
International  Journal  of

Environmental Research

and Public Health

Article

Bad Air Can Also Kill: Residential Indoor Air
Quality and Pollutant Exposure Risk during the
COVID-19 Crisis

Samuel Domínguez-Amarillo 1 , Jesica Fernández-Agüera 1,* , Sonia Cesteros-García 2 and
Roberto Alonso González-Lezcano 2

1 Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior
de Arquitectura, Universidad de Sevilla, 41014 Sevilla, Spain; sdomin@us.es

2 Escuela Politécnica Superior, Universidad San Pablo-CEU, Montepríncipe Campus, Boadilla del Monte,
28668 Madrid, Spain; son.cesteros.ce@ceindo.ceu.es (S.C.-G.); rgonzalezcano@ceu.es (R.A.G.-L.)

* Correspondence: jfernandezaguera@us.es

Received: 10 July 2020; Accepted: 29 September 2020; Published: 30 September 2020
����������
�������

Abstract: During the first outbreak of the SARS-CoV-2 pandemic the population, focusing primarily
on the risk of infection, was generally inattentive to the quality of indoor air. Spain, and the city of
Madrid in particular, were among the world’s coronavirus hotspots. The country’s entire population
was subject to a 24/7 lockdown for 45 days. This paper describes a comparative longitudinal survey
of air quality in four types of housing in the city of Madrid before and during lockdown. The paper
analysed indoor temperatures and variations in CO2, 2.5 µm particulate matter (PM2.5) and total
volatile organic compound (TVOC) concentrations before and during lockdown. The mean daily
outdoor PM2.5 concentration declined from 11.04 µg/m3 before to 7.10 µg/m3 during lockdown.
Before lockdown the NO2 concentration values scored as ‘very good’ 46% of the time, compared to
90.9% during that period. Although the city’s outdoor air quality improved, during lockdown the
population’s exposure to indoor pollutants was generally more acute and prolonged. Due primarily
to concern over domestic energy savings, the lack of suitable ventilation and more intensive use
of cleaning products and disinfectants during the covid-19 crisis, indoor pollutant levels were
typically higher than compatible with healthy environments. Mean daily PM2.5 concentration rose by
approximately 12% and mean TVOC concentration by 37% to 559%. The paper also puts forward
a series of recommendations to improve indoor domestic environments in future pandemics and
spells out urgent action to be taken around indoor air quality (IAQ) in the event of total or partial
quarantining to protect residents from respiratory ailments and concomitantly enhanced susceptibility
to SARS-CoV-2, as identified by international medical research.

Keywords: indoor air quality; COVID 19; European; dwellings; buildings; TVOC; PM2.5;
CO2 concentration

1. Introduction

On 11 March 2020, the World Health Organization elevated the categorization of the public health
emergency caused by COVID-19 to an international pandemic [1]. Since the COVID-19 pandemic
began [2], after the first positive case detected in Spain on 30 January 2020, the number of cases
detected increased exponentially until the Spanish government approved a Royal Decree 463/2020 on
14 March, declaring a state of emergency for the management of the health crisis situation caused by
COVID-19 [3], forcing the closure of all non-essential economic activities, schools, and sports activities,
as well as a ban on travel in Spain. During the state of alarm, people were only allowed to travel on
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public roads to complete basic activities, with the obligation to stay at home for the rest of the time.
Figure 1 and Table 1 show the chronology of the different phases of the state of alarm in Spain.

Figure 1. Chronology and periods of the state of alarm in Spain in 2020.

Table 1. Chronology situation of the confinement in homes in Spain in 2020.

x Start Date Progression Order

Schools closed (SC) 9 March Madrid-region stopped
educational activities

Pandemic declaration 11 March World Health Organization
State of alarm 15 March Lockout Stay-at-home (SAH) order

1st extension period 30 March Total lockdown with stoppage of
any activity except essential sectors

Stay-at-home order
reinforced

2nd extension 10 April As initial stage Stay-at-home order

3rd extension 26 April As initial stage +
Children walks allowed (1 h/day) Stay-at-home order

2 May Confinement relief-measures for
general population Stay-at-home order

4 May Resumption (limited) of
commercial activities Onset of deconfinement

4th extension 10 May Deconfinement phases
5th extension 24 May Deconfinement phases
6th extension 7 June Deconfinement phases

21 June End of state of alarm

Given this situation, millions of Spanish citizens remained confined to their homes until the
beginning of the de-escalation phases. This confinement meant that the population, which previously
did not spend more than 60% of their daily time in the home, were now spending 100% of their time in
the home on a continual basis.

The city of Madrid was one of the countries hardest hit by the coronavirus, both in terms of the
number of people infected per million inhabitants and the total number of deaths. The mortality rate
in Spain was 54.73 deaths per 100,000 inhabitants; in Madrid it was 312 deaths per 100,000 inhabitants
on 5 May 2020 [4,5].

Figure 2 shows the mortality from all expected and observed causes in the community of Madrid
(blue shading represents the average evolution of the previous 10 years). Various studies on the
emotional impact of the coronavirus episode in the first days of confinement in Spain [6,7] explored the
relationship between a comprehensive set of lifestyles, sociodemographic variables, and personality
and mood variables during the early stages of quarantine. The presence of low tolerance to negative
emotions, neuroticism, and, to a lesser extent, friendliness, sleep quality, the presence of children,
and time spent surfing the Internet presented the strongest correlations with the population’s moods.
A similar study was conducted in Portugal, in which the lifestyle habits, anxiety levels, and basic
psychological needs (BPN) in Portuguese adults during the COVID-19 pandemic were characterized,
including a comparison between sex and age groups [8]. Other studied parameters of interest include
the population’s activity level and anxiety [9], and the relationship with addiction [10].
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Figure 2. Mortality from all expected and observed causes in the community of Madrid (blue shading
represents the average evolution of the previous 10 years).

The measures implemented by the governments of different countries have caused numerous
environmental impacts, some of which can be considered positive, such as the improvement in air and
water quality in urban areas, whereas others have been negative, such as the deterioration of the quality
of coastal effluents due to the elimination of sanitary supplies [11]. The improvement in air quality has
been particularly notable in large cities in China, where outdoor pollution levels (NO2 and PM2.5) have
decreased significantly during lockdown [12,13]. In European cities like Barcelona, NO2 concentrations
were reduced by half during the lockdown, PM decreased lower, and O3 concentrations increased
by around 50% [14]. PM2.5 deterioration of air quality may lead to various kinds of pulmonary and
cardiovascular diseases causing premature death [15]. In addition, there are several studies that
indicate cities with poorer outdoor air quality have had a higher death rate in those affected by
COVID-19 [16–20].

The reduction in environmental pollution in cities is a positive aspect for their inhabitants,
which can contribute to improving living conditions during confinement by allowing for healthier
ventilation. During this period, most of the population has been exclusively confined to their homes,
so they were exposed to the same indoor atmosphere almost 100% of the time. In many cases,
these homes are not entirely suitable for intensive use, with little interior space in relation to the number
of inhabitants and, on many occasions, without adequate systems for thermal comfort, ventilation,
and indoor air renewal [21–23].

Although the most common type of housing in Europe is single-family, this situation is different
in Southern Europe, where collective residential apartment buildings predominate [24], especially in
social housing [25] and in the larger proportion of social housing in the current general housing
stock [26,27]. Although with regional variations, the architecture and construction of multi-family
buildings are similar throughout the area [28], differing from the usual solutions in central and northern
European countries. Many of these architectural solutions are a legacy of the residential construction
boom of the 1960s and 1970s [26,28]. These southern European inhabitants also share cultural and
social similarities both in the way people live in their homes and in managing their ventilation, heating
and cooling system [21,29,30].

Household users are exposed to several pollutants. There are numerous source of pollution
produced by the occupants and their activities, by the furniture and building materials, by technical
defects, the presence of humidity or dirt, and, in particular, the use of chemicals (cleaning, hygiene,
and personal care products) as well as tobacco smoke in smokers’ homes [31–34]. Pollution from
outside such as pollen, dust, and industrial and traffic pollution must also be considered. Through a
review of the literature, Lozano and Siegel provided evidence for most of the countries studied of the
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prevalence of poor environmental quality conditions along with a lack of thermal comfort in social
housing units [35].

There are numerous studies on indoor quality and sick building syndromes, especially in cold
countries [36–41], but studies in temperate areas of Southern Europe are limited, with some studies
in operational housing conditions [42–47]. Studies of the indoor air quality in homes during the
COVID 19 lockdown are also limited, although some studies point to household cleaning products as a
particularly relevant source of indoor pollution. Many people may be cleaned more frequently and
with stronger disinfectants to reduce the potential of viral infection. Efforts to make homes airtight to
improve energy efficiency have created buildings with reduced outdoor ventilation rates resulting in
the buildup of indoor pollutants to harmful levels that would be otherwise unacceptable outdoors [48].

