
An Overview of Hardware Implementation of
Membrane Computing Models

GEXIANG ZHANG, Chengdu University of Technology, China and Southwest Jiaotong University, China
ZEYI SHANG, Southwest Jiaotong University, China and Université Paris-Est Créteil Val de Marne, France
SERGEY VERLAN, Université Paris-Est Créteil Val de Marne, France

MIGUEL Á. MARTÍNEZ-DEL-AMOR, Universidad de Sevilla, Spain

CHENGXUN YUAN, Southwest Jiaotong University, China

LUIS VALENCIA-CABRERA and MARIO J. PÉREZ-JIMÉNEZ, Universidad de Sevilla, Spain

The model of membrane computing, also known under the name of P systems, is a bio-inspired large-scale
parallel computing paradigm having a good potential for the design of massively parallel algorithms. For its
implementation it is very natural to choose hardware platforms that have important inherent parallelism, such
as field-programmable gate arrays (FPGAs) or compute unified device architecture (CUDA)-enabled graphic
processing units (GPUs). This article performs an overview of all existing approaches of hardware implemen-
tation in the area of P systems. The quantitative and qualitative attributes of FPGA-based implementations
and CUDA-enabled GPU-based simulations are compared to evaluate the two methodologies.

The work of G.Z., Z. S., and S. V. is supported by the National Natural Science Foundation of China (61972324, 61672437,
61702428), Beijing Advanced Innovation Center for Intelligent Robots and Systems (2019IRS14), Artificial Intelligence Key
Laboratory of Sichuan Province (2019RYJ06), the New Generation Artificial Intelligence Science and Technology Major
Project of Sichuan Province (2018GZDZX0043), and the Sichuan Science and Technology Program (2018GZ0086). M.A.M-
d-A., L.V-C., and M.J.P-J. also acknowledge the support of the research project TIN2017-89842-P (MABICAP), co-financed
by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, through the Agencia Estatal de Investigación
(AEI), and by Fondo Europeo de Desarrollo Regional (FEDER) of the European Union.
Authors’ addresses: G. Zhang (corresponding author), Chengdu University of Technology, No.1, Dongsan Road, Erxianqiao,
Chenghua District, Chengdu, 610059, China, Southwest Jiaotong University, 999 Xi’an Rd, Chengdu, 611756, China; email:
zhgxdylan@126.com; Z. Shang, Southwest Jiaotong University, 999 Xi’an Rd, Chengdu, 611756, China, Université Paris-Est
Créteil Val de Marne, 61 av. du général de Gaulle, Créteil, 94010, France; email: zeyi.shang@lacl.fr; S. Verlan, Université
Paris-Est Créteil Val de Marne, 61 av. du général de Gaulle, Créteil, 94010, France; email: verlan@u-pec.fr; M. Á. Martínez-
del-Amor, L. Valencia-Cabrera, and M. J. Pérez-Jiménez, Universidad de Sevilla, Avda. Reina Mercedes S/N, Seville,
41012, Spain; emails: {mdelamor, lvalencia, marper}@us.es; C. Yuan, Southwest Jiaotong University, 999 Xián Rd, Chengdu,
611756, China; email: 502220232@qq.com.

mailto:permissions@acm.org
https://doi.org/10.1145/3402456

1 INTRODUCTION

With the arising of protocells 3.84B years ago in hydrothermal vent precipitates [26], the evo-
lution of unicellular organisms led to the emergence of multicellularity [83]. The biological cell
structure defined by the membranes has evolved and was optimized for billions of years. As a
consequence, a biological cell is a powerful parallel processing unit that can perform sophisticated
biologic behaviors. Inspired by the structure of biological membranes and by internal bio-
chemical reactions, Gheorghe Păun initiated the area of membrane computing in 1998 as a
theoretical com-puter science model borrowing many concepts from the cell biology [84]. The
model, also called P systems, features a nested membrane-like structure delimiting regions that
host objects (mod-eling cell chemicals) that are transformed locally or communicated to other
regions by different types of rules that mimic cell chemical transformations. The evolution of the
state of the system is performed by transition steps doing a synchronous parallel execution of all
rules. Since a typical model contains hundreds and even thousands of such parallel executions, P
systems feature an inherent massive parallelism and the global behavior of the system is
emerging from many simple interactions provided by rules application. There exist numerous
variants of the model depend-ing on the manipulated objects, used types of rules, and the parallel
execution strategy (called derivation mode).

Membrane Computing is a computing paradigm inspired from the structure and functioning
of living cells, and the organization of cells in tissues and other structures, including the brain.
It provides distributed parallel computing devices called, generically, P systems. Membrane com-
puting models are an extension of DNA computing, a possible source of novel/useful/interesting
computing models. If one wants to model (1) discrete, (2) distributed, (3) parallel, (4) cell-like or
tissue-like systems, (5) dealing with multisets, (6) evolving by rewriting-like rules, then P sys-
tems are obligatory/unavoidable and the unique models dealing with all these features [85]. As
unconventional computing devices within natural computing, P systems have proved to over-
come the well-known limitations imposed by the conventional techniques based on electronic
technology. More specifically, the relevance of these computing models can be non-exhaustively
summarized in the following points. From a theoretical view, a novel methodology to tackle the
famous P versus NP problem has been given [76]. The main focus in the area was the introduc-
tion of (biologically inspired) variants of P systems and the further study of their computational
power, in particular of their computational completeness (see Reference [87] summarizing hun-
dreds of articles on this topic). From a practical view, the theoretical investigation led to a series of
successful applications in different areas ranging from image processing [25, 114], meta-heuristic
algorithms for optimization problems [116, 117, 119], robot controllers [14, 109], path planning [79,
81, 110], and fault diagnosis for electrical power systems [90, 107, 108]. Due to its historical back-
ground, membrane computing was also used as a modeling framework for biological and ecologi-
cal subjects such as artificial life [94], photosynthesis [75], p53 protein signaling pathway [95],
myxobacterial colony [68], and biopolymer duplication [56]. (Please see a recent overview in
Reference [118]).

For 20 years many applications of P systems have arisen, not only in Theoretical Computer
Science, but also in Computational Modelling, Robotics, Optimization, and so on, as mentioned

https://doi.org/10.1145/3402456

above. The interest in this area is increasing, given that this unconventional, massively paral-
lel approach has been demonstrated to provide a powerful, flexible, and expressive framework.
One example is the 2016 report of the National Research Council of Canada where Membrane
Computing appears to be mentioned several times as prominent parts of bio-computing [112].
Therefore, there is a need for simulators to build model validation tools, assistants for formal veri-
fication, environments for virtual experimentation, model calibration tools, and so on. So far, most
of the simulation software aims at reproducing only the computation results instead of proce-
dures. However, there has also been a research line concerning the implementation of P system
parallelism in real parallel platforms. The main hardware employed for this is FPGAs and GPUs,
given their efficiency, fast shared memory system, and scalability. The objective is twofold: on the
one hand, provide efficient simulation tools where the massive, natural P system parallelism do
not get serialized and is instead harnessed to speed up the simulations; and on the other hand, to
explore how this special parallelism can be mapped in current modern computing architectures.
It is known that the future of computer architecture will go through non–Von Neumann archi-
tectures [12]. Natural Computing models can provide solutions where the instructions are close
to, or along with, the data. P systems are just an alternative, like artificial neural networks, for
this. We want to shed a light into this alternative from the perspective of efficient implementation,
analyzing all the challenges and current solutions. In addition, a number of these applications men-
tioned above only theoretically profit from the potential speedup promised by the model, as there
are no truly parallel implementations available. However, the inherent large-scale parallelism of
the model has the profound potential for the progress of extreme data processing, especially tak-
ing into account that there are not so many widely investigated massively parallel computational
paradigms. Thus, an interesting topic is the implementation of membrane computing models on
contemporary silicon integrated circuits. This allows to exploit the desirable parallel computa-
tional capability of P systems to explore a new orientation for high performance computing (HPC)
[51, 54].

As pointed out in Reference [43] “some unmistakable trends in hardware design indicate that
uniprocessor (or implicitly parallel) architectures may not be able to sustain the rate of realizable
performance increments in the future.” The augmentation of electronic ingredients’ density had
been subject to the well-known Moore’s law for decades. After extraordinary exponential growth
of many years, the number of transistors in chips cannot follow this law, at least it cannot be dou-
bled within two years [2]. With transistors shrunk to nanoscale, quantum effects stand out [66]
and the behavior of circuits is not up to expectations. Moreover, even with the further increase
of the density, the computational capability growth is not linearly proportional to it [111]. An-
other knotty problem is the heat dissipation, which would melt the silicon substrate with density
level increasing. Traditional semiconductor scaling is predicted to reach an end by about 2024 on
the foundation of prior arts [1]. Parallel computing has the potential to further uplift computing
power provided that the density of transistor is constant [101] with multicore and multithread
architecture, although heat dissipation and interconnect issues would be challenges [8].

