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Abstract 

This work analyses partial information sharing involving retailers with different 

operational configurations. Retailers are characterized by four operational factors, i.e., 

demand variance, lead time average, forecasting period and inventory policy. The 

findings show that the performance improvement based on information sharing depends 

on retailers’ operational factors. Consequently, partial information sharing structures 

need to be carefully designed in order to achieve a substantial performance 

improvement. The results also serve to provide innovative recommendations to supply 

chain managers in order to efficiently implement information sharing mechanisms at 

retailers.  

Keywords: Supply chain management; partial information sharing; heterogeneous 

retailers; bullwhip effect; multi-agent systems; dynamic performance. 
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1 INTRODUCTION 

1.1 Context  

Globalization and a high volume of outsourcing has resulted in decentralized Supply 

Chains (SCs), shifting from a sequential linear SC to an increasingly complex global 

supply network (see e.g., Merzifonluoglu 2015, Annarelli and Nonino 2016, Li and 

Zhen 2016). SC partners have a higher autonomy, as they are part of many parallel 

chains at the same time (Zissis et al. 2015, Thomas et al. 2016). This fact reinforced the 

presence of conflicting objectives within the SC where competition exists for common 

resources and decisions are taken on individually based local incentives (Rached et al. 

2016). The complexity of SCs has risen sharply in recent decades (Cardoso et al. 2015, 

Guertler and Spinler 2015), often leading to a lack of coordination among SC members. 

In this context, SCs from western economies to low-cost countries have been 

experiencing unpredictable and intensive deterioration of performance (Christopher and 

Holweg 2017). Additionally, the severe and synchronized trade collapse has amplified 

inefficiencies within the SCs, and subsequently led to detrimental phenomena such as 

the bullwhip effect (see e.g. Altomonte et al. 2012, Duan et al. 2015, Osadchiy et al. 

2015). To overcome these inefficiencies, researchers and practitioners have been 

working on robust solutions. Among these, SC collaboration practices have been 

advocated as some of the most effective approaches (see e.g. Dejonckheere et al. 2004, 

Chen and Lee 2009, Trapero et al. 2012, Li and Zhang 2015, among others). At the core 

of collaboration practices lies information sharing (IS), a collaborative mechanism in 

which the supplier may obtain and utilize the demand and inventory status of the retailer 

(Huang et al. 2016). 

During the last decade, the benefits of IS in decentralized SCs have been deeply 

researched with empirical studies of real cases (see e.g. Huo et al. 2014, Bian et al. 

2016, Ren 2017), analytical methods (Chen and Lee 2009, Trapero et al. 2012, Ali et al. 

2017), and simulation (Datta and Christopher 2011, Ramanathan 2014, Dominguez et 

al. 2015b, Cannella et al. 2017). In general, regardless of the adopted methodologies 

and the explored aspects of IS (e.g. reasons for sharing, what information to share with 

whom, how to share, as well as pre-requisites, drivers and barriers to IS, see Kembro et 

al. 2014), the majority of the literature agrees on the pivotal role benefits of IS practices 

in SC performance (Maghsoudi and Pazirandeh 2016). The expected revenues (e.g. a 
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reduction in inventory holding cost, Hosoda et al. 2008) have been capturing the 

attention of SC practitioners (Kembro and Selviaridis 2015). As an example, a recent 

survey found that 61% of Chinese firms believe that IS is essential for business success 

(Bian et al. 2016). Basically, IS has been and continues to be a major topic in modern 

SC management and, contrary to popular belief, there is still significant need for more 

research regarding IS in SC (Kembro et al. 2014, Costantino et al. 2015). 

 

1.2 Problem Statement 

Despite the potential benefits of IS in SC, its practical implementation presents relevant 

difficulties (Fawcett et al. 2011, Spekman and Davis 2016). Full coordination among 

SC members, while desirable, is often impractical, since it is deemed to be too costly or 

too risky (Geunes et al. 2016). Making information available to other enterprises and 

managing the information requires investment in Information Technology (IT) and 

entails significant resource investments, which could result in a negative cost–benefit 

analysis (Chan and Chan 2010, Kembro et al. 2014). Additionally, companies need to 

bear the risk that information may be leaked intentionally or unintentionally by 

suppliers (Kong et al. 2013, Huang et al. 2016). Finally, resulting benefits of IS may be 

difficult to allocate in a reasonable way among SC partners (Shih et al. 2015).  

Evidence of these barriers to achieve full collaboration among SC members can be 

found in practice. Accordingly, the Retailer-Direct Data Report of the Grocery 

Manufacturers Association (GMA) pointed out that retailers may not have an incentive 

to share data with suppliers (GMA 2009, Shang et al. 2016). Additionally, a study 

performed by Forrester Research on 89 retailers in 2006 reported that only 27% of 

retailers shared POS data (Shang et al. 2016). In this context, achieving a full IS (i.e., all 

SC members participate in IS, referred to as FIS in the following) is not always 

possible. Thus, in practice, partial IS is found to be prevalent (Shnaiderman and 

Ouardighi 2014, Xu et al. 2015). However, in the scientific literature, partial IS has been 

rarely analysed because the majority of studies dealing with IS assume a full 

collaboration practice among all members (Holmstrőm et al. 2016). In light of these 

considerations, studying the dynamics of SC in scenarios where FIS cannot be achieved 

represents a challenge for researchers and may bring potential benefits for industry.  
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To the best of the authors’ knowledge, up to now, partial IS has been addressed in 

literature in five relevant studies. Ganesh et al. (2014a,b) and Costantino et al. (2014) 

analyse the impact of different degrees of collaboration on SC performance (i.e., 

inventory holding and shortage costs, bullwhip effect and/or customer service level) in a 

serial SC, while Lau et al. (2004) analyse partial IS in more complex SCs, in particular 

in three divergent SCs. Finally, Huang and Iravani (2005) focus on one capacitated 

manufacturer and two retailers under a (Q,R) inventory policy, where the former 

receives demand and inventory information from only one of the retailers.  

The above-mentioned works have significantly contributed to the unexplored topic of 

partial IS by showing two novel insights: 

(1) Retailers should be the first members to be involved in IS (Ganesh et al. 2014a,b, 

Costantino et al. 2014,  Lau et al. 2004), since they report the highest performance 

improvement to the SC.  

(2) The operational factors (OFs) of retailers, such as market shares and order sizes, 

may have a significant impact on the benefits provided by the IS practice under 

partial collaboration (Huang and Iravani 2005). 

The former insight reasserts the central role of retailers for the efficacy of IS, while the 

latter suggests that SCs characterized by heterogeneous retailers (i.e., retailers with 

different OFs such as lead times, order policies, market demand, etc.), may perform 

differently under the same IS practice. Both insights open interesting challenges for 

researchers and advocate important implications for industry, as they point out the 

relevance of exploring the efficiency of partial IS at retailers when these are 

heterogeneous. According to these insights, we formulate the following research 

questions: how retailers with different OFs may impact on SC performance when they 

share information about customer demand? Which retailers’ OFs are more relevant in 

order to consider a retailer as a potential partner for the IS scheme and at what extent? 

 

1.3 Objective 

Motivated by the above considerations, in this paper we aim to contribute to the existing 

literature by assessing how heterogeneous retailers, characterized by different critical 

OFs (i.e., demand variability, average lead time, forecasting period and inventory 
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policy), may improve SC performance by sharing (or not) true demand information. We 

assume that due to the decentralized nature of modern SCs, companies and, specifically, 

the retailers, are autonomous members who work for their own goals and interests and 

thus, retailers’ OFs are considered as exogenous factors. In this manner we aim to 

provide recommendations to SC managers on how to properly exploit the benefits of 

implementing IS practices with retailers by identifying which retailers provide a higher 

contribution to SC performance.  

To fulfil the research objective, we focus on a four echelon SC (i.e., Factory, 

Distributor, Wholesaler and Retailer) in which each echelon is characterized by one 

member with the exception of the Retailer’s echelon, which is constituted by four 

members. We compare different partial IS scenarios (some retailers may share demand 

information, while some others may not share information) under two different 

hypothesis: (1) homogeneous retailers and (2) heterogeneous retailers. Under the former 

hypothesis we analyse the SC performance when identical retailers are involved in IS 

one by one, on variety of SC configurations. Under the latter hypothesis we assess the 

impact on SC performance of involving retailers with different OFs in IS. SC 

performance is measured using a set of system level metrics (i.e., Bullwhip Slope, 

Inventory Slope and Systemic Inventory Level), which provide a clear, comprehensive 

and structured assessment of the SC performance at systemic level and the “internal 

process efficiency”, as well as provide information on the potential benefits of 

partnerships, collaboration and information productivity of SC members (Cannella et al. 

2013). 

Due to the exploratory nature of this research, we adopt an appropriate and structured 

methodology for studying the dynamic of SCs, i.e., computer simulation (Oliveira et al. 

2016), and more specifically the Multi-Agent Systems (MAS) modelling approach 

(Chatfield et al. 2006, Rahmandad and Sterman 2008). MAS has been recognized as a 

useful methodology to perform complex prospective SC analysis, and findings obtained 

with its proper adoption have been significantly contributing to understand the 

dynamics in SC (see e.g., Swaminathan et al. 1998, Long and Zhang 2014, Hilletofth et 

al. 2016 or Ponte et al. 2017). In order to perform a systematic simulation analysis we 

adopt reasonable assumptions and data inputs for simulations obtained from different 

cases to emulate real-world logistic systems (Rabinovic and Cheon 2011, Cannella et al. 

2017).  
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The results obtained reveal new insights on the impact of IS in SC by showing the need 

of individually estimating the potential value of retailers’ information prior to the 

implementation of IS. When retailers are homogeneous, their collaboration may provide 

equal potential benefits to SC performance (they contribute the same to improve SC 

performance when they are involved in IS). Under this hypothesis, benefits of IS 

increase with the number of retailers involved and a full IS approach is recommended. 

On the contrary, when retailers are heterogeneous they have different potential value 

depending on their operational configuration. Under this hypothesis, performance 

achieved by different partial IS structures with the same number of retailers might be 

significantly different (e.g., we found that involving half of the total number of retailers 

into IS may lead to obtain over 70% of the total benefits of a FIS under the boundary 

conditions). In fact, retailers with (1) higher demand variance, (2) lower forecasting 

period, and (3) higher average lead time, are potentially the most beneficial partners 

when implementing IS. 

The remainder of this paper is as follows: Section 2 describes the SC model and 

methodology. Section 3 presents the design of experiments and performance metrics. 

Section 4 analyses the results obtained. Section 5 presents managerial implications. 

Finally, Section 6 draws the conclusions, limitations of the study and future research 

lines.  

