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On heuristic solutions for the stochastic �owshop

scheduling problem∗

Jose M. Framinan, Paz Perez-Gonzalez

May 21, 2015

Abstract

We address the problem of scheduling jobs in a permutation �owshop when their

processing times adopt a given distribution (stochastic �owshop scheduling problem)

with the objective of minimisation of the expected makespan. For this problem,

optimal solutions exist only for very speci�c cases. Consequently, some heuristics

have been proposed, all of them with similar performance. In our paper, we �rst

focus on the critical issue of estimating the expected makespan of a sequence and

found that, for instances with a medium/large variability (expressed as the coe�cient

of variation of the processing times of the jobs), the number of samples or simulation

runs used in the literature may not be su�cient to derive robust conclusions. We

thus propose a procedure with a variable number of iterations that ensures that

the percentual error in the estimation of the expected makespan is bounded with a

very high probability. Using this procedure, we test the main heuristics proposed in

the literature and �nd signi�cant di�erences in their performance, in contrast with

existing studies. We also �nd that the deterministic counterpart of the most e�cient

heuristic for the stochastic problem performs extremely well for most settings, which

indicates that (at least within the limitations of our study), a practical way to solve

the stochastic problem may be to simplify it to its deterministic version.

Keywords: Scheduling, Flowshop, Stochastic, Makespan Objective, Heuristics
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1 Introduction

The �owshop scheduling problem with makespan objective (usually denoted as Fm|prmu|Cmax)

has been subject of research for more than 60 years, being one of the most comprehensively

studied problems in Operations Research (see in this regard the reviews by Framinan et al., 2004,

Reza Hejazi and Sagha�an, 2005 and Ruiz and Maroto, 2005). This decision problem consists of

how to schedule jobs in a permutation �owshop in order to minimize the maximum completion

time or makespan. A classical assumption is that the processing times of each job in each machine

are considered di�erent, but known in advance (deterministic). In contrast, our paper deals with

the problem of scheduling n jobs in a permutation �owshop consisting of m machines where

the processing times are not deterministic, but follow some known distribution. The objective

considered is that of minimizing the expected makespan. This problem is considered to be more

realistic that their deterministic counterpart, as it allows capturing part of the inherent variability

present in many real-life manufacturing environments (see e.g. Hopp and Spearman, 2008). In

the following, we will denote our problem as Fm|prmu|E[Cmax].

The Fm|prmu|E[Cmax] problem has been much less studied than its deterministic counter-

part, and it is clearly much more complex. In fact, apart from a dominance rule obtained by

Makino (1965) for the case of two jobs, no exact solution is available without assumptions on the

distribution of the processing times. For m = 2 and exponential distribution of the processing

times, Talwar (1967) conjectured an exact solution for the problem that was later proved to be

optimal by Cunningham and Dutta (1973), and is currently known as Talwar's rule.

Despite these advances, for the rest of the cases, no optimal procedure has been found. For

the two-machine case, three approximate solutions have been proposed by Baker and Trietsch

(2011) based both in Talwar's rule and in Johnson's rule (Johnson, 1954) for the determin-

istic �owshop, all of them with similar (near optimal) performance. For the general m ma-

chine case, Baker and Altheimer (2012) suggest three heuristics based on adaptations of the CDS

(Campbell et al., 1970) and NEH (Nawaz et al., 1983) heuristics, again with similar and near opti-

mal performance. Although it might seem that, from these results, the problem Fm|prmu|E[Cmax]

is already solved, some issues have to be discussed:
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• First of all, the evaluation of sequences in an stochastic �owshop is far from being a trivial

task. Since the objective is to obtain the expected makespan of a given sequence, E[Cmax]

has to be estimated by running N simulations using the sequence as a solution, from which

a sample Ci
max (i = 1, . . . , N) is obtained. Then, E[Cmax] is estimated by averaging the

sample, i.e. E[Cmax] ≈ C̄max = 1
N

∑N
i=1C

i
max.

Up to now, there is no standardised procedure to determine N , although the authors of

related contributions use a large number in order to ensure the signi�cance of the esti-

mation. Thus, Baker and Altheimer (2012) use N = 100, 000 whereas Gourgand et al.

(2003) employ N = 200, 000 regardless the size and characteristics of each instance, while

Portougal and Trietsch (2006) set N to 10, 000 for the 2-machine case. In addition, there

is no mechanism to establish the statistical signi�cance of the so-obtained C̄max and, con-

sequently, to assess the di�erences in the performance among di�erent heuristics.

• Due to the computational complexity of the stochastic problem, the experiments in the

literature have been limited to very small problem sizes (up to n = 10 and m = 6 in the

most recent studies). This makes the conclusions obtained so far to be restricted to very

small problem sizes, and perhaps not valid for bigger problem sizes.