All these observations give strong arguments in favor of investigation of parallel computing
platforms. Before claiming that the era of parallel computing has dawned, one essential question
should be clarified: What does parallel computing mean? Though not rigorous, parallel computing
implies computing based on the decomposition of the task into a set of concurrently executable
operations and the assignment of these operations to multiple parallel processing nodes. The evo-
lution of computer processor scheme, from single-core single central processing unit (CPU) to
multiple-core single CPU and multiple-core multiple-CPU frame is an instance of parallel com-
puting. The inherent parallelism of P systems place them in the class of multiple processing
nodes computing devices. The mapping of constituents to processing nodes gives rise to different

implementation strategies. A common practice in the area of natural computing is to observe nat-
ural processes and somehow mimic the corresponding behavior. The way living cells allocate,
organize, and coordinate processing nodes has evolved for billions of years. Investigating this
magnificent course might help us to handle the multiple cores computing, which has cut a striking
figure in the contemporary parallel computing realm.

The large-scale distributed parallel processes occurring in vesicle compartments and the vesicle
division functionality enlightened from mitosis of living cells are two of the most outstanding ad-
vantages of membrane computing. They allow to underlie the foundation for the construction of
highly parallel computation platform whose performance, flexibility, and scalability outperforms
traditional sequential counterparts substantially [118]. As a parallel computing paradigm inspired
by the structural and functional features of biological membranes, only parallel computing plat-
forms are suitable for the implementation of P systems. More precisely, the limited parallelism of
general computers realized by the communication mechanism among the multiple cores of CPU
and GPU cannot make full use of the large-scale parallelism, non-determinism, and other partic-
ular attributes that impart an enormous computing potential such as creation and dissolution of
inner membranes, the self-replication or autopoiesis [29] of the whole cell-like entirety that works
as a computing unit, the communication by symport and antiport of objects [4], and so on. We
would like to remark that programming membrane computing algorithms with high-level general
purpose languages and executing them on the computer represents just a simulation and not a real
implementation of P systems [85].

Several software-based and hardware-based parallel computing platforms have been developed
to implement P systems. The first software-based parallel computing platform was constructed us-
ing a cluster of computers [22]. This platform achieves good performance and flexibility. Nonethe-
less, when the size of target P system is increased, the consumption of CPU time and resources
caused by the communication between different computers rises dramatically. Moreover, the un-
derlying hardware (a cluster of computers) of this platform cannot be miniaturized closing the
way to corresponding membrane computing algorithms to be used in embedded chips and com-
pact controllers, which can be employed in robots, automobiles, machine tools, and so on. This
disadvantage limits the range of applications of such platforms for membrane computing.

Hence, it is important to propose hardware implementations of P systems as specific architec-
tures that do not have the drawbacks related to the traditional ways of implementation. There
are two main directions for such research using (1) field-programmable gate arrays (FPGA) and
(2) graphical processing units (GPUs) relying on compute unified device architecture (CUDA) plat-
form. In the first case a completely new parallel circuit is specially designed to implement some
variants of P systems. In the second case the pre-defined CUDA parallel platform is used to sim-
ulate P systems. The achieved performance and correspondence is smaller in this case, but the
development effort is much lower, so finally it becomes an interesting compromise between tradi-
tional computers implementations and a highly parallel one using specialized circuits. Also, when
implementing membrane computing models in hardware, the main difficulty comes from the fact
that there exists a big number of variations of the basic model of P systems having quite distinct
characteristics [88]. This poses a great challenge for the conception of a general computational
architecture to implement these various models.

The computation in a P system is a sequence of transitions between configurations. The core
problem for implementations is the object distribution problem (ODP) that computes one of the
multisets of applicable rules to the current configuration and whose application permits to reach
the next configuration. This problem is a particular variant of a more general problem that com-
putes the whole applicable set of multisets of rules for a given configuration a nd i t i s known
to be NP-complete [21]. Known algorithms and heuristics do not parallelize well, so special

heuristics were developed to quickly compute the desired multiset of rules. We decided to present
these heuristics uniformly in terms of multi-criteria optimization (see Sections 4 and 5). Another
problem for implementations is that in the general case the model is non-deterministic, so an eq-
uitable choice among different possibilities should be provided. However, this is very difficult to
achieve and in most of the cases this property is not satisfied.

This article is organized as follows: Section 2 gives a brief description of the capabilities and
of the architecture of hardware used, Section 3 recalls the definition of the most general model
of P systems, based on the formal framework [35]. Next, Section 4 expresses object distribution
problem (ODP) in terms of multi-criteria optimization and integer linear programming. Section 5
presents an overview of different simulation approaches, including the Direct Non-deterministic
Distribution algorithm (DND) algorithm, which is the base for handling non-determinism. Next,
Sections 6, 7, and 8 give more details on existing simulation approaches. At the end, conclusions
and future research directions are discussed.

2 THE SELECTION OF HARDWARE

2.1 FPGA Hardware

FPGA is a reconfigurable hardware allowing to prototype digital circuits. The modification of cir-
cuits for FPGA is performed by altering the interconnections between circuit elements. FPGA
is developed by hardware description language, the most common ones being VHSIC Hardware
Description Language (VHDL) and Verilog. The design can be performed on several levels of ab-
straction, ranging from the switch/transistor level until the behavioral level (corresponding to a
Mealy machine [67]).

From structural point of view, an FPGA is an array of configurable logic blocks (CLB) inlaid
in the matrix of interconnects. CLBs comprise slice-organized logic cells which are arranged in
a way named \emph{look-up table} (LUT). LUTs are used to implement different combinatorial
circuits such as basic gates, decoders, encoders, and multiplexers. Logic cells contain a type of
storage element called flip-flop (FF) which is used as memory elements in sequential circuits. To
perform particular operations, interconnects of CLBs should be reconfigured. The interconnection
in FPGA is performed by switch boxes routing signals between its logic blocks. Modern FPGAs use
one of the following interconnect technologies: static RAM, flash memory, and anti-fuse. The first
one dominates the current FPGAs implementations. With the re-programmability, FPGAs comply
with the model-oriented hardware implementation quite well.

2.2 CUDA-enabled GPU Hardware

Nowadays, multi-core architecture CPU is the mainstream. However, the component integration
scale of some high-end GPUs has outpaced the CPUs for the booming demand of graphics pro-
cessing (advanced rendering and 3D vision) [52]. Currently, the GPU is a computing element as
powerful as the CPU. Different from FPGAs, there are manufactured parallel architectures in GPUs.
The advantage is that developers should just be concerned about the efficient utilization of these
architectures, and the drawback is that these frameworks are un-reconfigurable.

Nevertheless, the GPU is not a general processing unit that can handle other computing as-
signments except for graphics processing. This predicament has changed for the arise of compute

unified device architecture, known as CUDA, from leading chip vendor NVIDIA corporation. CUDA
is a technology that enables general-purpose computing on graphics processing units (GPGPU). Usu-
ally, when referring to CUDA, what is referred is not the parallel computing framework but a GPU
supporting CUDA. A CUDA-enabled graphics processing unit is a universal parallel computing
device that is suitable for the implementing of parallel algorithm models. The parallel computing

behavior of CUDA is based on the execution of multiple compute kernels on the GPU. These com-
pute kernels are without physical construction, but based on an abstract parallel programming
model. In other words, CUDA does not alter the physical structure of GPU. The CUDA-enabled
GPU does not work alone, but form a heterogeneous computing architecture with the CPU, where
the CPU (host) is the master node that controls the execution flow and launches kernels on the GPU
(device) when massive parallelism is required [52]. A kernel is executed by a grid of (thousands of)
threads. The grid is a two-level hierarchy, where threads are arranged into thread blocks of equal
size. Each block and each thread is unequivocally identified by an identifier. In this way, threads
and blocks can be distributed easily to different portions of data or to compute different instruc-
tions. Threads from the same block can be synchronized using barriers, while those belonging to
different blocks can only be synchronized by the end of the execution of the kernel.

A GPU contains a global memory, which has the biggest size, but has the longest access time
and a shared memory, which is smaller but faster [52]. Although current GPUs contain cache
memories, to accelerate memory accesses, best performance is achieved when doing it manually.
Global memory is accessed by all threads launched in all grids, and also by the host, but shared
memory is only accessible by threads in the same block. Threads also have fast access to their
own registers and local memory (which is normally outsourced to global memory). Accesses to
memory have to be carefully programmed, so that contiguous portion of data is read by consec-
utive threads (providing so-called coalesced access), since this increases the memory bandwidth
utilization.

Nowadays the architecture of GPUs is upgraded to Streaming Multiprocessors (SMs) that are
composed of an array of Streaming Processors (SPs), working as computing cores. A thread set
consisting of 32 threads named warp is the basic unit that an SM fulfills i n i ts e xecutions. An
SM can manage multiple warps that are based on Single-Instruction Multiple-Thread (SIMT) model,
in effect. Each thread in a warp should commence its processing at the identical program address
concurrently, although after beginning, threads can execute independently abiding by a sequential
manner. The parallelism of CUDA is terminated when a warp branches or the memory stalls [61].