 

2 SC MODEL AND METHODOLOGY 

In order to analyse the partial IS scenarios, we develop a SC model to conduct the 

experiments. In SC dynamics literature, the most used SC model is the four-echelon 

serial SC (see e.g. Sterman 1989, Chatfield et al. 2004, Croson et al. 2014, Cannella et 

al. 2015). Echelons are referred as Factory (i=1), Distributor (i=2), Wholesaler (i=3), 

and Retailer (i=4). In order to analyse scenarios where only some of the retailers 

participate in IS (referred as partial IS) we extend this SC model by increasing the 

number of retailers to four, thus resulting a divergent SC (Lau et al. 2004, Dominguez et 

al. 2015a, Rached et al. 2016), as shown in Figure 1. 
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Figure 1. SC configuration. 

 

 In addition, we make the following assumptions regarding IS: 

1. As we focus our analysis of partial IS at retailers’ stage, only retailers share 

information on customer’s demand. 

2. Assuming that, due to some barriers (as described in Section 1) each enterprise 

is willing to share its local information only to its immediate upstream enterprise 

(see Lau et al. 2004, Kembro and Selviaridis 2015, for similar assumptions), 

only the wholesaler will be able to receive information from retailers.  

 

2.1 Supply Chain model 

The SC general model has been adapted from Chatfield et al. (2004) so as to model a 

generic divergent SC (Dominguez et al. 2015a,b, Cannella et al. 2017) and to include 

partial IS (i.e., any node at any echelon of the SC may share information with an 

upstream linked node). The notation is described in Table 1. This general model is 

adapted in Section 3.1 for the SCs under study with specific parameters values and 

experimental factors. 
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Table 1. Notation. 

i Echelon position in the SC 𝜏𝑖𝑗  Forecasting period of 𝑛𝑖𝑗 

j Node position within a given echelon 𝑂𝑖𝑗
𝑡  Orders placed by 𝑛𝑖𝑗 at time t 

 𝑛𝑖𝑗 Node at position j in echelon i 𝐼𝑖𝑗
𝑡  Inventory on hand of 𝑛𝑖𝑗 at time t 

E Total number of echelons 𝑊𝐼𝑃𝑖𝑗
𝑡  Work in progress of 𝑛𝑖𝑗 at time t 

  𝑁𝑖 Total number of nodes in echelon i 𝐵𝑖𝑗
𝑡  Backlog of 𝑛𝑖𝑗 at time t 

𝑁𝐶 Total number of customers 𝑆ℎ𝐷𝑖𝑗
𝑡  Shared demand of 𝑛𝑖𝑗 at time t 

   𝐶𝑗 Customer at position j 𝛿𝑖𝑗 𝛿𝑖𝑗=1 if 𝑛𝑖𝑗 is involved in IS, 0 otherwise.” 

t Current simulation time 𝐼𝑃𝑖𝑗 Inventory policy of 𝑛𝑖𝑗 

T Total simulation time (excluding warm-up) 𝑉𝑖𝑗 Set of downstream linked partners of 𝑛𝑖𝑗 

𝐷𝐶𝑗

𝑡  Demand placed by customer 𝐶𝑗 at time t 𝑠
𝑂𝑖

𝑡
2  Estimated variance of orders placed by echelon i 

𝜇𝐷𝐶𝑗
 Average demand placed by 𝐶𝑗  𝑂̅𝑖

𝑡 
Estimated average of orders placed by echelon i at 

time t 

 𝐷̅𝐶𝑗

𝑡  
Estimated average demand placed by 𝐶𝑗 at 

time t 
𝜎𝑂𝑖𝑗

2  Variance of orders placed by 𝑛𝑖𝑗 

𝜎𝐷𝐶𝑗

2  Variance of demand placed by 𝐶𝑗 𝑠
𝑂𝑖𝑗

𝑡
2  Estimated variance of orders placed by 𝑛𝑖𝑗 

𝑠
𝐷𝐶𝑗

𝑡
2  Estimated variance demand placed by 𝐶𝑗 𝑠

𝐼𝑖
𝑡

2  Estimated variance of  inventory at echelon i 

𝐷𝑖𝑗
𝑡  Demand faced by 𝑛𝑖𝑗 at time t 𝐼𝑖̅

𝑡 
Estimated average of inventory at echelon i at 

time t 

 𝐷̅𝑖𝑗
𝑡  

Estimated average demand faced by 𝑛𝑖𝑗 at 

time t 
𝑠

𝐼𝑖𝑗
𝑡

2  Estimated variance of  inventory at 𝑛𝑖𝑗 

 𝑠
𝐷𝑖𝑗

𝑡
2  

Estimated variance demand faced by 𝑛𝑖𝑗 at 

time t 
𝐼𝑖̅𝑗

𝑡  Estimated average of inventory at 𝑛𝑖𝑗 at time t  

𝐿𝑖𝑗
𝑡  Lead time of 𝑛𝑖𝑗 at time t 𝐷̅𝐶

𝑡  
Estimated average demand placed by customers at 

time t 

𝜇𝐿𝑖𝑗
 Average lead time of 𝑛𝑖𝑗 𝜋𝑖 Position of the i-th echelon  

𝐿̅𝑖𝑗
𝑡  Estimated average lead time of 𝑛𝑖𝑗 at time t 𝑂𝑅𝑉𝑟𝑅𝑖 Order Rate Variance Ratio echelon i 

𝜎𝐿𝑖𝑗

2  Variance of the lead time of 𝑛𝑖𝑗 𝐼𝑛𝑣𝑉𝑟𝑅𝑖 Inventory Variance Ratio echelon i 

𝑠
𝐿𝑖𝑗

𝑡
2  

Estimated variance of the lead time of 𝑛𝑖𝑗 at 

time t 
𝐼𝑛𝑣𝐴𝑣𝑖 Inventory Average at echelon i 

R Inventory review period BwSl Bullwhip slope 

𝑆𝑖𝑗
𝑡  Desired level of stock of 𝑛𝑖𝑗 at time t InvSl Inventory slope 

z Safety factor for the OUT policy SysInvAv Systemic inventory average 

 

General Modelling Assumptions 

 At period t, each customer 𝐶𝑗 places an independent stochastic demand  

𝐷𝐶𝑗

𝑡  following a normal distribution with mean 𝜇𝐷𝐶𝑗
, estimated by 𝐷̅𝐶𝑗

𝑡 , and 

variance 𝜎𝐷𝐶𝑗

2 , estimated by 𝑠
𝐷𝐶𝑗

𝑡
2 . Customers do not fill orders.  
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 The factory places orders to an outside supplier with unlimited capacity. 

 Stocking and transportation capacities are unlimited. 

 The demand received by node 𝑛𝑖𝑗 (𝐷𝑖𝑗
𝑡 ), with mean estimated by 𝐷̅𝑖𝑗

𝑡  and 

variance estimated by 𝑠
𝐷𝑖𝑗

𝑡
2 , equals the total orders received by downstream 

(linked) partners (denoted by 𝑉𝑖𝑗), i.e., 𝐷𝑖𝑗
𝑡 = ∑ 𝑂𝑖+1,𝑟

𝑡
𝑟∈𝑉𝑖𝑗

. Demand received by 

retailers is customer demand 𝐷𝐸𝑗
𝑡 =𝐷𝐶𝑗

𝑡 .  

 When the stock is not enough to fill an order completely there is a stock-out 

situation and partial replenishment is used (Chatfield et al. 2004). 

 If a stock-out situation at the retailers’ echelon occurs, we assume that 

backordering is not allowed and unfilled demand is lost. However, true demand 

received at retailers is recorded (𝐷𝐶𝑗

𝑡 ), and shared with the upstream partner in 

case of participating in IS (see a detailed description of IS below) (Chatfield et 

al. 2004, Agrawal et al. 2009, Choudhary and Shankar 2015). Upstream 

members of the SC are allowed to backorder.  

 We assume that returns of excess inventory to upstream partners are not 

permitted since the allowance of returns, although a common assumption in the 

bullwhip effect literature, may not be realistic and may overestimate the 

bullwhip effect (Chatfield and Pritchard 2013, Dominguez et al. 2015b).  

 

Lead Times 

Lead times (𝐿𝑖𝑗
𝑡 ) are defined as the time elapsed between order and receipt, and may 

include manufacturing time, shipment to port, ship transit time, unloading, transfer to 

rail and/or truck, etc. (Disney et al. 2016). We assume stochastic lead times, which are 

stationary, independent, and identically distributed. In line with previous literature 

works and industrial data sets, lead times are assumed to follow a Gamma distribution 

(Chatfield et al. 2004, Kim et al. 2006, Hayya et al. 2011, Chatfield and Pritchard 2013, 

Bischak et al. 2014, Dominguez et al. 2015b, Cannella et al. 2017, among others) with 

mean 𝜇𝐿𝑖𝑗
 and variance 𝜎𝐿𝑖𝑗

2 . Since we use a periodic Order-Up-To (OUT) replenishment 

policy (see below), and this policy operates on a discrete time basis, lead times must be 

integers (Disney et al. 2016, Wang and Disney 2017). Therefore, values obtained from 

the Gamma distribution are discretized. Consequently, each time an order is generated, 
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a random integer lead time is assigned to it, which corresponds to the number of periods 

required for the order to arrive. 

Finally, note that uncertain lead times often lead to a phenomenon called order 

crossovers (Kim et al. 2006, Hayya et al. 2008, Bischak et al. 2014), i.e., replenishment 

may be received in a different sequence than they were ordered (Wang and Disney 

2017). Therefore, a node may receive more than one order in some periods, and receive 

no orders in other periods (Disney et al. 2016). 

 

OUT replenishment policy 

All SC members use a (R,S) or periodic review with OUT level (Nachtmann et al. 2010, 

Chatfield and Pritchard 2013, Li et al. 2014). Even though OUT policies are not optimal 

when orders may crossover (see Srinivasan et al. 2011, where authors show that, in the 

presence of order crossovers, the optimal policy for periodic review systems with 

variable lead times is state dependent and thus, computationally intractable; and Disney 

et al. 2016, where authors found a linear policy that outperforms the OUT policy in the 

presence of order crossovers), they are widely used in SC practice to facilitate the 

coordination of product flows, and in the research literature since it is well understood 

and implementable (Bischak et al. 2014). 

The OUT level (𝑆𝑖𝑗
𝑡 ) is the base stock that allows the system to meet the demand during 

the period 𝐿𝑖𝑗
𝑡 + 𝑅 or “protection period” (Chatfield et al. 2004). Under this policy, 

orders (𝑂𝑖𝑗
𝑡 ) are placed at discrete time intervals R in order to raise the current inventory 

position (𝐼𝑃𝑖𝑗
𝑡 ) to the target inventory level 𝑆𝑖𝑗

𝑡  (Equation (1)). The inventory position 

equals the net stock plus the inventory on order but not yet arrived, or work in progress 

(𝑊𝐼𝑃𝑖𝑗
𝑡 ) (Disney and Lambrecht 2008, Li et al. 2014). The net stock equals current on 

hand inventory (𝐼𝑖𝑗
𝑡 ) minus backlog (𝐵𝑖𝑗

𝑡 ), with the exception of retailers, which are not 

allowed to backorder (Equation (2)). Since returns are not allowed as well, orders are 

truncated to zero (Equation (3)).  