• Finally, to the best of our knowledge, the neccessity of heuristics speci�cally designed for

the stochastic problem has not been yet determined. In other words, one may try to solve

the stochastic �owshop scheduling problem by transforming it into its deterministic coun-

terpart, i.e. by obtaining a �owshop with the same number of jobs and machines but

with deterministic processing times equal e.g. to the means of those from the stochastic

problem. Then, heuristics for the Fm|prmu|Cmax problem can be applied and a (possibly

good) sequence for the deterministic problem can be obtained. If this sequence performs

well when applied to the stochastic problem, then the need of speci�c stochastic heuristics

can be questioned. However, such test has not been conducted so far. It is foreseable that

the so-obtained sequences perform worse that those speci�cally designed for the stochastic
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version, but maybe the di�erences in the quality of the results do not justify the much

higher computation times required for the stochastic heuristics. Even if the deterministic

heuristics are not valid for some cases, it would be interesting to quantify the degree of

variability for which using them is still acceptable, as it is clear that an stochastic �owshop

with low variability would resemble very much to a deterministic �owshop.

With these issues in mind, we �rst discuss and propose a procedure for estimating the expected

makespan of a sequence in an stochastic �owshop, so the error in such estimation is bounded by

a given percentage. In this way, the statistical signi�cance of the results obtained by the di�erent

heuristics can be more clearly established. Interestingly, the results show that the sample sizes (N)

obtained from our procedure proposed range from very small to very high values, thus supporting

the conclusion that no predetermined value can be easily found regardless the variability of the

instances and the error assumed in the estimation.

Next, we compare the main heuristics proposed in the literature as well as the expected

makespan obtained from the application of purely deterministic procedures to the mean processing

times of the stochastic problem. These heuristics are tested for problem sizes larger than those

presented so far in the literature, so the conclusions from the results can be better supported.

The results show that, in contrast to Baker and Altheimer (2012), there are signi�cant di�erences

in the performance of the heuristics, and that �perhaps not so surprisingly� the performance of

the sequences obtained from purely deterministic methods in the stochastic �owshop do not di�er

greatly from that obtained from speci�c stochastic methods.

The remainder of the paper is organised as follows: First, the problem under consideration

is formally described in Section 2, where the main contributions of the literature are discussed.

Since our work is of computational nature, we devote Section 3 to discuss the key issue of the

testbed in which the heuristics are to be compared, as we intend to capture di�erent problem sizes

and di�erent degrees of variability of the �owshop. Next, we present in Section 4 the procedure to

estimate the expected mean makespan of a given solution, and compare the number of iterations

required with those employed in the literature. The comparison of the performance of di�erent

heuristics for the problem is done in Section 5, where the main results are also discussed. Finally,
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Section 6 present the conclusions and points out future research lines.

2 Background

A �owshop consists of n jobs that must be processed on m machines in the same order, where

job i requires pij time units to be processed on machine j. The scheduling problem in �ow

shops is to �nd a sequence of jobs for each machine according to certain performance measure(s).

Additionally, for many situations, it is assumed that the job sequences will be the same on every

machine (permutation �owshops). Other hypotheses common in scheduling research are, e.g. the

simultaneous availability of all jobs and of all machines, deterministic processing times, etc. For

a complete list of these assumptions, see e.g. Framinan et al. (2004).

While the deterministic �owshop scheduling problem with makespan objective has been ex-

tensively studied (see the reviews mentioned above), the same cannot be said about its stochastic

counterpart. For the two-jobs case and a general distribution of the processing times, a dominance

rule is given by Makino (1965), but this result is extremely restrictive and with little applicability

for most practical settings.

By making assumptions on the distribution of the processing times of the jobs, an important

result is due to Talwar (1967). He conjectures that the expected makespan is minimized when

the processing time of the jobs follows an exponential distribution by sequencing the jobs in non

increasing order of 1
µi1
− 1

µi2
, where µij is the mean processing times of job i on machine j. This

order is proved to be optimal by Cunningham and Dutta (1973), and it is currently known as

Talwar's rule. As an extension of this rule to other distributions, Kalczynski and Kamburowski

(2006) heuristically adapt Talwar's rule for the Weibull distribution. For a general family of

distributions, Portougal and Trietsch (2006) develop a heuristic named PSH which starts with

the solution given by Johnson's rule (Johnson, 1954) for the deterministic �owshop, and ap-

plies an adjacent pairwise interchange (a reason why this heuristic is later renamed API by

Baker and Trietsch, 2011). Finally, Baker and Trietsch (2011) test three di�erent procedures for

di�erent families of distributions, i.e.: Talwar's rule, Johnson's rule, and the API heuristic. They

conclude that the (deterministic) Johnson's rule could be better unless the coe�cient of variation
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of the jobs is very high. For such cases, Talwar's rule or API may perform better.