2.3 Other Hardware

There were attempts to simulate certain types of P systems on micro-processor–based architec-
tures [47]. Although the performance of micro-processors is low, they are economical alternatives
suitable for the developing of prototypes and verifying the design methods. The drawback is that
in most of the cases the parallel nature of P systems is not exploited at all, often leading to ineffi-
cient implementations. It could be interesting to use out-of-order (OoO) execution [93] processors
to tackle this problem, but this possibility was not investigated yet.

Custom application-specific integrated circuits (ASIC) can also be employed to implement P sys-
tems. However, no such attempts exit at the moment of the writing of this article. One of the main
reasons is that the flexibility of the hardware platform constructed on ASIC is quite insufficient
to adapt to the different variants of P systems. However, such attempts could still be meaning-
ful, as they would allow to simulate features of P systems on some tailored circuits with different
properties, like low power consumption. Another possible direction is to use ASIC for particular
commonly occurring computational cores and combine them with software execution [28, 103].

3 THE MODEL OF P SYSTEMS

We suppose the reader has a knowledge of basic notions from formal language theory and mem-
brane computing. We refer to References [37, 87, 91] for missing details. We will also closely follow
References [35, 105] for the definitions.

We recall that a multiset can be seen as a set whose elements can have greater than one mul-
tiplicity. We will use the string notation for multisets, i.e., a multiset M will be represented by a
string where the number of occurrences of each letter corresponds to its multiplicity in M . We will
denote by |M | the size of the multiset M and by |M |a the number of elements a in M .

There exist many variants of P systems (see, e.g., Reference [85]). In this article the presenta-
tion will be given in terms of the formal framework for P systems introduced in Reference [35], see
also References [104, 105]. This framework is based on the model of network of cells specifying
the structure and rules to be executed as well as on a set of four functions giving the semantics
of the system. Different combinations of these parameters allow in most of the cases to construct
for a given P system a network of cells that strongly bisimulates it (i.e., one step in the one system
is simulated by one step in the other one). Moreover, in many cases there is a one-to-one corre-
spondence between rules applied in each system, meaning that they are mostly indistinguishable.
Hence, the framework for P systems can be seen as a common language to compare different P
systems as well as to express notions related to this area. Moreover, other multiset rewriting-based
models (like Petri nets) can be easily expressed into this framework giving a possibility to compare
corresponding models. Finally, we would like to remark that in what follows, we will use the vari-
ant of the framework supposing that the system structure does not change in time. An extension
of the framework that permits to take into account notions related to P systems with dynamically
evolving structure is given in Reference [34], but corresponding definitions are too complex for
the purpose of this article.

3.1 Network of Cells

As pointed out in References [33, 35, 104, 105], most types of (static structure) P systems can
be seen as variants of parallel multiset rewriting (by using the algorithm called flattening). Since
multiset rewriting level is not practical for system description and understanding, a higher-level
concept called network of cells was introduced in Reference [35]. This model augments multiset
rewriting with the notion of spatial locations (cells) as well as the corresponding operations and
it can be seen as a particular interpretation of the symbols. References [35, 104, 105] define some
basic building blocks in terms of network of cells and give several examples of the construction of
widespread notions and types of rules in membrane computing using these blocks.

Below, we provide the definition of network of cells, taken from Reference [35]. We remark that
the definition from Reference [34] is slightly different, however, both models coincide when the
structure of the system does not evolve.

Definition 3.1 ([35]). A network of cells of degree n ≥ 1 is a construct

Π = (n,V ,w, In f ,R) ,

where

(1) n is the number of cells;
(2) V is an alphabet;
(3) w = (w1, . . . ,wn) wherewi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset initially associated

to cell i;
(4) In f = (In f1, . . . , In fn), where In fi ⊆ V , for all 1 ≤ i ≤ n, is the set of symbols occurring

infinitely often in cell i (in most of the cases, only one cell, called the environment, will
contain symbols occurring with infinite multiplicity);

(5) R is a finite set of rules of the form

(X → Y ; P ,Q),

where X = (x1, . . . ,xn), Y = (y1, . . . ,yn), xi ,yi ∈ V ◦, 1 ≤ i ≤ n, are vectors of multisets
over V and P = (p1, . . . ,pn), Q = (q1, . . . ,qn), pi ,qi , 1 ≤ i ≤ n are finite sets of multisets
over V . We will also use the notation (omitting pi , qi , xi or yi if they are empty)

(1,x1) . . . (n,xn) → (1,y1) . . . (n,yn); [(1,p1) . . . (1,pn)]; [(1,q1) . . . (n,qn)].

The above rule is applied as follows: objects xi from cells i are rewritten into objectsyj produced
in cells j, 1 ≤ i, j ≤ n, if every cell k , 1 ≤ k ≤ n, contains all multisets from pk and does not contain
any multiset from qk .

By taking for each rule the set of cells that are involved a hypergraph relation, called the structure

of the system, is induced. Commonly, tree-like (for P systems) or graph-like (for tissue P systems)
relations are considered.

The configuration C of Π is defined as an n-tuple of multisets over V (u1, . . . ,un) satisfying
ui ∩ In fi = ∅, 1 ≤ i ≤ n.

To define the computation in network of cells according to some derivation mode δ the following
functions should be specified:

• Applicable (Π,C,δ) – the function taking a system Π, a configuration C, and a derivation
mode δ and yielding the set of multisets of rules of Π that can be applied to C.

• Apply (Π,C,R) – the function allowing to compute the configuration obtained by the par-
allel application of the multiset of rules R to the configuration C.

• Halt (Π,C,δ) – a predicate that yields true if C is a halting configuration of the system Π
(in some derivation mode δ).

• Result (Π,C) – a function giving the result of the computation of the P system Π when the
halting configuration C has been reached.

Then the computation is a sequence of transitions where each transition step C ⇒ C ′ is de-
fined asC ′ = Apply (Π,C,R), for some R ∈ Applicable (Π,C,δ). As usual, this sequence starts with
the initial configuration and ends with the final configuration for which the halting predicate
Halt yields true. In more formal terms, the result of the computation of a network of cells
Π = (n,V ,w, In f ,R) working in the derivation mode δ is defined as follows (we refer to Refer-
ence [35] for more technical details):

Result (Π) = {Result (Π, z) : w ⇒∗ z, Halt (Π, z,δ) = true and

Halt (Π,x ,δ) = f alse for any x : w ⇒∗ x ⇒+ z}.

We remark that Reference [35] gives an algorithm to compute the set of multisets of applicable
rules, denoted as Applicable (Π,C, asyn), the algorithm to compute Apply (Π, C, R), and several
definitions for Halt and R esult functions. The most common way of halting is the total halting,
which means that there are no more applicable rules and the most common way of getting the
result is to consider the multiset of objects present in the halting configuration at some predefined
cell.

At each step, the set of multisets of applicable rules Applicable (Π,C, asyn) can be restricted
using a derivation mode, denoted by δ , which specifies which sub-multisets are chosen for the next
step application. The most common example is the maximally parallel derivation mode (max),
which is defined as follows:

Applicable (Π,C,max) = {R ⊆ Applicable (Π,C, asyn) | �R′ ∈ Applicable (Π,C, asyn) : R′ � R}.

The filter condition states that only non-extensible multisets are considered in this derivation
mode. We remark that there might be several such multisets, hence for the application a non-
deterministic choice is used to take one of them. We also refer to Reference [105] for a description
of several other derivation modes.

Example 3.2. Consider the system Π = (O,w1,R), having the alphabet O = {a,b, c} and the
set of rules R = {r1 : (1,ab) → (1,abc); r2 : (1,bbc) → (1,abb)}. Consider the configuration C =

(1,a3b4c2). Then, Applicable (Π,C,asyn) =
{
r1, r

2
1 , r

3
1 , r2, r

2
2 , r1r2, r

2
1r2

}
. The maximally parallel set

of multisets of rules is the following:

Applicable (Π,C,max) =
{
r 3

1 , r
2
2 , r

2
1r2

}
.

The application of the multiset of rules r 2
1r2 on C yields (1,a4b4c3).

Example 3.3. Consider the system Π = (O,w1,w2,R), with O = {a,b, c} and R = {r1 :
(1,a) (2,b) → (1,b) (2,a); r2 : (1,b) → (2,b)}. Consider the configuration C = (1,a4) (2,b). It
is easy to observe that at each step only a single rule is applicable (r1 or r2 alternatively). The only
possible sequence of rule applications is (r1r2)4 after which no rule is applicable anymore. This
sequence moves all symbols a from cell 1 to cell 2. We remark that the above rules do not rewrite
objects, but only move them in the structure.

3.2 Examples of P Systems

Here, we give the informal description of some main variants of P systems that were targeted for
an implementation.

Transitional (cell-like) P systems [77]. This model considers that cells are organized in a tree
structure and uses rules of following type: (i,u) → (i,u ′) (j,u ′′) (k1,v1) . . . (km ,vm), where j is the
parent of i and i is the parent of k1, . . . ,km , m ≥ 0. When |u | > 1 corresponding rules are called
cooperative.

