state of
matter from cosmology [13,14] to the processing or pro-
duction of newmaterials [15]. In general, the extremely large
local pressures appearing in the liquid invery short times and
the need to quantify them are crucial objectives of research.
When the liquid is a closed object with free surfaces (e.g., a

sphere or a rod [8]), the scaling laws of those pressures, the
input energy fraction going to pressure, the evolution of the
blast, or the blast shape factor against the liquid being
destructed need to be determined to predict the effects. In
SFX, the damage caused to the samples upstreamof the blast
is the subject of increasing attention [16].
In this work we focus on the destruction of a cylindrical

rod of liquid (e.g., a capillary jet) after the rapid local
deposition of a very large energy density [8] in processes
like the analysis or processing of materials with synchro-
tron, SFX, etc. This deposition causes an explosion that
expands partially in vacuum and partially against the liquid
rod in the axial direction, violently dividing the cylinder
into two sections. Unlike the radial actions that occur in
exploding wires, causing strong radial compression phe-
nomena only [5], the explosions here studied imply a
geometrical degree of freedom in the axial direction that is
absent in the former. This implies the appearance of a
variety of new physical phenomena [8]. The essential
difference with other processes where a liquid cylinder
breaks up is the extreme value of the power locally
supplied: it can be trillions times larger than that of natural
mechanical methods (e.g., capillary breakup, or the sudden
jet obstruction or its transverse disruption with a projectile).
Here we propose a general formulation of the problem,
applying it to a cylindrical liquid column. The physics
(hydrodynamics) of the blast is described obtaining the
expansion velocities, the peak compression stresses under-
gone by the liquid column, and the energies involved.
General compact formulation of blasts in partial contact

with deformable objects.— Consider an amount of con-
densed deformable matter M surrounded by vacuum
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(Fig. 1). In this work, that matter is in the form of a
cylindrical rod. An amount of energy ED exceeding by
orders of magnitude that to vaporize a portion Mg of that
matter is suddenly injected in it. As a consequence, it
violently expands as a blast both into vacuum and against
M (Fig. 1). The expanding hot gas domain VgðtÞ can be
consider to comprise two virtual subdomains VpðtÞ and
VeðtÞ (from now on pushing and expanding volumes,
respectively) separated by a fluid surface SiðtÞ, as formally
defined in the Supplemental Material [17]: (i) VpðtÞ pushes
and deforms M by dominant pressure forces, (ii) the mass
and energy of VeðtÞ are constant by definition while it
expands into vacuum, and (iii) VeðtÞ is assumed charge
neutral. By virtue of two latter conditions, VeðtÞ does not
make any work onM. Those definitions do not impose any
artificial restriction on the natural evolution of the total gas
domain VgðtÞ, but they provide a drastic simplification,
as follows. Defining Vo ¼ Vpðt0Þ þ Veðt0Þ as the initial
energized volume at the initial instant t0, the volume
fraction χ ¼ Vpðt0Þ=Vo is a fixed problem parameter.
Thus, given that the analysis of Ve is irrelevant since its
energy is constant and its evolution is decoupled from M,
one can write the following compact equation of conser-
vation of energy that governs the coupled evolution of M
and Vp:

Z
t

t0

Z
SpþSi

Pv · ndAdt0 þ PoVpðtÞ1−γðχVoÞγ
ðγ − 1Þ ¼ χED; ð1Þ

where the first term in the left side is the totalwork made by
Vp onM through the fluid surfaces Si and Sp (the surface of
Vp in contact withM; see Fig. 2) since the beginning of the
blast (v and n are the velocity and unit normal vectors of the

