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Abstract: In this paper, the scale mixture of Rayleigh (SMR) distribution is introduced. It is proven
that this new model, initially defined as the quotient of two independent random variables, can be
expressed as a scale mixture of a Rayleigh and a particular Generalized Gamma distribution.
Closed expressions are obtained for its pdf, cdf, moments, asymmetry and kurtosis coefficients.
Its lifetime analysis, properties and Rényi entropy are studied. Inference based on moments
and maximum likelihood (ML) is proposed. An Expectation-Maximization (EM) algorithm is
implemented to estimate the parameters via ML. This algorithm is also used in a simulation study,
which illustrates the good performance of our proposal. Two real datasets are considered in which it
is shown that the SMR model provides a good fit and it is more flexible, especially as for kurtosis,
than other competitor models, such as the slashed Rayleigh distribution.

Keywords: Rayleigh distribution; slashed Rayleigh distribution; kurtosis; Rényi entropy; EM algorithm;
maximum likelihood

1. Introduction

Rayleigh distribution is a continuous and positive distribution named after Lord Rayleigh
(J.W. Strutt 1880–1919), who introduced it in connection with a problem in acoustics. Since then,
it has been widely used in different fields of science and technology and has become one of the
most popular models for describing skewed positive data. Siddiqui [1] discussed the relationship of
certain problems with the Rayleigh distribution. Miller [2] worked with this distribution for modeling
the length of a vector in an N-dimensional euclidean space, whose components are independent
and normally distributed according to a N(0, σ2) distribution. Polovko [3], in the field of reliability,
highlight that the hazard function of a Rayleigh distribution is an increasing linear function of time.
Hirano [4] provides us the history and relevant properties of this model. Results on unbiased minimum
variance estimation in this model can be seen in Lopez-Blazquez et al. [5]. Bayesian analysis has been
carried out by Ahmed et al. [6], who discussed and compared classical and Bayesian methods by
using the mean squared error. As for applications of interest in the fields of Engineering and Physics,
Sarti et al. [7], Kalaiselvi et al. [8] and Dhaundiyal and Singh [9] can be cited, among others. All these
references illustrate the potential interest of this model from a theoretical and applied point of view.

Recall that a continuous random variable (RV) X follows a Rayleigh (R) distribution with scale
parameter σ > 0, denoted as X ∼ R(σ), if its probability density function (pdf) is

fX(x) =
x
σ

e−
x2
2σ , x, σ > 0. (1)
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An extension of (1), named slashed Rayleigh (SR), was proposed by Iriarte et al. [10]. The SR
model, T ∼ SR(σ, q), is defined as

T =
X

U
1
q

,

where X and U are independent RVs, X ∼ R(σ), U follows an uniform distribution on (0,1),
U ∼ U(0, 1) and q > 0 is a scalar. The pdf of T is

fT(t; σ, q) =
q(2σ)

q
2

tq+1 Γ
(

q + 2
2

)
F
(

t2

2σ
;

q + 2
2

; 1
)

, t > 0,

where Γ(·) denotes the gamma function, and F(·; a; b) the cdf of a gamma distribution with shape and
rate parameters a and b, respectively.

In this paper, an extension of the R distribution is introduced following the general method to
obtain distributions with a higher kurtosis coefficient than the slash version of the Rayleigh model
proposed by Iriarte et al. [10], and applied successfully by other authors: Reyes et al. [11] to obtain
the Generalized Modified slash model, Reyes et al. [12] to get a generalization of Birnbaum–Saunders,
Iriarte et al. [13] and Segovia [14] to extend the quasi-gamma and power Maxwell distributions,
respectively. It will be proven that our proposal admits a representation as a scale mixture of a
Rayleigh and a Generalized Gamma distribution. Throughout the different sections in this paper,
it will be shown that the SMR distribution can be used for modeling positive, right skew data with a
heavy right tail.

The outline of this paper is as follows. Section 2 is devoted to the study of the SMR model;
the property of mixture is presented and closed expressions are given for its pdf, cdf, moments,
asymmetry and kurtosis coefficient. In Section 3, results of interest in survival analysis and reliability
are given. These are the survival and hazard function, mean residual life and order statistics.
We highlight that, in contrast to the Rayleigh distribution, whose hazard function is increasing and
linear, the hazard function of the SMR model is unimodal. In Section 4, the Rényi entropy is obtained.
Section 5 is devoted to moment and ML estimation of parameters. An EM type algorithm is given,
which has closed expressions in all the stages, and therefore it allows us to estimate the parameters in
a computationally efficient way. In Section 6, a simulation study is carried out, which suggests the
consistency of estimators even for moderate sample sizes. In Section 7, two real applications from
the fields of survival analysis and engineering are provided. Plots and criteria are considered that
show that the SMR model fits better than R and SR models, especially on the right tail of the datasets.
The simulation study and applications have been carried out by using R programming language.
Some final conclusions can be seen in Section 8.