For the general �owshop problem with m machines, Baker and Altheimer (2012) propose

di�erent heuristics. The �rst heuristic is called CDS/Johnson and consists of obtaining a set of

m−1 2-machine �owshop subproblems with the addition of the processing times of the jobs in the

manner of the CDS heuristic by Campbell et al. (1970). More speci�cally, 2-machine �owshop

subproblem k (with k = 1, . . . ,m − 1) is constructed by obtaining the processing times of job

i in the �rst (second) machine of this subproblem as Ai =
∑j=k

j=1 pij (Bi =
∑j=m

j=k+1 pij). Then,

Johnson's procedure is applied to each of the resulting m− 1 subproblems, and m− 1 sequences

are obtained. The estimation of the expected makespan of each of this sequences is obtained (in

their case by running 100,000 simulations and taking the average makespan value), and the one

yielding the lowest value is selected.

The second tested heuristic is the CDS/Talwar heuristic. In a similar manner to the previous

one, a set of m− 1 2-machine �owshop subproblems are obtained, and a sequence is obtained for

each one by applying Talwar's rule. Out of these m − 1 sequences, the one with the minimum

estimation of the expected makespan is selected.

The third heuristic tested is based on the famous NEH heuristic proposed by Nawaz et al.

(1983) for the deterministic case. This heuristic consists of two phases: First the jobs are ranked

according to the descending sum of their mean processing times. In a second phase, a solution

is constructed as follows: Starting from a partial sequence constructed by taking the �rst job

of the rank, then, for k = 2, . . . , n, k partial sequences are constructed by inserting the k-th

job of the rank in all k slots of the partial sequence. These k partial sequences are evaluated

with respect to their expected makespan (estimated, as in previous cases, by means of obtaining

a sample via simulation and taking the average value), and the one obtaining the lowest value

of the estimation of the expected makespan is retained as partial sequence for step k + 1. The

procedure is repeated until a full sequence is obtained.

Among the three heuristics, Baker and Altheimer (2012) �nd that the NEH adaptation is

the best one, but none of the heuristic procedures dominates the others. Furthermore, their

performance is compared against that of a genetic algorithm (assumed to �nd the optimal or

near-optimal sequence for most instances), and the authors conclude that the three heuristics
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generate average suboptimalities of less than 1%, leaving little room for the development of new

approximate algorithms.

Despite the advances reported, there are some issues already discussed in Section 1 that a�ect

the existing results and deserve further research. A closer look on how to estimate the expected

makespan is needed, in order to add statistical consistency to the results. Furthermore, the

neccessity of special stochastic heuristics for the problem has not been established, particularly

when, for the two-machine case, Portougal and Trietsch (2006) state the excellent performance of

the Johnson's deterministic heuristic in the stochastic setting. To address all these issues, we �rst

need a benchmark testbed to conduct the computational experience. The design of this testbed

is presented in the next section.

3 Testbed design

Regarding the design of a testbed for �owshop scheduling, we �rst have to decide about the

problem sizes, i.e. the number of jobs n and machines m of the di�erent instances. Given

the computational complexity of the stochastic model, problem sizes have to be much more

reduced than those in the deterministic counterpart, however we want to subtantially increase

the existing problem sizes in order to gain generality on the results. With these premises, we

choose n ∈ {5, 10, 15, 20} and m ∈ {2, 5, 10, 20}.

In order to ease the analysis, we assume that all distribution of the processing times be-

long to the same family, which is a common assumption almost universally made (see e.g.

Gourgand et al., 2003, Baker and Trietsch, 2011 or Baker and Altheimer, 2012). Regarding to the

family of distributions, there are several option, including the random distribution (Baker and Trietsch,

2011 or Baker and Altheimer, 2012), the normal distribution (Gourgand et al., 2003) the expo-

nential distribution (Gourgand et al., 2003, Baker and Trietsch, 2011 or Baker and Altheimer,

2012), and the lognormal distribution (Baker and Trietsch, 2011 or Baker and Altheimer, 2012).

After reviewing the di�erent distributions, we will assume a log normal distribution for our

testbed. The log normal distribution is characterised by two parameters (mean µ and standard

deviation σ), and it has a considerable practical value for modelling real-life processing times.
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Additionally, in contrast e.g. to the exponential distribution, we can control its variability by

means of the standard deviation and thus model di�erent degrees of variability of the instances

in the testbed.

Regarding the average processing times of the jobs (µij), each one is drawn from a discrete

uniform [1,99] distribution. In the deterministic counterpart, these values are assumed to generate

di�cult instances (see e.g. Dannenbring, 1977, or Campbell et al., 1970), so we expect the same

for the stochastic case. For each mean processing time, we want to model di�erent degrees

of variability. Setting di�erent values for the standard deviation in an straightforward manner

could be rather tricky and produce non realistic processing times. Therefore, we use di�erent

values of the coe�cient of variation c = σ
µ to generate several instances. More speci�cally,

c ∈ {0.01, 0.1, 0.2, 0.5, 1} to capture the di�erent scenarios of variability. When c = 0.01, the

processing times are close to be deterministic, but for c = 1 the processing times for a job su�er

a great variation. Although bigger c values are naturally possible, we believe that these do not

represent reasonably realistic environments, as very large coe�cient of variations are not the

norm in industry due to the substantial e�orts done to reduce the variability of the processing

times via process automation and standardisation procedures. Note that the case c = 1.0 yields

the same variance as in the exponential distribution, and, in order to make sure that we also

cover this case, in Section 4 we also include results assuming an exponential distribution of the

processing times.