surfaces), and the second is the internal energy left in Vp

at a given t. The initial conditions are Vpðt0Þ ¼ χVo,
Pðt0Þ ¼ Po, and PoVo=ðγ − 1Þ ¼ ED. Since the pressure
is initially the same for Vp and Ve, χ is also the injected
energy fraction contained in Vp at the beginning of the
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FIG. 1. General sketch of the problem. Thin, medium, and thick
dotted lines indicate SeðtÞ, SiðtÞ, and SsðtÞ, respectively. SpðtÞ is
the surface of VpðtÞ in contact with the liquid. The instantaneous
radial velocity xt=2 of the expanding lamella is indicated.
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FIG. 2. Evolution of the blast induced by a strong x-ray laser
pulse (photon energy 8.2 KeV, 0.75 mJ, duration 30 fs) on a liquid
microjet of 20 μm discharged in vacuum [8]. The effective beam
diameter is approximately 1 μm. Snapshot at 5 ns: initial stage,
where the highly compressed quasicylindrical pushing volume
VpðtÞ expands against the two liquid fronts while the still nearly
cylindrical expanding gas volume VeðtÞ does it in the radial and
axial directions. Approximate illustrating shapes of Vp and Ve are
depicted. 15 ns: Vp starts expanding in the radial direction, while
Ve begins a doughnut-shaped mixed radial-spherical expansion.
4 μs: Vp undergoes a mixed radial-spherical expansion. 8 μs:
both Vp and Ve tend to expand spherically. Final stage
(t≳ 12 μs): Both Vp and Ve already expand nearly spherically.
Supporting pictures from Stan et al. [8], Supplemental Material.
Positions, shape, and size of control volumes are just illustrative.
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blast, or the efficiency of the blast against M. The factor
(γ − 1) can be considered the Grüneisen coefficient of the
initial energized matter (in many cases a warm dense matter
state [12]), γ being its adiabatic coefficient when it expands.
Consistently with the assumption made in Ref. [8], if the
evolution of the gas in the blast is assumed quasi-isentropic
this coefficient stays nearly constant from large to small
densities along the blast, as it will be shown. The first term
in the left-hand side of Eq. (1) is the total energy received
by the object in the process up to time t. This compact
formulation in terms of a single geometrical variable is
advantageous for relatively simple geometries like the
explosion of a microjet produced by flow focusing [22],
which gently carries samples (as initially suggested in
Ref. [19], see Supplemental Material [17]): In that appli-
cation, the microjet is shot by a train of extremely short x-
ray pulses in SFX [8,10,23].
Application to the destruction of a liquid cylinder.—

Consider a liquid cylinder of diameter dj where a very large
energy density is instantaneously deposited in a slice (see
Fig. 2). That energy splits the cylinder (a jet, in SFX) in two
symmetrical rods whose separating fronts develop two
symmetrical expanding liquid lamellas, whose mechanical
energy received from the gas can be expressed as

Z
t

t0

Z
SpþSi

Pðxp; t0Þvp · npdAdt

¼ 1

2
ρl
πd2j
4

Z
x

x0

x2t
4
dx ¼ πd2jρl

32

Z
t

t0

x3t dt; ð2Þ

where x is the distance between the two separating liquid
fronts, subscript t indicates the time derivative, and ρl is
the density of the liquid. x0 and t0 are the initial values of
the gap size and time, respectively. For conservation of
momentum, we assume in expression (2) that the liquid is
radially ejected into the two liquid lamellas at an instanta-
neous speed xt=2 due to the overpressure in Vp.
Besides, the ratio of the liquid thermal layer thickness λ

to the jet diameter dj can be estimated as λ=dj ∼ ½K2dj=
ðρlc2EDÞ�1=2, where K and c are the thermal conductivity
and specific heat of the liquid. For jet sizes below 100 μm
and energies ED used in SFX experiments, λ would be
smaller than the molecular size, which would make the
thermal energy transfer to the liquid negligible once the
rapid blast takes place. This supports neglecting the internal
energy gain by the liquid due to diffusion in Eq. (2).
Defining the variables ϕ ¼ x=lo, τ ¼ t=to, and Ω ¼
Vp=ðχVoÞ made dimensionless with the characteristic
length lo, time to and volume χVo ¼ l3o in Eqs. (1) and
(2), Eq. (1) can be expressed in nondimensional form as

Z
τ

τo

ϕ3
τdτ þ χΩðτÞ1−γ ¼ χ; ð3Þ

with its time derivative form as

ϕ3
τ ¼ χðγ − 1ÞΩ−γΩτ ⇒ ϕ2

τ ¼ χðγ − 1ÞΩ−γ dΩ
dϕ

; ð4Þ

where we have defined to ¼ ½πρld2j l3o=ð32EDÞ�1=2. lo and χ
will be determined from dimensional arguments and
maximum correlation of experimental data. On the other
hand, although ΩðτÞ is an unknown variable of the
problem, the mathematical structure of Eq. (4) and physical
principles will univocally fix the asymptotic trends of Ω.
Geometrically, ϕ is related to the shape factor of the object
(the column) to the effective blast volume, represented by
Ω. In the following, their relationships for both large and
small times τ are analyzed.
Asymptotic behavior of the pushing gas volume Ω for