2. Definition and Properties

In this section, a new extension of R distribution is introduced. Simple expressions (which can
be computed easily in many softwares) for its pdf and cdf are obtained, along with its moments,
skewness and kurtosis coefficients. It is also proved that this model can be expressed as a scale mixture
of distributions. This result is the basis to apply the EM algorithm in Section 5.

Our proposal is based on the Generalized Gamma (GG) distribution introduced by Stacy [15] and
whose pdf is given in Definition 1.

Definition 1. An RV Z follows a three-parameter GG distribution, proposed by Stacy [15], if its pdf is

f (z; a, d, p) =
p ad

Γ
(

d
p

) zd−1 e−(az)p
, a, d, p, z > 0 . (2)
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We denote as Z ∼ GG(a, d, p).

Next, the new model is introduced.

Definition 2. An RV T follows an SMR distribution with parameters σ > 0 and q > 0, if T can be expressed
as the ratio of two independent RVs

T =
X
Y

, (3)

with X ∼ R(σ) and Y ∼ GG(1, q, 2). We use the notation T ∼ SMR(σ, q).

Next, the pdf of T is given.

Proposition 1. Let T ∼ SMR(σ, q) with σ > 0 and q > 0. Then the pdf of T is

fT(t; σ, q) =
q t

2σ
(

t2

2σ + 1
) q

2+1
, t > 0 . (4)

Proof. Taking into account (3) with X ∼ R(σ) independent of Y ∼ GG(1, q, 2), with σ, q > 0 and
whose pdfs are given in (1) and (2), respectively. By applying the Jacobian method (see Casella and
Berger [16], Section 4.3) to X = TZ and Y = Z , the joint pdf of (T, Z), fT,Z, is

fT,Z(t, z) =
2t

σΓ(q/2)
zq+1 exp

{
−z2

(
t2

2σ
+ 1
)}

, t > 0, z > 0 .

The marginal pdf of T is

fT(t; σ, q) =
2t

σΓ(q/2)

∫ ∞

0
z(q+2)−1 exp

{
−
(

t2

2σ
+ 1
)

z2
}

dz , t > 0 . (5)

Note that the integrand in (5) is related to the pdf of a GG
((

1 + t2

2σ

)1/2
, q + 2, 2

)
distribution,

except for a constant. Therefore,

fT(t; σ, q) =
q t

2σ
(

1 + t2

2σ

) q
2+1

, t > 0 .

Remark 1. A GG(1, q, 2) model has been proposed for Y in (3) in order to get a closed expression for the pdf of
T given in (4).

Next, the cumulative distribution function (cdf) of T is obtained.

Proposition 2. Let T ∼ SMR(σ, q) with σ > 0 and q > 0. Then the cdf of T is

FT(t) = 1− 1(
t2

2σ + 1
) q

2
, t > 0. (6)

Proof. Taking into account (4) and the change of variable u =
x2

2σ
+ 1, the result is obtained.

Plots of (4) and (6) are given in Figure 1 for σ = 1 and several values of q.
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Figure 1. (a) pdf and (b) cdf in SMR model for σ = 1 and different values of q.

It will be seen that
√

σ > 0 is a scale parameter and q > 0 is a shape parameter since it affects the
skewness and kurtosis coefficients in this model.

The next proposition shows that the SMR model can be expressed as a scale mixture
of distributions.

Proposition 3. Let T|V = v ∼ R
( σ

v2

)
and V ∼ GG(1, q, 2) with σ and q > 0. Then T ∼ SMR(σ, q).

Proof. Recall that the joint pdf of (T, V) is f (t, v) = ft|v(t) fv(v). Then fT(t) is given by

fT(t; σ, q) =
∫ ∞

0
f (t, v) dv

=
q t

2σ
(

1 + t2

2σ

)(q+2)/2

∫ ∞

0

2v(q+2)−1(
1 + t2

2σ

)−(q+2)/2 q
2 Γ
( q

2
) exp

−
 v(

1 + t2

2σ

)−1/2


2 dv .

Note that the last integrand corresponds to the pdf of an RV with GG
((

1 + t2

2σ

)1/2
, q + 2, 2

)
distribution. Therefore, such integral is 1 and then

fT(t; σ, q) =
q t

2σ
(

1 + t2

2σ

)(q+2)/2
, t > 0 ,

that is T ∼ SMR(σ, q).

Remark 2. Proposition 3 is a key result in this paper since it allows us to generate random samples of SMR
model. It will be also useful for the application of EM algorithm, simulation studies and computation of
ML estimators.

Moments

In this subsection, the moments of SMR distribution are obtained. For this, the next lemma will
be useful.