 

𝑂𝑖𝑗
𝑡 = 𝑆𝑖𝑗

𝑡 − 𝐼𝑃𝑖𝑗
𝑡 = 𝑆𝑖𝑗

𝑡 − 𝐼𝑖𝑗
𝑡 + 𝐵𝑖𝑗

𝑡 − 𝑊𝐼𝑃𝑖𝑗
𝑡 ;  ∀𝑖 < 𝐸 (1) 

𝐵𝐸𝑗
𝑡 = 0 (2) 
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𝑂𝑖𝑗
𝑡 ≥ 0 (3) 

To increase the generality of this research and to add up on published works, we have 

decided to adopt two emblematic OUT approaches, namely S1 and S2. 𝑆𝑖𝑗
𝑡  may be 

calculated using any of these two approaches (Equations (4) and (5)), where z is a safety 

factor, 𝐿̅𝑖𝑗
𝑡  is the estimation of the average lead time and 𝑠

𝐿𝑖𝑗
𝑡

2  is the estimation of its 

variance (for convenience and without loss of generality, we assume the same z for all 

nodes of the SC (Kim et al. 2006)). Both approaches are service level oriented (i.e., it is 

assumed that nodes are willing to maintain a high service level). S1 is a common 

practice based on a deterministic lead times. S2 is also a popular approach (Disney et al. 

2016), and it has been used in several studies with stochastic lead times (see e.g. 

Chatfield et al. 2004, Nachtmann et al. 2010, Chatfield et al. 2013, Chatfield and 

Pritchard 2013, Bischak et al. 2014, Dominguez et al. 2015b, Cannella et al. 2017, 

among others). Thus both practices are adopted for benchmarking. 

𝑆1 = 𝑆𝑖𝑗
𝑡 = (𝐿̅𝑖𝑗

𝑡 + 𝑅)𝐷̅𝑖𝑗
𝑡 + 𝑧√(𝐿̅𝑖𝑗

𝑡 + 𝑅)𝑠𝐷𝑖𝑗
𝑡  

(4) 

𝑆2 = 𝑆𝑖𝑗
𝑡 = (𝐿̅𝑖𝑗

𝑡 + 𝑅)𝐷̅𝑖𝑗
𝑡 + 𝑧√(𝐿̅𝑖𝑗

𝑡 + 𝑅)𝑠
𝐷𝑖𝑗

𝑡
2 + 𝐷̅𝑖𝑗

𝑡 2
𝑠

𝐿𝑖𝑗
𝑡

2  (5) 

 

Forecasting 

In order to update 𝑆𝑖𝑗
𝑡 , node 𝑛𝑖𝑗 dynamically updates, in each period, the forecast of 

incoming demand (i.e., expected average 𝐷̅𝑖𝑗
𝑡  and variance 𝑠

𝐷𝑖𝑗
𝑡

2 ) and lead time of the 

upstream partner (i.e., expected average, 𝐿̅𝑖𝑗
𝑡  and variance 𝑠

𝐿𝑖𝑗
𝑡

2 ). To estimate 𝐷̅𝑖𝑗
𝑡 , node 

𝑛𝑖𝑗 uses a 𝜏𝑖𝑗-periods moving averages forecasting technique, commonly used in 

practice (Chen et al. 2000, Disney and Lambrecht 2008). With this technique, demand is 

estimated by averaging the demand received during the most recent 𝜏𝑖𝑗 periods 

(Equation (6)). A high value of 𝜏𝑖𝑗 delivers a more stable forecast pattern (closer to the 

average demand), while a low value of 𝜏𝑖𝑗 results in a more nervous forecast pattern 

(closer to the real demand) (Chase et al. 2004). Similarly, 𝑠
𝐷𝑖𝑗

𝑡
2  is estimated using a 𝜏𝑖𝑗-

period moving variances (Equation (7)). Finally, 𝐿̅𝑖𝑗
𝑡  and 𝑠

𝐿𝑖𝑗
𝑡

2  are estimated with running 
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averages and variances, i.e., using all prior information available instead of only the 

most recent 𝜏𝑖𝑗 periods (Chatfield 2013, Cannella et al. 2017). 

 

𝐷̅𝑖𝑗
𝑡 =

∑ 𝐷𝑖𝑗
𝑡−𝑘𝜏𝑖𝑗

𝑘=1

𝜏𝑖𝑗
 (6) 

𝑠
𝐷𝑖𝑗

𝑡
2 =

1

𝜏𝑖𝑗 − 1
∑(𝐷𝑖𝑗

𝑡−𝑘 − 𝐷̅𝑖𝑗
𝑡−𝑘)2

𝜏𝑖𝑗

𝑘=1

 (7) 

 

Information sharing  

Information sharing considers that a node 𝑛𝑖𝑗 may receive demand information from 

downstream linked nodes. The information received by a node 𝑛𝑖𝑗 is modelled in a 

divergent SC by the variable 𝑆ℎ𝐷𝑖𝑗
𝑡  (shared demand) (Dominguez et al. 2014), defined 

through Equation (8). This equation considers that: if downstream partners of 𝑛𝑖𝑗 (𝑗 ∈

𝑉𝑖𝑗) do not participate in IS, 𝑆ℎ𝐷𝑖𝑗
𝑡  equals the total incoming orders of 𝑛𝑖𝑗 (𝑆ℎ𝐷𝑖𝑗

𝑡 =

𝐷𝑖𝑗
𝑡 );  if downstream partners of 𝑛𝑖𝑗 participate in IS, 𝑆ℎ𝐷𝑖𝑗

𝑡  equals their total demand; if 

there is a mixture of participants/not participants downstream partners of 𝑛𝑖𝑗 in IS, 

𝑆ℎ𝐷𝑖𝑗
𝑡  is the sum of incoming orders placed by non-participant downstream partners of 

𝑛𝑖𝑗 and demand faced by participants downstream partners of 𝑛𝑖𝑗. In order to model this 

partial IS condition we use a binary variable (𝛿𝑖𝑗): 𝛿𝑖𝑗 = 1 if a node 𝑛𝑖𝑗 shares 

information with an upstream partner, and  𝛿𝑖𝑗 = 0 otherwise. A node 𝑛𝑖𝑗 uses this 

information to compute the OUT level and to forecast demand, replacing the variable 

𝐷𝑖𝑗
𝑡  by 𝑆ℎ𝐷𝑖𝑗

𝑡  in Equations (4), (5), (6) and (7). 

 

𝑆ℎ𝐷𝑖𝑗
𝑡 = ∑ 𝐷𝑖+1,𝑟

𝑡 𝛿𝑖+1,𝑟 + 𝑂𝑖+1,𝑟
𝑡 (1 − 𝛿𝑖+1,𝑟)

𝑟∈𝑉𝑖𝑗

 (8) 

 

Sequence of actions 

The sequence of events is based on that of Chatfield et al. (2004). A node 𝑛𝑖𝑗 at the 

beginning of period t updates the order-up-to level (𝑆𝑖𝑗
𝑡 ) and places an order to rise up 

the inventory position to this level. As in Chatfield et al. (2004), we assume that all 
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nodes perform these actions in parallel, thus they are not aware of what is occurring at 

the other nodes. Therefore, information on orders, shared demand and lead times at 

period t is not available to update 𝑆𝑖𝑗
𝑡 , and nodes use data from previous period t-1 (we 

are assuming R=1, see Section 3.1) to forecast demand and lead times, and update 𝑆𝑖𝑗
𝑡 . 

Then, new products are received from the upstream partner, and backlog and the new 

incoming demand are satisfied. This modelling assumption is also consistent with Chen 

et al. (2000). A summary of the sequence of events is shown next: 

1. Update the OUT level (𝑆𝑖𝑗
𝑡 ) using the forecasts computed in the previous period. 

2. If 𝑆𝑖𝑗
𝑡  is higher than the inventory position, place an order 𝑂𝑖𝑗

𝑡  to raise the 

inventory position to 𝑆𝑖𝑗
𝑡  and increase 𝑊𝐼𝑃𝑖𝑗

𝑡  accordingly. Otherwise, no order is 

placed. 

3. Receive products from the upstream partner. Reduce 𝑊𝐼𝑃𝑖𝑗
𝑡  and increase 𝐼𝑖𝑗

𝑡  

accordingly. 

4. If i<4 and 𝐼𝑖𝑗
𝑡 >0, satisfy backorders. Reduce 𝐼𝑖𝑗

𝑡  and 𝐵𝑖𝑗
𝑡  accordingly. 

5. Receive new orders from downstream nodes and satisfy demand if possible, 

reducing 𝐼𝑖𝑗
𝑡  accordingly. If i<4, any unsatisfied demand is backordered, and 𝐵𝑖𝑗

𝑡  

is increased accordingly. Otherwise, unsatisfied demand is lost. 

6. Update 𝑆ℎ𝐷𝑖𝑗
𝑡  and calculate a new forecast to be used in the next period 

[𝑆ℎ𝐷̅̅ ̅̅ ̅̅
𝑖𝑗
𝑡 , 𝑠

𝑆ℎ𝐷𝑖𝑗
𝑡

2 , 𝐿̅𝑖𝑗
𝑡 , 𝑠

𝐿𝑖𝑗
𝑡

2 ]. 

 

2.2 Methodology 

The inherent complexity of the SCs under analysis (such as the divergent configuration, 

partial IS, or stochastic demands and lead times) makes simulation to be a good 

approach to infer on bullwhip effect. More specifically, we use SCOPE (Dominguez 

and Framinan 2013, Dominguez et al. 2015b), a MAS-based SC simulator specifically 

designed to model complex SCs that was implemented through Java-Swarm (Hiebeler 

1994, Minar et al. 1996), a toolbox library for MAS development.  

Real SCs have multiple layers of abstraction (Lin et al. 2002) and they can be studied in 

different levels of detail. Accordingly, SCOPE was developed adopting a two-layer 
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design: an Enterprise Layer containing all enterprises in the SC, and a Functional Layer, 

including the main functions/departments of the enterprises. The Enterprise Layer is 

modelled by one generic and reusable agent (Enterprise Agent), and enterprises are built 

up as instances of this agent. The behaviour of the Enterprise Agent can be customized 

according to the role that the enterprise plays in the SC. This customization is made by 

means of functional agents (Functional Layer), who are in charge of the physical and 

planning tasks carried out by the enterprise, thus building a nested agent structure as 

shown in Figure 2. The collection of functional agents was designed according to the 

Level 1 of the Supply Chain Operations Reference (SCOR) model (Supply Chain 

Council 2006) and the Supply Chain Planning Matrix (Stadtler 2005), resulting in a 

total of 9 functional agents: Source Agent, Make Agent and Deliver Agent, Demand 

Fulfilment Agent, Demand Forecast Agent, Master Planning Agent, Production 

Planning Agent, Material Resource Planning (MRP) Agent and Scheduling Agent. 