In summary, we build each instance of the testbed in the following manner: For a given

coe�cient of variation c, we select a number of jobs and a number of machines (problem size).

Next, for each job on each machine, we generate their mean processing time µij by using an

uniform [1,99] distribution. The standard deviation of each job on each machine σij is then set

to c · µij . This procedure is repeated in order to generate 20 instances for each problem size and

coe�cient of variation. In total, 1,600 instances (320 for each value of c) are generated.
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4 A procedure for the estimation of the expected makespan

As mentioned before, a critical issue in stochastic scheduling is how to evaluate the solutions.

Recall that here the objective function is the expected makespan, therefore, given a sequence,

an expected makespan must be assigned to this sequence. However, such expected makespan

has to be estimated via a sample mean of the makespans corresponding to this sequence. The

usual way to obtain the sample mean is to conduct a very large number of simulations of the

makespan. Gourgand et al. (2003) assesed the accuracy of such simulations by making compar-

isons of the simulation results against those obtained by a Markov chain, and found that sample

sizes of 200,000 produced 95% con�dence intervals of the order of 0.1%. In their experiments,

Baker and Altheimer (2012) use a sample size of 100,000 for problem sizes where m ∈ {2, 3, 6}

and n is up to 10 jobs whereas, for the 2-machine case, Portougal and Trietsch (2006) use a

sample size of 10,000. Nevertheless, it is clear that the sample size should depend �at least� on

two factors, namely the con�dence interval of the results, and the stochasticity of the problem.

Note that the way the solutions are evaluated may determine the signi�cance of the results, here

the criticality of this issue.

In this paper, we propose a method to estimate the expected makespan of a sequence based on

the maximum percentual error accepted for the estimation of E[Cmax]. More speci�cally, the half-

width of a con�dence interval for E[Cmax] of 1−α con�dence level is given by tα/2,N−1
s√
N
, where s

is the sample standard deviation of the makespan, and α/2 is the area of a Student's t-distribution

with N−1 degrees of freedom left in the interval (−∞, tα/2,N−1] (see e.g. Vijay and Saleh, 2011).

We intend that tN−1,α/2
s√
N
≤ C̄max · p, where p is a (small) percentage. By doing so, E[Cmax] is

con�ned in the interval [C̄max(1 − p), C̄max(1 + p)] with a 1 − α con�dence level. If we set α to

a very low value (in our experiments, α = 0.001), we can be almost sure (statistically speaking)

that p represents the maximum relative error of the estimation of E[Cmax] and thus use p to

check the signi�cance of di�erent results obtained by several heuristics. Note that the normality

assumption of the sum of the sample values of makespan required to use this con�dence interval

seems a very loose restriction given the high number of samples (simulations) that would be run

in practice, and the fact that the result of each run is independent from the others.
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More speci�cally, our procedure for estimating the expected makespan of a sequence S consists

of the following steps:

1. Set the simulations counter to zero, i.e. N := 0

2. Set the sum of makespans to zero, i.e. SumCmax := 0

3. Set the sum of squares of makespans to zero, i.e. SumSCmax := 0

4. do:

(a) Run a simulation to obtain a sample makespan Cmax of S.

(b) Update the number of simulations, i.e. N := N + 1.

(c) Update the sum of makespans, i.e. SumCmax := SumCmax + Cmax

(d) Update the sum of squares of makespans, i.e. SumSCmax := SumSCmax + C2
max

(e) Calculate C̄max := SumCmax
N and s :=

√
SumSCmax−N ·(C̄max)2

N−1 .

while
s·tN−1,α/2

C̄max

√
N

> p

5. Return C̄max.

Note that, technically, we have to force the procedure to run more than one simulation. From

the second simulation on, the percentual error oscillates until it is below the desired quantity p.

Note also that setting unrealistic values of p and α may cause the loop to enter into a deadlock.

We can be there sure (with a con�dence level of 1−α) that the percentage error in the estimation

of the expected makespan is below p. In our experiments, α = 0.001, so that means that we can

be quite con�dent (99,9%) on the bounds of the error in the estimation.

In order to check the number of simulation runs required by this procedure for di�erent

degrees of variability and percentage error p, we obtain the estimations of the expected makespan

of a random sequence for each instance in the testbed. The results are shown in Table 1.