small and large times τ.—In the very initial stages, both the
expanding and pushing volumes Ve and Vp produce an
enormous push against the two liquid fronts forming the gap
(Fig. 2, time t ¼ 5 ns). The geometry of both Ve and Vp

remains nearly cylindrical for a while, especially that of Vp.
Hence, the nondimensional form of the pushing volume
should scale as Ω ∼ ϕ since its expansion would proceed
predominantly in the axial direction. This occurs because
(i) by definition, the expanding volume cannot be radially
pushed by Ω at a higher rate than the opening gap, and
(ii) the expanding volume pushes against Ss (the periphery of
the radially expanding liquid layer, see Fig. 2) with pressures
necessarily smaller than those at Si, preventing a radial
expansion of the pushing volume Ω. Therefore, assuming
that ϕ ∼ τα0 , using Eq. (4) one should have

τ2ðα0−1Þ ∼ τ−γα0 ⇒ α0 ¼
2

2þ γ
: ð5Þ

On the other hand, in the last stages of the blast (just before
surface tension force overcomes the gas pressure, see Fig. 2,
t≳ 12 μs), one should expect that both the expanding and
pushing volumes would expand predominantly in the radial
direction, which allows a self-similar solution like the one
early analyzed by Wedemeyer [21]. This solution yields the
following radial distribution of the total energy inside the gas
sphere (including both Ve and Vp):

P
γ − 1

þ ρg
v2

2
¼ Po

�ðBt−1Þ3γ
γ − 1

ð1 − ξ2Þ½γ=ðγ−1Þ�

þ γ

2B2

�
B
t

�
3

ð1 − ξ2Þ½1=ðγ−1Þ�ξ2
�
; ð6Þ

whereB ¼ ½31=2ðγ − 1Þ=2�, ξ ¼ ½ρoB=ðγPoÞ�ðr=tÞ, ρo is the
initial density of the expanding gas, v the gas speed, and r
the radial spherical coordinate from the center of the gap
(Fig. 2. See Supplemental Material [17] for additional details
on this solution). The fundamental conclusions from this
solution are: (i) For ξ ≪ 1 (i.e., inside Vp or Ω), the kinetic
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energy to pressure ratio becomes as small as ξ2; i.e., pressure
dominates over inertia in Vp as anticipated. (ii) According to
the self-similar nature of the solution, the position of the
expanding edge ofVp would correspond to a constant (small)
value of ξ according tomass conservation, for any value ξ ≤ 1
[21], since the gas should move with a constant speed
v ¼ aoξ=B at that edge, while ξ ¼ 1 is the expanding edge
of Ve. Hence, one should expect Ω ∼ τ3 for τ ≫ 1. Again,
assuming that ϕ ∼ τα1 and using Eq. (4) one should have

τ3ðα1−1Þ ∼ τ−3γþ2 ⇒ α1 ¼
5

3
− γ: ð7Þ

In this limit, onewouldhaveΩ ∼ ϕ3=ð5=3−γÞ. Interestingly, that
solution would demand a logarithmic evolution of the gap for
perfectmonoatomicgases (γ ¼ 5=3).This is theonly scenario
for which a logarithmic evolution is contemplated, in contrast
to the general logarithmic trend proposed by Stan et al. [8].
In summary, one may approximately express the evolu-

tion of the gap xðtÞ ¼ loϕðτÞ as

ϕ ¼ ϕoτ
α0 ½1þ ðτ=τ1Þδ�ðα1−α0Þ=δ; ð8Þ

where constants ϕo, τ1, and δ should be obtained by fitting
to either experiments or numerical simulations. Finally, lo
was expected to be proportional to dj in Ref. [8]. However,
having defined Vpðt0Þ ¼ χVo ¼ l3o and expecting lo ∼ x0,
from the definition of the initial energized volume Vo ¼
x0ðπ=4Þd2j one can conveniently define

lo ¼ djχ1=2; ð9Þ

where the earlier introduced efficiency χ should be a
function of the geometry ratio η ¼ rB=dj of the beam
radius rB to the jet diameter, and the ratio of initial energy
density ED=Vo (see Supplemental Material [17] for SFX)
to the energy density of cohesion ρlHv (≃2.3 GPa for
water), that can be written in terms of the parameter:

Πv ¼
πr2BdjFðηÞρlHv

ED
; ð10Þ

where Hv is the heat of vaporization at the temperature of
the liquid. FðηÞ is a function of the order unity reflecting
the shape of the beam and the influence of the beam to jet
ratio (see Supplemental Material [17] for details). Usually,
one has Πv ≪ 1 and therefore a simpler functional depend-
ency as χ ¼ χðηÞ is expected.
To verify our model, we have used the experimental

results published in Ref. [8]: fourteen combinations of
pulse energies and cylinder (jet) diameters, keeping the
liquid (water) and beam focus rB constant. Figure 3(a)
depicts the measurements of the gap distance x
as a function of time. We use the properties of water at
ambient temperature (ρl ¼ 1000 kg=m3, σ ¼ 0.072 N=m,

μl ¼ 0.001 Pa s−1) for Stan’s experiments. In their analysis,
they readily used dj as the reference length, and two
possible characteristic times, namely, τl for a low pressure
model, and τh for a high pressure model [see Supplemental
Material [17], Figs. 2(a) and 2(b)]. In our proposal, defining
χ ¼ η2β in Eq. (9), one can investigate the role of the beam-
to-jet diameter ratio in the characteristic distance lo.
We have performed a statistical correlation analysis

between τ and ϕ data, before the liquid surface tension
takes over. We have found that the chi-squared logarithmic
differences with local averages is minimized (indicating
optimum data collapse: see Supplemental Material [17] for
details and quantitative values for the goodness of fit) for
β ¼ 0.14� 0.003 and Eo ¼ 48.5� 0.5 μJ, where Eo is the
minimum energy at the onset of electrostatic trapping
(Supplemental Material [17]). This last value would yield
approximately 60 MJ=kg for a beam radius of 0.5 μm and
31 MJ=kg for 0.7 μm, in agreement with the estimation by
Stan et al. (30 MJ=kg).
Using those previous best correlation values of β and Eo,

in what follows we seek the best fit of the approximate
function (8) to the experimental data. The minimum

2.74 µm, 0.75 mJ

3.5 µm, 0.07 mJ

3.5 µm, 0.17 mJ

3.5 µm, 0.35 mJ

3.5 µm, 0.75 mJ

4.28 µm, 0.75 mJ

5.31 µm, 0.75 mJ

5.51 µm, 0.75 mJ

5.6 µm, 0.07 mJ
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(dominant liquid reaction)
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(dominant gas expansion)
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FIG. 3. (a) Dimensional data from Stan et al. [8]. Color codes
identify the different jet diameters and pulse energies. (b) Optimal
data collapse using to ¼ ½πρld2j l3o=ð32EDÞ�1=2 and lo ¼ djηβ to
make times and distances nondimensional. The approximate
analytic solution (black line) shows a remarkable fitting to data
after optimum collapse. Dot-dashed lines: τ ¼ t=to ≪ 1 (black,
small times asymptotics); τ ≫ 1 (blue, large times asymptotics).
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chi-squared logarithmic difference is obtained for ϕo ¼
0.523� 0.002, τ1 ¼ 65� 0.5, and δ ¼ 1.2� 0.05, with
γ ¼ 1.5� 0.01. This supports the hypothesis in Ref. [8]
that the Grüneisen coefficient for water is a nearly constant
value Γ ¼ γ − 1 ≃ 0.5 along the process. The approximate
function (8) is also plotted in Fig. 3(b) for reference,
showing a remarkable fitting. Given the large numerical
value of τ1 in the solution (8), the analysis of large or small
values of τ should be obviously understood as compared to
τ1. Moreover, assuming that the evolution starts when the
material in Vo is already in dense vapor phase and the initial
velocity of the liquid fronts is approximately equal to H1=2

v ,
from Eq. (8) the initial gap would result ϕinit: ¼ GðηÞΠ−1=γ

v ,
whereGðηÞ¼½ðγþ2Þ−2ϕγþ2

o πη2−βFðηÞ�1=γ. Finally, the effi-
ciency of the explosions resulted as χ ¼ ðrB=djÞ2β ¼
ðrB=djÞ0.28, where rB=dj range from 0.025 to 0.2 (for dj
from 20 to 2.74 μm). In other cases where rB > dj [23],
further analysis would provide an extended knowledge of
the efficiency χ and the additional verification of the
physical insights here proposed. Indeed, using rB > dj
in SFX would significantly increase the sample hit rate by
covering the whole jet section, making measurements
insensitive to small accidental drifts of the jet.

Claudiu Stan kindly provided the original data sets, and
made very valuable suggestions. This work was supported
by the Ministerio de Economía y Competitividad (Spain),
Plan Estatal Retos, Project No. DPI2016-78887-C3-1-R.
Discussions with Pablo Villanueva, Janos Hajdu, Henry
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