 

 

Figure 2. SCOPE framework. 

 

Due to the scalability of MAS models, SCOPE allows to create any number of 

companies distributed along any number of different echelons, as required by the user 

(see e.g., Dominguez et al. 2015a). Companies can be linked to any other partner/s in 

the SC, thus allowing to create a wide range of SC configurations (e.g. divergent, 
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convergent, conjoined or a more generic network SC). Also, they can be easily 

customized, allowing the user to create SCs with different members (heterogeneous 

SCs). Additional features of SCOPE are: (1) the use of random variables allows to 

simulate stochasticity in any business process; (2) its modular design and its 

codification in Java make possible to easily add new functions and behaviours, or 

modify existent ones; (3) all variable are accessible after simulation, thus allowing to 

analyse the outputs of interest. 

All the above features make SCOPE a good choice to model divergent SC with 

heterogeneous companies, stochastic processes and partial IS. SCOPE was validated by 

contrasting the results obtained by other authors, such as Chen et al. (2000), 

Dejonckheere et al. (2004) and Chatfield et al. (2004) (see Dominguez and Framinan 

2013). 

 

3 DESIGN OF EXPERIMENTS (DoE) 

The aim of the DoE is to analyse scenarios of partial IS at retailers, assessing how 

different partial IS structures (i.e., which retailers are sharing information with the 

wholesaler) impact SC performance over a variety of retailers’ operational 

configurations. To do so, we consider two different cases (Huang and Iravani 2005): (1) 

homogeneous retailers (retailers’ operational configurations are identical); (2) 

heterogeneous retailers (retailers’ operational configurations are different). In the 

following we describe the OFs that characterize the different retailers’ operational 

configurations, the specific model and simulation parameters, the three metrics used to 

measure SC performance, and the DoE. 

 

3.1 Operational factors and model parameters 

We characterize retailers’ operational configuration by four OFs, i.e., demand variance 

(𝜎𝐷𝐶𝑗

2 ), forecasting period (𝜏𝑖𝑗), lead time average (𝜇𝐿𝑖𝑗
) and inventory policy (IPij). In 

order to provide comprehensive data inputs, we adopt a full-factorial experimental 

design (Evers and Wan 2012), which is described in the following sections. We select 

two levels for each retailers’ OF, namely Low (OFL) and high (OFH), which represent 
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extreme values of the factors (Costantino et al. 2014, Cannella et al. 2017). These values 

are chosen according to two principles: 

(1) In order to satisfy the hypothesis of heterogeneous retailers, OFL and OFH need 

to be significantly different. 

(2) In order to produce comparable results, OFL and OFH need to adopt values 

from other similar studies in SC dynamic literature.  

OFH values for 𝜎𝐷𝐶𝑗

2 , 𝜏𝑖𝑗, and 𝜇𝐿𝑖𝑗
, can be found in Chatfield et al. (2004), Chatfield et 

al. (2013), Costantino  et al. (2014) and Dominguez et al. (2015b). OFL values of these 

factors are obtained by significantly reducing the OFH values. For IPij, OFH is set to S2 

(see e.g. Chatfield et al. 2004, Nachtmann et al. 2010, Chatfield et al. 2013, Dominguez 

et al. 2015b), while OFL is set to S1 (see e.g. Chatfield et al. 2004, Dominguez et al. 

2014, Costantino  et al. 2014). This is an arbitrary choice without impact in the results. 

These values can be found in Table 2. 

 

Table 2. Operational factors, model parameters, simulation parameters and performance metrics. 

OFs 
Retailers Upstream 

Members Low (OFL) High (OFH) 

Demand variance (𝜎𝐷𝐶𝑗

2 ) 100 (𝜎𝐷𝐶𝑗
=10) 400 (𝜎𝐷𝐶𝑗

=20) N.A. 

Forecasting period (𝜏𝑖𝑗) 5 15 15 

Lead time average (𝜇𝐿𝑖𝑗
) 2 4 2 

Inventory policy (IPij) S1 S2 S1 

General model parameters  Value Simulation parameters Value 

Demand average (𝜇𝐷𝐶𝑗
) 50 Simulation time (T) 4000 

Lead time c.v. (𝜎𝐿𝑖𝑗
/𝜇𝐿𝑖𝑗

) 0.50 Warm-up 1000 

Review period (R) 1 Number of replications 20 

Safety factor (z) 2  Performance Metrics 

Echelon position (i) i=1…4 BwSl 

InvSl 

SysInvAv 

Node position in echelon i (j) j=1 ∀i<4 

j=1…4 ∀i=4 

IS (𝛿𝑖𝑗) 𝛿𝑖𝑗=0 ∀i<4 

𝛿𝑖𝑗=0,1 ∀i=4 
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Upstream members of the SC (i.e., Wholesaler, Distributor and Factory) are not subject 

of analysis in this work. Hence we simplify the DoE by maintaining the operational 

configuration of these members fixed in all experiments (Table 2). 

The parameters of the general model –summarised in Table 2– are chosen as usual 

values used in SC dynamics literature (see, e.g., Chatfield 2013, Chatfield and Pritchard 

2013, Costantino et al. 2014, Dominguez et al. 2015a). The value of the safety factor 

(z=2) corresponds with a customer service level of 97.72% when using the normal 

approximation. 

In order to adapt the model presented in Section 2.1 to the divergent SC under study 

(Figure 1), we establish the boundaries of 𝛿𝑖𝑗 and subscripts i and j, as in Table 2.  

 

3.2 Simulation parameters 

Uncertainty is inherent to many of the SC’s processes (Heckmann et al. 2015). In order 

to account for randomness, multiple replications of the experiments were performed, 

and the simulation outputs were statistically analysed. According to Kelton et al. (2007), 

when the half-width of confidence interval is smaller than a user-specified value (e.g. 

within 10% of the mean, Yang et al. 2011), the number of replications is acceptable for 

statistical analysis. As suggested by these authors, simulations were first conducted with 

10 replications. Due to the use of systemic performance metrics (see Section 3.3), we 

obtained results with very low variances, and thus the half width was below 10% of the 

average in all cases. Even though, in order to increase precision of results, we have 

performed 20 replications of each experiment (see e.g. Nair and Vidal 2011, Yang et al. 

2011).  

Total simulation time (T) was set to 4,000 periods to ensure that a steady state of the 

system is reached. Also, the first 1,000 periods were removed from the results, as a 

warm-up time, to eliminate system’s initialization effects.  

 

3.3 Performance metrics 

In order to capture the dynamics of the SC, we adopt a structured non-financial 

performance measurement system, given by three common metrics, namely: Order 
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Variance Ratio, Inventory Variance Ratio and Inventory Average (see e.g. Cannella et 

al. 2013, Costantino et al. 2014, Wang and Disney 2016, among others). These metrics 

are computed at echelon’s level. Due to the high number of SCs that result from the 

DoE (see Section 3.4), we focus instead on the global performance of the SC, allowing 

for an easy comparison among the different SCs (Cannella et al. 2017). To do so, we 

use systemic metrics (i.e., SC-level metrics), which are computed from their 

corresponding echelon’s metrics, i.e., Bullwhip Slope, Inventory Slope, and Systemic 

Inventory Average, respectively. A reduction of this set of metrics reflects improved 

cost effectiveness of members’ operations. They provide a comprehensive and 

structured assessment of the internal process efficiency of the SC at systemic level and 

provide information on the potential benefits of partnerships, collaboration and 

information productivity of SC members (Cannella et al. 2013). A detailed description 

of each metric is provided below.  

3.3.1 Order Rate Variance Ratio - Bullwhip Slope 

At echelon’s level, Order Rate Variance Ratio (𝑂𝑅𝑉𝑟𝑅𝑖) accounts for order variance 

amplification upstream in the SC. In the long-term run it is computed as 𝑂𝑅𝑉𝑟𝑅𝑖 =

𝑠
𝑂𝑖

𝑇
2 /𝑠

𝐷𝐶
𝑇

2  (Chen et al. 2000, Chatfield et al. 2004, Dejonckheere et al. 2004). In order to 

apply this metric to a divergent SC, we use aggregate measures for each echelon 

(Dominguez et al. 2015b). Therefore, assuming that all customers’ demands are 

independent and that each node places orders independently, we can aggregate order 

variances at each echelon and thus 𝑂𝑅𝑉𝑟𝑅𝑖 for a divergent SC can be written as in 

Equation (9): 

𝑂𝑅𝑉𝑟𝑅𝑖 =
∑ 𝑠

𝑂𝑖𝑗
𝑇

2𝑁𝑖
𝑗=1

∑ 𝑠
𝐷𝐶𝑗

𝑇
2𝑁𝐶

𝑗=1

 (9) 

At system’s level we use the Bullwhip Slope (BwSl) (Cannella et al. 2013, Dominguez 

et al. 2015b). BwSl is computed as the slope of the linear interpolation of the set of 

𝑂𝑅𝑉𝑟𝑅𝑖 values for a given SC (Equation (10)), where 𝜋𝑖 is the position of the i-th 

echelon in Dejonckheere’s et al. curve. This metric measures the magnitude of the 

bullwhip propagation across the SC and allows for a concise and holistic comparison 

between different SCs. A high value of BwSl indicates a fast propagation of the 

bullwhip effect through the SC, whereas a low value indicates a smooth propagation. 
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BwSl provides information on potential unnecessary costs for suppliers, such as lost 

capacity or opportunity costs, and on all other unexpected costs generated by the 

bullwhip effect (Cannella et al. 2013, Trapero and Pedregal 2016). 

𝐵𝑤𝑆𝑙 = 𝑡𝑔𝜗𝑂𝑅𝑉𝑟𝑅 =
𝐸 ∑ 𝜋𝑖𝑂𝑅𝑉𝑟𝑅𝑖 −𝐸

𝑖=1 ∑ 𝜋𝑖
𝐸
𝑖=1 ∑ 𝑂𝑅𝑉𝑟𝑅𝑖

𝐸
𝑖=1

𝐸 ∑ 𝜋𝑖
2𝐸

𝑖=1 − (∑ 𝜋𝑖
𝐸
𝑖=1 )2

 (10) 

3.3.2 Inventory Variance Ratio - Inventory Slope 

At echelon’s level, the Inventory Variance Ratio (𝐼𝑛𝑣𝑉𝑟𝑅𝑖) (Disney and Towill 2003), 

assesses the stability degree of the inventory and it can be associated with the variation 

and the potential increment of the holding costs per unit (Cannella et al. 2015). It is 

computed as the ratio between the inventory variance at echelon i and the customer 

demand variance: 𝐼𝑛𝑣𝑉𝑟𝑅𝑖 = (𝑠
𝐼𝑖

𝑇
2 /𝐼𝑖̅

𝑇)/(𝑠
𝐷𝐶

𝑇
2 /𝐷̅𝐶

𝑇). Following the same procedure as 

with 𝑂𝑅𝑉𝑟𝑅𝑖, we derive 𝐼𝑛𝑣𝑉𝑟𝑅𝑖 for a divergent SC, resulting the expression shown in 

Equation (11). 