The aim of this study was to determine the impact of COVID-19-related confinement on the indoor
air quality of dwellings in Madrid. The concentrations of CO2, PM2.5, and TVOCs were measured over
time before and during lockdown in relation to the thermal-physical parameters of indoor air quality
to identify health risks of the occupants due to this continuous exposure and the alteration of the usual
cycles in the dwellings.

2. Materials and Methods

2.1. Sampling

Madrid is the capital of Spain. The population of the city is about 3,182,981, although if the floating
population and the metropolitan area are considered, this number exceeds 6,685,471 inhabitants [49].
Located at 40◦41′ and an altitude of 659 m above sea level, its climate is characterized by a transition
between the cold semi-arid (Köppen BSk) and the Mediterranean (Csa), with an average annual
temperature of 15 ◦C. Winters are moderately cold, with average temperatures in the coldest month
(January) of around 6 ◦C. Summers are hot, with the average temperature exceeding 25 ◦C in July,
with average maximum temperatures of between 32 and 33.5 ◦C.

The daily temperature oscillation is significant in the city periphery (around ∆t 13 K), but is less
so in the city urban area (daily ∆t goes usually below 10 K). The annual thermal amplitude is also
high: between 19 and 20 ◦C. This climatic context traditionally favored the use as naturally-ventilated
houses promoting a semi-open state with most windows open for a significant portion of the year,
a trend that is declining in the southern European cities due to outdoor pollution and other factors,
such as noise and behavioral pattern changes. This situation makes the area especially relevant as a
typical situation for analyzing the behavior of the household stock, which shared many building and
behavioral characteristics with other southern European urban agglomerations during the pandemic.
The most widespread residential buildings are multi-family dwellings, either in linear or H-shaped
blocks [50].

For this work, four case studies representative of the typical legacy social housing in the city,
were selected for monitoring their environmental conditions under actual operational conditions before
and during the state of confinement. Figure 3 shows the case study typologies. The typical construction
of these buildings—mainly brick masonry and reinforced concrete—results in very compartmentalized
housing units, with the apartments as unitary volume units. Generally, the buildings lack common
elements that allow air communication between units (there are typically no chimneys, or common
ventilation ducts). Previously conducted assessments [51] showed that the air leakage ratios to adjacent
units did not exceed 4% of the air flow (tests at 50 Pa pressurization). For practical purposes, it is
possible to consider the apartment units as independent from each other.

The selected case studies represent the typical legacy social housing in the city plus one
contemporary development. Different profiles of occupants with enough representativeness of
the structure of the use of national dwellings were selected. The case studies were selected due to the
characteristics of the building and the family composition, to provide a sample of the most common
types of families: from a single adult living alone (CS3), which represents 25.3% of the population of
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Spain between the elderly and under 65s living alone, a couple with one child (21%), a couple with
two children (17.6%), and a couple with two children and a dependent elderly person (5.7% of Spain’s
total but growing quickly).

Figure 3. Case study typologies.

The example selection was developed from the INFILES National R&D Project (on residential
buildings infiltration national assessment) [52,53], due to the representativeness of national housing
(the prototypical characteristics, both in morphology and construction and equipment). The daily
hours of occupation refer to the average occupation of each one of the groups of inhabitants before
the stay-at-home order—business as usual occupation—and when the lockdown period was in force
(figures in brackets) when the inhabitants mostly remained at home (apart from essential workers,
the population could only leave home to make quick purchases of basic items) almost continuously
until the beginning of the deconfinement.

2.2. Monitoring

The monitoring period ran from 1 February to 30 April 2020. Indoor data (thermal and pollutants) were
recorded at an interval of 15 min using electronic sensors and a data logger system. Detailed information
on the characteristics of the measurement equipment is in Appendix A. Thermal ambient monitoring
was conducted in accordance with ISO7726:1998 specifications (ISO/TC 159/SC 5, 1998), both in terms
of the instrumentation and methods [42]. The system was in continuous operation during both time
periods. The outdoor environmental data were provided by the Air Quality Service of Madrid Council
(Station 28,079,007 of the Air Quality network). The outdoor air quality station was particularly
representative both for its location, barycentric to the cases in the urban center and for the reliability of
the measurements. The case studies were located around the station with distances ranging from 2 to
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4.33 km from it, all of which are located within the consolidated urban area of the city (not in the suburbs).
The variations with respect to other stations in the area were not very significant in general. The general
climate data were provided by the Spanish national meteorological office (AEMET) [54]. Portable reference
sensors were used to record periodic contrast measurements in situ to ensure the consistency and accuracy
of the measurements of the monitoring systems.

2.3. User Information Gathering

A survey was conducted on the housing equipment management and habits, which was
complemented by a telematic interview with home inhabitants. The survey asked about their
home profiles (number and schedules of inhabitants), the heating, air conditioning and hot water
systems provision and use, main appliances, as well as the use schedules before and during lockdown
(as shown in Table 2).

Table 2. Characteristics of the dwellings in the study sample (numbers in brackets represents any
changes during lockdown).

Case Study CS1 CS2 CS3 CS4

Year of construction 1954 1950 1950 2008
Floor area (m2) 78.5 74 73 90
Free Height (m) 2.93 2.74 2.8 2.7
No. bedrooms 3 3 1 3
No. bathrooms 2 2 1 2
No. Occupants 3 4 1 5

User profile Couple with
children

Couple with
children 1 adult

Couple with
children and
grandfather

Retrofitting Yes Yes Yes No
Hours per day in the

house-occupant 1
Weekday 12 (12) 20 (24) 12 (24) 12 (24)
Weekend 16 (24) 15 (24) 15 (24) 19 (24)

Hours per day in the
house-occupant 2

Weekday 16 (24) 20 (24) 12 (24)
Weekend 22 (24) 15 (24) 19 (24)

Hours per day in the
house-occupant 3

Weekday 12 (24) 20 (24) 10 (24)
Weekend 22 (24) 15 (24) 19 (24)

Hours per day in the
house-occupant 4

Weekday 14 (24) 10 (24)
Weekend 15 (24) 19 (24)

Hours per day in the
house-occupant 5

Weekday 19 (24)
Weekend 18 (24)

Heating system Central-heating Individual boiler Central-heating Individual boiler
Water radiator Water radiator Water radiator Water radiator

Cooling system Split XD unit in
all house

Split XD unit
(bedroom and
living room)

no portable
evaporative-cooler

n50 (h−1): airflow
leakage at 50 Pa

4.87 1.2 3.3 8.22

Smokers yes no no no
Gas stove no no no no

Domestic Hot Water
Boiler (indoor)

electric gas electric gas

Urban location
Downtown
residential

street

Residential street
with green areas

Close to a main
traffic route

and green areas
Residential street

The interviews were focused to study both the way the apartment was used and the user’s
personal perceptions of the habits. The inhabitants were asked regarding their habits before and during
confinement including alterations or perceived changes:

a) Household cleaning: cleaning habits, use of cleaners, disinfectants, product types changes, as well
as the use of air fresheners.

b) Voluntary ventilation (manual window operation): how they performed ventilation, window
opening times and frequency.
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c) Laundry: estimated washing frequency, hanging and ironing location and type.
d) Confinement management: home entrances and exits, the frequency and number of people and

special behaviors during confinement.
e) COVID hygienic special actions: entry/exit cycles procedure, disinfection processes, treatment of

purchased products, etc.
f) Tobacco: smokers in the house, daily consumption, smoking place, and related habits.

3. Results

3.1. Exterior Ambient Quality

As the general purpose of this study was the longitudinal analysis before/after the homes under
study due to the need to keep its occupants in them 24/7 and the effects that this process produced
on the interior atmosphere. The analysis of the current situation was conducted to gather a general
knowledge of the boundary conditions of the homes beforehand and during confinement. While a
specific analysis of the evolution of the city atmospheric quality in this period requires a specific and
detailed analysis work, which is out of the scope of this work, it is of interest to have a general overview
of the outdoor situation in both the prior period and during the main period of confinement.

In general, the emergence of COVID-19 significantly influenced the emission of atmospheric
pollutants, especially those linked to road traffic. According to information from the Madrid City
Council, the closure of schools caused a drop in traffic of around 8.5%. The subsequent confinement,
in which work activity was allowed, produced a significant decrease in traffic intensity, which was
between 66% and 70% of a working day equivalent. This was somewhat more noticeable on the
weekends, where it reached a reduction of up to 78% reduction. The period of limiting activity to
the strictly essential, however, had less of an impact, with an additional drop of only 6% in vehicle
movement over the previous week [55].