Lemma 1. Let Y ∼ GG(1, q, 2) with q > 0. For r > 0, E[Y−r] exists if and only if r < q and in this case

E[Y−r] =
Γ
(

q−r
2

)
Γ
( q

2
) . (7)
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Proof. By definition,

E[Y−r] =
2

Γ(q/2)

∫ ∞

0
y−r+q−1 e−y2

dy .

By making the change of variable u = y2, the result is immediate.

In Proposition 4, the noncentral moments of an SMR model are given.

Proposition 4. Let T ∼ SMR(σ, q) with σ and q > 0. For r > 0, E[Tr] exists if and only if r < q and in
this case

E[Tr] = (2σ)r/2 Γ
(

r + 2
2

) Γ
(

q−r
2

)
Γ
( q

2
) . (8)

Proof. By using the representation given in (3) and the independence of X and Y

E[Tr] = E
[(

X
Y

)r]
= E[Xr] E[Y−r]

= (2σ)r/2 Γ
(

r + 2
2

) Γ
(

q−r
2

)
Γ
( q

2
)

where E[Xr] = (2σ)r/2 Γ
( r+2

2
)

is the rth-moment of a R(σ) distribution and E [Y−r] was given
in (7).

From Proposition 4, the explicit expression of the noncentral moments, µr = E[Tr], for r = 1, 2, 3, 4
and the variance of T ∼ SMR(σ, q), V(T) follow.

Corollary 1. Let T ∼ SMR(σ, q) with σ, q > 0. From (8), the first four noncentral moments and the variance
of T, say V(T), are given by

µ1 =

√
πσ

2

Γ
(

q−1
2

)
Γ
( q

2
) , q > 1 , µ2 = 2σ

Γ
(

q−2
2

)
Γ
( q

2
) , q > 2 ,

µ3 = 3

√
πσ3

2

Γ
(

q−3
2

)
Γ
( q

2
) , q > 3 , µ4 = 8σ2

Γ
(

q−4
2

)
Γ
( q

2
) , q > 4,

V(T) =
σ

[
4 Γ
(

q−2
2

)
Γ
( q

2
)
− π

[
Γ
(

q−1
2

)]2
]

2
[
Γ
( q

2
)]2 , q > 2.

Remark 3. From Corollary 1, it follows that
√

σ is a scale parameter, that is, if T ∼ SMR(σ, q) then T√
σ
∼

SMR(1, q). In addition, note that the coefficient of variation, c.v(T) = V(T)1/2

µ1
, does not depend on σ.

The next proposition gives us the asymmetry coefficient,
√

β1, of an SMR(σ, q) model.

Proposition 5. Let T ∼ SMR(σ, q) with σ > 0 and q > 3. Then the asymmetry coefficient of T is

√
β1 =

2
√

π [3 a31 a02 − 6 a11 a21 a01 + π a13]

[64 a23 a03 − 48π a12 a22 a02 + 12π2 a21 a01 a14 − π3 a16]
1/2 , (9)
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where aij =
[
Γ
(

q−i
2

)]j
.

Proof. Recall that

√
β1 =

E[(T −E(T))3]

(V(T))3/2 =
µ3 − 3µ1µ2 + 2µ3

1
(µ2 − µ2

1)
3/2

,

where µ1, µ2 and µ3 were given in Corollary 1. Then

√
β1 =

2
√

π [3 a31 a02 − 6 a11 a21 a01 + π a13]

[64 a23 a03 − 48π a12 a22 a02 + 12π2 a21 a01 a14 − π3 a16]
1/2 .

The next proposition gives us the kurtosis coefficient, β2, of an SMR(σ, q) model.

Proposition 6. Let T ∼ SMR(σ, q) with σ > 0 and q > 4. Then the kurtosis coefficient of T is

β2 =

[
32 a41 a03 − 24πa31 a11 a02 + 24π a12 a21 a01 − 3π2a14

]
[16 a22 a02 − 8π a01 a21 a12 + π2a14]

. (10)

Proof. Recall that

β2 =
E[(T −E(T))4]

(V(T))2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
,

where µ1, µ2, µ3 and µ4 were given in Corollary 1. Then

β2 =

[
32 a41 a03 − 24πa31 a11 a02 + 24π a12 a21 a01 − 3π2a14

]
[16 a22 a02 − 8π a01 a21 a12 + π2a14]

.

Note that the asymmetry and kurtosis coefficients only depend on the parameter q. Therefore q is a
shape parameter since it determines the asymmetry and kurtosis coefficients of this model. In addition,
it is of interest to compare both coefficients to other models, such as SR distribution, introduced in
Iriarte et al. [10].

Figure 2 shows the plots for the asymmetry, (a), and kurtosis, (b), coefficients for SMR and SR
models. We highlight that both coefficients are much higher for the SMR distribution than the ones for
the SR model. That means that SMR distribution is more flexible with respect to the asymmetry and
kurtosis than SR model.