𝐼𝑛𝑣𝑉𝑟𝑅𝑖 =
∑ 𝑠

𝐼𝑖𝑗
𝑇

2𝑁𝑖
𝑗=1 / ∑ 𝐼𝑖̅𝑗

𝑇𝑁𝑖
𝑗=1

∑ 𝑠
𝐷𝐶𝑗

𝑇
2𝑁𝐶

𝑗=1 / ∑ 𝐷̅𝐶𝑗

𝑇𝑁𝐶

𝑗=1

 (11) 

At system’s level we use the Inventory Slope (InvSl) (Cannella et al. 2013). This metric 

is similar to BwSl (Equation (12)), but accounts for inventory instability propagation 

across the SC. An increased InvSl results in higher holding and backlog costs, inflating 

the average inventory costs per period (Disney and Lambrecht 2008), increasing holding 

unit costs, missing production schedules, job sequencing and resource re-allocation 

(Cannella et al. 2013, Duong et al. 2015). 

𝐼𝑛𝑣𝑆𝑙 = 𝑡𝑔𝜗𝐼𝑛𝑣𝑉𝑟𝑅 =
𝐸 ∑ 𝜋𝑖𝐼𝑛𝑣𝑉𝑟𝑅𝑖 −𝐸

𝑖=1 ∑ 𝜋𝑖
𝐸
𝑖=1 ∑ 𝐼𝑛𝑣𝑉𝑟𝑅𝑖

𝐸
𝑖=1

𝐸 ∑ 𝜋𝑖
2𝐸

𝑖=1 − (∑ 𝜋𝑖
𝐸
𝑖=1 )2

 (12) 

3.3.3 Inventory Average - Systemic Inventory Average 

At echelon’s level, Inventory Average (𝐼𝑛𝑣𝐴𝑣𝑖) can be associated to the average 

holding cost over the observation time (Cannella et al. 2013), and it is commonly used 

in production-distribution systems analysis to assess concise information on inventory 

investment (Cannella and Ciancimino 2010, Ganesh et al. 2014a). It can be viewed as a 

metric complementary to 𝐼𝑛𝑣𝑉𝑟𝑅𝑖. For a divergent SC this metric can be expressed as 

follows: 
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𝐼𝑛𝑣𝐴𝑣𝑖 =
∑ ∑ 𝐼𝑖𝑗

𝑡𝑇
𝑡=1

𝑁𝑖
𝑗=1

𝑇
 (13) 

At system’s level we use the Systemic Inventory Average (SysInvAv) (Cannella et al. 

2013). This metric accounts for the average inventory of the whole SC. As it is common 

to model holding costs as linearly dependent from stock levels (Sharma 2010, Cachon 

and Olivares 2010), this metric quantifies the average holding costs across the 

observation time (Cannella et al. 2013). Since all SCs under analysis have the same 

number of nodes, we can use the following expression:  

𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣 =
∑ ∑ ∑ 𝐼𝑖𝑗

𝑡𝑇
𝑡=1

𝑁𝑖
𝑗=1

𝐸
𝑖=1

𝑇
 (14) 

 

3.4 Experiments 

We perform two sets of experiments. In the first one we assume homogeneous retailers, 

and intends to assess the contribution of each retailer involved in IS on improving SC 

performance when all of them have identical operational configurations. In order to 

increase the generality of results, we consider a wide range of possible operational 

configurations for the retailers by analysing the full factorial set of the OFs. Since each 

OF has two levels, we analyse 24 different retailers’ operational configurations. Then, 

each retailers’ operational configuration is evaluated under five IS structures: (1) no IS 

(NIS), (2) 1 retailer shares information (1retIS), (3) 2 retailers share information 

(2retIS), (4) 3 retailers share information (3retIS), and (5) 4 retailers share information 

(FIS). Therefore, we analyse a total of 5x24=80 SCs in this set of experiments.  

The second set of experiments is performed under the hypothesis of heterogeneous 

retailers, and intends to assess the contribution of each retailer involved in IS on 

improving SC performance when they have different operational configurations, and 

how retailers’ OFs may influence to their contribution. To this aim, for each of the four 

OFs, we model a set of SCs where there are two groups of two retailers. The two 

retailers in each group have the same OF value (OF=OF* from now on), but the OF is 

different among the two groups. More specifically, the first pair of retailers have the 

OFL value and the second pair have the OFH value (e.g. if OF*=𝜎𝐷𝐶𝑗

2 , then the first pair 

of retailers will have 𝜎𝐷𝐶𝑗

2 =100 and the second pair of retailers will have 𝜎𝐷𝐶𝑗

2 =400). The 

other three OFs remain the same for all the retailers. To increase the generality of the 
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results, for a given OF=OF* we analyse the full factorial set of the other three OFs 

(OF≠OF*). Therefore, we have a total of 4 (OF=OF*) x 23 (OF≠OF*) = 32 retailers’ 

operational configurations. Finally, each retailers’ operational configuration is evaluated 

under four IS structures: (1) NIS, (2) first pair of retailers share information (referred as 

OFLIS), (3) second pair of retailers share information (referred as OFHIS), and (4) FIS. 

We analyse a total of 4x32=128 SCs in this set of experiments. A summary of the DoE 

is presented in Table 3. 

 

Table 3. Summary of experiments (DoE). 

 Full factorial set of the OFs Retailers’ 

operation

al 

configurat

ions 

IS 

structures 

Analysed 

SCs 

Performance 

Metrics 

H
o

m
o

g
en

eo
u

s 

R
et

ai
le

rs
 

𝜎𝐷𝐶𝑗

2 (OFL, OFH) 

𝜏𝑖𝑗  (OFL, OFH) 

𝜇𝐿𝑖𝑗
(OFL, OFH) 

IPij(OFL, OFH) 

24=16 

NIS 

1retIS 

2retIS 

3retIS 

FIS 

5x24=80 

BwSl 

InvSl 

SysInvAv 

 (OF=OF*) 

(2retailers - OFL, 

2retailers - OFH) 

Full factorial set of 

OF≠OF* 

(same for all retailers) 

 

 

 

 

H
et

er
o

g
en

eo
u

s 
R

et
ai

le
rs

 

𝜎𝐷𝐶𝑗

2  

[𝜏𝑖𝑗(OFL, OFH), 

𝜇𝐿𝑖𝑗
(OFL, OFH), 

IPij(OFL, OFH)]= 

=23=8 

4x23=32 

NIS 

4x32=128 

BwSl 

 

InvSl 

 

SysInvAv 

𝜏𝑖𝑗  

[𝜎𝐷𝐶𝑗

2 (OFL, OFH), 

𝜇𝐿𝑖𝑗
(OFL, OFH), 

IPij(OFL, OFH)]= 

=23=8 

2retIS 

(OFLIS) 

𝜇𝐿𝑖𝑗
 

 

[𝜎𝐷𝐶𝑗

2 (OFL, OFH), 

𝜏𝑖𝑗(OFL, OFH), 

IPij(OFL, OFH)]= 

=23=8 

2retIS 

(OFHIS) 

IPij 

 

[𝜎𝐷𝐶𝑗

2 (OFL, OFH), 

𝜏𝑖𝑗(OFL, OFH), 

𝜇𝐿𝑖𝑗
(OFL, OFH)]= 

=23=8 

FIS 

 

The simulations were performed on an Intel Core 2 Duo P8600 2.40GHz computer with 

2GB RAM. The effective simulation time was 14 hours and 49 minutes for the set of 

homogeneous retailers (1,600 simulation runs), and 26 hours and 4 minutes for the set 

of heterogeneous retailers (2,560 simulation runs). 
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4 ANALYSIS OF RESULTS 

This section presents the results obtained by the simulations performed with SCOPE 

according to the DoE presented in Section 3. We also derive meaningful findings on the 

implementation of IS on a SC with several retailers. 

 

4.1 Homogeneous retailers 

Herein we present the results obtained for the set of experiments under the hypothesis of 

homogeneous retailers. Table 4 shows a legend, labelling the 16 retailers’ operational 

configurations from #1 to #16. For each retailers’ operational configuration, the SC is 

analysed under five IS structures (Table 3). The metrics obtained from all scenarios are 

averaged over the 20 replications, and results are plotted in Figure 3. For clarity, results 

obtained for each performance metric are divided in 4 plots. Also, they are displayed 

from the highest value of the metric to the lowest value of the metric. 

 

Table 4. Retailers’ operational configurations. 

H= OFH 

L= OFL 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 

𝜇𝐿𝑖𝑗
 H H H H H H H H L L L L L L L L 

IPij H H H H L L L L H H H H L L L L 

𝜏𝑖𝑗  H H L L H H L L H H L L H H L L 

𝜎𝐷𝐶𝑗

2  H L H L H L H L H L H L H L H L 

 

Due to the use of system’s metrics, the results obtained over the 20 replications are very 

close to the average with very low variances. To ensure the significance of results 

obtained we performed an ANOVA for each metric and each retailers’ operational 

configuration. All tests were significant at the 95% confidence level.  
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Figure 3. SC performance under the hypothesis of homogeneous retailers. 
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Results show a quasi-linear performance improvement in BwSl from NIS to FIS, with all 

curves yielding a coefficient of determination (R2) over 0.99. In fact, since retailers are 

identical and transmit demand information, it is expected that the impact of IS on 

reducing demand variability would be linear with the number of retailers. However, 

curves related to the inventory metrics (InvSl and SysInvAv) are not strictly linear, with 

67% of all curves yielding a coefficient of determination over 99%, and the rest of the 

curves showing small deviations from linearity, with 0.90< R2<0.99. This result 

suggests that the impact of transmitting demand information on inventory performance 

improvement is linear with the number of retailers in most cases, but it may present 

some non-linearity. 

Performance curves show different slopes depending on retailers’ operational 

configurations. Thus, benefits of incorporating a retailer to IS may depend on current 

retailers’ operational configuration. In order to appreciate this phenomenon, we 

compute the percentage of performance improvement for each metric from NIS to 2retIS 

and from NIS to FIS for each of the 16 retailers’ operational configurations and plot the 

results in Figure 4. A generic formulation of this measure is shown in Equation (15), 

where ‘metric’ can be either BwSl, InvSl or SysInvAv, and A,B represent any of the IS 

structures.  

