
1

Two-agent scheduling problem with flowtime objective:
Analysis of problem and exact method

Paz Perez-Gonzalez1, Jose M. Framinan1, Manuel Dios1

Industrial Management, University of Seville, Spain
pazperez@us.es, framinan@us.es, mdios@us.es

Keywords: single machine, two-agent scheduling problem, interfering jobs problem, flow-
time.

1 Introduction

Interfering jobs problems, or multi-agent scheduling problems, consist on scheduling
jobs from different sets, each one with its own objective, and competing for the same
machines (Agnetis et. al. 2004). This is an emergent topic, and a recent review of the
problem is presented by Perez-Gonzalez and Framinan (2013), from whom we adopt the
notation. In this paper, we consider a single machine scheduling problem with two sets
of jobs J A and J B (J A ∩ J B = ∅), each one with nA and nB jobs respectively. Let
J = J A ∪ J B with n = nA + nB jobs. Given a sequence σ formed by jobs in both sets,
the completion time of job i ∈ J A is denoted as CA

i (σ) and CA
sum(σ) =

∑
i∈JA CA

i (σ)

is the total flowtime of σ for jobs in J A. The total flowtime of jobs in J B is CB
sum(σ) .

The objective considered here is to minimize CA
sum subject to CB

sum ≤ ε, and the problem
is denoted 1||ε(CA

sum/C
B
sum). This problem is shown to be weakly NP-hard by Agnetis

et. al. (2004), who present a Dynamic Programming (DP) algorithm with running time
O(nAnBε). In this paper, we try to gain some understanding of this problem. In Section
2, we analyse their structure of solutions, as it is well-known that NP-hard problems can
be easy to be solved by heuristic methods since there may be many solutions close to the
optimal), and vice versa. In Section 3, we derive some specific properties of this problem
and a more efficient codification of solutions, which is embedded in a Branch and Bound
procedure that outperforms existing exact methods.

2 Analysis of the structure of solutions

The problem under consideration is weakly NP-hard, so it is not possible to find the op-
timal solution in polynomial time. However, there are strongly NP-hard problems for which
is not “difficult” to find solutions close to the optimum due to its structure of solutions. For
example, Perez-Gonzalez and Framinan (2009) study a strongly NP-hard scheduling pro-
blem which, in some cases, almost all solutions (99.6%) have an approximation percentage
to the optimal value of the objective function less than 2%. So, finding a good solution by
heuristic methods is “easy”. Taillard (1990) and Armentano and Ronconi (1999) concludes
that other scheduling problems are “harder” using the same approach. To the best of our
knowledge, this kind of studies have been not carried out for interfering jobs problems. In
our case, not all schedules are feasible so the analysis must be based on two aspects:

1. The percentage of feasible solutions. The hardness of the problem depends on the
percentage of feasible solutions with respect to the total number of solutions. This
ratio clearly depends on the value of ε. In our case, we compute ε as in Agnetis et.
al. (2009), ε ∈ [εmin, εmax], for a given δ ∈ (0, 1): ε = εmin + δ(εmax − εmin), with
εmin = CB

sum(σB
SPT ∪ σA

SPT), and εmax = CB
sum(σA

SPT ∪ σB
SPT).

177

2

2. The distribution of solutions provides the distance to the optimal solution of each fea-
sible solution obtained by complete enumeration for each instance. Unfeasible solutions
are discarded. If a high proportion of feasible solutions are close to the optimal solution,
the problem is considered to be “easy”.

We have generated ten small instances (since the computational time to evaluate all
sequences of each instance is high) for each problem combining all values of nA ∈ {5, 10, 15},
nB ∈ {5, 10, 15} and δ ∈ {0.2, 0.4, 0.6, 0.8}. Table 1 shows the percentage (average) of
feasible solutions for the 10 instances solved for each problem. Moreover, the distributions
of feasible solutions for all cases have the same shape (see Figure 1 as an example for
instances of size 15×15). Regarding δ, Table 1 shows that as ε (δ) increases, the number of
feasible solutions increases too. Figure 1 shows that as ε increases, the solutions are more
distant to the optimal. Then, the difficulty of the problem suggests different approaches
to tackle it depending on the value of ε, i.e.: a) Smaller values of ε (δ ∈ {0.2, 0.4}) mean
few feasible solutions, however, the distribution shows that feasible solutions in this case
are close to the optimal, so any feasible solution can be a good solution. Then, the main
focus is on finding feasible solutions. b) Bigger values of ε (δ ∈ {0.6, 0.8}) mean a great
percentage of feasible solutions, however, the distribution shows that feasible solutions in
this case may be far from the optimal. Then, the main difficulty here is on finding good
solutions (among the feasible solutions).