To conclude, note that (9) and plot (a) in Figure 2 suggest that
√

β1 takes values in [0.68 ; +∞).
On the other hand, (10) and plot (b) in Figure 2 suggest that β2 approximately takes values in [3.36; +∞).
That is, we are dealing with a skew right model, (the right tail is long relative to the left one),
with positive kurtosis, i.e., heavy tails.
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Figure 2. (a) Asymmetry and (b) kurtosis coefficients for the SMR and SR distribution.

3. Lifetime Analysis

Since the SMR distribution is nonnegative and asymmetric, it can be used to model survival time
data. In this section, the main features of interest in this field are studied. First the survival and hazard
function for an SMR model are given.

Proposition 7. Let T ∼ SMR(σ, q) with σ and q > 0. Then

1. The survival function is S(t; σ, q) =
(

t2

2σ + 1
)− q

2 , t > 0.
2. The hazard function is

h(t; σ, q) =
q t

t2 + 2σ
, t > 0. (11)

Proof. Straightforward from S(t) = 1− F(t) and h(t) = f (t)/S(t).

Remark 4. From (11), it follows that for an SMR(σ, q) model the hazard function h(t; σ, q) is monotone
increasing for t ∈ (0,

√
2σ), monotone decreasing for t ∈ (

√
2σ,+∞) and reaches its maximum at

t =
√

2σ. Moroever,
0 < h(t; σ, q) ≤ q

2
√

2σ
, t > 0.

Note that the intervals where h(t; σ, q) is monotone only depend on the parameter σ, they do not depend on q.

Plots of h(t; σ, q) are given in Figure 3 for σ = 1 and q < 1 in (a) and q > 1 in (b). In both settings,
we note that the peak increases with q.

Remark 5. For λ > 0, the survival function of the SMR model satisfies that

lim
t→+∞

S(λt; σ, q)
S(t; σ, q)

= lim
t→+∞

(
t2

2σ + 1
)− q

2

(
(λt)2

2σ + 1
)− q

2
= lim

t→+∞

(
λ2 + 2σ/t2

1 + 2σ/t2

)−q/2

= λ−q 6= 1.

Therefore, the survival function of the SMR distribution is regularly varying.
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Figure 3. Hazard function SMR(1, q) model with (a) q < 1 and (b) q > 1.

Mean Residual Life

Next the mean residual life is studied. Recall that for a nonnegative RV T, its mean residual life is
defined as m(t) = E(T − t|T > t) for t > 0. m(t) can be obtained as

m(t) = E(T − t|T > t) =
∫ ∞

t

S(z)
S(t)

dz (12)

with S(·) the survival function of T.
It will be proved that this characteristic can be expressed in terms of the survival function of a

Pearson Type VII (PTVII) distribution.

Definition 3. An RV W follows a PTVII distribution with parameters m, c and ξ (see Johnson et al. [17]) if its
pdf is given by

f (w; m, c, ξ) =
c2m−1 Γ (m)
√

πΓ
(

m− 1
2

) (c2 + (w− ξ)2
)−m

, (13)

with w ∈ R, m > 1/2, c > 0 and ξ ∈ R. We denote as W ∼ PTVII (m, c, ξ).

Proposition 8. The mean residual life of T ∼ SMR(σ, q), q > 1, can be obtained as

m(t; σ, q) =

√
2πσ Γ

(
q−1

2

)
Γ
( q

2
) (

t2

2σ
+ 1
) q

2

SW(t) , t > 0 (14)

where SW denotes the survival function of an RV W ∼ PTVII
(

q
2 ,
√

2σ, 0
)

.

Proof. Recall that

m(t; σ, q) = E(T − t|T > t) =
∫ ∞

t

S(z; σ, q)
S(t; σ, q)

dz

=

(
t2

2σ
+ 1
) q

2 ∫ ∞

t

1(
z2

2σ + 1
) q

2
dz . (15)
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Note that the integrand in previous expression is, up to a constant, the pdf of a PTVII
(

q
2 ,
√

2σ, 0
)

distribution. Therefore we can write

m(t; σ, q) =

√
2πσ Γ

(
q−1

2

)
Γ
( q

2
) (

t2

2σ
+ 1
) q

2

SW(t)

with SW the survival function of W ∼ PTVII
(

q
2 ,
√

2σ, 0
)

, q > 1.

In Proposition 9, an explicit expression for (14) is given in terms of the regularized incomplete
beta function, defined as

Ix(a, b) =
B(x; a, b)
B(a, b)

, with B(x; a, b) =
∫ x

0
ta−1 (1− t)b−1dt and B(a, b) = B(1, a, b) .

This expression is useful from a computational point of view.