∆𝑚𝑒𝑡𝑟𝑖𝑐𝐴→𝐵(%) =
(𝑚𝑒𝑡𝑟𝑖𝑐𝐴 − 𝑚𝑒𝑡𝑟𝑖𝑐𝐵)

𝑚𝑒𝑡𝑟𝑖𝑐𝐴
∗ 100 

(15) 

From Figure 4 it can be seen that the benefits obtained in terms of BwSl reduction are 

less dependent on retailers’ operational configuration than those related to InvSl and 

SysInvAv. In fact, performance improvement in terms of BwSl is very similar for all 

scenarios. This result indicates that the expected bullwhip reduction from adding 

retailers to IS weakly depends on retailers’ operation. Nevertheless, the performance 

improvement related to InvSl and SysInvAv show a stronger dependence on retailers’ 

operational configuration. Additionally, BwSl reduction is higher than InvSl and 

SysInvAv reductions: there is an average BwSl reduction of around 20%-25% for 2retIS 

and around 40%-50% for FIS, while average InvSl and SysInvAv reductions are around 

5%-16% for 2retIS and 10%-32% for FIS. 

We can summarize the above findings as follows: 
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(1) The improvement in BwSl in a SC with homogenous retailers obtained by 

information sharing is linear with the number of retailers sharing information. 

Nevertheless some (weak) non-linearity appears for InvSl and SysInvAv metrics. 

(2) The improvement in BwSl in a SC with homogeneous retailers obtained by 

information sharing: 

a. It is higher than for InvSl and SysInvAv metrics. 

b. It is less dependent on retailers’ operational configuration than for InvSl 

and SysInvAv metrics. 

 

 

  

Figure 4. SC performance improvement for all the retailers’ operational configurations. 
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4.2 Heterogeneous retailers 

Herein we present the results obtained under the hypothesis of heterogeneous retailers. 

Due to the large amount of data obtained, we just present a sample case in Figure 5. 

More specifically, for each OF=OF*, we select one of the 8 retailers’ operational 

configurations (see DoE, Table 3) and present the results for the three metrics. For each 

metric, results obtained for NIS, OFLIS, OFHIS and FIS are averaged over the 20 

replications. Since there are two intermediate possibilities to go from NIS to FIS (either 

through OFLIS or OFHIS), both curves are plotted in Figure 5.  

As seen in Figure 5, the performance improvement obtained from the addition of new 

retailers to IS is not linear for all four OFs under consideration and for all metrics. In 

fact, the slopes of the curves depend on which retailers are sharing information (either 

in the OFLIS or in the OFHIS structure). As a consequence, for any given OF=OF* it 

can be observed a performance gap between the OFLIS and the OFHIS structures, so it 

can be concluded that the performance improvement structure depends on retailers’ 

operational configuration.  

In order to assess how OFs impact the observed performance gaps between OFLIS and 

OFHIS, we consider the results obtained from the full set of experiments (allowing for 

the 8 different retailers’ operational configurations for each OF=OF*). Numerical 

results are shown in Table 5 (results are averaged across the 20 simulations). The first 

row shows a range of performance improvement values in percentage that can be 

achieved under a FIS structure for each metric (∆𝑚𝑒𝑡𝑟𝑖𝑐𝑁𝐼𝑆→𝐹𝐼𝑆(%)). It can be noticed 

that these values are similar to those obtained assuming homogeneous retailers. Then, 

for each metric, a given column of Table 5 shows the results obtained for the 8 retailers’ 

operational configurations (labelled from #1 to #8) when the OF indicated in the second 

row is the OF*. For each retailer operational configuration, the absolute values for 

OFLIS and OFHIS are provided (values for NIS and FIS are omitted to make the results 

clearer). 

We use ANOVA to statistically assess the significance of the performance gaps 

observed between OFLIS and OFHIS (see Table 5, where scenarios with non-significant 

performance gap with a 95% confidence level are shaded in grey). These results indicate 

that, when retailers with different operational configurations are involved in IS, 
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performance gaps have a high probability to occur for any of the three proposed metrics, 

i.e., BwSl (96.88%), InvSl (87.50%) and SysInvAv (90.63%).  

 

OF* BwSl InvSl SysInvAv 

𝜎𝐷𝐶𝑗

2  

   

𝜏𝑖𝑗  

   

𝜇𝐿𝑖𝑗
 

 

  
 

IPij 

 

   
Figure 5. A sample of SC performance under the hypothesis of heterogeneous retailers. 
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Table 5. Numeric results for heterogeneous retailers. 

  BwSl InvSl SysInvAv 

 ∆𝑚𝑒𝑡𝑟𝑖𝑐(%)
𝑁𝐼𝑆 → 𝐹𝐼𝑆

 [41,41 - 51,56] [10,22 - 28,21] [14,57 - 32,94] 

 
OF* 

𝜎𝐷𝐶𝑗

2  IPij 𝜇𝐿𝑖𝑗
 𝜏𝑖𝑗  𝜎𝐷𝐶𝑗

2  IPij 𝜇𝐿𝑖𝑗
 𝜏𝑖𝑗  𝜎𝐷𝐶𝑗

2  IPij 𝜇𝐿𝑖𝑗
 𝜏𝑖𝑗  

#1 
OFLIS 11,58 8,42 8,13 5,47 18,97 12,55 12,96 10,43 1041,66 1096,65 1076,97 886,39 

OFHIS 8,05 7,15 6,55 7,86 15,98 11,52 11,79 12,76 859,59 975,78 968,94 1077,23 

 Δmetric(%) 30,47 14,99 19,44 -30,41 15,79 8,17 9,04 -18,21 17,48 11,02 10,03 -17,72 

#2 
OFLIS 4,57 11,76 10,56 7,31 13,05 28,92 30,25 25,90 590,99 572,37 539,94 467,03 

OFHIS 3,16 12,57 9,49 9,58 11,15 29,38 28,20 28,93 508,01 546,17 500,10 538,07 

 Δmetric(%) 30,87 -6,90 10,13 -23,76 14,58 -1,57 6,77 -10,46 14,04 4,58 7,38 -13,20 

#3 
OFLIS 9,10 3,47 3,40 3,99 13,67 8,05 8,63 7,59 746,25 631,45 631,36 623,34 

OFHIS 6,29 3,12 2,88 5,77 11,28 7,94 8,20 9,62 614,27 584,93 581,28 755,90 

 Δmetric(%) 30,83 10,09 15,13 -30,90 17,54 1,39 4,98 -21,12 17,69 7,37 7,93 -17,54 

#4 
OFLIS 3,83 4,91 4,13 7,56 9,26 20,62 21,01 19,41 422,46 331,14 318,69 364,31 

OFHIS 2,92 5,66 3,99 9,49 8,21 22,00 20,73 22,00 372,88 341,74 314,07 411,64 

 Δmetric(%) 23,62 -15,27 3,30 -20,35 11,34 -6,71 1,34 -11,75 11,74 -3,20 1,45 -11,50 

#5 
OFLIS 6,94 5,16 6,19 3,65 14,76 9,30 9,58 8,56 673,85 746,76 798,43 620,83 

OFHIS 4,90 4,93 5,17 4,77 12,58 8,94 8,37 9,83 563,69 698,95 718,39 707,02 

 Δmetric(%) 29,38 4,30 16,40 -23,52 14,76 3,80 12,66 -12,93 16,35 6,40 10,02 -12,19 

#6 
OFLIS 3,22 7,35 10,21 4,88 10,68 22,65 21,74 22,44 408,36 378,25 439,19 307,69 

OFHIS 2,23 8,65 9,47 5,74 9,74 23,86 20,73 23,16 355,44 380,50 400,15 332,79 

 Δmetric(%) 30,81 -17,81 7,22 -14,87 8,78 -5,34 4,61 -3,08 12,96 -0,60 8,89 -7,54 

#7 
OFLIS 6,10 2,49 2,71 2,93 10,94 6,84 6,52 6,56 550,24 469,59 471,73 496,21 

OFHIS 4,49 2,36 2,46 3,87 9,23 6,84 6,20 7,66 466,26 447,75 448,80 565,68 

 Δmetric(%) 26,35 5,05 9,10 -24,20 15,62 -0,09 4,88 -14,30 15,26 4,65 4,86 -12,28 

#8 
OFLIS 3,09 3,91 5,36 6,08 8,61 18,59 17,55 17,30 355,60 256,54 288,57 307,81 

OFHIS 2,49 4,62 5,28 7,04 8,13 19,79 17,52 19,14 324,54 261,37 282,80 327,88 

 Δmetric(%) 19,50 -18,32 1,46 -13,65 5,62 -6,47 0,17 -9,59 8,73 -1,88 2,00 -6,12 

 

We can summarize the above findings as follows: 

(3) For heterogeneous retailers the performance improvement obtained by 

information sharing  

a. Depends on retailers’ operational configuration, and; 

b. It is not linear with the number of retailers involved. 

(4) For heterogeneous retailers the majority of the analysed scenarios show 

significant performance gaps between partial information sharing structures 

with identical number of retailers.  

The existence of performance gaps among different partial IS structures creates the 

opportunity to achieve higher SC performance improvement with some specific 
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structures (see Section 5 for a detailed discussion). Hence, we focus our analysis on the 

performance gaps. To do so, we measure the percentage of performance variation 

between OFLIS and OFHIS using OFLIS as reference, i.e., ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆→𝑂𝐹𝐻𝐼𝑆(%). 

Results are shown in Table 5 under the label Δmetric(%).  

For a given OF=OF*, the sign of Δmetric(%) indicates which IS structure (either OFLIS 

or OFHIS structure) provides the best performance. For OF*=𝜎𝐷𝐶𝑗

2  and OF*=𝜇𝐿𝑖𝑗
 the 

sign of Δmetric(%) is always positive, thus indicating that the OFHIS structure (i.e. 

involving retailers with higher value of 𝜎𝐷𝐶𝑗

2  or 𝜇𝐿𝑖𝑗
) is more favourable. On the 

contrary, for OF*= 𝜏𝑖𝑗 the sign of Δmetric(%) is always negative, indicating that the 

OFLIS structure (i.e., involving retailers with lower value of 𝜏𝑖𝑗) is more favourable. 

Finally, for OF*=IPij there is not a dominant sign of Δmetric(%), since it can be positive 

or negative depending on retailers’ operational configuration. Therefore, it is not clear 

which level of IPij is more favourable. 