From the results, it can be seen that, as foreseable, the number of runs varies greatly depending

on the percentage error accepted. Allowing a 5% error means that results can be obtained with
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N ←− 0; \%Set the simulation counter to zero
π ←− π

′
1;

for k = 2 to n do

r ←− πk
′;

Determine the values of eij, qij and fil from Taillard's acceleration (see equations ??,
??, and ??);
Determine minimal makespan resulting from inserting job r in all possible positions of
π;
bp←−First position where the makespan is minimal;
tb←− Number of positions with minimal makespan (i.e. number of ties);
ptb←− Array (of length tb) with the positions where the makespan is minimal;
itbp is the idletime corresponding to the bp and set to a very large number;
if tb > 1 and k < n then

for l = 1 to tb do

it
′′ ←− 0;

if ptb[l] = k then

for i = 2 to m do

it
′′ ←− it

′′
+ fi,k − ei,k−1 − ti,r;

end

else

f
′

1,ptb[l] ←− f1,ptb[l] + p1,ptb[l];

for i = 2 to m do

it′′ ←− it
′′
+ fi,ptb[l] − ei,ptb[l] + pi,ptb[l] − ti,r +max{0, f ′

i−1,ptb[l] − fi,ptb[l]};
f

′

i,ptb[l] ←− max{f ′

i−1,ptb[l], fi,ptb[l]}+ pi,ptb[l];

end

end

if itbp > it
′′
then

bp←− ptb[l];
itbp ←− it

′′
;

end

end

end

π ←− Array obtained by inserting job r in position bp of π;
end

Figure 1: Our Tie-Breaking Method
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p=0.005 p=0.01 p=0.05
5 2 499372 124843 5016
5 5 466236 116973 4667
5 10 452409 113241 4533
5 20 443656 111020 4443
10 2 468839 116955 4696
10 5 452568 113256 4535
10 10 444945 111386 4457
10 20 440093 110088 4408
15 2 457536 114205 4591
15 5 446817 111795 4478
15 10 441605 110480 4424
15 20 438473 109658 4391
20 2 451430 112693 4520
20 5 443921 111069 4445
20 10 439961 110056 4407
20 20 437425 109399 4382
Average 451580 112945 4525

Table 2: Estimation of the expected makespan for the exponential testbed: Number of
simulation runs required

less than 10,000 runs, but a 0.5% error requires more than 400,000 runs even for instances with

small variability, and around 1,000,000 for c = 0.5.

In general, the need of more runs decreases with the number of machines, but remains rel-

atively stable with respect to the number of jobs. This may speak for a compensation of the

processing times of a job across the machines.

Additional experiments were carried out to establish the percentage error (p) induced when

the number of simulation runs is considered �xed. To do so, we estimate C̄max for a random

sequence using 100,000 simulation runs, and calculate a con�dence interval for α = 0.001. By

doing so, we are 'almost' sure than the makespan is contained in this interval, and then use the

extreme values of this interval to obtain p. The results are shown in Table 3 and make clear that,

while 100,000 simulation runs are an acceptable number for low variability, for moderate/high

variability, this number of simulations leads to an average error over 10%, and that, in some

instances, this error is as high as 80%.

The results show that it is di�cult to be con�dent in the results obtained for the number of

simulation runs employed in the literature. Estimation errors of less than %1 require more than

13



CV=0.01 CV=0.1 CV=0.2 CV=0.5 CV=1.0
5 2 0.010 0.011 0.011 0.022 0.142
5 5 0.010 0.010 0.011 0.018 0.138
5 10 0.010 0.010 0.011 0.016 0.098
5 20 0.010 0.010 0.011 0.014 0.079
10 2 0.010 0.010 0.011 0.019 0.195
10 5 0.010 0.010 0.011 0.016 0.102
10 10 0.010 0.010 0.011 0.014 0.072
10 20 0.010 0.010 0.011 0.013 0.074
15 2 0.010 0.010 0.011 0.017 0.105
15 5 0.010 0.010 0.011 0.015 0.149
15 10 0.010 0.010 0.011 0.014 0.089
15 20 0.010 0.010 0.010 0.013 0.062
20 2 0.010 0.010 0.011 0.015 0.106
20 5 0.010 0.010 0.011 0.014 0.091
20 10 0.010 0.010 0.011 0.013 0.065
20 20 0.010 0.010 0.010 0.012 0.063
Avg. 0.010 0.010 0.011 0.015 0.102
Max. 0.010 0.011 0.011 0.026 0.815
Min. 0.010 0.010 0.010 0.012 0.037

Table 3: Percentual error in makespan estimation for N =100,000

200,000 runs for scenarios with medium/high variability. In addition, our method allows to know

the accepted error of the estimations (in percentual terms) and therefore to assert the signi�cance

of the di�erences in the performance of solution procedures.

5 Comparison of heuristics

In this section, we carry out a computational study to establish the performance of di�erent

heuristics for the problem according to the procedure for the estimation of the expected makespan

presented in the previous section. The heuristics tested are the following:

• The stochastic version of the NEH heuristic as described in Baker and Altheimer (2012).

This heuristic is labelled SNEH.

• The stochastic version of the CDS/Talwar heuristic as described in Baker and Altheimer

(2012). This heuristic is labelled SCDS/Talwar.

14



• The deterministic NEH heuristic applied using as data the mean processing times of the

instances.

• The deterministic CDS/Talwar heuristic applied using as data the mean processing times

of the instances.

• The deterministic NEH heuristic applied using as data the mean processing times of the

instances, but using as initial order that given by the deterministic CDS/Talwar heuristic.