Proposition 9. For q > 1, the mean residual life of T ∼ SMR(σ, q) can be obtained as

m(t; σ, q) =
(

t2

2σ
+ 1
) q

2
√

πσ Γ
(

q−1
2

)
√

2 Γ
( q

2
) [

1− I t2
2σ+t2

(
1
2

,
q− 1

2

)]
, t > 0. (16)

Proof. Let us consider the integral in (15) and the change of variable u =
z2

2σ∫ ∞

t

1(
z2

2σ + 1
) q

2
dz =

√
σ√
2

∫ ∞

t2
2σ

u−1/2

(1 + u)q/2 du

=

√
σ√
2

[
B
(

1
2

,
q− 1

2

)
−
∫ t2

2σ

0

u−1/2

(1 + u)q/2 du

]

=

√
σ√
2

B
(

1
2

,
q− 1

2

) [
1− I t2

2σ+t2

(
1
2

,
q− 1

2

)]
. (17)

By using the relationship

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

and Γ(1/2) =
√

π, from (16) and (17) is obtained.

Order Statistics

Given a random sample of size n of T ∼ SMR(σ, q), let us denote by T(j) the jth−order statistics,
j ∈ {1, . . . , n}.

Proposition 10. The pdf of T(j) is

fT(j)
(t) =

n!
(j− 1)!(n− j)!

q t
2σ

1−
(

t2

2σ
+ 1
)− q

2

j−1 [
t2

2σ
+ 1
]− q

2 (n−j+1)−1

, t > 0.

In particular, the pdf of the minimum, T(1), is

fT(1)(t) =
nqt
2σ

[
t2

2σ
+ 1
]− qn

2 −1

, t > 0. (18)
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and the pdf of the maximum, T(n), is

fT(n)(t) =
nqt
2σ

1−
(

t2

2σ
+ 1
)− q

2

n−1 [
t2

2σ
+ 1
]− q

2−1

, t > 0.

Proof. Since we are dealing with an absolutely continuous model, the pdf of the jth−order statistics is
obtained by applying

fT(j)
(t) =

n!
(j− 1)!(n− j)!

f (t) [F(t)]j−1 [1− F(t)]n−j , j ∈ {1, . . . , n}

where F and f denote the cdf and pdf of the parent distribution, T ∼ SMR(σ, q) in this case.

Remark 6. From (18), note that T(1) ∼ SMR(σ, qn). That is, when sampling from an SMR(σ, q) distribution
then the minimum is also distributed according to an SMR model.

4. Entropy

In this section Rényi entropy is obtained for the SMR model. Given T an RV and γ ∈ (0, 1)
⋃
(1, ∞),

the Rényi entropy of T is given by

ER(γ) =
1

1− γ
log
{∫ ∞

0
[ fT(t)]γdt

}
, (19)

where log = loge denotes the Naperian logarithm.

Proposition 11. Let T ∼ SMR(σ, q) and γ ∈ (0, 1)
⋃
(1, ∞). Then the Rényi entropy of T is

ER(γ) =
log(σ)

2
+

1
1− γ

[
− (γ + 1)

2
log(2) + γ log(q) + log B

(
γ + 1

2
,

γ(q + 1)− 1
2

)]
(20)

Proof. By proceeding similarly to Proposition 9, it can be proved that

∫ ∞

0
[ fT(t)]γdt = 2−

(
γ+1

2

)
qγσ

−
(

γ−1
2

)
B
(

γ + 1
2

,
γ(q + 1)− 1

2

)
(21)

By applying (19), from (20) and (21) is obtained.

5. Inference

In this section, moment and ML estimation methods are studied.

5.1. Moment Method Estimators

Let T1, . . . , Tn be a random sample from T ∼ SMR(σ, q). Let us consider the first and second

sample moments, denoted by T = ∑n
i=1 Ti

n and T2 =
∑n

i=1 T2
i

n , respectively.

Proposition 12. Given T1, . . . , Tn a random sample from T ∼ SMR(σ, q) with q > 2, the moment method
estimators of σ and q are

σ̂m =
2
π

 T Γ
(

q̂m
2

)
Γ
(

q̂m−1
2

)
2

(22)

4T2 Γ
(

q̂m

2

)
Γ
(

q̂m − 2
2

)
− πT2 Γ

(
q̂m − 1

2

)2
= 0 , (23)
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where (23) must be solved numerically to obtain q̂m. Later, q̂m must be replaced in (22) to get σ̂m.

Proof. Consider the moment method equations

µ1 = T (24)

µ2 = T2 (25)

with µi the noncentral moments of T given in Corollary 1 for i = 1, 2.
σ̂m given in (22) is obtained from (24). From (22) and (25), we have

2
π
·

T2 Γ
( q

2
)2

Γ
(

q−1
2

)2 =
T2 Γ

( q
2
)

2 Γ
(

q−2
2

) ,

which can be rewritten as (23) and must be solved numerically to obtain q̂m.