In order to assess how each OF=OF* may impact on Δmetric(%), we also compute 

related statistical data (i.e., average, standard deviation, and coefficient of variation 

(c.v.)) for each metric over the 8 retailers’ operational configurations (see Table 6). The 

absolute average of Δmetric(%) measures the overall performance gap found between 

OFLIS and OFHIS for a given OF=OF*, indicating the relevance of such factor on 

producing a significant gap. The relative variability (c.v.) of Δmetric(%) measures how 

reliable is the obtained average (or how the obtained performance gaps depends on 

retailers’ operational configuration). Using these statistics we can infer on which OFs 

are more decisive to create performance gaps.  

From the results, it can be seen that OF*=𝜎𝐷𝐶𝑗

2  and OF*=𝜏𝑖𝑗 provide the highest 

(absolute) average Δmetric(%) for all the three metrics with a low dependence of 

retailers’ operational configuration. The next factor in importance is OF*=𝜇𝐿𝑖𝑗
, with 

lower average and higher dependence of retailers’ operational configuration. Finally, 

OF*= IPij obtains an average close to zero and very high c.v., thus indicating that 

performance gaps are highly dependent on retailers’ operational configuration, and the 

value of Δmetric(%) alternates between positive and negative. Also, it can be noticed 

that Δmetric(%) obtained for BwSl are more important than those obtained for InvSl or 

SysInvAv. 
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Table 6. Some statistics for the scenario with heterogeneous retailers. 

Δmetric(%) Statistics OF*=𝜎𝐷𝐶𝑗

2  OF*=IPij OF*=𝜇𝐿𝑖𝑗
 OF*=𝜏𝑖𝑗  

∆𝐵𝑤𝑆𝑙𝑂𝐹𝐿𝐼𝑆→𝑂𝐹𝐻𝐼𝑆(%) 

Average 27,73 -2,98 10,27 -22,71 

Standard Dev. 4,24 13,27 6,35 6,32 

c.v. 0,15 4,45 0,62 0,28 

∆𝐼𝑛𝑣𝑆𝑙𝑂𝐹𝐿𝐼𝑆→𝑂𝐹𝐻𝐼𝑆(%) 

Average 13,00 -0,85 5,56 -12,68 

Standard Dev. 4,07 5,28 4,01 5,50 

c.v. 0,31 6,19 0,72 0,43 

∆𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣𝑂𝐹𝐿𝐼𝑆→𝑂𝐹𝐻𝐼𝑆(%) 

Average 14,28 3,54 6,57 -12,26 

Standard Dev. 3,07 4,97 3,42 4,12 

c.v. 0,22 1,40 0,52 0,34 

∆𝐵𝑤𝑆𝑙𝑂𝐹𝐿𝐼𝑆 𝐹𝐼𝑆⁄ (%) 
Average 

24,88 54,06 43,37 71,71 

∆𝐵𝑤𝑆𝑙𝑂𝐹𝐻𝐼𝑆 𝐹𝐼𝑆⁄ (%) 74,24 49,64 61,14 31,94 

∆𝐼𝑛𝑣𝑆𝑙𝑂𝐹𝐿𝐼𝑆/𝐹𝐼𝑆(%) 
Average 

21,94 54,48 38,74 77,60 

∆𝐼𝑛𝑣𝑆𝑙𝑂𝐹𝐻𝐼𝑆/𝐹𝐼𝑆(%) 85,62 44,13 63,33 26,03 

∆𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣𝑂𝐹𝐿𝐼𝑆/𝐹𝐼𝑆(%) 
Average 

20,33 41,21 36,74 70,71 

∆𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣𝑂𝐹𝐻𝐼𝑆/𝐹𝐼𝑆(%) 73,79 51,51 60,65 26,36 

 

We can summarize these findings as follow: 

(5) For heterogeneous retailers the observed performance gaps between partial 

information sharing structures with identical number of retailers depends on the 

retailers’ operational configuration. 

(6) A rank of the operational factors of the retailers according to the significance 

and reliability of their impact on the observed performance gaps is as follows: 

(I) (higher) demand variance; (II) (lower) forecasting period; and (III) (higher) 

lead time average. It is not clear how the different configurations of the OUT 

policy contribute to the observed performance gaps. 

(7) For heterogeneous retailers the performance improvement obtained by 

information sharing measured in terms of BwSl is higher and less dependent on 

retailers’ operational configuration than those obtained for InvSl and SysInvAv. 

An interesting perspective can be given by observing the percentage of performance 

improvement obtained by a certain partial IS structure (either OFLIS or OFHIS) related 

to the performance improvement obtained by a FIS structure (Equations (16) and (17)).  

∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆/𝐹𝐼𝑆(%) =
(𝑚𝑒𝑡𝑟𝑖𝑐𝑁𝐼𝑆 − 𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆)

(𝑚𝑒𝑡𝑟𝑖𝑐𝑁𝐼𝑆 − 𝑚𝑒𝑡𝑟𝑖𝑐𝐹𝐼𝑆)
∗ 100 

(16) 

∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐻𝐼𝑆/𝐹𝐼𝑆(%) =
(𝑚𝑒𝑡𝑟𝑖𝑐𝑁𝐼𝑆 − 𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐻𝐼𝑆)

(𝑚𝑒𝑡𝑟𝑖𝑐𝑁𝐼𝑆 − 𝑚𝑒𝑡𝑟𝑖𝑐𝐹𝐼𝑆)
∗ 100 

(17) 
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Values are shown in Table 6. We found significant differences between both IS 

structures for some OFs. This means that a substantial part of the benefits obtained by a 

FIS structure can be achieved by choosing one of the partial IS structures. Particularly it 

can be seen involving 50% of the total number of retailers into IS yields around 70% of 

the average performance improvement of a FIS for OF*=𝜎𝐷𝐶𝑗

2  and OF*=𝜏𝑖𝑗, and around 

60% of a FIS for OF*=𝜇𝐿𝑖𝑗
, for all retailers’ configurations and all the three metrics. On 

the contrary, choosing the alternative partial IS structure may lead to obtain a poor 

performance increase, as it can be seen in Table 6. Average values obtained for OF*= 

IPij   are close to 50% for the reasons discussed above. Also, it can be noticed that these 

values are slightly higher for InvSl than for BwSl and SysInvAv. 

We formalize this last finding as follows: 

(8) A partial information sharing structure implemented according to the 

recommendations of finding (6) is able to achieve a significant part of the 

benefits provided by full information sharing. On the contrary, alternative 

partial information sharing structures may lead to a poor performance increase 

when compared to a full information sharing structure. 

The above findings can be better appreciated using plots. As an example, the results 

obtained for BwSl are shown in Figure 6. The performance increase for partial IS 

structures (∆𝐵𝑤𝑆𝑙𝑁𝐼𝑆→𝑂𝐹𝐿𝐼𝑆(%) and ∆𝐵𝑤𝑆𝑙𝑁𝐼𝑆→𝑂𝐹𝐻𝐼𝑆(%)) and FIS 

(∆𝐵𝑤𝑆𝑙𝑁𝐼𝑆→𝐹𝐼𝑆(%)) is shown in different plots for each OF=OF* and for the 8 retailers’ 

operational configurations. Also, as reference, the 50% FIS line is also represented.  

The area encircled between curves of partial IS structures is representative of the 

performance gaps obtained over the considered retailers’ operational configurations: the 

higher the area between the curves, the higher the average performance gap obtained; 

the higher the parallelism between curves, the less dependence from retailers’ 

operational configuration. It can be seen that, in fact, the best results are found for 

OF*=𝜎𝐷𝐶𝑗

2  and OF*=𝜏𝑖𝑗, with significant performance gaps and low dependence of 

retailers’ operational configuration. Furthermore, it can be seen how a partial IS 

structure is able to achieve a performance improvement that is clearly over the 50% of 

FIS. For OF*=𝜇𝐿𝑖𝑗
, the performance gaps are lower and the results show a higher 

dependence of retailers’ operational configuration, but still is possible to achieve a good 
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performance improvement by partial IS. In the case of OF*= IPij it can be seen that the 

results are highly dependent on retailers’ operational configuration and it is not clear 

which retailers are more favourable.  

 

OF*=𝜎𝐷𝐶𝑗

2  OF*= IPij 

  
OF*=𝜇𝐿𝑖𝑗

 OF*=𝜏𝑖𝑗 

  

 

Figure 6. SC performance increase (BwSl) under partial IS and FIS for heterogeneous retailers. 

 

4.2.1 Sensitivity analysis on retailers’ demand variance and forecasting period 

In order to enhance the simulation models and to extend the applicability of the results 

obtained, we perform a sensitivity analysis (Kleijnen 2008) with respect to the more 

relevant OFs (i.e., OF*=𝜎𝐷𝐶𝑗

2  and OF*=𝜏𝑖𝑗). Since the values assumed by the OFs in 
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Table 2 are different in order to ensure a heterogeneous scenario, in this further analysis 

we aim to address the following question: how much the results will change if the 

differences between retailers’ OFs are reduced? To do so, we analyse (1) two new 

variants for demand variance, with the OFH value reduced to 𝜎̇𝐷𝐶𝑗
=17.5 (𝜎̇𝐷𝐶𝑗

2 =306.25) 

in the first variant and to 𝜎̈𝐷𝐶𝑗
=15 (𝜎̈𝐷𝐶𝑗

2 =225) in the second variant; and (2) two new 

variants for the forecasting period, with the OFL value increased to 𝜏̇𝑖𝑗=7 in the first 

variant and to 𝜏̈𝑖𝑗=9 in the second variant. For each new variant we analyse the full 

factorial combination of the OF≠OF*, which maintains the original values, as in Table 

7. Therefore we analyse a total of 4 (variants) x 8 (full factorial OF≠OF*) x 4 (IS 

structures) = 128 SCs (2560 simulation runs). 

Following the same procedure carried out in Section 4.2, we compute Equations (16) 

and (17) and show the average values for each metric in Table 8. As it could be 

expected, the advantages or disadvantages obtained from OFLIS or OFHIS structures 

(i.e., differences between ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆 𝐹𝐼𝑆⁄ (%) and ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐻𝐼𝑆 𝐹𝐼𝑆⁄ (%)) are lower 

as the differences between OFs decrease.   

 

Table 7. DoE for the sensitivity analysis on 𝜎𝐷𝐶𝑗

2  and 𝜏𝑖𝑗. 