Symport/antiport P systems [4]. This variant considers that objects are not transformed but
rather moved in a tree-like or graph-like structure. This corresponds to rules of form (i,u) (j,v) →
(i,v) (j,u) or (i,u) → (j,u).

Populational Dynamics P (PDP) systems [13, 92]. The structure of this model corresponds to
several trees that have their roots linked together. There are two types of rules: (1) working in-
side some tree: (i,u) (j,v) → (i,u ′) (j,v ′), where i is parent of j and (2) communication between
tree roots: (ri ,x) → (r1,x1) . . . (rk ,xk), where r1, . . . , rk are the numbers of the corresponding tree
roots. Moreover, each rule has a probability associated to it, so the derivation mode is maximally
parallel, followed by a probabilistic choice between rules having the same left-hand side.

Spiking Neural P systems [24, 49]. This model has a graph structure and restricts the alphabet
of the system to be a single letter, however, permitting and forbidding conditions are replaced by
a regular expression check. The rules are of form (i,ak) → (k1,a

x1) . . . (km ,a
xm); (i,E), where E

is the regular expression checking for the contents of cell i , a is the single symbol used in the
alphabet and k1, . . . ,km are the cells linked to cell i . The derivation mode is sequential at the level
of each cell (only one rule per cell is applied) and maximally parallel at the level of all cells.

(Enzymatic) Numerical P Systems [78, 86]. A multiset M can also be seen as a function M : V →
N . The model of numerical P systems extends the notion of multiset to M : V → Rn . Hence, the

configuration is a vector of real-valued variables and rules are equations describing how to update
each variable during each step.

P Systems with Active Membranes [36]. This model corresponds to transitional P systems with
an additional rule allowing to create new child cells.

4 REDUCTION OF THE COMPUTATION STEP TO MULTI-CRITERIA OPTIMIZATION

The computation in P systems corresponds to a finite sequence of transitions between configu-
rations. Each transition C ⇒ C ′ can be seen as a sequence of four steps: (1) computing the set
of multisets of applicable rules (Applicable (Π,C, asyn)), (2) restricting it according to the deriva-
tion mode δ (Applicable (Π,C, δ)), (3) choosing one element from it R, and (4) applying R to the
configuration C yielding C ′ = Apply (Π,C, R). The first step is the most time-consuming, as the
corresponding problem is generally NP-hard. As we show below, in some cases it is possible to
reduce the first three steps (the computation of an element from Applicable (Π,C, δ)) to a multi-
criteria optimization problem. This will allow us to express different algorithms used to compute
this step by different authors in a common language for a better comparison. Another theoretical
advantage of such reduction is an extensive standard vocabulary and a plethora of solving methods
existing in the optimization area, which could be possibly applied for large-scale P systems. We
would like to remark one more time that the presented reductions are not possible in the general
case, however, they are possible for many concrete cases.

4.1 Preliminaries

A multi-criteria optimization problem (MCOP) is an optimization problem that involves multiple
objective functions. In mathematical terms it can be stated as

max(f1 (x), f2 (x), . . . , fm (x))
subject to x ∈ X ,

where m ≥ 2 and X is the set of feasible vectors (or solutions). This set is usually defined by
some constraint functions. We can also consider the objective function as a vector: f : X → Rm ,
f = (f1, . . . , fm). For a feasible solution x , the vector z = f (x) is called an objective vector or an
outcome [50, 53].

When corresponding functions as well as fi , 1 ≤ i ≤ m are linear, we speak about a multi-criteria
linear optimization problem. We also remark that as for classical optimization problems the ob-
jective functions are minimized; the other cases such as maximization or hybrid min/max can be
easily reduced to the minimization one. When further X ⊆ Nk , k > 0, and f : X → Nm , we speak
about an integer multi-criteria linear optimization problem (IMCLOP).

In multi-criteria optimization, typically there is no feasible solution that minimizes all objec-
tive functions simultaneously. Hence, the main attention is focused on solutions that cannot be
improved in any of the objectives without degrading some other objective(s). Such solutions are
called Pareto-optimal. Formally, they are defined as preimages of maximal e lements of the out-
comes, which are also called Pareto front.

Definition 4 .1. A vector x ∈ X is Pareto-optimal for a MCOP (defined as above) iff there is no
other vector y ∈ X for which f (x) < f (y), where u < v iff u i ≤ vi , 1 ≤ i ≤ k, and ∃j, 1 ≤ j ≤ m
such that uj < vj .

Fig. 1. Feasible and Pareto-optimal solutions from Example 4.2.

Example 4.2. Consider the following problem:

max(r1, r2) subject to

r1 ≤ 5

r1 + 2r2 ≤ 6

r2 ≤ 3

r1 ∈ N, r2 ∈ N .

The corresponding feasible solutions and Pareto-optimal solutions are shown in Figure 1. We note
that Pareto-optimal solutions are (5,0), (4,1), (2,2), and (0,3).

4.2 Rule Choice as IMCLOP

It is not difficult to see that the problem of the computation of elements fromApplicable (Π,C,max)
can be reduced to IMCLOP. For the first time it was noticed in Reference [5], but without any
further development. For simplicity, we consider that Π is a transitional P system and has only
one membrane (and no environment). If this is not the case, we can apply the flattening procedure
reducing it to one membrane [33, 35]. So Π = (O,w1,R).

Let R = {r1, . . . , rm } and O = {a1, . . . ,an }. Consider that ri : (1,ui) → (1,vi), 1 ≤ i ≤ m. Let C
be the current configuration and let Ca = |C |a ,a ∈ O .

We will consider a set of variables xi , 1 ≤ i ≤ m, which indicate the cardinality of correspond-
ing rules in some parallel multiset M ∈ Applicable (Π,C,asyn), |M|ri

= xi , 1 ≤ i ≤ m. Then the
feasible set X of (asynchronous) solutions is defined by the following inequalities:

m∑

i=1

|ui |axi ≤ Ca , ∀a ∈ O, (1a)

xi ∈ N, 1 ≤ i ≤ m. (1b)

Inequalities (1a) state that the sum of all consumed objects is included in C . Technically, for
each object a ∈ O it is verified that the weighted sum (by the number of symbols a in the left-hand
side) of rule cardinalities is smaller or equal than the number of objects a in C . We remark that
system (1) can also be seen as a system of Diophantine equations and corresponding solutions are
exactly describing the set X of feasible solutions.

The IMCLOP corresponding to the computation of Applicable (Π,C,max) is defined by:

max(x1, . . . ,xm) (2)

subject to (x1, . . . ,xm) ∈ X .

It should be clear that Pareto-optimal solutions represent exactly the multiplicities of rules for
some maximally parallel solution.

Example 4.3. Consider the system Π = (O,w1,R), with O = {a,b, c} and R = {r1 : (1,ab) →
(1,abc); r2 : (1,bbc) → (1,abb)}. Consider the configurationC = (1,a5b6c3). Then, the constructed
IMCLOP corresponds to the one given in Example 4.2

So this system has four Pareto-optimal solutions: (5, 0), (4, 1), (3, 3), and (0, 3), corresponding to
multisets of rules r 5

1 , r 4
1r2, r 2

1r
2
2 , and r 3

2 , which are exactly the maximal multisets of rules applicable
to C .

4.3 Tentative Solutions

One of the traditional approaches to solve multi-criteria optimization problems is called scalariza-

tion. It consists in reducing the corresponding MCOP to a single objective optimization problem
by using a real-valued scalarizing function involving the objective functions and additional scalar
or vector parameters and variables. This can also imply additional restrictions to the feasible set
based on the newly introduced variables.

One of the “simplest” methods to solve multi-criteria problems is the weighted sum method,
where we solve the following single objective optimization problem:

max
x ∈X

m∑

k=1

λk fk (x). (3)

The weighted sum problem (3) is constructed using the scalar vector product of the vector of
objective functions f and the vector of non-negative weights λ ∈ Rm as a parameter. It is known
that it allows to compute all Pareto-optimal solutions for convex problems by varying λ [27].

In the literature on P systems some simple variants of the weighted sum method can be found.
In References [3, 89] the vector λ = (1, . . . , 1) is considered (so the objective function is the sum
of all variables). However, in this case only maximally parallel rulesets having a maximal number
of rules are obtained. In terms of the formal framework [35], this corresponds to maxrulesmax
derivation mode.

Another attempt was done in References [20, 21] where the parameters λk correspond to the size
of the left-hand side of rules (λk = |uk |, rk : uk → vk). Such optimization problem finds only maxi-
mally parallel solutions involving the maximal number of objects, corresponding tomaxobjectsmax
mode in terms of the formal framework.

In Reference [71] the set of maximally parallel multisets of rules is expressed as solutions of
a system of Diophantine equations (roughly, Equations (1a)) with an additional constraint to be
satisfied on a solution, expressed as another system of Diophantine equations.