This heuristic is labelles NEH-Talwar.

Note that, although the procedure for SNEH and SCDS/Talwar are identical to that of

Baker and Altheimer (2012), the estimation of the expected makespan of the subsequences and

that of the �nal sequence is carried out according to the procedure presented in Section 4 for

p = 0.01. Analogously, in order to estimate the expected makespan given by the deterministic

heuristics (NEH, CDS/Talwar, and NEH-Talwar), the sequence obtained is evaluated following

the aforementioned procedure.

The testbed presented in Section 3 is solved using the �ve heuristics presented above. Tables

4 to 7 show the results obtained for di�erent values of c. Apart from the average values obtained

by the estimated makespan for each one of the heuristic (labelled as Avg. in the tables), the

average percentage increase of the makespan of each heuristic with respect to that of SNEH is

presented (labelled as ∆ in the tables).

In these tables, we do not give information on the time required for each heuristic. Note that

the deterministic heuristic are nearly instantaneous for the problem sizes tested (e.g. NEH is less

than 0.01 seconds for the biggest instances), although for our purposes, we have to evaluate the

so-obtained sequence (something not required when applying it for a real problem). Regarding

the times required for the stochastic heuristic, they depend obviously on the problem size and

on the value of c, ranging from 1300 seconds for c = 0.01, n = 20,m = 20 to 2000 seconds for

c = 0.5, n = 20,m = 20. In total, the computational workload of the experiments contained in

the tables can be measured in weeks of CPU time.

Several comments can be done on the results obtained:

• With respect to the heuristics speci�cally designed for the stochastic problem, there are sig-

15



ni�cant di�erences in performance. This result contradicts those obtained by Baker and Altheimer

(2012), who did not detect signi�cant di�erences among them. It has to be noted that their

way to estimate E[Cmax] the solution is based on a �xed number of simulation runs and

that the number that they employed (100,000) has been proved to be unsu�cient to estab-

lish consistent results for medium/large coe�cient of variations. In addition, our testbed

is of bigger size, a fact that may also explain some di�erences.

• The di�erences in performance between SNEH and SCDS/Talwar decrease with the vari-

ability of the testbed (from roughly 15% for c = 0.01 to about 6% for c = 0.5), but still are

substantial for relatively large coe�cient of variations. The explanation may lie in the fact

that Talwar's rule is optimal for the exponential distribution, whose coe�cient of varia-

tion is 1, and therefore its performance improves for instances where c is closer to that value.

• With respect to the deterministic heuristic tested, the best performance correspond to the

NEH. It is interesting to note that CDS/Talwar is suppose to incorporate some stochastic

considerations in their ordering, however these do not pay o�, either as a simple heuristic,

or as a starting order for the NEH heuristic.

• When comparing SNEH and NEH it may be seen that the di�erences are very small. In

some cases, these di�erences are below the error accepted for p (1%). The conclusion is

that, for a realistic ranges of variability in the �owshop, the application of the NEH to

the mean processing times gives an extremely good estimation of the performance of their

stochastic counterpart. If we note that SNEH is highly CPU-intensive, requiring a high

number of simulations of all subsequences for all steps, it has to be questioned whether the

e�ort in running SNEH pays o�.

• Although there is no clear pattern, it seems that the di�erences in performance of all the

heuristics decrease with the number of machines, a fact for which we do not have at the

16



moment a fully convincing explanation.

Table 4: Comparative results of the di�erent heuristics for c = 0.01.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 309.848 348.360 13.056 309.978 0.041 348.367 13.059 310.171 0.103
5 5 477.448 550.888 15.905 477.552 0.024 550.878 15.903 477.373 -0.086
5 10 795.812 891.632 12.574 795.833 0.004 891.644 12.576 798.258 0.301
5 20 1372.339 1482.957 8.063 1374.269 0.148 1482.933 8.061 1374.786 0.167
10 2 571.929 632.638 11.423 572.181 0.046 632.649 11.426 572.615 0.136
10 5 720.947 866.235 20.268 721.875 0.119 866.224 20.266 716.499 -0.575
10 10 1049.066 1246.054 18.884 1053.062 0.384 1246.057 18.885 1052.709 0.348
10 20 1673.640 1902.705 13.662 1676.495 0.169 1902.713 13.662 1681.827 0.490
15 2 801.950 857.986 6.943 802.028 0.010 857.982 6.943 805.056 0.406
15 5 1008.644 1206.445 19.737 1008.840 0.017 1206.441 19.736 1013.747 0.536
15 10 1309.681 1574.132 20.336 1312.544 0.223 1574.124 20.335 1324.418 1.134
15 20 1965.180 2261.390 15.063 1981.237 0.833 2261.389 15.063 1972.786 0.375
20 2 1085.429 1155.937 6.582 1085.508 0.008 1155.929 6.582 1088.635 0.309
20 5 1224.466 1486.417 21.419 1228.891 0.368 1486.406 21.418 1240.408 1.305
20 10 1601.085 1939.413 21.186 1609.659 0.548 1939.435 21.187 1615.548 0.926
20 20 2258.262 2658.262 17.759 2269.505 0.501 2658.259 17.759 2274.953 0.746