OFs 

𝜎𝐷𝐶𝑗

2  sensitivity 𝜏𝑖𝑗 sensitivity 

1st variant 2nd variant 1st variant 2nd variant 

𝑂𝐹𝐿̇  𝑂𝐹𝐻̇  𝑂𝐹𝐿̈  𝑂𝐹𝐻̈  𝑂𝐹𝐿̇  𝑂𝐹𝐻̇  𝑂𝐹𝐿̈  𝑂𝐹𝐻̈  

𝜎𝐷𝐶𝑗

2  100 306.25 100 225 100 400 100 400 

𝜏𝑖𝑗 5 15 5 15 7 15 9 15 

𝜇𝐿𝑖𝑗
 2 4 2 4 2 4 2 4 

𝐼𝑃𝑖𝑗  S1 S2 S1 S2 S1 S2 S1 S2 

 

For OF*=𝜎𝐷𝐶𝑗

2 , differences between ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆 𝐹𝐼𝑆⁄ (%) and ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐻𝐼𝑆 𝐹𝐼𝑆⁄ (%) 

smoothly decrease as the OFH value decreases. In the first variant, where the c.v. of the 

demand faced by OFH retailers changes from 0.4 to 0.35 and the c.v. of demand faced 

by OFL retailers remains the same (i.e., c.v.=0.2), the benefits obtained from OFHIS 

still represent over 70% of the benefits of a FIS for the three metrics. In the second 
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variant, where the c.v. of the demand faced by OFH retailers is reduced to 0.30, benefits 

obtained from OFHIS are still significantly higher than benefits obtained from OFLIS. 

For OF*=𝜏𝑖𝑗, the difference between ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐿𝐼𝑆 𝐹𝐼𝑆⁄ (%) and ∆𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐹𝐻𝐼𝑆 𝐹𝐼𝑆⁄ (%) 

decreases as the OFL value increases. It is known that a high value of 𝜏𝑖𝑗 produces a 

more stable forecast, while a low value of 𝜏𝑖𝑗 produces a more nervous forecast. 

Therefore, as 𝜏𝑖𝑗 increases for the OFL retailers, forecast patterns of both pairs of 

retailers become more aligned, and the advantages obtained by choosing the OFLIS 

structure are consequently reduced. 

 

Table 8. Results of the sensitivity analysis. 

 OF*=𝜎𝐷𝐶𝑗

2  OF*=𝜎̇𝐷𝐶𝑗

2  OF*=𝜎̈𝐷𝐶𝑗

2  OF*=𝜏𝑖𝑗 OF*=𝜏̇𝑖𝑗 OF*=𝜏̈𝑖𝑗 

∆𝐵𝑤𝑆𝑙𝑂𝐹𝐿𝐼𝑆 𝐹𝐼𝑆⁄ (%) 24,88 31,02 37,88 71,71 65,47 58,26 

∆𝐵𝑤𝑆𝑙𝑂𝐹𝐻𝐼𝑆 𝐹𝐼𝑆⁄ (%) 74,24 71,18 65,40 31,94 38,80 49,75 

∆𝐼𝑛𝑣𝑆𝑙𝑂𝐹𝐿𝐼𝑆/𝐹𝐼𝑆(%) 21,94 24,92 29,75 77,60 74,91 66,81 

∆𝐼𝑛𝑣𝑆𝑙𝑂𝐹𝐻𝐼𝑆/𝐹𝐼𝑆(%) 85,62 71,46 56,20 26,03 30,53 46,56 

∆𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣𝑂𝐹𝐿𝐼𝑆/𝐹𝐼𝑆(%) 20,33 27,91 35,35 70,71 63,79 55,06 

∆𝑆𝑦𝑠𝐼𝑛𝑣𝐴𝑣𝑂𝐹𝐻𝐼𝑆/𝐹𝐼𝑆(%) 73,79 72,33 65,31 26,36 35,45 45,85 

 

5 DISCUSSION AND MANAGERIAL INSIGHTS 

In this section we discuss the managerial implications derived from our work. We focus 

on how SC mangers may successfully implement IS at retailers’ stage, since it reports 

higher benefits to the SC (Lau et al. 2004, Ganesh et al. 2014a, Costantino et al. 2014). 

In this way we provide practical insights for the estimation of the potential value of each 

retailer (i.e., estimating the potential contribution of each retailer if they join IS to 

improve SC performance).  

There are two possible approaches when implementing IS: a FIS approach, or a partial 

IS approach. The former always results in a higher improvement of SC performance 

than the latter, as we have seen in Section 4. However, implementing IS in a SC costs 

time (negotiations and physical installation of IT) and cash (IT is expensive), and 

retailers may ask for a large discount to share their information (Huang and Iravani 

2005). Therefore, in terms of the net benefits our work highlights the need to consider 
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retailers’ operational characteristics in order to decide on which type of IS could be 

adopted.  

If retailers are similar in terms of variance of customer demand, inventory policy, 

forecasting period and lead time average, the potential value of all of them is also 

similar when they are involved in IS. Therefore, a FIS approach should be pursued, 

since benefits increase with the number of retailers involved. Additionally, since all 

retailers have similar potential value, managers may start negotiations with those that 

are more prone to collaborate. 

In case that a retailer, or group of retailers, significantly differs from the others in one or 

more of the aforementioned OFs, the benefits achieved by partial IS may significantly 

depend on the participant retailer/s. As shown in Section 4, a partial IS structure is able 

to achieve a significant part of the total benefits obtained by FIS if retailers are 

significantly different (e.g., we found that involving half of the total number of retailers 

into IS may lead to obtain over 70% of the total benefits of a FIS under the boundary 

conditions). Assuming a linear increase of costs with the number of retailers involved in 

IS, a cost-benefit analysis may reveal that a partial IS approach is more beneficial for 

the SC than a FIS approach, thus saving costs related to the involvement of additional 

retailers. On the other hand, an erroneous choice of the partial IS structure may result in 

a very low performance increase, undermining all efforts and investments. 

Consequently, a prior evaluation of the potential value of retailers may help managers to 

efficiently select a partial IS structure, constituted by the most beneficial retailers. To do 

so, retailers should be evaluated in this order of importance: (1) (higher) demand 

variance; (2) (lower) forecasting period; (3) (higher) average lead times. Naturally, 

these results are less significant as the differences between retailers’ OFs decrease. 

Once the partial IS structure to be adopted has been decided, managers may start 

implementing IS according to retailers’ potential value. By doing so, the benefits 

obtained by each new retailer involved in IS are maximal and thus an efficient 

implementation of IS can be achieved.  

Even though it has been shown that considering retailers’ operation during the 

implementation of partial IS may provide important benefits for the SC, obtaining such 

information may present some difficulties. Only the lead time average of each retailer 

could be accessed (through the wholesaler). However, results obtained in this paper 
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show that retailers’ demand variance and retailers’ forecasting period are the most 

significant OFs. Since these factors are retailers’ private information, a pre-

collaboration strategy to share these data needs to be developed with retailers prior to 

the implementation of partial IS. In this case, SC managers should start by developing 

channels of trust and/or revenue contracts.  

To sum up, we suggest managers to implement partial IS at heterogeneous retailers 

using the following steps: 

1. Analyse retailers’ operational characteristics. 

2. If they are significantly different in one or more OFs, estimate the potential 

value of each retailers’ collaboration in IS and rank them accordingly. 

3. Estimate costs of involving retailers into IS and perform a cost/benefit analysis. 

4. Decide the best IS structure using results from 3) and proceed involving 

retailers according to 2). 

 

6 CONCLUSIONS AND FUTURE RESEARCH  

This work presents an exploratory study on partial information sharing at retailers level, 

i.e., some retailers may not participate in information sharing. We analyse the potential 

contribution of the participation of each individual retailer in information sharing under 

two different hypothesis: (1) retailers are homogeneous (i.e., they have identical 

operational configuration), and (2) retailers are heterogeneous (i.e., they have different 

operational configuration). Using a Multi-Agent Systems simulation approach, we 

model a four echelon supply chain with four retailers, with stochastic demands and lead 

times, using two common Order-Up-To inventory policies. Retailers’ operation is 

characterized by four operational factors: demand variance, forecasting period, lead 

time average, and inventory policy. We measure the supply chain performance using 

systemic supply chain metrics: Bullwhip Slope, Inventory Slope and Systemic 

Inventory Average. Supply chain performance is measured for different partial 

information sharing structures and different retailers’ operational configurations.  

The results of our study emphasize the need of individually estimating the potential 

value of retailers’ information prior to the implementation of information sharing, and 

provides the following insights: 
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- When retailers are homogeneous they have equal potential value if they are 

involved in information sharing (i.e., they identically contribute to improve 

supply chain performance). Thus, a full information sharing approach is 

recommended. 

- When retailers are heterogeneous they have different potential value if they are 

involved in information sharing, depending on their operational configuration. 

As a consequence  

o The performance improvement achieved by different partial information 

sharing structures with the same number of retailers might be 

significantly different.  

o A partial information sharing structure involving retailers with high 

potential value may capture a substantial part of the benefits of full 

information sharing. 

o Assuming a linear increase of costs with the number of retailers involved 

in information sharing, a cost-benefit analysis may reveal that a partial 

information sharing approach is more beneficial for the supply chain 

than a full information sharing approach, thus saving costs related to the 

involvement of additional retailers. 

- Retailers’ operation need to be carefully examined in order to develop an 

efficient implementation of information sharing. In this order of importance, 

retailers with (1) higher demand variance, (2) lower forecasting period, and (3) 

higher average lead time, are potentially more beneficial partners for 

implementing information sharing. 

Due to the complex relationships between retailers’ operational factors and retailers’ 

potential value when become participants of information sharing, it was not possible to 

come up with a single and precise rule for identifying the most beneficial information 

sharing structure. In fact, properly balancing each operational factor is still an issue. 

Nevertheless, the findings reported in this paper should help managers to better 

understand the opportunities for partial information sharing and put them in a stronger 

position in their negotiations about establishing information sharing links. 

The present study has some limitations that may create room for improvement and 

further research. Also, due to the exploratory nature of this work, there are many ways 

of possible extensions:  
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- Deepening the analysis of each operational factor by increasing the number of 

intermediate values, and considering other different set ups of supply chain (i.e., 

different demand or lead time distributions, different forecast methods, etc.) 

would provide additional results that might be useful to precisely balance the 

importance of each operational factor on a wide variety of conditions and to look 

for a single rule for choosing the best information sharing structure.  

- Analysing scenarios where retailers may differ in more than one factor at the 

same time would provide more realistic results. 

- This work analyses either homogeneous or heterogeneous retailers. The “grey 

zone” that falls in the middle of both scenarios has been briefly analysed through 

a sensitivity analysis. Determining the limits between both scenarios would be a 

significant contribution in this line of research.  

- A similar analysis to that conducted in this work on other operational factors 

(e.g. lead time variance, forecast method, safety factor, etc.) would provide a 

wider perspective of this problem to supply chain managers.  

- Results of this work are scalable to higher or lower number of retailers. 

However, it could be interesting to analyse how the upstream part of the supply 

chain may impact on the results obtained. More specifically, it should be 

addressed how the upstream supply chain structure and upstream member’s 

operational configuration may impact on the implementation of information 

sharing at retailers. Additionally, a similar research to that presented in this work 

could be performed on the upstream echelons of the supply chain, in order to 

come up with a more general overview on how to efficiently implement 

information sharing in supply chain. 
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