Finally, in Reference [9] the set of maximally parallel multisets of rules can be expressed as so-
lutions to a system of equations defining some Diophantine sets. While the construction is similar
to the one we give below, it is not trivial to manipulate Diophantine sets and it is not clear how to
express the constraints as a single system of equations. Below, we show how to handle this prob-
lem by using same construction as for handling multiple “either-or” constraints in integer linear
programming.

As above, we consider that Π has only one membrane (and no environment). So, Π = (O,w1,R).
Let R = {r1, . . . , rm } and O = {a1, . . . ,an }. Consider that ri : (1,ui) → (1,vi), 1 ≤ i ≤ m. Let C

be the current configuration and let Ca = |C |a ,a ∈ O .
In addition to the λ vector above, we introduce an integer parameter M ∈ N having a value that

is sufficiently big (in fact, it should be greater than the maximal possible value of any variable xi ,
1 ≤ i ≤ m of any feasible solution). We remark that in general case of maximal parallelism it is
impossible to limit the maximal values of variables, however, for practical applications, it is often
possible to find such a bound.

We will modify the system (1) to construct a system of inequalities whose integer solutions will
be maximally parallel multisets of rules for the configuration C .

m∑

i=1

|ui |axi ≤ Ca , ∀a ∈ O, (4a)

m∑

i=1

|ui |axi + |uk |a +Mzk
a ≥ Ca + 1, 1 ≤ k ≤ m,a ∈ O, |uk |a > 0, (4b)

∑

a∈O
zi

a = Ni − 1, 1 ≤ i ≤ m, Ni =
∑

a∈O
sgn(zi

a) (4c)

xi ∈ N, 1 ≤ i ≤ m, (4d)

zi
a ∈ {0, 1}, 1 ≤ i ≤ m,a ∈ O . (4e)

Inequalities (4a) are the same as (1a) and they state that the sum of all consumed objects is
included in C .

Inequalities (4b) state the maximality property of the rule set defined by x1, . . . ,xm . It verifies
that for each rule there exists at least one object whose remaining quantity is not sufficient to
apply this rule. They are based on multiple “either-or” constraints representation in ILP. The big
value of M and the inequalities (4c) ensure that only one constraint from (4b) will be considered
(the other ones will be satisfied because of the big value of M).

Hence, any solution x1, . . . ,xm satisfying the system of inequalities (4) corresponds to a Pareto-
optimal solution of (3), hence, to a maximally parallel rule setM = rx1

1 . . . r
xm

m applicable to con-
figuration C . We also remark that from the construction given above, it immediately follows that
system (4) is Diophantine.

Example 4.4. Consider the system Π = (O,w1,R), with O = {a,b, c} and R = {r1 : (1,abc) →
(1,ab); r2 : (1,a) → (1,bb); r3 : (1,b) → (1, cb)}. Consider the configurationC = (1,a2b3c2). Then,
we construct an ILP according to the rules above (we recall that M is a big integer number):

Derived from (4a):

x1 + x2 ≤ 2

x1 + x3 ≤ 3

x1 ≤ 2.

Derived from (4b) for r1:

x1 + x2 + 1 +Mz1
a ≥ 3

x1 + x3 + 1 +Mz1
b ≥ 4

x1 + 1 +Mz1
c ≥ 3.

Derived from (4c) for r1:

z1
a + z

1
b + z

1
c = 2.

Derived from (4b) for r3:

x1 + x2 + 1 ≥ 3.

Derived from (4b) for r3:

x1 + x3 + 1 ≥ 4.

It is not difficult to see that this system has three solutions: (2, 0, 1), (1, 1, 2), and (0, 2, 3), cor-
responding to multisets of rules r 2

1r3, r1r2r
2
3 , and r 2

2r
3
3 , which are exactly the maximal multisets of

rules applicable to C .

We remark that all solutions of (4), (3) might be tedious to obtain. For the simulation purposes,
only one such solution is necessary.

As previously mentioned, using the weighted sum scalarization technique it is theoretically
possible to reach any single point from the Pareto front by choosing appropriate values of the
parameter vector λ. However, by using Equations (4b) it becomes much easier to choose corre-
sponding parameters, as the feasible set is restricted only to Pareto-optimal values. For example,
using max x1 as objective function with the constraints from Example 4.4 would yield the solution
(2, 0, 1). By using min(x1 + x2 + x3 − 5) as the objective function, the solution (0, 2, 3) is obtained
(the above constraint allows to consider only multisets of rules of size 5).

In the literature on P systems, there are other examples of the construction of a single Pareto-
optimal solution having certain properties. One of them is the DND algorithm introduced in Ref-
erence [71] for the FPGA simulations that we discuss below.

In what follows, we explain briefly the functioning of the DND algorithm in the view of Equa-
tions (1). First a random rule permutation is computed (corresponding to a random permutation of
variable indices). Next, during the forward step a random value (bounded by the number of pos-
sible applications) for the number of each rule applications is taken. This corresponds to finding
the values of xi , satisfying the constraints (1a). Finally, during the backward step, the frequency of
each rule is increased until it cannot be applied anymore. This step corresponds to the elimination
of the dominated, i.e., smaller, solutions for the system (1) yielding only Pareto-optimal ones.

The described procedure can also be seen as a combination of scalarizing and of the lexico-
graphic method, which is a method from the family of a priori methods for multi-criteria opti-
mization. More precisely, it corresponds to a solution of a series of optimization problems, each of
them bounded by the parameter corresponding to the choice of the maximal rule multiplicity for
the forward step. The backward step also corresponds to a series of optimization problems that
just reach the maximum for each component (like in the lexicographical method).

A simpler variant of the DND algorithm that does not perform the initial rule permutation can
be found in References [60, 98, 100]. Other variations of DND algorithm were used for CUDA-
based simulations and are discussed later. A different approach is used in Reference [106]. It sup-
poses that for a P system Π working in the derivation mode δ there exists an easily computable
function NBVariants (Π,C, δ) that for any configuration C gives the number of solutions of Equa-
tion (4). Next, it also supposes that there exists an easily computable function Variant (Π,C, δ , n)
that for each integer n (up to the corresponding value) yields the corresponding solution (the used
method is similar to the decoding of a number in the combinatorial number system). It is clear
that such functions do not exist for any variant of P system. References [88, 106] give some suffi-
cient relations between rules that allow to construct the above functions for a P system working
in set-maximal (smax) derivation mode.

5 IMPLEMENTATION OF P SYSTEMS USING HARDWARE

The discussion about hardware implementation of membrane computing concerns mainly the sim-
ulation of concrete variants (sometimes even examples) of P systems using a dedicated hardware
(for ASIC and FPGA) or firmware (for CUDA). In most of the cases a (single) particular class of

P systems is simulated. The simulator is composed from two parts: (1) the hardware simulator
for a concrete system and (2) the HDL code generator of hardware simulators, which based on
input parameters (rules, membranes, initial configuration, etc.) generates the code for the dedi-
cated hardware simulator. In this section, we will mainly discuss the structure of the correspond-
ing hardware simulators, as the generator part is more or less following standard compiler con-
struction techniques. We will concentrate on three points, which are the most important for a
hardware implementation: (a) the representation of the configuration (multisets of objects and the
membranes), (b) the representation of rules and their parallel application, and (c) handling of the
non-determinism.

5.1 Data Organization

Membranes. There are no compartments in silicon circuits, hence, the notion of membranes is
relatively difficult to represent directly. Nevertheless, according to Reference [85], a membrane is
just an idealized concept without internal structures. The main functionality of membranes is to
perform a topological division of the space allowing P systems to compute in a distributed manner
(based on a correspondence between the membrane and its contents). Hence, the spatial place-
ment and size of membrane are not important, only the inter-relationship among them matters.
Moreover, it is known that any membrane structure can be reduced (flattened) to just a single
membrane (see References [33, 35] for more details). The existing hardware simulators adapt in
most cases this last point of view, where the membrane structure is not physically implemented
on the device. As exceptions from this rule, we cite References [73, 82] (region-based), which im-
plicitly implement the membrane topology by using dedicated buses and message passing in the
corresponding circuits.

Configuration. The representation of the configuration in all cases is done as a vector of non-
negative integers (stored in the memory/registers of the device). We remark that this vector corre-
sponds to a flattened system, so it is relatively big and sparse, as it encodes each object/membrane
pair. For performance reasons, it is physically split in several places to be closer to the processing
units (although routing is relatively complicated). In the case of References [73, 82] it can be ar-
gued that corresponding parts are internalized into the corresponding region circuit, as the access
to corresponding values is not direct and it is done by message passing. In CUDA, only the portions
of the array representing the configuration to be processed are loaded by the cores.

Evolution Rules. As it can be seen from Definition 3.1 in the simple case (without permitting
and forbidding) rules can be defined by two integer vectors indicating the multiplicities of cor-
responding objects in the left-hand side and right-hand side of each rule. This gives a natural
rule representation as two vectors stored in the memory/registers. Then a specific circuit/module
verifies the applicability of rules and performs their application. Most variants of hardware im-
plementations use this idea, however, in References [70, 72, 82] each rule is encoded in hardware
as a specific circuit that verifies the needed resources and performs the rule application. In the
case of P systems with active membranes, there might be several cells with the same label, so the
corresponding CUDA simulator uses a split representation: two integer vectors, as above, for all
rules, and an index array with one position per rule giving for each cell the rules it contains.