5.2. ML Estimation

Let T1, . . . , Tn be a random sample from T ∼ SMR(σ, q). Then the log-likelihood function is

l(σ, q) = n ln(q) +
n

∑
i=1

ln(ti)− n ln(2)− n ln(σ)−
( q

2
+ 1
) n

∑
i=1

ln

(
t2
i

2σ
+ 1

)

Taking partial derivatives in l(σ, q) with respect to σ and q and setting them equal to zero, we get

−n +

1 +
n

n

∑
i=1

ln

(
t2
i

2σ̂
+ 1

)


n

∑
i=1

t2
i(

t2
i + 2σ̂

) = 0 (26)

q̂ =
2n

n

∑
i=1

ln

(
t2
i

2σ̂
+ 1

) , (27)

where (26) must be solved numerically to get σ̂, which must be substituted into (27) to obtain q̂.
Since we do not have explicit expressions for ML estimators, EM algorithm can be implemented to get
these estimates. The next section is devoted to reach this aim.

5.3. ML Estimation Using EM-Algorithm

The EM-algorithm (Dempster et al. [18]) enables the computationally efficient determination of
the ML estimates when iterative procedures are required. Next, details about the implementation of
this algorithm for the SMR model are given. The method is based on Proposition 3 and Lemma 2.

Lemma 2. Let X ∼ Gamma(k, β) with k > 0 shape parameter and β > 0 rate parameter, that is its pdf is

fX(x) =
1

Γ(k)
βkxk−1e−βx, x > 0. Then

1. Xm ∼ GG
(

βm, k
m , 1

m

)
, m > 0, with pdf given in (2).

2. E[log(X)] = Ψ(k)− log(β) where Ψ(·) denotes the digamma function.
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Let T ∼ SMR(σ, q), by applying the hierarchical representation given in Proposition 3, we can
write T|Y = y ∼ R(σ/y2) and Y ∼ GG(1, q, 2). The joint pdf of (T, Y) is

f (t, y|θ) = fT(t|y, θ) · fY(y|θ)

=
2 t yq+1

σ Γ(q/2)
exp

{
−y2

(
1 +

t2

2σ

)}
, (28)

where Y is a latent variable and the parameter vector is θ = (σ, q)T , θ ∈ R+ ×R+.
Given T1, . . . , Tn, a random sample of size n from T ∼ SMR(σ, q), let us denote by t = [t1, . . . , tn]>

the observed data, y = [y1, . . . , yn]> the unobserved data and tc = [t>, y>]> the complete data, that is,
the original data t augmented by y.

Let lc(θ|tc) and Q(θ|θ̂) = E[lc(θ|tc)|t, θ̂] the complete log-likelihood function associated with tc

and its expected value, respectively. From (28), lc(θ|tc) is

lc(θ|tc) =
n

∑
i=1

log f (ti, yi|(θ)

= (q + 1)
n

∑
i=1

log(yi)− n log(σ)− n log(Γ(q/2))−
n

∑
i=1

y2
i

(
1 +

t2
i

2σ

)
+ c ,

where c is a constant, which does not depend on θ.
In order to get Q(θ|θ̂) and apply EM-algorithm, we need to calculate E[y2

i |ti, θ] and E[log(yi)|ti, θ].
From (28) and (2)

f (yi|ti, θ) = C×yq+1
i exp

{
−y2

i

(
1 +

t2
i

2σ

)}

= C× y(q+2)−1
i exp

−
yi

(
1 +

t2
i

2σ

)1/2
2
 , (29)

where C is a constant that does not depend on yi. As (29) is related to the pdf of a Generalized Gamma
distribution, specifically,

Yi|ti, θ ∼ GG

(1 +
t2
i

2σ

)1/2

, q + 2, 2

 . (30)

Then

E[Y2
i |ti, θ] =

(1 +
t2
i

2σ

)−1/2
2

Γ
(
(q+2)+2

2

)
Γ
(

q+2
2

) =
σ(q + 2)
2σ + t2

i
(31)

On the other hand, Lemma 2 can be applied to (30) with

β = 1 +
t2
i

2σ
, k =

q + 2
2

and m =
1
2

.

Taking into account that

E[log(Xm)] = E[m · log(X)] = m[Ψ(k)− log(β)]
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we have

E[log(Yi)|ti, θ] =
1
2

Ψ
(

q + 2
2

)
− 1

2
log

(
1 +

t2
i

2σ

)
. (32)

Let Q(θ|θ̂) = E[lc(θ|tc)|t, θ̂] be the conditional expectation of the complete log-likelihood function.
We have

Q(θ|θ̂) = (q + 1)
n

∑
i=1

l̂og yi − n log(σ)− n log
(

Γ
( q

2

))
−

n

∑
i=1

ŷ2
i

(
1 +

t2
i

2σ

)
,

with ŷ2
i = E[Y2

i |ti, θ = θ̂] and l̂og yi = E[log(Yi)|ti, θ = θ̂] given in (31) and (32), respectively.
Taking first partial derivative with respect to σ, the estimate of σ is given by