With respect to problem sizes, in Table 1 it can be seen that, on average, the problem
seems more difficult when nA ≤ nB : 5× 10 (64.5704) vs 10× 5 (68.4882); 5× 15 (64.6340)
vs 15× 5 (68.7018); 10× 15 (68.6646) vs 15× 10 (68.7524). This conclusion is the opposite
that the obtained by Agnetis et. al. (2009) for the weighted case 1||ε(CA

wsum/C
B
wsum).

Table 1. Percentage of feasible solutions

δ
nA nB 0.2 0.4 0.6 0.8 Aver.
5 5 19.2063 55.3968 84.2857 96.6270 63.8790

10 14.9950 56.2970 88.3350 98.6547 64.5704
15 13.1127 56.4880 89.8013 99.1338 64.6340

10 5 19.8968 63.4266 91.5018 99.1275 68.4882
10 13.8711 65.6915 95.3331 99.8345 68.6825
15 11.2345 66.8304 96.6568 99.9368 68.6646

15 5 18.2598 64.0473 92.9870 99.5130 68.7018
10 11.5637 66.8426 96.6568 99.9464 68.7524
15 8.6749 68.3683 98.0317 99.9868 68.7654

3 Codification of Solutions and Branch and Bound procedure

The classical encoding scheme used to represent a sequence for one-machine scheduling
problems is the permutation codification, where each job j ∈ J is represented by a number,
j = 1, . . . , n. However, our problem has some properties that allow developing a more
efficient codification. More specifically, Agnetis et. al. (2004) show that, in an optimal
schedule, jobs in J A and jobs in J B follow the shortest processing time first rule (SPT).
Schedules verifying this property are called SPT schedules. Note that the SPT rule does
not apply for jobs belonging to different sets. Without loss of generality, we will assume
that processing times of jobs in J A and J B are given in SPT order respectively. Based on

178

3

Fig. 1. Distribution of feasible solutions for nA × nB = 15× 15 for different δ

this property, we can define a new encoding scheme called binary codification, where jobs
in J A are coded by zeros, and jobs in J B by ones. Any schedule formed by zeros and ones
represents only one SPT schedule. The first zero in the schedule is the job in J A with the
smallest processing time, the second is the second one in J A with smallest processing time,
and so on. Note that this codification reduces the search space from n! possible schedules
to only (nA+nB)!

nA!nB !
of SPT schedules.

Taking into account this binary codification as well as some properties of the problem
that are omitted due to the lack of space, we develop a Branch and Bound (B&B) algorithm
(pseudo-code in Figure 2), where UB is the upper bound used in the method, computed by
the total flowtime of J A for a given sequence provided by the fastest method presented by
(Perez-Gonzalez and Framinan 2012). It is compared to the DP algorithm by Agnetis et. al.
(2004) and to a MILP model of the problem using the Gurobi solver. Ten instances of sizes
nA ∈ {5, 10, 15, 20} and nB ∈ {5, 10, 15, 20} are generated with random [1, 99] processing
times. δ has been randomly generated in the interval [0.4, 0.6]. Table 2 shows the average
CPU time for each problem size. Note that Gurobi and DP are slower (not being able to
find the optimal solution in less than 24 hours per instance for the largest size), while the
B&B is faster for all instances except for the smallest sizes (5× 5 and 5× 10).

References

Agnetis, A. and De Pascale, G. and Pacciarelli, D. A lagrangian approach to single-machine
scheduling problems with two competing agents Journal of Scheduling, 51(4):401-415, 2009.

Agnetis, A. and Mirchandani, P. B. and Pacciarelli, D. and Pacifici, A. Scheduling problems with
two competing agents Operations Research, 52(2):229-242, 2004.

Armentano, V. A. and Ronconi, D. P. Tabu search for total tardiness minimization in flowshop
scheduling problems Computers & Operations Research, 26(3):219-235, 1999.

P. Perez-Gonzalez and J. M. Framinan. Scheduling permutation flowshops with initial availabi-
lity constraint: Analysis of solutions and constructive heuristics. Computers & Operations
Research, 36(10):2866-2876, 2009.

P. Perez-Gonzalez and J. M. Framinan. A common framework and taxonomy for multicriteria
scheduling problems with interfering and competing jobs: Multi-agent scheduling problems
European Journal of Operational Research, 235(1):1-16, 2014.

P. Perez-Gonzalez and J. M. Framinan. Approximate algorithms for one-machine scheduling with
interfering jobs XXV European Conference On Operational Research, Vilnius, Lituania, 2012.

Taillard, E. D. Some efficient heuristic methods for the flow shop sequencing problem European
Journal of Operational Research, 47(1):65-74, 1990.

179

