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Abstract. Information sources providing real-time status of physical
objects have drastically increased in recent times. So far, research in
business process monitoring has mainly focused on checking the comple-
tion of tasks. However, the availability of real-time information allows
for a more detailed tracking of individual business tasks. This paper
describes a framework for controlling the safe execution of tasks and sig-
nalling possible misbehaviours at runtime. It outlines a real use case on
smart logistics and the preliminary results of its application.
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1 Introduction

Increasing availability of event data from mobile and sensor devices provides
various opportunities for improving business operations. Technologies such as
the Global Positioning System (GPS) or Radio-Frequency Identification (RFID)
have been designed to provide for a better geographical traceability of vehicles
and physical objects. The generated data can be integrated with information
systems to support process monitoring, and with other knowledge repositories
to support decision making. In this line, Business Process Management Systems
(BPMSs) can be extended from reactive towards predictive process execution.

Although some approaches contribute to the conceptual integration of event
processing and processes at design time [1, 10, 11] and alerting at run time when
undesired behaviours occur [15], only a few aim to leverage the predictive capa-
bilities associated with event processing [18]. Moreover, these are restricted to
events stemming directly from the execution within the BPMS, missing misbe-
haviour patterns on the level of singular tasks associated with external events.

In this paper, we address this research gap by developing a technique for
defining rich alert patterns associated with specific task types for predictive
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event monitoring in a BPMS. The feasibility of the framework is demonstrated
by the help of a prototypical implementation on the basis of a real scenario on
smart logistics with the task of transporting airfreight and alerting a diversion
of the flight, which sets the basis to use it in different application scenarios.

The paper is structured as follows. Section 2 uses the case of airfreight trans-
portation for identifying general challenges and requirements for a predictive
system. Section 3 introduces the framework architecture. Section 4 defines an
extension for task specifications in business processes, as basis for execution
monitoring and prediction. Section 5 details the usage of supervised learning for
realising predictive monitoring. Section 6 evaluates its feasibility. Section 7 dis-
cusses related work. Finally, Section 8 concludes the paper and envisions future
research.

2 Predictive Monitoring of Continuous Tasks in Processes

Monitoring has mainly focused on identifying when tasks start and end. However,
in various domains there are plenty of events recorded that can be utilised for the
monitoring of a singular task, e.g., the task in charge of the shipment of goods
in logistics chains. This type of tasks can be seen as continuous or dynamic, in
contrast to static tasks such as signing a document or loading a container onto
a truck. They require constant monitoring, as otherwise deviations from the
expected behaviour might be detected too late, with undesirable consequences.

Let us describe part of a multimodal transport chain defined in the context
of the EU-FP7 GET Service project. An aeroplane takes goods from the JFK
International Airport (USA) to Amsterdam Airport Schiphol (NL), where they
are transferred to a truck sent by a Logistics Service Provider (LSP) and trans-
ported to a destination in Utrecht (NL). The main goal of the LSP is to deliver
the goods on time, for which the connection point in Amsterdam is especially
critical. If the aeroplane has to divert and lands at a different airport (e.g., due to
a thunderstorm near Amsterdam), the LSP has to cancel (or re-route) the truck
that was sent to Schiphol, and in parallel reserve another vehicle to pick up the
cargo at the new location. In order for these corrective actions to be effective, it
is crucial that the LSP is aware of the aeroplane diversion as soon as possible,
which implies constantly monitoring the task in charge of air transport.

Thus, the monitoring of dynamic tasks has implications that can be described
in the form of challenges and, hence, requirements (RQ) for a predictive system:

RQ1 Define monitoring points and expected behaviour. The process model must
be configured before enactment to introduce not only the monitoring points, but
also the attributes to be considered, as well as the values desired for them.

RQ2 Capture and process the information required for monitoring. This infor-
mation comes from different event and data sources. For instance, in the previous
example, positioning information of the aeroplane can be obtained by connecting
to data providers such as Flighradar24 or Flightstats. In case of road transport,
it could be obtained from a GPS on-board device. In these cases, monitoring
needs information external to the BPMS.
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RQ3 Normalise the information captured. Relying on data sources implies that
the information may arrive in different formats. Consequently, it must be first
normalised in order to be jointly processed and generate valuable information.

RQ4 Process event and data information. Then, all the data must be processed
and computed against the desired values configured in the executable model.