15.179 0.215 15.179 0.414

6 Conclusions

In this paper, we have addressed the problem of scheduling jobs in a �owshop when their pro-

cessing times adopt a given distribution. Existing literature for the problem reveals that optimal

solutions can be found only for very speci�c cases, so some heuristics with similar performance

have been proposed for the general case. We �rst focus on the critical issue of estimating the

expected makespan of a sequence, and found that, for instances with a medium/large variabil-

ity (expressed as the coe�cient of variation of the processing times of the jobs), the number of

samples (simulation runs) used in the literature to estimate the expected makespan of a sequence

may not be su�cient to derive conclusive results. We propose a procedure with a variable number

of iterations that ensures that the error in the estimation of the expected makespan is bounded

(with a very high probability) within a small percentage. Using this procedure, we test the main
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Table 5: Comparative results of the di�erent heuristics for c = 0.1.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆
5 2 291.782 325.107 11.687 293.834 0.772 325.137 11.698 295.252 1.175
5 5 475.155 532.005 12.307 478.174 0.631 532.057 12.317 476.358 0.225
5 10 782.803 860.982 10.386 788.699 0.763 862.039 10.538 790.445 0.971
5 20 1348.199 1439.980 6.817 1358.467 0.787 1440.195 6.832 1355.911 0.557
10 2 529.584 587.962 11.609 539.093 1.782 587.953 11.609 539.663 1.955
10 5 722.250 843.684 16.890 733.248 1.535 843.613 16.879 733.328 1.524
10 10 1071.549 1233.335 15.202 1086.796 1.465 1233.383 15.206 1087.909 1.536
10 20 1697.238 1873.897 10.362 1715.366 1.079 1873.586 10.344 1722.355 1.489
15 2 746.468 806.670 7.981 754.396 1.071 806.746 7.992 764.054 2.332
15 5 993.123 1171.510 18.038 1010.630 1.783 1171.513 18.041 1019.869 2.717
15 10 1352.968 1555.070 15.059 1371.496 1.386 1555.117 15.062 1378.176 1.874
15 20 2033.541 2269.854 11.609 2069.860 1.795 2271.566 11.697 2061.274 1.359
20 2 1005.958 1079.875 7.376 1016.039 0.998 1079.903 7.378 1024.590 1.865
20 5 1221.532 1440.011 17.865 1245.929 1.994 1440.785 17.929 1261.137 3.217
20 10 1647.583 1919.185 16.478 1682.258 2.108 1919.258 16.482 1687.571 2.416
20 20 2351.119 2686.962 14.339 2394.679 1.851 2686.998 14.341 2397.252 1.959

12.750 1.362 12.771 1.698

Table 6: Comparative results of the di�erent heuristics for c = 0.2.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 322.603 352.795 9.441 325.613 1.004 352.802 9.441 327.488 1.520
5 5 562.439 613.089 9.259 566.252 0.688 613.133 9.264 564.659 0.384
5 10 934.795 1007.518 8.112 941.541 0.743 1009.800 8.384 941.668 0.746
5 20 1601.737 1697.290 5.986 1615.790 0.895 1697.146 5.978 1612.897 0.686
10 2 581.957 641.934 10.700 599.805 3.022 641.875 10.688 599.746 3.102
10 5 871.709 988.245 13.382 886.699 1.719 988.071 13.360 887.356 1.752
10 10 1334.107 1495.436 12.168 1352.889 1.447 1495.574 12.177 1354.049 1.503
10 20 2116.182 2291.745 8.248 2138.487 1.065 2291.817 8.252 2146.237 1.431
15 2 817.669 888.258 8.541 836.351 2.297 888.129 8.528 849.235 3.815
15 5 1197.086 1373.755 14.815 1222.018 2.101 1373.915 14.828 1231.843 2.933
15 10 1693.012 1899.637 12.271 1723.999 1.839 1899.451 12.259 1730.821 2.240
15 20 2589.667 2834.702 9.461 2636.059 1.798 2836.892 9.551 2627.271 1.450
20 2 1093.098 1185.651 8.490 1119.084 2.378 1185.546 8.480 1134.384 3.796
20 5 1467.477 1688.517 15.032 1502.591 2.381 1689.583 15.106 1521.990 3.696
20 10 2072.442 2350.040 13.380 2123.447 2.468 2350.523 13.403 2128.186 2.681
20 20 3025.734 3381.442 11.808 3082.084 1.859 3381.093 11.796 3084.835 1.949