The external environmental situation of the urban environment significantly improved in all
indices, mainly due to the drastic reduction in road traffic and public transport. However, the heating
systems of the city buildings (mainly RSI: residential and services buildings) remained a significant
source of pollution at the urban level—the average second source of pollution of the city with around
one-third of the NOx and PM contributions [56].

Those systems maintained a base level of the most common external pollutants, in particular
in the most intense phase of confinement at the end of March and beginning of April when the
outdoor temperatures were the lowest of the period, which was fundamentally reflected in the NOx
and PM as can be seen in Figures 4 and 5, although with an oscillating profile closely linked to the
weather conditions.

Figure 4 shows the concentrations of PM2,5 and PM10, outside in Madrid before and during home
confinement. Figure 5 shows the concentrations of NO, NO2, and NOx, outside in Madrid before and
during home confinement.

For a general characterization of the city’s atmosphere, we can select, as the main indicators,
the PM and NO2 values as key parameters of the Air Quality Index (AQI) National System [57],
which provides continuous information to the citizens on environmental quality.

In general, the situation of particulate matter in the period analyzed was acceptable to good for
the usual standards. There was an average PM2.5 daily mean of 11.04 µg/m3 in the pre-confinement
situation—an AQ index of good (11–20 µg/m3)—with only some days rising up to 24 µg—a regular AQI
(21–25 µg/m3). This situation evolved to a significant reduction during the main period of confinement,
with the average of the daily means set to 7.10 µg/m3—an AQI of very good (0–10 µg/m3)—with only a
few days (8.88%) rising above 10 g/m3 (maximum of 13 µg/m3), which is a very suitable condition with
a reduced presence of fine particulate matter in the city environment. With regard to the value of PM10,
the influence on the period was even smaller with most days located in very good ranges—an AQI of
very good (0–20 µg/m3) and only a few days prior to confinement with values up to 32 µg/m3.
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Figure 4. Concentrations of PM2.5 and PM10 outside in Madrid before and during home confinement.
(Source Sistema Integral de Calidad del Aire de Madrid).

Figure 5. Concentrations of NO, NO2, and NOX outside in Madrid before and during confinement.
(Source Sistema Integral de Calidad del Aire de Madrid).

The overall situation regarding NO2 was similar, with an initial stage at acceptable values for the
typical city period, with average hourly values usually in the very good band (46.73% of the period) or
good (51.79%)—the AQ Index ranged from 0–40 and 41 to 100 µg/m3 with 1.49% of the hours above
100 µg/m3 but not surpassing the 110 µg/m3 value, and far from the limit of 200 µg/m3 set by European
legislation [6] as the health limit value.
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During confinement, the situation evolved to very good in a generalized way (AQI 0-40 µg/m3)
with the 90.93% of the hours within this range and only 9.07% in good condition. The peak value was
64 µg/m3. With regard to NOx, while this were not included in the city’s air quality indicator system
and there is no regulatory limitation for their values, it is equally of interest to comment on their values
during both periods. Prior to confinement, as in the NO2 case, their values were typically relatively
contained with an average hourly average of 66.46 µg/m3 without reaching the alert threshold situation
(average hourly concentrations of more than 400 µg/m3 maintained for 3 h), with only two point short
peaks reaching 320 µg/m3.

In the confinement phase, these values became quite small with an average hourly average of
25.77 µg/m3 and a maximum peak of 89 µg/m3, far from the alert thresholds. Although the indoor
direct effects of these species are not included in this work, an analysis was performed to verify that no
special or singular situations occurred in the outdoor atmosphere that could have generated anomalies
in the previous periods or during confinement. The average values tended to decrease as the month
of April progressed, and the outdoor temperatures rose, which, with the traffic contained by the
restrictions, is linked with a reduction of the heating uses.

As complementary information, the tropospheric urban ozone levels were low to very low, for both
periods, mostly due to the climatological conditions. An average 8-h mean of 41 µg/m3 prior to the
confinement and 57 µg/m3 in the lockdown time were measured, figures that are below the target value
for the protection of human health (120 µg/m3, eight-hour average) as in DIRECTIVE 2008/50/EC [58].
The atmosphere situation with regard to the ozone concentration allowed for the very good or good
classification (0–80/81–121 µg/m3 hourly mean) using the Air Quality Index of the city during both
periods, prior and during confinement, with all the hourly means under the 100 µg/m3 figure and
below the legal public information threshold (180 µg/m3 hourly). Therefore, for practical purposes and
in terms of longitudinal analysis (before/after) given these values, we considered that the presence of
tropospheric ozone was not very significant in the modification of the interior conditions of homes due
to confinement. In the case of having occurred during the summer, we would expect these figures to
be higher, given the city’s historical records.

3.2. Information from Users

Case study 1 has the only person who was active outside the home during confinement—being
considered an essential worker. In this case, while there was an increase in the working hours, they had
an irregular profile. Working-age adults in case studies 2, 3, and 4 maintained their activity during
confinement through telework, leading to an increase in the use time for computers and printers.

The routines of entering and leaving the home were severely restricted. In general, only one
person from each household was the one who habitually left. Except for case 1 in the work periods,
the rest were specific outings of very short duration for the acquisition of basic supplies or pet walks
(as established by the regulation of the alarm state). The rest of the inhabitants remained in the house
without leaving it during the entire period. The routine for entering and leaving the home is shown in
Table 3.

Table 3. Confinement home entry/exit routines.

Activity CS1 CS2 CS3 CS4

Work out-of-the-house daily (1 person) no no no
Telework no 2 people 1 person 2 people
Supplies daily (1 person) each 3 or 4 days daily each 3 or 4 days

Pet walking 3 times/day - - -

During confinement, all cases reported an increase in the time of use of television and other
electronic entertainment equipment (video consoles, tablets, audio systems, etc.). One of the most
significant aspects reported was the intensification of household cleaning, also affecting households
without regular exits/entrances.
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In all cases, the subjects indicated that their intensity and periodicity were increased. The types
of products used were generally scaled up, starting from the usual household cleaners with soap
and conventional detergents (most of them were aqueous solutions of surfactants). Disinfectants and
cleaners of greater power were also introduced. Such new additions are products, including sodium
hypochlorite and biocides (mainly PT2 as in BPR No 528/2012 [59], both in liquid agents and
aerosol—with/without propellent). Likewise, a widespread use of hydroalcoholic gels (PT1-BPR No.
528/2012) was also reported in all homes. These products were widely used for the disinfection or
treatment of not only housing surfaces but clothing, footwear and purchased products, including
food packaging.

There was an increase in the use of air fresheners, electric diffusers in case 1 and 2, as well as
aerosols in all others. This use was spurred by a feeling of inadequate odors due to the increased
periods at home. In case 1, it related both to the presence of pets (animal odors) and to the effects
associated with the presence of a regular smoker.

Although there was awareness of the inhabitants regarding a certain alteration in ventilation
hours, this did not result in actual modifications to the typical previous routines of each user (opening
time, number of windows, etc.) beyond the shift schedules—more by the alterations of other routines
than by deliberate decisions. Ventilation was not perceived as a key element either in the importance
nor the need for intensification. The main driver in the four cases for routine evolution was the arrival
of the spring weather—at the end of the confinement period.

Washing the clothes of people who remain confined suffered a significant decrease in frequency
and load, compared to the typical values [59]. On the contrary, the frequency of washing increased with
respect to people who leave the home, either to work (CS 1) or to those who did so for the acquisition
of supplies. The place for drying clothes and ironing remained the same in all homes before and
during confinement. Regarding drying, it was in all cases natural, without the use of a tumble dryer,
a very general practice nationwide in Spain [59]. In all cases it was exterior, either in facade hangers or
building wells.

During the lockdown, special routines were developed for entering the home: in all cases shoes
and clothing that had been taken outside were removed for disinfection when entering the home.
In cases 2 and 3—for supply acquisition—the clothes are washed immediately, like those used during
worktime for the CS 1 inhabitant. For CS 3, the clothes were aired daily using an outdoor patio as a
sanitation mechanism.

The CS1 worker, with a high exposure activity, reported that the only element that was implemented
at work for safety was the use of face mask. There was no type of locker or changing room or a
specific place to change work clothes or to sanitize them in the workplace, delegating this activity to
the home environment.

The user linked to outside work was also the only habitual smoker in the sample. However,
they reported that there was no smoking indoors but through a window to the exterior to avoid the
direct entry of smoke in the house. As for tobacco consumption habits during the lockdown, they were
reduced inside the home, transferring most of the smoking to their (extended) working hours.