RQ5 Identify and notify problems. It is necessary to learn how to identify prob-
lems or abnormal behaviour as soon as they occur, and trigger proper alerts. Such
an alerting mechanism can range from a yes/no notification indicating whether
the behaviour is acceptable or not, to the detection of degrees of deviations, or
root-cause analysis providing details of the problem.

RQ6 Develop automatic support. Support to deal with the previous challenges
must be implemented and integrated into existing BPMSs.

3 Framework

Next, we describe the main components of a framework to monitor task execution
and signal potential misbehaviours, addressing the aforementioned requirements.
First, in a modelling tool, processes are modelled and tasks are annotated with
predefined monitorable attributes (RQ1). Our approach for task annotation is
described in Section 4. Second, a process engine calls external services to exe-
cute certain types of tasks, thus capturing the required data published by these
sources (RQ2). This is available in engines such as Activiti. Third, a Complex
Event Processing (CEP) system [10] is responsible for normalising events from
different event sources, aggregating them to meaningful business events, and
correlating them to task instances (RQ3). It must be capable of computing exe-
cution information against the specification set in the process model, too (RQ4),
e.g., [3]. Fourth, a deviation prediction system aims at evaluating whether the
task execution evolves as expected or deviates, and at informing proper partic-
ipants (RQ5). Our approach to deal with this issue is explained in Section 5.
The implementation of such a framework leads to the fulfilment of RQ6.

4 Definition of Monitorable tasks

In order to enable monitoring (RQ1), we propose to extend each task that needs
to be monitored in a process model (hereinafter referred to as monitorable tasks)
with a list of data attributes T = Tc ∪ Tm ∪ Tf divided into three groups: (i)
constrained attributes Tc, for which each attribute tc has an expected initial t̄Ic
and final t̄Fc parameter, along with a threshold α; (ii) monitored attributes Tm,
for which neither an initial nor a final parameter is meant to be provided, yet
are monitored; and (iii) free attributes Tf , not monitored.

Constrained attributes are a subclass of monitored attributes, which are a
specialisation of free attributes. Constrained attributes and monitored attributes
can be continuously monitored if and only if they belong to numeric types, or
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tuples of numeric types. In the latter case, the tuples must specify points that
belong to an Euclidean space, e.g., longitude-latitude pairs. If the aforementioned
conditions do not hold, continuous monitoring cannot be guaranteed. However,
the initial and final parameters of constrained attributes can be confronted with
the actual values, at the beginning and the end of the execution. We assume that
the event sources (resp. external services) and their definition of event types are
known. For instance, we know which values of an event indicate the position
(e.g., longitude and latitude) and can use those to define rules.

5 Predictive Monitoring as a Classification Problem

Monitoring the execution of a task and checking its correct evolution corresponds
to searching for possible anomalies in its behaviour. The current status of the
execution is derived from the analysis of the task-related events. The gathered
data are thus classified as safe or anomalous, i.e., whether they possibly lead to a
successful completion or not. Such classification is based on a supervised learning
model. To this extent, our approach adopts Support Vector Machines (SVMs).

SVMs [19, 7] classify an input object on the basis of its position in a numeric
hyperspace. The hyperspace dimensions depend on the objects’ features that
the analyst specifies as relevant for the classification. A decision hyperplane is
adopted by SVMs to separate the hyperspace into two regions, thus dividing the
objects into the classes to be assigned. SVMs are supervised learning models in
that they learn how to define the decision hyperplane on the basis of previous
data. The objective of the SVM is therefore to determine the decision hyperplane
which is capable of correctly classifying an input object. The learning phase of
the SVM is conducted on the basis of labelled input, i.e., a set of input objects
that were already classified in advance. SVMs build the hyperplane according
to specific parameters, defining the degree of acceptance of outliers (ν) and how
fitting the hyperplane has to be with respect to the pre-classified objects (γ).
The learning phase is thus associated with an evaluation phase, where the SVM
is trained using different combinations of such parameters (grid search). The
best tuning is calibrated on the basis of key factors that the analyst decides.

The training phase of SVMs is usually the most expensive in terms of com-
putational effort, whereas the run-time classification is known to be fast. This
is due to the compact representation of the hyperplane by means of its so-called
support vectors, which are typically sparse. In fact, we opted for SVMs be-
cause not only are they a widely used tool for classification problems explicitly
addressing the anomaly detection, but they also allow for a fast classification
at run-time, which is a key factor in our scenario (RQ5). In our approach, a
different specialised classifier is adopted for each monitorable task template.