Avg 10.693 1.731 10.718 2.105
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Table 7: Comparative results of the di�erent heuristics for c = 0.5.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 744.176 776.915 4.380 748.874 0.657 776.746 4.365 752.611 1.146
5 5 1529.894 1595.708 4.422 1537.664 0.520 1595.128 4.392 1533.510 0.224
5 10 2726.438 2842.900 4.478 2741.956 0.596 2848.047 4.689 2739.926 0.513
5 20 4807.027 4982.471 3.657 4836.312 0.613 4986.449 3.744 4834.410 0.561
10 2 1411.348 1496.158 6.206 1446.847 2.448 1496.660 6.243 1446.062 2.461
10 5 2579.011 2764.617 7.170 2610.984 1.251 2763.582 7.132 2613.878 1.326
10 10 4384.309 4678.766 6.734 4433.741 1.153 4684.903 6.870 4433.034 1.118
10 20 7312.968 7656.029 4.647 7357.016 0.616 7659.549 4.700 7373.893 0.843
15 2 1979.146 2095.786 5.837 2021.776 2.165 2095.632 5.814 2042.227 3.156
15 5 3683.235 3989.336 8.347 3737.412 1.467 3990.114 8.363 3756.730 2.026
15 10 5793.048 6186.216 6.805 5861.646 1.184 6189.823 6.863 5878.701 1.479
15 20 9561.606 10073.656 5.356 9661.007 1.039 10078.809 5.412 9646.360 0.881
20 2 2647.731 2821.413 6.605 2711.862 2.447 2819.596 6.535 2743.518 3.665
20 5 4527.154 4910.429 8.443 4590.192 1.394 4914.857 8.541 4632.402 2.332
20 10 7330.081 7883.050 7.532 7445.274 1.580 7882.278 7.528 7446.577 1.593
20 20 11624.512 12411.446 6.818 11730.277 0.911 12403.771 6.757 11745.989 1.044

Avg. 6.090 1.252 6.122 1.523

Table 8: Comparative results of the di�erent heuristics for c = 1.0.

SNEH SCDS/Talwar NEH CDS/Talwar NEH-Talwar
n m Avg. Avg. ∆ Avg. ∆ Avg. ∆ Avg. ∆

5 2 6266.040 6341.156 1.201 6290.683 0.417 6350.017 1.321 6303.186 0.583
5 5 14794.404 14998.899 1.432 14825.357 0.213 15011.184 1.529 14822.093 0.178
5 10 29495.484 29905.531 1.464 29539.868 0.158 29919.130 1.506 29527.008 0.114
5 20 55811.357 56727.477 1.631 56006.588 0.345 56705.085 1.604 56013.200 0.348
10 2 13280.157 13505.036 1.777 13399.913 0.841 13497.332 1.710 13391.054 0.815
10 5 27912.319 28581.464 2.392 28074.882 0.575 28571.105 2.334 28096.549 0.636
10 10 53943.962 55067.908 2.081 54019.570 0.141 55114.819 2.151 54034.985 0.180
10 20 98731.447 100432.899 1.710 99116.154 0.407 100587.218 1.857 99022.914 0.298
15 2 18628.113 18968.050 1.798 18732.248 0.565 18958.325 1.754 18819.655 1.015
15 5 43253.615 44324.220 2.494 43325.129 0.174 44268.685 2.381 43416.154 0.393
15 10 75215.521 77090.704 2.488 75648.411 0.556 77170.600 2.581 75667.356 0.596
15 20 139988.391 142683.498 1.916 140496.048 0.353 142720.286 1.949 140481.886 0.339
20 2 25754.094 26255.813 1.981 25897.427 0.584 26234.195 1.891 26025.904 1.070
20 5 53797.160 55212.357 2.618 53938.933 0.273 55249.351 2.688 54102.808 0.572
20 10 101187.069 103972.650 2.752 101715.555 0.530 103915.201 2.684 101785.109 0.595
20 20 179560.039 183853.265 2.433 180249.784 0.402 184245.565 2.638 180325.990 0.428

Avg. 2.010 0.408 2.036 0.510
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heuristic proposed in the literature in a larger testbed and found signi�cant di�erences in their

performance, in contrast with existing studies. We also found that the deterministic counterpart

of the most e�cient heuristic for the stochastic problem performs extremely well for most set-

tings, which indicates that (at least within the limitations of our study), a practical way to solve

the Fm|prmu|E[Cmax] is to simplify it to its deterministic version.

Several issues lie ahead as future research lines. First of all, the computational analysis can be

enhanced by introducing di�erent families of distribution, higher coe�cients of variation for the

lognormal distribution, and bigger problem instances. However, it is to note that some families of

distributions widely applied in theory due to their good properties (such as e.g. the exponential)

do not match well with the processing times distributions found in practice. Analogously, very

large coe�cient of variations are not the norm in industry, as discussed before. Finally, there are

severe computational limitations for using bigger testbeds, as the experiments carried out in this

paper already amount for weeks of CPU time.

A more fruitful research line may be to check whether the results obtained by the best stochas-

tic heuristic (SNEH) is close to the optimal values, or not. Although this neccessarily has to be

done for small instances, it would be interesting to con�rm the results by Baker and Altheimer

(2012), who indicate that SNEH obtains close-to-optimal solutions. If this was not the case,

ground for new approximate solutions for the problem may be re-opened.
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