3.3. Indoor Environmental Quality

3.3.1. Temperature and Relative Humidity

The month of March 2020 in Madrid was thermally usual, with average temperatures around
the typical values (average temperature of 11.4 ◦C and an anomaly of +0.2 ◦C), although there were
differences between the beginning of the month and the end: the highest temperatures occurred on
11 and 12 March (the days prior to the confinement), even exceeding 25.0 ◦C at some points, decreasing
toward the end of the month. The minimum occurred on 31 March with a value of 0.1 ◦C, this also
being the day of maximum rainfall. The month was, in general, very humid with rainfall above
the typical values (57.3 L/m2). The month of April, when most of the confinement was developed,
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and especially the severe restriction phase, began with low temperatures (minimum of 3.4 ◦C) reaching
the highest maximum temperatures around 25 April at 23.5 ◦C. In general, the month was warm
(average temperature of 13.8 ◦C and +0.9 ◦C of anomaly). Like the previous month, April was also very
humid (the sixth rainiest month of April in the 21st century with 16 days of precipitation including
storms) [60]. The period prior to confinement had an average outside temperature difference of +2.5 ◦C
with respect to this the confinement period.

The dwellings presented a certain heterogeneity in their air temperature values (Tables 4 and 5),
with the median temperature values in the period prior to the confinement being between 22.5 and
26 ◦C—these being more representative than the averages due to the presence of specific extreme
values. During confinement, the dwellings become warmer in general, above all due to continuous
human presence in the daytime hours, moving these central values to 23.1 to 26. ◦C, showing a range
between +0.2 to +0.6 K.

Table 4. Temperature statistics (◦C) before home confinement (lockdown). V.C., variation coefficient.

Case Average Median SD V.C Min Max Range Quartileinf Quartilesup

CS1 24.05 24.0 1.337 5.5603% 20.4 27.8 7.4 23.1 24.9
CS2 22.55 22.5 0.725 3.2148% 20.7 25.0 4.3 22.0 23.0
CS3 26.06 26.0 0.586 2.2479% 24.7 27.9 3.2 25.7 26.4
CS4 23.11 23.0 1.071 4.6347% 20.6 26.7 6.1 22.4 23.6

Table 5. Temperature statistics (◦C) during lockdown.

Case Average Median SD V.C. Min Max Range Quartileinf Quartilesup

CS1 24.24 24.4 1.295 5.3401% 20.0 26.8 6.8 23.5 25.2
CS2 23.05 23.1 0.805 3.4896% 21.2 25.8 4.6 22.5 23.6
CS3 26.20 26.3 0.735 2.8071% 23.9 28.1 4.2 25.8 26.7
CS4 23.20 23.2 1.069 4.6058% 19.4 25.9 6.5 22.5 24.0

ANOVA was performed with an F-ratio of 5675.66 (p-value < 0.05) to establish the statistically
significant difference between the averages of the eight variables. Using the Fisher’s least significant
difference (LSD) test, we established that the sample sets had significantly different means with a
5% confidence. Complementary tests were performed for the other statistics parameters and we
established the difference for all cases (p < 0.05).

Typical temperature values were higher than recommended by the national standards
(Energy performance of buildings directive EPBD national transposition call for a 17 to 20 ◦C profile
for winter and Heating Ventilation Air Conditioning HVAC regulation for a set-point of 21–23 ◦C) with
most averages being over this threshold for both periods (Figure 6).

These relatively high values standards expected may be associated with the low capacity of the
thermal envelope to moderate the thermal wave, since most of the samples were dwellings from the
1950s without thermal insulation and, therefore, have low radiant temperatures during the winter.
Therefore, high air temperatures must be used to achieve comfortable conditions, which becomes more
evident as the occupation of the dwellings increases. Lower temperatures were usually found in CS 4
despite the building having particularly sensitive inhabitants, such as children and an elderly person.

This contemporary dwelling was built under the requirements of the first transposition of the
EPBD and so had a greater insulating capacity of its makeup; therefore, a higher indoor radiant
temperature allowing a lower heating air-temperature was set to achieve comfort. The minimum
values remained high, around 20 ◦C, except in CS 3, which was somewhat higher. Based on its quartile
distribution (Figure 6), the dwellings were rarely below 21 ◦C, indicating that heating was continuously
used even during periods of ventilation and dwelling cleaning. This aspect, although indicative of a
maintenance of comfort, should be considered in terms of energy impact, especially during confinement
where the requirements increased.
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Figure 6. The temperature in the different case studies before and during the lockdown in Madrid.

All the houses kept the heating on in March, although with different patterns. CS1 is the dwelling
that had the heating switched for the most hours per day, a total of 12 h. Dwelling CS3 also had the
heating switched on continuously for nine hours, and both with fixed power regulation. In contrast,
in the other cases, the boiler operates intermittently with schedules programmed in CS4 and CS2
governed by a thermostat (Table 6).

Table 6. Operating hours of the heating systems of the case studies.

Hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

CS1 X X X X X X X X X X X X X
CS2 No schedule, thermostat control
CS3 X X X X X X X X X
CS4 X X X X X X X X X X X X X

Although the dwellings had a heating system with a continuous operation (from 24/24 to 9 h
a day), their control—when provided (CS 2 and 3)—and/or power sizing did not seem to provide a
moderately stable environment, introducing significant oscillations and a thermal evolution linked to
the external conditions, as shown in Figure 7. For verification, a correlation analysis was conducted
by applying the Pearson product-moment (Figure 8), in this case between the exterior and interior
temperature to evaluate the strength of the linear relationship between the variables. The p-value
was used to verify the statistical significance of the estimated correlations (in this case, correlations
significantly different from zero with a confidence level of 95.0% for all cases). CS3 had the weakest
relationship, being closest to stable thermal control, with a value of the coefficient of 0.24. Conversely,
dwelling CS4 was the most directly influenced by the evolution of the external temperature, with a
value of the coefficient of 0.78 in the correlation. This behavior may have been associated with the
highest permeability of the group (n50:8.2) with a somewhat high value in relation to the typical
values [52] with a higher outdoor air infiltration rate.

Because the weather was generally wet during this period, outdoor relative humidity (RH) values
were typically high, averaging between 58% and 67% before and during the confinement period,
respectively. However, the influence on the interior atmosphere of the different cases was not significant,
mainly due to the action of the heating systems. These keep indoor relative humidity in ranges typical
for heated spaces, around 40% RH. The greater temporal extension of the presence of occupants did
not seem to generate appreciable alterations. The pre- and during-confinement values only showed
a slight increase, but without a clear statistical significance when comparing the distribution pairs
(p-value > 0.05), contrary to the temperatures. This weak effect was also related to the increase in
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indoor temperatures, which compensates, at least in part, for the foreseeable increase in vapor pressure
due to the longer presence of occupants in the dwellings. Notably, the CS2 dwelling usually had high
interior humidity (between 55% and 78%), although this situation occurred both before and during
confinement, so the operation of the dwelling did not significantly change. This dwelling was the most
airtight, with a very low figure for a dwelling of this period (n50 1.2 r−1) [61]. In addition, it had one of
the lowest available living volumes, around 50 m3 per person. Both factors, together with reduced
ventilation, fundamentally oriented toward energy conservation, seem to be responsible for these
interior humidity values even with the operation of the heating. This aspect for CS2 was also present
in the average indoor values of the pollutants, as noted in the following sections.

Figure 7. Outside temperature vs. inside temperature in the case studies in Madrid. CS1 (blue), CS2
(red), CS3 (magenta), CS4 (green).

Figure 8. Pearson product-moment correlations in the Madrid case studies.

3.3.2. CO2 Concentration

Although CO2 is typically considered the main indoor pollutant index, its main role when
monitoring indoor environments is as an indicator of the effectiveness of ventilation and the renewal
capacity of the indoor atmosphere. In general, work on IAQ adopts CO2 concentration as an indicator
of actual ventilation rates [62–66] or as an index of indoor air quality [65,67]. Therefore, although it
is not considered a major indoor air pollutant, high levels of CO2, above 1000 ppm (corresponding
to a ventilation rate of approximately 8 L/s per person [68]), often indicate poor ventilation and the
presence of other pollutants. Adverse health effects are also associated with levels above 5000 ppm due
to oxygen displacement in the air [69], a situation not commonly found in homes. The main emission
agents are the occupants of the indoor environments, although the frequent use of open combustion
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equipment such as gas stoves, boilers, and Domestic Hot Water inside the home, especially in social
housing, should be considered.