5.1 Event Dynamic Feature Extraction

Our input objects for the classification are events and the evolution of a task
execution is reflected in the history of events. SVMs classify single objects in
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a fixed-dimension space. Therefore, we adopted the following sub-sampling ap-
proach, aiming at representing the evolution of every monitored attribute as a
scalar dimensionless value. In particular, this value corresponds to a normalised
variation along a time interval. Each value represents one coordinate of the point
in the feature hyperspace. The number of dimensions is thus fixed. Hence, the
resulting point represents the dynamic change, and can be processed by the clas-
sifier, thus bridging the static analysis of single points in a feature space and the
dynamicity of the task execution environment.

Let τ and τ ′ be two points in time, where τ ′ > τ , and tc(τ) (resp. tm(τ)) the
current value at time τ of a constrained attribute (resp. a monitored attribute).
τ and τ ′ define an interval Iτ > 0 during which the events are collected: τ ′ =
τ+Iτ . We define a new variable for monitored attribute, named interval progress
(∆PB

tm), as follows:

∆PB
tm =

∆ (tm(τ), tm(τ ′))

avg {tm(τ), . . . , tm(τ ′)}

The feature representing the rate of change of the monitored attribute is com-
puted in terms of the increment during the time interval, ∆ (tm(τ), tm(τ ′)),
scaled by the average value during the interval, avg {tm(τ), . . . , tm(τ ′)}. We spec-
ify here that ∆(·, ·) abstracts from the calculations needed to compute it. In the
simplest case, it merely represents the subtraction between the passed values.
Note, however, if the variables refer, e.g., to geographic coordinates, the incre-
ment has to be computed as a geodesic distance.

Constrained attributes are provided with initial and final values. The mon-
itoring can thus be done on the basis of two more increments, with respect to
(i) the final value, ∆

(
t̄Fc , tc(·)

)
, and (ii) the initial value, ∆

(
t̄Ic , tc(·)

)
. Therefore,

we define two new variables for constrained attributes, named progress from start

(∆P |Btc ) and progress to end (∆PB|
tc ), as follows:

∆P |Btc =
∆

(
t̄Fc , tc(τ

′)
)
−∆

(
t̄Fc , tc(τ)

)
∆ (t̄Ic , t̄

F
c )

∆PB|
tc =

∆
(
t̄Ic , tc(τ

′)
)
−∆

(
t̄Ic , tc(τ)

)
∆ (t̄Ic , t̄

F
c )

This reflects a perspective on the entire execution, as opposed to the interval
progress, which considers an interval-focused view. The classification is hence
made after events have been collected for Iτ time units. As a consequence, the
anomaly refers to a single interval in time, whereas our approach aims at sig-
nalling whether the whole task is going to be disrupted. Consequently, there
could be the need to wait more than one anomaly detection, before raising an
alert. We indicate the number of consecutive anomaly detections as r.

The approach described so far covers not only the evolution of values for
which a constraint was imposed at design time, but also for unconstrained mon-
itorable attributes. This results in a more comprehensive observation of the
evolution of task enactment.
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5.2 Training the Classifier

Training data are gathered in our approach from a repository of event logs, in
the form of stored sequences of events. Logs are pre-labelled as compliant or non-
compliant according to the initial and final values for the constrained attributes:
if and only if they are within the specified threshold for the activity, logs are
considered as compliant.

The training of the SVM must be done not only based on its own parameters
(ν and γ), but also with regards to the interval length Iτ and the number of
sequential anomaly detections to accumulate before raising an alert, r. Section 6
exemplifies this joint training with a real use case.

As said, the objective of the training phase is to find the best tuning of
parameters, in order to attain the best performance. In our case, the key drivers
are accuracy and time-to-predict. Accuracy is assessed by Precision P = tp

tp+fp ,

Recall R = tp
tp+fn and F-score F = 2 · P·RP+R [14]. Respectively, true positives (tp)

and false positives (fp) represent correct and incorrect classifications for tasks
that are not respecting the constraints; true negatives (tn) and false negatives
(fn) represent correct and incorrect classifications for tasks that are completing
their execution according to the expected behaviour. Precision indicates the
fraction of predicted anomalies that belong to the log of a misbehaving task.
Recall denotes the fraction of misbehaviours that is classified as such. Finally,
F-score is the harmonic mean of Precision and Recall measures. The time-to-
predict (the second key driver in our approach), is computed as Iτ · r.