σ̂ =
1
2
· t2 ŷ2

where t2 ŷ2 is the mean of t2
i ŷ2

i . By proceeding similarly, the estimate of q is

q̂ = 2Ψ−1
(

2 · l̂og(y)
)

where l̂og(y) is the mean of ̂log(yi) and Ψ−1(·) is the inverse of the digamma function. Therefore, the
EM algorithm is

• E-step: For i = 1, . . . , n compute

ŷ2
i

(k+1)
=

σ(k)(q(k) + 2)
2σ(k) + t2

i
, ̂log(yi)

(k+1)
= 1

2

[
Ψ
(

q(k)+2
2

)
− log

(
1 + t2

i
2σ(k)

)]
• M-step: Update the vector of parameters θ = (σ, q)

σ̂(k+1) =
1
2

t2 ŷ2
(k+1)

, q̂(k+1) = 2 Ψ−1

(
2 l̂og(y)

(k+1)
)

.

• E and M steps are repeated until a suitable convergence is reached.

EM algorithm implementation was carried out by using R software. Three functions were implemented.

In the function used in E step, estimates of y2
i
(k+1) and log(yi)

(k+1) were generated. In the function
used in M step, estimates of σ and q were obtained. Later, these steps were repeated by using a function
with the convergence criterion. The criterion was to stop when the difference between the successive
values obtained is less than a a value fixed in advance, specifically it was

max
(∣∣∣σ(k) − σ(k−1)

∣∣∣ ,
∣∣∣q(k) − q(k−1)

∣∣∣) < ε with ε = 10−4 .

6. Simulation Study

In this section, the performance of ML estimates for finite sample sizes is studied. It is empirically
checked if the proposed estimators satisfy desirable properties, such as asymtotic unbiasedness,
asymptotic efficiency, asymptotic normality. Values of the Rayleigh and the Generalized Gamma
distributions were generated to get values of the SMR distribution introduced in (4). The EM algorithm
was used to compute the estimates of parameters in the SMR model, and their standard errors.
This procedure was carried out 10,000 times with sample sizes n = {30, 40, . . . , 190, 200}, and taking as
values of the parameters σ = 1 and 10; q = 1, 1.5, 2 and 3.
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As summaries of these simulations, the average of estimates, average of standard errors of
estimates, average bias, squared root of mean squared error (RMSE) and the empirical coverage
probability of confidence intervals for the parameters (with confidence level 0.95) were calculated.
From Figures 4–11, average bias, RMSE and empirical coverage probability (in percentages) are plotted
for n varying in {30, 40, . . . , 190, 200}. It is observed that if the sample size increases then bias and
RMSE decrease, this fact suggests that the estimators are consistent. In addition, we note that the
empirical coverage probability (in percentage) approaches to the nominal level (95%) when the sample
size increases.
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n = 30, . . . , 200.
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n = 30, . . . , 200.



Mathematics 2020, 8, 1842 15 of 22

50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

(a)

n

bi
as

σ
q

50 100 150 200

0.
5

1.
0

1.
5

2.
0

2.
5

(b)

n

rm
se

σ
q

50 100 150 200

0.
93

5
0.

94
0

0.
94

5
0.

95
0

0.
95

5
0.

96
0

0.
96

5

(c)

n

co
ve

ra
ge

σ
q

Figure 6. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 1, q = 2 with
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50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a)

n

bi
as

σ
q

50 100 150 200

0
1

2
3

4
5

6
7

(b)

n

rm
se

σ
q

50 100 150 200

0.
93

0.
94

0.
95

0.
96

(c)

n

co
ve

ra
ge

σ
q

Figure 7. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 1, q = 3 with
n = 30, . . . , 200.



Mathematics 2020, 8, 1842 16 of 22

50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

(a)

n

bi
as

σ
q

50 100 150 200

0
2

4
6

(b)

n

rm
se

σ
q

50 100 150 200

0.
93

0
0.

93
5

0.
94

0
0.

94
5

0.
95

0
0.

95
5

0.
96

0

(c)

n

co
ve

ra
ge

σ
q

Figure 8. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 10, q = 1 with
n = 30, . . . , 200.
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Figure 9. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 10, q =1.5 with
n = 30, . . . , 200.
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Figure 10. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 10, q = 2 with
n = 30, . . . , 200.
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Figure 11. Graphics of (a) bias, (b) RMSE and (c) coverage of simulation for σ = 10, q = 3 with
n = 30, . . . , 200.