In general, the dwellings started with an acceptable air renewal situation as the CO2 profiles
indicate, except for CS2. Typical values are usually below the threshold of 1000 ppm for those found
in dwellings of a similar type [42]. Median values ranged from 696.1 (single-occupant) to 844.3 ppm
(five-occupant). In dwelling 1, the presence of an usual smoker and pets resulted in an more conscious
awareness of ventilation, and frequent window opening, although not necessarily adequate or effective,
was reflected in the typical values: median of 783 ppm (σ: 225.95).

In dwelling 2, as identified in the analysis of relative humidity, the recorded values were much higher
than in the rest of the sample, indicating a limited renewal of the interior atmosphere. Under normal
operating conditions (outside of confinement), the dwelling had values well above the threshold
recommended by the World Health Organization (WHO) (Table 7), which were different from the rest of
the dwellings in the sample indicating poor ventilation routines, as was noticed in the previous section.

Table 7. CO2 concentrations (ppm) before lockdown.

Case Average Median SD Variation Coefficient Maximum

CS1 787.514 783.2 225.915 28.6871% 1480.5
CS2 2136.86 2159.2 897.478 42.0% 4641.7
CS3 731.063 696.1 215.695 29.5043% 1710.0
CS4 892.304 844.3 321.149 35.9909% 2576.5

The imposition of the stay-at-home order produced a significant modification of the indoor quality
of the dwellings, with a general rise of the indoor CO2 values in all cases (Figure 9 and Table 8).
This alteration affected both the central values, with an increase in the median concentration around
7% to 12%, altering the shape and position of the distribution. Although this increase was foreseeable,
given the increase in the time of occupation and permanence in the dwellings, it is especially indicative
of a worsening of the indoor air quality under these conditions. Voluntary ventilation appears not to
have adapted to these circumstances, either due to specific self-limitations or the absence of awareness
and behavioral changes by users.

Figure 9. Box and whisker graph of CO2 concentration for the case studies before and during the
lockdown in Madrid.
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Table 8. CO2 concentration (ppm) during lockdown.

Case Average Median SD Variation Coefficient Maximum

CS1 854.191 876.1 256.578 30.0375% 1717.0
CS2 2395.72 2308.5 999.038 41.7009% 5000.0
CS3 798.683 774.2 191.666 23.9978% 1497.5
CS4 960.49 923.75 279.717 29.1224% 2252.2

Figure 10 shows the quantile graph for indoor CO2 concentration. The reduction in density
occurred with an adequately ventilated atmosphere in the time analyzed, adopting the threshold
of 1000 ppm CO2 as an indicator. In general, this alteration was around 10% in three cases, with a
smaller increase for CS2, although its values were initially very low, going from a proportion of 0.12 to
0.08 for the threshold of 1000 ppm. This means that during confinement, ventilation in case 2 was
only adequate less than 10% of the time. In the rest of the cases, although the values were usually
better, the confinement situation worsened the ventilation, with the time of exposure increasing to
potentially inadequate atmospheres. Unlike the situation prior to lockdown, during confinement,
it can be assumed that the occupation of the dwelling was constant for the whole period, as opposed to
cycles of occupation/inoccupation typical of prior to lockdown.

Figure 10. Quantile graph for indoor CO2 concentration before and during the lockdown.

The temporal exposure is relevant, which can be represented by its cumulative distribution
(Figure 10). This shows the density of the frequency in which the interior atmosphere could be
considered adequately ventilated for each period—assuming 1000 ppm of CO2 as the threshold.
Confinement decreased the frequency in which the environments were below the threshold in all cases.
In general, this alteration was around 10 percentile points in the three cases, with a smaller jump in the
CS 2 case, although its frequency values were already initially low (decrease from a proportion of 0.12 to
0.08 for the 1000 ppm threshold). This can be interpreted as that, during confinement, the ventilation
in Case 2 was only adequate less than 8% of the hours.

In the rest of the cases, although the values were typically better, the confinement situation
worsened the ventilation, with an increase in the time of exposure to poorly suited atmospheres.
Unlike the previous situation, during the confinement, we assumed a constant home occupancy,
compared to the cycles of occupation/empty-house that are typical of the usual routine.
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3.3.3. PM2.5

Airborne particles are solid or liquid substances suspended in the air stream, and can include
dust, fumes, smoke, microorganisms, mists, and fogs [70]. These particles can vary widely in diameter,
with the most harmful in the domestic environment being respirable suspended particles (RSPs),
especially the fine inhalable particle fraction sized 2.5 µm or less (PM2.5) [71–74].

The World Health Organization (WHO) has established reference target values both for long-term
exposure concentration with annual means under 10 µg/m3 and short-term guidance for the 24 h
means recommended to be under 25 µg/m3 at the 99th percentile (3 days/year) [75]. The European
limit value for the annual average is higher at a 25 µg/m3 limit. The outdoor concentration of PM2.5 for
Madrid did not present significant variations between the initial period and the lockdown except for
specific peaks, with a daily average around 6 µg/m3, although some decrease was observed during the
reinforced lockdown (1st extension period).

Therefore, the external situation can be understood as relatively steady. These figures are also
typical for the city as it is one of the few European cities that consistently stays below the EU and
WHO recommendations [76]. However, there is a general consensus on the need to keep the levels
of exposure to PM2.5 as low as possible, as it has not been possible to establish a minimum safety
threshold without health effects, especially inside buildings [77–79]. The reduction of exposure has
especially positive effects on sensitive inhabitants, such as individuals with respiratory conditions,
the elderly or children [80,81]. Likewise, there appears to be evidence that exposure to PM of internal
origin is more aggressive in the respiratory effects than of external origin, with a greater capacity for
lung response [82,83]. As a reference, the typical mean residential indoor concentrations in Europe
range from 7 (Helsinki) to 21 µg/m3 (Athens) [84] and up to as high as those in Italy with 50 µg/m3 by
Gotschi et al. [85].

Although there are innumerable outdoor sources, there are also internal sources responsible for
the emission of particles, which can assume a special role in situations of high intensity use of indoor
spaces, such as during a confinement situation. One of the main sources of particles inside residential
buildings is cooking, as food preparation causes the emission of vapor, smokes, and aerosols [86,87]
and smoke and effluents can be released indoor if there is a lack of a suitable extraction system and by
indirect paths due to the possibility of gas-reentry through the infiltration airflow [88,89]. While not as
common in residential buildings as they are in offices and public buildings, the presence of printers may
also contribute to particle emissions—they are a significant VOC source [90]; however, due to the wide
spread of teleworking and tele-teaching during confinement, their presence increased significantly in
homes, as well as their use, so they must be taken into account in the analyses.

Another large contributor, which is increasing in homes today, is the use of cleaning agents [91,92],
as well as cosmetic and personal hygiene items (deodorants, hair sprays, etc.) [93]. Although these are
not typically taken into account, the use of electric air fresheners also has a high capacity for emitting
particles [94–96]. Since airborne particles are deposited on adjacent surfaces, one of the aspects with
the greatest influence on the increase in indoor particle concentrations is the re-suspension due to the
movement of the occupants. [88]. This happens very frequent and intensely in indoor environments with
regular movement and a low ratio between volume and inhabitants, such as is the case in homes [97,98].
In addition to the emissions caused by the cleaning products, the cleaning process itself, with surface
cleaning, sweeping, and other motions, has been identified as an activity responsible for the resuspension
of the particles and, therefore, of increased concentrations in the air [99].

In general, the indoor averages of both periods were higher than the city reference outdoor values,
as shown in (Figure 11). In the period prior to confinement, the dwellings showed an average between
the double (CS4) and triple (CS3) of those found outdoors. During confinement, the averages increased,
except in CS4, with central values more than three times the external ones. This issue highlights the
significant contribution of indoor sources of emissions, a situation that intensified during confinement.
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Figure 11. The average PM2.5 concentration and airflow leakage at 50 Pa (n50) for the case studies for
the period before and during the lockdown in Madrid.

The higher or lower air-permeability of the envelope did not appear to play a significant role in the
indoor PM2.5 concentrations through the fabric particle penetration process, as there were high levels
of concentration both in airtight homes (CS2) as in average permeability homes (CS 1). Nevertheless,
the less airtight dwelling (CS4)—beyond the stock average value [61]—was the one that typically had
the lowest PM2.5 concentrations. In this case, the airtight homes could benefit from greater air-dilution
through the base infiltration, which would contribute to maintaining greater control over the indoor
concentration when there are scenarios of limited indoor emissions unlike in CS1. These questions,
although require a more comprehensive and in-depth study, which shows a line of interest for future
work, and does seem to indicate the prevalence of internal source dynamics over external source
dynamics in this situation.