6 Evaluation

To study the effectiveness of our approach, we consider a real case study based
on the monitorable task of airfreight transportation, as the one described in Sec-
tion 2. In particular, we focus on alerting diversions, i.e., the signal to be raised
when the aeroplane is going to land in an unplanned airport. This translates to
the condition of violating the final coordinates of aeroplane coordinates, having
the aeroplane position outside the landing airport.

In order to train the classifier, we collected 119 logs of events reporting flight
data in the U.S. during May 2013 (98 regular flights, 21 diverted). Data were
gathered from Flightstats, a data provider for air traffic information. Specifically,
we automatically labelled as anomalous those traces ending in positions far from
the expected destination. The remaining were compliant to the execution. The
constrained attributes were aeroplane position (geographical coordinates), and
the monitored attributes were the aeroplane altitude and aeroplane speed. There-
fore, the classification was based on: (i) change rates in gained distance from the
take-off airport (progress from start) and to the landing airport (progress to
end), and (ii) interval-variations in (a) covered distance, (b) speed, and (c) alti-
tude (interval progress) For the implementation, we adopted Esper as the CEP
system and the Scikit-learn Python library’s SVM as the automated classifier.

We performed a grid search in order to optimise the parameters described
in Section 5. The ranges for parameter tuning were: (i) Iτ ∈ {3, . . . , 30} min;
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(ii) r ∈ {1, . . . , 15}; (iii) ν ∈ {0.01, . . . , 0.25}; (iv) γ ∈ {2−10, 2−9, . . . , 23}. The
best combination turned out to be based on 7-minute-long intervals, with 3
consecutive anomalies considered as eligible for an alert. The best performing ν
and γ parameters, in this configuration, were resp. 0.01 and 0.5. Remarkably,
the most accurate tuning was also among the most rapid in terms of time to
predict (21 minutes). Test data consisted of 192 logs from Flightstats differing
from the training set (170 regular flights, 22 diverted). The best F-score was
obtained again with the 7-minute-long-intervals configuration: 87.8%.

The advantage for the process stakeholders is reflected by the possibility to
be aware of a possible process disruption ahead of time. As explained in Sec-
tion 2, this leads to increased possibilities to recover the process and, possibly,
to tangible savings. Therefore, we analysed (i) the difference in time between
the planned arrival and the diversion alert raising, and (ii) the difference in time
between the actual landing (in an unexpected location) and the alert raising.
These measures assess the time gained by the LSP to reorganise the road trans-
port, originally assigned to pick up cargo at the planned arrival airport. The
response time gained for the predicted diversions, indicates that the approach
is on average able to raise an alert 104 minutes before the originally scheduled
landing time, and 64 minutes before the actual landing time. This is a significant
gain in comparison to the case where LSPs have to wait for a notification of the
diversion, which sometimes occurs up to two hours past the actual landing time.

7 Related Work

To the best of our knowledge, there is not any framework for predictive task
monitoring in business processes. However, some of the requirements described
in Section 2 have been (partially) addressed. Regarding RQ1, a set of patterns
describing relations and dependencies of events in processes that have to be
captured in process models to observe the overall process context have been in-
troduced [4]. Some approaches have also focused on the representation of CEP in
business processes [9, 11]. Continuous activities are typically defined in the logis-
tics domain [6, 12, 16]. The approaches dealing with process monitoring usually
aim at checking run-time compliance against rules [2, 5, 17, 20]. They capture
(RQ2) and process (RQ4) events related to the process, but external sources
are disregarded and, thus, RQ3 too. Unlike in our approach, rule violations are
detected and notified when they occur but predictive capabilities are missing
(RQ5). Further results in the application of CEP for Business Activity Mon-
itoring (BAM) [13, 8] present similar features as those related to compliance.
Consequently, the existing automatic support referred by RQ6 is partial.

8 Conclusion

In this paper, we presented a framework for monitoring the progress of task
execution and predicting potential problems. To implement such a framework,
an approach to configure monitorable tasks and a supervised learning model
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to detect behavioural deviations were introduced. Tests conducted on real data
showed evidence of accuracy and timeliness in the misbehaviour detection.

We aim to extend our evaluation using different task types and event informa-
tion, and to investigate the automatic definition and adjustment of the thresholds
for safe task execution to improve the classification and alerting mechanisms.
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