5.2 Object Distribution Problem and Non-determinism

Hardware implementation of P systems faces the problem of computing the applicable rule set
according to some derivation mode (usually maximally parallel). More precisely, an efficient way
to compute and represent an element from Applicable (Π,C,δ) is required [88, 106]. The diffi-
culty of this problem is that rules can compete for the same objects, so increasing the number of

occurrences for one rule may decrease the application possibilities for another one. Another im-
portant problem is to ensure that a non-deterministic choice among all possibilities is performed.
In References [41, 44, 57, 60], hardware architectures aiming at parallel processing and communi-
cation, and the application of rules are developed. In Reference [11], a formal exposition of non-
deterministic evolution in transition P systems was suggested.

We call the first problem as object distribution problem (ODP). It consists in the computation of
the set Applicable (Π,C, δ) (or of an element from this set). As discussed in Section 4 in terms of
multi-criteria optimization, this corresponds to the computation of the corresponding Pareto front
(or an element of it).

In Reference [71] different algorithms solving ODP are classified in direct and indirect ones. In
the direct approach, the corresponding multiset is directly constructed by the algorithm. In terms
of MCOP this corresponds to a particular fixed scalarization. The indirect approaches are based
on the observation that the solution number is finite, because the solution space is bounded by
the size of the configuration. Hence, a heuristic or brute-force approach can be used to explore
this bounded space. However, since it is an overestimation, there might be visited elements that
are not valid solutions. Hence, the algorithms are iterative and explore the whole space until a
valid solution is encountered. In terms of MCOP this corresponds to different searches through
the space limited only by the maximal values for each axis.

Sometimes it is not easy to classify an algorithm in one of these categories. We will classify an
algorithm as a direct approach if its main goal is to construct a valid multiset of rules. Otherwise,
if an algorithm is exploring different solutions until it reaches a valid one, it will be classified as
indirect. We will use this classification to overview different strategies for ODP solution known in
the literature.

Indirect approaches. Generally, the enumeration of all possible solutions and their verifica-
tion one-by-one until a correct solution is obtained is the simplest method for the indirect ap-
proach [31]. Before the first correct solution is obtained, some invalid solutions should be rejected.
This approach is called indirect straightforward approach [71]. Taking into account that it is not
viable to enumerate all possible solutions for many problems, the feasibility of the approach is low.
However, the performance of the algorithm suggests its use as to compute the floor values for the
object distribution problem. Another indirect approach discussed in References [71, 73] called in-

direct incremental approach investigates a strategy generating possible solutions in rounds. Other
attempts based on a similar idea but with different rule elimination strategies were done in Refer-
ences [30, 39, 46, 48, 98, 99].

Direct approaches. In contrast to indirect approaches, the direct approach fabricates a solu-
tion straightforwardly rather than identifying a number of possible solutions before a solution is
confirmed.

The simplest approach is the direct straightforward approach. As defined in Reference [71], in this
approach “all the solutions to the object distribution problem are given as input, and one of these
solutions is simply selected at random.” While in the same paper it is argued that such approach is
infeasible for an arbitrary configuration and rule types, it can still be applied in a large number of
cases. As shown in References [88, 106], if at each step the number of solutions can be expressed as
the number of words of some length in a regular language, then it becomes possible to compute the
solution only based on its number. In Reference [106] it is shown that the corresponding class of P
systems is quite large and also that this method is particularly interesting for bounded derivation
modes like the set-maximal derivation mode (called also flat mode) where the rules are chosen in
a set-maximal way (instead of the multiset maximal way).

Another variant of the direct approach is the Direct Non-deterministic Distribution algorithm

(DND) proposed in Reference [71]. A similar algorithm can also be found in References [38, 40].
This algorithm works in two phases. At the first phase all rules (initially randomly shuffled) except
one are selected to be applied a random number of times below its maximal applicability value. In
the second phase, all the rules are taken in the converse order and their applicability is increased
up to the maximal still possible value, except that the last rule in the first phase keeps its original
applicability value. A variant of DND, named DND-P, became popular in the simulation of Popu-
lation Dynamics P (PDP) systems [65]. Together with another algorithm, Direct distribution based
on Consistent Blocks Algorithm (DCBA) [63], it was employed for the engine of the PDP system
simulator on CUDA [62].

Non-determinism. One of the difficulties of the above approaches is the handling of non-
determinism. From the formal point of view, the non-determinism corresponds to a ran-
dom equiprobable choice of an element from the set of all applicable multisets of rules
(Applicable (Π,C,δ)). In the case of indirect approaches, due to the iterative nature of the algo-
rithms, it is not easy to argue that each possibility has the same probability to occur. We would
state that solutions containing a smaller number of different rules have a higher chance to be se-
lected. In the case of DND algorithm and related variants, it looks like that the obtained solution
tends to be an equiprobable choice. However, the corresponding articles do not give such a proof
and there are some unclear points, which do not allow us to affirm this fact. Up to now, the only al-
gorithm that is performing a truly non-deterministic choice is the one described in References [88,
106]. However, the corresponding implementation is limited to some particular derivation modes
and particular classes of P systems.

6 AN OVERVIEW OF EXISTING FPGA SIMULATIONS

With the advent of reconfigurable hardware that realizes the idea of modifying the hardware cir-
cuits by programming, conceiving a novel circuit simulating an innovative processing paradigm
is no longer an exceedingly hard task. The first attempt to use FPGA reconfigurable hardware
to simulate P systems dates back to 2003 [82]. Since then, two simulation approaches emerged,
considering regions or rules as basic processing units.

6.1 Region-based Simulations

In the region-based simulation approach rules and objects from different membranes are physi-
cally located in different places of the circuit, while those from the same membrane are physically
close and well connected. The biggest problem is to ensure the correct communication of objects
between membranes, as this requires a global-level synchronization. As advantage, the obtained
system is highly scalable and robust. Below, we give two examples of region-based simulations.

In contrast, the rule-based implementation approach discussed later explicitly represents the
evolution rules as processing units and multisets of objects as register arrays, while membranes
and regions are represented implicitly as logical constructions existing between those processing
units and data structures.

6.1.1 Petreska and Teuscher Simulation. Petreska and Teuscher designed the first FPGA circuit
simulating membrane computing (more precisely, transitional P systems) [82]. They could realize
several interesting features such as communication to inner membranes, priorities between rules,
and proposed ideas how to simulate membrane creation and dissolving mechanism in integrated
circuits. This work inspired the successors to engage in this challenging and breathtaking field to
advance the development of hardware simulation of P systems. In their simulation they made two
strong assumptions: the application of evolution rules in each membrane is not done in a maximally

parallel but in a sequential manner (but still keeping a parallelism at the system level); the non-
deterministic evolution of configuration i s substituted by a deterministic t ransition following a
predetermined order. Such computational step corresponds to an ILP with the subject function as
a weighted sum of variables with predefined fixed weights.

In theory, membranes are borders without internal structures and material consistence. In this
implementation, membrane structures represent regions on the circuit containing the enclosed
substances, i.e., the multisets of objects, evolution rules, and children membrane architectures.
The objects exchange among membranes is a kind of bi-directional traversing behavior. In case
of the possible objects exchange between regions, the communications are made by data buses
connecting to different parts of hardware representing inner membranes. To avoid the multiple
buses used to connect the parent membrane to its plural children membranes, a single bus links all
the children membranes before it connects to the parent membrane. Hence, the communication is
limited to parent-child membranes and there is no object exchange among children membranes or
non-immediate contained membranes.

The representation of the multisets of objects is implemented by using registers. Different reg-
isters just preserve different multiplicities of objects. A register does not store the objects but only
a number indicating the multiplicity of each object. The order of these registers is in accordance
with the lexicographic order of the alphabet of objects. The recognition of an object is indirectly
realized by examining the position of the register storing the multiplicity of this object. An evolu-
tion rule defined here is in the form of u → v (v1, ini)(v2, out) , wherev1 is the string to be sent into
lower-immediate membrane labeled i, v2 will be sent to upper-immediate membrane. The treat-
ment employed to deal with the formulation of evolution rules is storing the rule’s left-hand side
and right-hand side into different registers separately. A particular module is designed to deter-
mine whether a rule is applicable. This module compares the left-hand side of a rule u with the
multiset of objects w present in the current membrane. If and only if u ≤ w , this rule is applicable
and this module will generate a signal Applicable = 1. Input all the Applicable signals to an OR
gate, the result of this logical gate can used as a monitor to identify whether the evolution reaches
halt configuration.