Adequate information on the evolution of particulate matter can be obtained through daily averages,
representative of short-term exposure. The representative values before and during confinement are
shown in Tables 9 and 10, represented by the medians and their associated statistics. The typical 24-h
average values were initially above 10, although some days had values rise to 57.72 µg/m3. In general,
as was more evident in cases 1 and 2, the inter-days variation was high, alternating days of low emissions
with higher ones, a situation linked to the routines of these households—regular and irregular cycles.

Table 9. The daily PM2.5 means (µg/m3) before lockdown.

Case Median SD Variation Coefficient Maximum

CS1 14.60 8.91 57.89% 57.72
CS2 12.84 12.21 72.90% 56.05
CS3 16.07 9.14 59.27% 41.43
CS4 10.63 4.77 42.66% 27.64

Table 10. The daily PM2.5 means (µg/m3) during lockdown.

Case Median SD Variation Coefficient Maximum

CS1 16.37 9.55 49.97% 60.89
CS2 15.47 14.16 74.10% 90.43
CS3 16.94 8.51 53.14 47.27
CS4 7.19 3.22 40.67% 16.73
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During lockdown, the previously identified values rise was identified in detail as a general
increase in the daily average values except for CS 4, with an increase of 12% to 20% in the daily intensity.
Likewise, the intra-day variability increased, with low and high emission cycles, reaching mean values
of 24 h as high as 90.43 for CS 2. This increase can be associated with two basic aspects: the increase in
cooking with regard to the previous conventional routine, which set the base values as is repeated in
24-h cycles, as well as by the intensification of domestic cleaning and housekeeping tasks with respect
to the normal situation, which was not developed daily but on separate days. Specific short-time
high-peak emissions events were identified in all the homes, although they were not representative
(values went up to 1000 µg/m3 in certain cases).

Although the period-means (prior/lockdown time) are referred to as a median-term exposure
(around 45 days for each set of measures) those figures are above the annual recommended target
for WHO. While a direct comparison is not possible, this may indicate a potential risk of exposure if
forecasted over time. Of greater interest is the comparison of the WHO limits for the 24-h averages
(25 µg/m3), which were exceeded for a significant number of days in each period.

In the normal situation, the percentage of days when this threshold was surpassed were: 4.65%,
16.6%, 53.3%, and 2.32% (for cases 1 to 4) and during the confinement these figures increased to 16.6%;
22.9%, and 5% for cases 1 to 3, and CS 4 did not exceed the values on any day in the period. As the
epidemiological evidence shows the adverse effects of PM are linked to both short-term and long-term
exposures [100]. In this case, the apartments started from an initial profile that was not good—in this
period, the actual exposure was lower as the occupation time was also shorter—that worsened during
confinement, increasing the risk for the occupants of the dwellings, against the short-term exposure
levels and related to the inhabitants—for instance, CS1 and CS2.

As indicated above, in the analysis of the temporal 24-h profile of particles emissions (PM2.5)
inside the homes, the peaks were associated with the periods of food preparation and daily cleaning,
and, as shown in Figure 12, the measures are represented in relation to their temporary presence during
the confinement period. Notably, in Southern Europe, the time for dinner is later than in Central
Europe, an aspect that seems to have intensified during the confinement period.

Figure 12. Hourly evolution of the PM2.5 of the case studies during the lockdown in Madrid.

3.3.4. TVOC

Along with particles, the most common species in the home environment are volatile carbon
compounds (VOCs), represented in this case by TVOCs. Nearly 900 VOCs have been identified in
the indoor environment [101], mainly related to interior furniture, finishes, and other construction
elements, such as paints, solvents, adhesives, carpets, fabrics, and textiles, but above all to the presence
of occupants in the dwelling and their activities, as well as the effect of increased turbulence in the
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indoor atmosphere caused by movement within the different enclosures (increasing the effect of mixing
the pollutants). In urban areas, there are also external sources of VOCs, particularly those related to
traffic as well as other combustion equipment. There is evidence that, in European residential and
service buildings, the VOC levels are typically higher indoors rather than outdoors—often several
times higher [102–104]. Likewise, the action of the outside environment, either through ventilation or
air permeability, will manifest in a greater or lesser dilution of this component indoors [105].

Exposure to high concentrations of VOCs in air can result in a variety of toxicological effects,
including fatigue, headaches, drowsiness, eye irritation, and many others [106,107]. However, the wide
variety of potential sources and compositions makes it impractical to measure concentrations of each
chemical individually. As such, the concept of total volatile organic compound (TVOC) attempts to
address this practical limitation by providing a simple measure of the aggregation of all VOCs without
distinguishing between individual chemicals. Although no unified regulation exists for exposure to
total VOCs within the home, some general thresholds can be assumed as a result of physiological
responses of and disturbances to the occupants. In the range of 120 to 1200 ppb, symptoms of
irritation and discomfort may begin to appear in some occupants. Above 12,000 ppb, this discomfort is
generalized, with different manifestations depending on the degree of sensitivity of the inhabitants
and the species present, with toxicity developing from 10,000 ppb [108]. As reference levels, <120 ppb
is considered a healthy environment or VOC-free and >1200 ppb is considered a risk environment
with intermediate figures assumed as acceptable but not a risk-free situation. These considerations are
general in nature and are highly variable depending on the type of VOC present in the atmosphere [109].

The typical average outdoor levels of TVOC for Madrid (urban center) fluctuated around 14 to
2.85 ppb, although there was a large time variability and weather condition dependency [56]. The most
representative species in the city atmosphere were toluene and benzene [14]. During the period prior
to confinement, the average daily concentration was Tol: 0.86 and Ben: 0.343 ppb (max. extreme day of
1.75/0.50 ppb). These concentrations shifted to a significant reduction during the period of confinement,
going down to a daily average of Tol: 0.146 and Ben: 0.085 ppb (extreme day of 0.39/0.188 ppb) for
the last 15 days from March to the end of April. Therefore, there was a significant drop in the VOC
outdoor air presence, both on average and extreme days, which may be associated mainly with the
drastic reduction of city traffic. This highlights that, during the confinement period, the influence of
the outer species, although present in the interior, were not the main drivers of the high interior levels
and the evolution observed between periods.

In the case of TVOCs, dwelling 1 was different from the rest as it had one smoker and, even if
smoking was not conducted directly in the home, this did present indirect effects that affected the
interior quality: the smoke residues on clothing, odors, etc. The high values usually found in this
dwelling necessitated conducting the study independently from the rest of the sample. Since relatively
high extreme values were found in all dwellings, although only occasionally, the value of the median
was more appropriate than the average for representing the behavior of the indoor environment, as
the latter is more affected by the presence of extreme values. Excluding CS 1, the medians, both prior
to and during confinement, were within the typical findings of similar contemporary dwellings [42],
although these were higher than desirable and far from healthy environments. The representative
values were within the acceptable label atmospheres, but their high variability, with a variation
coefficient of 38.5% to 93.89% for the pre-COVID period and 58.95% to 109.88% for the confinement,
indicates periods with high or very high levels of contaminant concentration that became more frequent
during confinement.

Tables 11 and 12 show, respectively, the statistical data on the concentration of TVOCs (ppb) before
and during lockdown.
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Table 11. Statistical data on the concentration of TVOCs (ppb) before lockdown.

Case Average Median SD Variation Coefficient Maximum 5% 95%

CS1 (*) 5550.11 1983 7982.31 143.82% 60.000 354 21,696
CS2 438.453 429.0 169.153 38.57% 2187.8 179 649
CS3 610.77 510.2 397.087 65.014% 5698.2 146 1.367
CS4 272.524 213.9 255.89 93.89% 3954.1 61.5 661

(*) presence of habitual smokers in the home.

Table 12. Statistical data on the concentration of TVOCs (ppb) during lockdown.

Case Average Median SD Variation Coefficient Maximum 5% 95%

CS1 (*) 15,285 11,090 12,939.9 84.65% 60,000 2.902 46,383
CS2 748.88 591.95 441.54 58.96% 7665.4 338.5 1583
CS3 471.61 401.4 518.22 109.88% 10,530.5 195 876
CS4 438.781 346.2 347.83 79.27% 3964.1 117 1190

(*) presence of habitual smokers in the home.

The frequency over time of the different concentration levels for each time period offers an
insight to the kind of exposure that each housing is presenting, which can be expressed through the
concentration level temporal percentile. In the normal use of homes (prior to confinement) the exposure
of users to high concentrations of VOCs was not very significant—except for case 1—and indoor
environments usually maintained an acceptable quality threshold of 1200 ppb (92.5 to 99.5 percentile)
(Figure 13), with dwelling 3 being somewhat more exposed. This home was also the one with the
highest peak values and width of the distribution—as well as the highest STD value (σ3: 397 ppb).