7. Real Data Illustration

In this section, we present applications of SMR model in two real datasets from the fields of
lifetime analysis and reliability. To illustrate its good performance, our proposal is compared to other
competing models previously introduced in literature. These are R and SR distributions.
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7.1. Application to Patients with Bladder Cancer

We consider a dataset corresponding to remission times (in months) of a random sample of
128 bladder cancer patients studied by Lee and Wang [19]. The SMR(σ, q) model is proposed to
describe this dataset. The EM algorithm was used to estimate σ and q. Their corresponding standard
errors were obtained by using the inverse of the hessian matrix.

Table 1 provides the descriptive summaries. These are: the sample size n, the sample mean T,
the standard deviation S, the sample asymmetry coefficient

√
b1, the sample kurtosis coefficient b2,

the sample minimum min(T) and the sample maximum max(T). We highlight that we are dealing
with positive, positive skewed data with a really high kurtosis, b2 = 18.483.

Table 1. Descriptive statistics for the remission times of patients with bladder cancer.

n T S
√

b1 b2 min(T) max(T)

128 9.366 10.508 3.287 18.483 0.08 79.05

Table 2 provides the ML estimates of parameters and their standard errors in parentheses for
SMR, R and SR models. These models are compared by using the Akaike Information Criterion (AIC),
Akaike [20] and the Bayesian Information Criterion (BIC), introduced in Schwarz [21]. Both criteria
reveal that the SMR model provides a better fit to this data since their values are less than the others.

Table 2. Estimates, standard errors (SE) in parenthesis, log-likelihood, AIC and BIC values for the
remission times of patients with bladder cancer.

Estimaciones R (SE) SR (SE) SMR (SE)

σ̂ 98.639 (8.718) 8.647 (2.051) 15.369 (5.108)
q̂ - 1.424 (0.224) 1.772 (0.318)

log-likelihood −491.266 −415.815 −413.339
AIC 984.531 835.631 830.677
BIC 987.383 841.335 836.381

Figure 12 depicts the histogram of this dataset along with the estimated pdf for R, SR and SMR
distributions. Moreover, Figure 13 provides the corresponding QQ-plots for these models. Note that
the QQ-plots for R and SR models show that these distributions does not provide a good fit on the
right tail of these data. However the QQ-plot for the SMR distribution does not exhibit this drawback.

All these plots and summaries suggest that the SMR model provides a better fit to this dataset
than the other models under consideration.

7.2. Application to Number of Failures of an Air Conditioning System

The second dataset under consideration was reported by Proschan [22]. This dataset consists
of the times between failures of the air-conditioning equipment in 13 Boeing 720 aircrafts. A similar
outline to that given in previous applications has been followed. Table 3 shows the basic statistical
summaries. We highlight that, again, a high value of kurtosis is observed b2 = 8.023.

Table 3. Descriptive statistics for number of failures of an air conditioning system.

n T S
√

b1 b2 min(T) max(T)

188 92.074 107.916 2.139 8.023 1 603
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Figure 13. QQ-plot for distributions (a) R, (b) SR, (c) SMR for the remission times of patients with
bladder cancer.

In Table 4, results related to the fit of R, SR and SMR models are given. Note that the SMR model
provides a better fit over the others since its AIC and BIC values are less than those in R and SR models.

In Figure 14, the histogram and the estimated pdfs are given. Figure 15 provides the corresponding
QQ-plots. Note that the SMR model provides a better fit, especially for the right tail of the dataset.
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Table 4. Estimates, SE in parenthesis, log-likelihood, AIC and BIC values for the number of failures of
an air conditioning system.

Estimaciones R (SE) SR (SE) SMR (SE)

σ̂ 10,030.83 (730.135) 264.611 (68.021) 382.761 (113.843)
q̂ - 0.902 (0.107) 1.069 (0.136)

log-likelihood −1191.275 −1053.503 −1046.549
AIC 2384.550 2111.006 2097.097
BIC 2387.787 2117.479 2103.570
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Figure 14. Density adjusted for the number of failures of an air conditioning system in the R, SR and
SMR distributions.
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Figure 15. QQ-plot for distributions (a) R, (b) SR, (c) SMR for the number of failures of an air conditioning system.
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8. Conclusions

In this paper, the SMR distribution is introduced. As strengths of our proposal, we highlight that
it is more flexible as for its kurtosis coefficient and hazard function than the Rayleigh and slashed
Rayleigh distribution. Closed expressions are given for its main characteristics: pdf, cdf, moments and
related coefficients. Since we are dealing with a positive and skew right model, it can be of interest for
modeling survival time and reliability data. For this reason, features of interest in this field such as the
hazard function, mean residual life and order statistics are studied. A closed expression is obtained
for the Rényi entropy. The special interest is the EM estimation algorithm based on the hierarchical
representation proposed for this model. A simulation study is included, which suggests that the ML
estimators are consistent even for moderate sample sizes. Two real applications are included, in which
AIC, BIC and QQ-plots show that our proposal provides a better fit than R and SR distributions,
especially on the right tail of these datasets.
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