The transition of configurations of P system is realized deterministically and sequentially, which
is different from the general model. The consecutive transformation of configurations is regarded
as the evolution process. This evolution process is decomposed into micro-steps and macro-steps.
The application of rules enclosed by membranes is performed in terms of a predefined sequential
order. This deterministic execution of rules is conducted in micro-steps sequentially. If a selected
rule is applicable, the left-hand side of the rule u will be removed. Then the right-hand sides v, v1
and v2 are stored in corresponding registers. Objects from the upper immediate membrane will be
preserved in another register. Although the micro-steps are carried out deterministically, they are
performed simultaneously in all membranes until there are no applicable rules. The micro-steps
terminate when there are no applicable rules, i.e., the halt condition is reached. All the registers
are updated in line with associated rules in macro-steps.

This implementation considered and respected the priorities of applicable rules at the begin-
ning of each micro-step. By labeling the applicable rules with higher priorities and storing the
corresponding labels, applicable rules are executed in accordance with their respective priorities.
Besides, two additional features of P system, the dissolution and creation of membranes, are sim-
ulated. When a rule with membrane dissolving function is applied, its contents are owned by its
upper immediate membrane, setting the membrane Enable signal of the relevant membrane to “0.”
However, the connections and registers defining the dissolved membrane still exist. This scheme
gives rise to a disadvantage that the hardware resources cannot be released. The creation of new
membranes is executed in the initialization process of the P system, since all the information about

new membrane is known from the specification of the system. The created membranes are inactive
until membrane creating rules invoke them.

6.1.2 Nguyen Simulation. In this implementation, a parallel computing platform simulating
membrane computing based on FPGA named Reconfig-P is developed [69, 74]. Reconfig-P is fab-
ricated on the basis of the region-oriented idea that regions work as the computational entities
communicating objects through message passing. The functionality of these regions is extended
by the included set of evolution rules. P Builder, the software component of Reconfig-P, speci-
fies the P system concerned in software, converts the specification of P system written in Java to
Handel-C (a hardware description language) source code. Software simulation of the circuits to be
constructed is supported by P Builder to test the functionality of circuits before mapping the code
to hardware circuits.

The execution of a evolution step is divided into two phases: object assignment phase and object

production phase [69]. The maximal instance of each rule in a region is determined in the object
assignment phase. The update of multiplicity of objects is accomplished in the object production
phase. The maximal instance of the rules with higher priorities is computed before the rules with
lower priorities. Note that the consumption of objects for rules with higher priorities performed
during the object assignment phase to save clock cycles. It is assumed that all rules are assigned
relative priorities. The priority between rules is implemented as the temporal order, which should
be respected by region processing units in the assignment phase. Rules with same priority are exe-
cuted concurrently. The temporal order is determined at compile-time. Rules are applied according
to their priorities in rounds until no rules are applicable using the indirect iterative approach. Un-
der this circumstance, the applicability of each rule is non-stationary because of the existence of
priorities. To avoid processing inapplicable rules, the applicability status of each rule is checked
at the outset of the assignment phase and immediately after an applicable is applied to consume
some objects.

Objects traversing behavior is the origin of communication between regions. The update of
multiplicity of objects caused by rules with and without traversing behavior is completed in the
object production phase. When different region processing units update the multiplicity value
of the same object at the same time, a conflict occurs. To handle this conflict, in Reference [69]
two solution strategies, the space-oriented strategy and the time-oriented strategy, are proposed.
Tables 1 and 2 summarize the different strategies of two resource conflict resolutions and their
modifications in the rule-based and region-based design [70, 72]. To simplify the exposition of
processes of rule-based and region-based implementations of P systems, tables are designed to
delineate the relevant details, which will be given below.

The extensibility of the region-based design is the consequence of the representation of mem-
branes as processing units interacting with two region processing units corresponding to inner
and outer regions. This allows to achieve a strong separation of the processing logic inside differ-
ent membranes and the independence of the communication. Thus, adding additional elements to
the system does not lead to the redesign of the remaining part of the system.

6.2 Rule-based Simulations

Rule-based approaches consider evolution rules as processing units performing the update of mul-
tiplicities and of membrane structures.

6.2.1 Nguyen Simulation. Every rule in all regions of the P system is represented as a pro-
cessing unit synchronized by a global clock that implements the parallel processing. In the de-
sign phase, a processing unit corresponds to a potential infinite while loop that contains the
Handel C codes related to the rule application. The information associated to execution and

Table 1. The Comparison of the Time-oriented and Space-oriented Conflict Resolution

Strategy Resource conflict resolution

Time-oriented strategy (a) Construct a conflict matrix in which each row is a quadruple (p,q, r , s). p is
the object competed by multiple rules. q is the region where p is produced or
consumed. r is the set of the conflicting rules, s is the size of set r . (b) Insert delay
statement among conflict rules such that the updating operations of multiplicity
of p can be executed in distinct clock cycles. The number of delays is equal to s .

Space-oriented strategy (a) Construct the conflict matrix as in the Time-oriented strategy. (b) The
register storing the object accessed by multiple rules concurrently is replicated s
times. These copy registers are assigned to each conflicting rules to write. After
the updating process for all the copy registers, the corresponding values are
joined to the original register.

Table 2. The Differences of the Conflict Resolutions Adopted in Two Design Modes

Item Time-oriented strategy Space-oriented strategy

Rule-oriented design The interleaving operation can be de-
termined at compile-time and it can be
hard-coded into the HDL source.

Need a multiset replication coordinator
to coordinate the multiplicities stored
in the copy registers.

Region-oriented design The objects received from other regions
are regarded as external objects, other-
wise the objects are internal objects. The
interleaving merely caused by the pro-
duction of internal objects can be iden-
tified at compile-time. To retain the in-
dependence of region processing units,
the interleaving induced completely or
partially by the receipt of external ob-
jects can only be calculated at run-time.

The role of the multiset replication
coordinator in rule-oriented design is
played by the region processing units.
The existing register storing the mul-
tiplicity received from the associated
communication channels in the con-
sidered region can be assigned to those
processing units that send objects to
the considered region to write the new
values of the objects competed by mul-
tiple rules.

synchronization is contained in processing units as well. Each rule processing unit in a region
is linked to the array of registers containing multisets of objects. The membrane inclusion rela-
tionships can be described with the connections between processing units and arrays. Generally
speaking, a rule processing unit in a region is linked to the objects array located in the same region.
If there are objects traversing regions that imply the containment, connecting the rule processing
unit to the object array to which the rule will send objects contained in different region. This pro-
cedure permits to represent the membrane inclusion. The rule execution is split into preparation
phase and updating phase. We compare the two designs (the rule-based and the region-based) of
Nguyen’s implementation in Table 3.

6.2.2 Verlan and Quiros S imulation. The target model is a static P system. The system is con-
sidered flattened, so only one skin membrane is present. A special strategy was elaborated to not
compute the complete solution, i.e., Applicable (Π,C, δ) but the cardinality of its elements. Then
a random value between 1 and this cardinality is taken. Finally, this number is decoded to the
corresponding solution [88, 106].

Devising an algorithm that carries out the computation of the cardinality and of all elements
of the solution set in constant time on FPGA is the key issue of the approach. A remarkable

Table 3. The Comparison of the Rule-based and Region-based Design of Nguyen’s Implementation

Object Rule-based Design Region-based Design

Region and their
containment
relationships

Regions are realized in hardware im-
plicitly by the content they included.
For the containment relationships in-
cluding the traversing of objects be-
tween regions, they are implemented
by imparting the corresponding rules
with “in” or “out” target directives the
abilities to access the multiset of objects
in the destination region of the objects
traversed.

Regions are represented as parallel pro-
cessing units. The traversing of objects
among regions is realized as message
passing through channels connecting dif-
ferent region processing units.

Multiset of objects An array of registers contains each type
of object in the alphabet for a region

The same strategy adopted as the rule-
oriented design.

Evolution rule Potentially infinite while loop in which
contain procedures representing the
operations of the relevant evolution
rules in HDL language.

Implicitly expounded through integrat-
ing them into the region processing units.

Operation process Preparation phase and updating phase. Object assignment phase and production
phase.

Synchronization An array of registers composed of three
1-bit registers is associated to each rule
processing unit. The values in the ar-
ray indicate whether the rule process-
ing unit has complete the preparation
and updating phase, or is applicable.
Compute the logic AND or OR val-
ues of all the values stored in the 1-
bit register that indicates the same sta-
tus of the processing unit and store the
three results into three sentinel regis-
ters. The coordinating processing unit
read the sentinel values to synchronize
the whole procedures.

For the synchronization of object assign-
ment phase, it is realized when all the re-
gion processing units communicate with
each other on channels at the beginning
of object production phase. For the object
production phase, a region execution co-
ordinator connecting to each region pro-
cessing unit via dedicated channels is de-
signed to perform the synchronization
of operations. After the region execution
coordinator received the signals denoting
the completion of all the operations of
every region processing unit, the current
transition is done and the next one is car-
ried out.

characteristic of FPGA is that the time consumed for executions of functions that do not exceed
the cycle of the global clock is done in one cycle of FPGA, hence, in constant time. The compu-
tation of the cardinality and the decoding of solutions are accomplished by two functions hard-
wired into the circuit: NBVariants (Π,C,δ), which gives the cardinality ofApplicable (Π,C,δ), and
Variant (n,Π,C,δ), which returns the nth element of Applicable (Π,C,δ).