Figure 13. Box and whisker plot of the TVOC concentration for the case studies before and during the
COVID-19 lockdown in Madrid.

This can be associated to the profile with a single-inhabitant home and, therefore, the periods
of activity/non-activity showed more drastic differences and had a less smoothed profile than others.
However, only Case 4 presented significant good quality periods—considered VOC-free when under
120 ppb, with a percentile of 18% for this threshold. In the other situations (1 to 3), periods of low
concentration were unusual—with percentile values between 3.0 and 4.3. The periods of occupation
were not continuous, and the dwelling had several unoccupied hours.

However, during confinement, the usual concentration increased for dwellings 1, 2, and 4 (increases in
the median from 37% to 559%). Excepting Case 1, cases 2 and 4 maintained their central distribution
within the acceptable category despite the widening of their standard deviation (σ2: 441 and σ4: 347),
although this threshold did not assure risk-free and the exposure increased as the time spent at home did.
The time out of the over 1200 ppb threshold reduced in cases 2 and 4 (88% and 95%, respectively).

In Case 3, the opposite situation occurred, with a reduction in both the mean and the median
(–22%), although with a widening of the standard deviation and a particularly high extreme value
peak event. This highlights a changes in the indoor routines—less laundry, less use of cosmetic agents,
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and similar conditions, as described above—and the time below this threshold increased to 97% of the
time; therefore, extreme values occurred at very specific moments and for short periods primarily linked
to cleaning actions with higher values than before due to more intense actions but with less frequency.

Conversely, in all cases, the almost constant occupation of the dwelling caused the practical
non-existence of low periods of VOCs (TVOC < 120 ppb), a situation that can be observed in its
probability curves (Figure 14) and the general increase in the values for the 5% percentile.

Figure 14. Quantile graph of indoor TVOC concentration before and during the lockdown.

Dwelling 1, with smoking occupants, presented a unique case. VOC levels were usually high,
both prior to and during confinement. Its initial median concentration was 1983 ppb with an average
of 5500 ppb due to the presence of extreme values, and with a standard deviation much higher
than that found in other dwellings (σ1: 7982). This indicated both a large width of the central part
of the distribution as well as the presence of occasional situations of extraordinarily high values.
This dwelling, under a normal situation, usually had an atmosphere with a high presence of VOC’s,
being located most of the time within 354 to 21,696 ppb (5% and 95% percentiles), with very limited
periods of good quality atmospheres (<120 ppb, 1.7%; <1200 ppb, 39%). However, the temporary
presence of the occupants, with daily work cycles, to some extent reduced the exposure to these species.

During confinement, the concentration of TVOCs in CS1 increased in the medians, extreme values
(maximums), and 95% concentrations. The median increased by an order of magnitude of more than
five, raising the average above 15,000 ppb. The peak levels surpassed 60,000 ppb. This indicated a
very continuous presence of substances at dangerous levels for both short- and long-term exposures.
The imposition of confinement worsened the situation, as the hours indoors increased significantly,
with the occupants being at risk of almost continuous exposure. In contrast to the previous situation,
hours below 120 ppb were negligible (0.025%) and only 0.45% of the period was expected to have
TVOC levels below 1200 ppb.

Although smoking related effects were are usually the main factor responsible for indoor peak
emissions [110,111] concerning body and clothes residues, as reflected by the periods of activity in
the dwelling and the time profile, this caused secondary emissions. To neutralize tobacco odors,
in combination with the presence of domestic pets, electric air fresheners were used continuously,
generating a continuous emission of VOCs, responsible for the identified high background level as
informed by the inhabitants. This situation is compatible with the findings in [21,29,112,113], where the
daily clothes laundry of the worker also contributed to the emissions.

The analysis showed a statistically significant difference in the sample distributions between
the prior and lockdown situations (at a 95% confidence level) for the contrast tests (T, Mood,
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and Kolmogórov–Smirnov test K-S test) for each case (p > 0.05 in all cases). The data distribution
of each case period, especially those for the confined state, better fit the log-log-type distributions
compared with the normal.

4. Discussion

The sudden change from a presence in the home of between 12 and 15 h per day to practically
24 h/seven days a week (as inhabitants were not allowed to leave the home except for the purchase
of essential supplies and work activities for adults), caused an over-strain on the current dwellings,
many of them without the adequate capacity to manage this rise in use intensity or lacking the necessary
equipment [21,29].

The at-home confinement situation produced evident alterations in the environmental quality of
the dwellings. Starting from typical stock conditions for this type of home [42,114], the confinement
increased the exposure conditions, in most of the cases, and, when abnormal starting conditions
were present (as in CS1), they worsened. Although this situation was expected, the results should
arouse concern in most cases, with the identification of multi-factorial risk factors: VOC and PM
concentrations, ventilation strategies and effectiveness, continuous inhabitant presence, and a lack
of inhabitant awareness of IAQ as well as other aspects not yet identified but linked with ineffective
ventilation. This can affect inhabitants both with possible short- and long-term effects. The multifactorial
nature of the exposure and effects presents a scenario that should be considered, both for the analysis
of the impact on inhabitants and in anticipation of future confinement episodes for the next wave(s) of
this/these infection(s).

Notably, together with a significant increase in the sources of internal pollutants, the indoor
environmental quality conditions (IEQ) were far from desirable figures. Although the dwellings
generally had an acceptable air renewal under the usual standards (combination of infiltration and
voluntary ventilation), normal CO2 concentrations were below the WHO recommendation threshold,
with some exceptions. This does not seem sufficient to ensure the dilution of part of the indoor
pollutants (mainly TVOCs and PM) to healthy levels, especially when these are emitted in massive and
high frequency amounts.

The concentration of TVOCs in homes over time can be used as an indicator of the level of risk of
their environmental exposure. Over time, the alteration produced by the different stages of confinement
can be clearly identified. In all cases, we observed an evident change in the profile, although with a
certain time lag depending on the specific characteristics of each family unit, reflecting the different
situations that may have been experienced in the process.

Case 1 (Figure 15) was different, not only due to its very high emission values, as discussed above,
but also due to its own chronological development demonstrating the process experienced by many
households in the city. In the period prior to confinement (February), a level around 800–900 ppb
TVOCs with cyclical oscillations associated with use was observed. However, the deterioration of the
health situation prior to the declaration of the pandemic progressively led to an increased presence
in the home starting the weekend of 22 February. At this time, emissions started to trend upward
due to the increase in the intensity of use of the home, as well as a possible increase in cleaning
tasks. A milestone was noted on 9 March, when school activities were suspended and a preventive
confinement—at least partial for the family unit—created the situation that occurred during the entire
state of alarm. In this situation, the typical values of emissions were above 10,000 ppb with very wide
variations in concentration depending on the emission and ventilation cycles.

In this particular case (CS1), the concentration fluctuations during the confinement peak may have
been associated with the intensification of the working activity of a member of the family unit included
in the group of “essential workers” who worked during different times during the confinement.
The presence of a family member who leaves the home periodically necessitated the intensification of
cleaning procedures, personnel, goods, and clothing (more frequent washing of clothes), as well as the
incorporation of disinfectant agents more frequently than would be expected in a confinement situation.
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To this, the presence of the smoker inhabitant and the use of air fresheners and odor neutralizers
(electric diffusers and aerosols) must be added.

Figure 15. TVOC concentration temporal profiles (ppb) for previous operation (blue) and pandemic
declaration-time (red) for Cases (a) 1 (y-axis logarithmic), (b) 2, (c) 3, and (d) 4.

All these factors had a strong impact on a relatively airtight dwelling—thus, with lower background
dilution—siding with the fact that it was the home with the smallest volume per occupant, which
allowed concentrations to rise more than in other cases with a greater dilution reserve. Although,
conversely, the CO2 level was inside the acceptable threshold to WHO standards. This aspect can
highlight the need to review these figures, as well as the limitation in the isolated use of CO2 as an
index of environmental quality. In most of the situations, the use of other complementary parameters
will be needed. In several situations, the carbon dioxide levels within what has traditionally been
considered acceptable may mask the presence of other pollutants and risks. This situation has been
previously identified [115–119] and should be subject to future considerations.

It is of interest to observe the hourly profile of the concentrations and the great dependence on the
activity cycles of the dwelling, as well as those linked to the voluntary ventilation cycles. Taking case 1
as an example, it is possible to identify the impact on the environmental quality of the activity profiles.
In case 1, the emission profile was strongly influenced by the hours of rest, where a continuous base
level was maintained, but a slight nocturnal dissipation with actuation of the infiltration, until a
morning spike, was linked to the beginning of housing activity, with two valleys, preceding the peaks
during the central activity time of the day. The shift in values and the alteration of shape of the
distribution is clearly evident in Figure 16.
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Figure 16. Hourly median profile of TVOC (ppb) and CO2 (ppm) for CS1.

Figure 17 shows the process to which the dwellings were subjected during the lockdown.

Figure 17. At home lockdown cycle.
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Future confinement events can be expected related to subsequent waves of SARS-CoV-2—or
variants— [120–123] as well as new pandemic crises [124]. These stay-at-home orders could affect
the entire population again or be directed to specific sectors of the population, such as the elderly,
immunocompromised, or children [121,125,126], i.e., the more vulnerable parts of the population.
The rising in home-schooling can also increase the time spent at-home or in semi-confinement and,
therefore, extend the possible risks even without the application of confinement orders. Thus, there is
a need for residential IAQ improvement to answer to the new social challenges.

The climatology of the 1st wave period in the city allowed a restrained use of heating,
thus contributing to keeping city heating system emissions moderate. Along with the reduction of road
traffic, this resulted in a much better urban atmosphere than is typical. As expected, due to climatic
conditions the presence of tropospheric ozone (O3) in this same period had no meaningful impacts.

While the primary concerns regarding city outdoor pollutants are typically NO2/x and particulate
matter, and ozone during the warm season [56], city outdoor conditions were somehow acceptable
prior to the lockdown and were good when the lockdown was at full force. It, therefore, seems
possible to allocate a low influence from outdoor sources in the evolution of the home indoor situation
for comparison purposes, with the increase in internal emissions and the ventilation profiles being
primarily responsible for the changes.

Fine particulate matter, represented as PM2.5, showed evidence of comorbidity in SARS-2 cases,
with a relationship between the exposure to the pollutants and the exacerbation of symptoms and
increased risk of mortality in the case of contamination of COVID-19 viruses [127,128].

There are risks linked to future confinement episodes in more extreme weather periods. During the
coldest climate scenarios—colder than those suffered in this first COVID-19 emergency—the increased
use of heating systems, with the associated boiler pollutant emissions, can noticeably increase the
presence of pollutants in the city atmosphere. This situation can further aggravate the presence of
high atmospheric pressure events during the winter, thus, preventing the atmospheric dilution of
contaminants. In future confinements, the residential buildings may have poorer outdoor air to achieve
ventilation, resulting in a lower capacity to provide adequate indoor dilution of an often already
compromised indoor environment.

Cold periods can also have an impact in low performance buildings and in low-income population
groups, which very often coincide. The need for heat conservation and to save energy, particularly
in homes affected by energy poverty, can result in an even more significant restriction of voluntary
ventilation—the only system available to these houses.

5. Conclusions

The need for inhabitants to use heating temperatures above those usually recommended by
standards was identified during this period. This corresponded to the need to compensate for low
radiant temperatures due to the limited performance of their thermal building envelopes. In most
cases, the thermal systems of the homes were unable to maintain stable indoor thermal conditions,
with a high dependence on outdoor conditions, which indicates either inadequate sizing/efficiency or
underperformance of the building materials to control heat loses (this is of particular note in legacy
buildings). This usually results in a limitation on the voluntary ventilation. This situation can be further
aggravated in future confinement scenarios (SARS-CoV-2/x next waves) during colder periods—mid
winter cold waves—where situations of reduced ventilation to conserve heat may coincide with
unsuitable outdoor air quality scenarios, even under situations of a radical reduction in road traffic.

The increase in the intensity of housing use generates high to very high pollutant rising on indoor
emissions, which cannot always be counteracted by ventilation in the dwellings, either due to its
reduced effectiveness or due to voluntary limitations.

The increase in the domestic use of cleaning and disinfection products during the COVID-19 crisis
also have contributed to the increase in VOCs and other chemicals in the indoor environment, just as
the generalized imposition of teleworking may have increased the sources of emissions (increase in
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units and time of use of computer equipment, printers, handling of printed documentation, etc.),
although this aspect needs further research to quantify its actual impact.

The presence of inhabitants who leave the home, as in CS 1 in the sample, not only increases the
risk of biological contamination but also significantly increases emissions from internal sources into
the indoor environment due to the need to intensify disinfection and cleaning (personnel, clothing,
and belongings). This increases the risk of exposure of the household occupants.

These factors, together with the intensification of the use of the dwelling, the significant lengthening
of the periods of stay (almost doubling the effective hours of use) and, therefore, of the maintenance of
thermal comfort, triggered certain processes during confinement, as previously described, with consequent
impacts on the risks posed to the occupants.

Given this situation, chemical stress must be urgently reduced in housing, which, being appropriate
for daily use, is essential during confinement processes. This situation, despite its extraordinary nature,
may become recurring over the next few years, not only in health alert situations, but also during
episodes of contamination and other extreme situations that may occur in the future. Given the results,
the following recommendations are provided:

• Decrease in daily cleaning products from the homes, encouraging products that are less
aggressiveness and have lower emissions (avoiding the use of disinfectant sprays and the high use
of biocide cleaners whose loading agents have high VOC).

• Promote the development and incorporation of adequate cleaning and disinfection spaces outside
the homes, equipped with appropriate control and confinement elements: air depression situation,
extraction systems, adequate drainage, etc. These lock spaces could be located in common
areas of buildings or in transitory systems in public road spaces according to the different cases.
These spaces have been tested on a larger scale in different countries for controlling access to
public buildings. Their use also improves the control of home transmission of viruses such as
COVID-19, increasing the security of homes.

• Provide workers with essential services or those with high exposure to biological contamination
with specific cleaning spaces in their workplaces, including the handling of clothing and garments,
to prevent the need to treat all these elements in the home.

• Reducing the burden of washing clothes and disinfecting belongings can significantly help with
alleviating the household emission scenario, as in CS 1.

• This aspect provides an opportunity for its (chemical stress) incorporation into the architectural
plans in future developments, and the different disciplines must consider the need to enhance the
health safety of homes, both in new buildings and in their retrofitting.

• Promote the limitation and/or reduction of the use of air fresheners (electric, vaporized, or aerosols),
odor neutralizers, and all the processes in the interior atmosphere whose principle is based on the
emission of substances. General education should be provided on the need to replace all these
processes with the most effective ventilation possible, even considering the thermal effects and
temporary reduction of comfort.

The awareness of the risks that tobacco poses in the home during confinement situations must
be raised, even if this is achieved by opening windows or similar techniques. The derived effects,
such as odors and the presence of smoke, tend to increase emissions from compensatory mechanisms
(air fresheners, additional washing, etc.).

Action programs should be promoted for the replacement or improvement of the filtration systems
of the air-conditioning and heating systems in homes. These programs should be not only based on
energy efficiency but also include direct health improvements: coupled with idoneous and efficient
ventilation systems, increasing energy efficiency to neutralize the thermal loads in the outside air,
and improving voluntary natural ventilation mechanisms and their effectiveness.
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Appendix A. Monitoring System Description

An array of electronic sensor is used to continuous monitoring of surveilled parameters.

Table A1. Characteristics and uncertainty of the sensors used for on-site measurements.

Parameter Sensor Range Accuracy

Air Temperature CMOS −40 to 125 ◦C ±0.2 ◦C
Relative Humidity CMOS 0–100% ±2%

CO2 NDIR 400–10,000 ppm ±75 ppm or 10% of reading

TVOC Multi-pixel metal oxide
gas sensor 0–60,000 ppb

±10%
(referenced to a gas with an H2

concentration of 0.5 ppm)

PM2.5 Laser-based light
scattering sensor 0–1000 µg/m3

±15% or ±15 µg/m3

The sensors perform real-time continuous measurement, with the system configured to gather
data from all the sensors every 15 min in continuous mode and sent to data-storage.

Appendix A.1. Data Management

The collected data from sensors are stored locally in a local hub—flash storage with circular
recording—and sent to a cloud storage. Data are transmitted with a 128-bit AES encryption to protect
data packets traveling between devices and the cloud platform. MQTTS protocol is used for real-time
communication and HTTPS is used for transactional communication between loggers and the cloud
system and transaction information for the webserver process.

Appendix A.2. Location of the Sensors

Sensors are installed on the living room as the most representative space of the apartment and
higher user intensity and commonality. Due to the size and morphology of the homes the indoor
ambient can be assumed as a mostly mixed one. They are located in an inner wall centrally located
within the monitored space. Mounting height is 1.30 m within “breathing zone”. Monitors are located
far from windows inwards (more than half the width of the space). There is no special concern about
vent grilles or air diffuser as the houses lack any mechanical or inducted ventilation system.

Appendix A.3. Measurement Contrast

Testo 435-2—Multifunction indoor air quality reference meter.
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