A concept named rules’ dependency graph is introduced to compute the two functions above.
It is a bipartite graph that contains as nodes rules and objects and there is an edge between two
nodes if a rule contains the corresponding objects in its left-hand side. The picture below depicts
the rules’ dependency graph for rules r1 : ab → u and r2 : bc → v .

Assume that the derivation mode is maximal parallelism (max). Suppose that Na ,Nb , and
Nc represent the number of objects a,b, and c in C . Let N1 =min(Na ,Nb), N2 =min(Nb ,Nc),
N =min(N1,N2), ki = Ni � N , 1 ≤ i ≤ 2, where � denotes the positive subtraction. Let also

p,q = 0, 1, 2, . . . ,N . From the dependency graph, we can deduce the following:

Applicable (Π,C,max) =
⋃

p+q=N

{
r

p+k1

1 r
q+k2

2

}

NBVariants (Π,C,max) = N + 1

Variant (n,Π,C,max) = rN−n+1+k1
1 rn−1+k2

2 .

Example 6.1. Consider a configuration where Na = 5, Nb = 5, and Nc = 3. It can be easily
verified that N1 =min(5, 5) = 5, N2 =min(5, 3) = 3, N =min(5, 3) = 3, k1 = N1 � N = 5 − 3 = 2,
k2 = N2 � N = 3 − 3 = 0. Hence, we can enumerate the elements of Applicable (Π,C,max) as
below:

Applicable (Π,C,max)1 = {r 3+2
1 r 0+0

2 , r
2+2
1 r 1+0

2 , r
1+2
1 r 2+0

2 , r
0+2
1 r 3+0

2 } = {r 5
1 , r

4
1r2, r

3
1r

2
2 , r

2
1r

3
2 }.

The same result can be easily obtained by using formal power series associated to context-

free languages. In this case, any maximal rule combination is a part of the language LN = {r1
p
r2

q |
p + q = N }. It is quite easy to observe that the number of words of length N in LN is exactly the
same as the number of words of same length in the language L = {r1

∗r2
∗}. This last language is

regular and its generating function is q0 (x) = 1/(1 − x)2. The nth coefficient of the expansion of
q0 (x) is equal to n + 1 ([xn]q0 = n + 1), which immediately gives NBVariants (Π,C,max) = N + 1.
The Variant (n, Π, c,max) is computed using an algorithm that performs a weighted breadth-first
search of the decomposition of n with respect to the number of variants found on each branch of
the execution of automaton for L.

Such a process can be easily repeated for any regular language, yielding a constant time simu-
lation of a computational step. The reason for such performance is that any generating function
is equivalent to a recurrence relation and such relations can be computed in one synchronous
time unit using asynchronous operations. The described algorithm functions for any P system
where the rule choice can be expressed as words of certain length in a regular language. The cor-
responding class is quite large (containing even computationally complete models), thus allowing
an extremely fast execution. Examples from Reference [106] exhibited a speedup of order 105.

Another important point is that this approach allows to handle the non-determinism in a natural
way by performing a uniform random choice between all possible rule applications at each step.

Technically, the implementation represents only objects by registers and rules by layered logic.
Each rule implementation is modularized and contains an own copy of processing instructions
needed to compute the two above functions, based on asynchronous operations. Consequently,
five clock cycles are required to compute the NBVariants (Π,C,max), Variant (n, Π,C,max) and
to apply the corresponding rules. The entire process of the implementation is split into several
consecutive stages, which take charge of different operations associated to phases of evolutions of
configurations.

Persistence stage stores the states that the hardware system goes through. An independent stage
computes the maximal instance of each rule by means of the dividing operation and MIN logic
operation. Assignment stage is in charge of selecting a rule to be applied non-deterministically and
determines its instances. Updating stage is responsible for updating the current configuration with
the values from the previous stage. During Halting stage, the system inspects whether the halting
condition is reached, and once reached, stops the system.

In order to more clearly show the FPGA implementation methods of P system proposed by the
above three research groups, their methods are summarized and compared from the quantitative
and qualitative perspectives in Table 4 and Table 5.

Table 4. The Quantitative Attributes of FPGA Implementation

Item Biljana Petreska Van Nguyen Juan Quiros

Period 2003 2007–2010 2012–2015

Institute Swiss Federal Institute of
Technology Lausanne (EPFL)

University of South Australia University of Seville

Target FPGA Xilinx Virtex-II Pro
2VP50ff1517-7

Xilinx Virtex-II XC2V6000-
ff1152-4 (rule-oriented) and
Virtex-II RC2000 (region-
oriented)

Xilinx Virtex-V XC5VFX70T
and Virtex-VII XC7VX485T

Host processing
platform

Not given. 1.73 GHz Intel Pentium M proces-
sor with 2 GB of memory

Intel Core i5—5220 at 3 GHz,
with 8 GB of RAM.

HDL VHDL Handle C VHDL

Experiment
Subjects

Cell-like P systems with
following characteristics:
membrane dissolution and
creation, objects exchange
between upper- and lower-
immediate membranes,
cooperative P systems
with priorities. The range
(non-continuous) for object
number is 6 to 12 and for
membrane is 10 to 20.

For rule-oriented design, the
subjects are cell-like P systems
cascaded in vertical, horizon-
tal, vertical, and horizontal
structures. For region-oriented
design, the objects are cell-like P
systems containing hierarchical
regions and tissue-like connected
regions. The rule range is
[10,50], [1,25] for regions, [3,200]
for objects. The extent of the
inter-region communication is
[80,319].

The subject P system is
simplified according to the
multiset rewriting point of
view, which it has a skin
membrane, no inner regions.
The four subjects differ in the
rule dependencies that form
chains: circular, 2-circular,
linear, opposite. The object
number range is [10,200].

Experiment
results

The hardware consumption
ranges from 4.2% to 33%
(CLB). The extent of clock
rate is 27 to 198 MHz.

For rule-oriented design, the
number of rules applied per
second ranges from 2.7 × 105

to 1000 × 105. The hardware
consumption extent is 1.55%
to 21.43% (LUTs). For region-
oriented design, the hardware
usage ranges 1.82% from 16.79%.
The clock rate fluctuates from
52.63 MHz to 81.77 MHz. The
biggest size that can be executed
is a P system with 550 rules,
1,280 communication channels,
1,100 objects conflicts.

The hardware consumption
ranges from nearly 1% to
48% (LUTs) or nearly 1.1%
to 11% (slice). The period
needed to perform a com-
putation step fluctuates from
5.46 ns to 9.14 ns. The highest
frequency exceeds 100 MHz,
permitting 2 × 107 computa-
tional steps per second. The
run-time for each experiment
subject ranges from 3.017 ×
10−5s to 4.174 × 10−5s .

Parallelism System-level parallelism Region-level and system-level
parallelism

System-level (there is only a
skin membrane, so it is also
region-level parallelism).

Non-determinism No non-determinism DND algorithm True non-determinism.

7 AN OVERVIEW OF EXISTING CUDA SIMULATIONS

In Reference [61], it is concluded that the GPU is a suitable platform to accelerate the simulation
of P systems because of the following features:

• Good performance: for example, the NVIDIA Tesla K40 delivers 1.43 TeraFLOPS double-
precision peak floating point performance, 4.29 TeraFLOPS of single-precision, and
288 GBytes/s of global memory bandwidth;

• An efficiently synchronized platform: GPUs implement a shared memory system, avoiding
communication overload;

Table 5. The Qualitative Attributes of FPGA Implementations

Item Biljana Petreska Van Nguyen Juan Quiros

Membranes
(regions) and
their containment

Implicitly represented by
the contents enclosed by
the membranes. The objects
exchange is interpreted as
transferring objects with
communication buses by
which connect the origin
region to the destination
region.

For the rule-oriented design, the
treatment is similar with Pe-
treska’s. For the region-oriented
design, regions are represented
as parallel processing units. The
objects exchange among regions
is realized as message passing
through channels connecting dif-
ferent region processing units.

According to the multiset
rewriting system framework,
the topology structures of
membranes are not impor-
tant. What is concerned is the
rule dependency graph.

Multiset of objects Store the multiplicity value of
each type of object in differ-
ent registers whose positions
indicate the type.

The same method. The same method.

Evolution rule Store the left-hand side and
right-hand side of a rule in
different registers.

In rule-oriented design, they are
characterized as potentially in-
finite while loop in which con-
tain procedures representing the
operations of the relevant evo-
lution rules in HDL. In region-
oriented design, they are implic-
itly expounded through integrat-
ing them into the region process-
ing units.

The logic of rules is dis-
tributed along the hardware
components. There is no ex-
plicitly correspondence be-
tween rules and hardware
components.

Operation Process Micro-step: only one applica-
ble rule is applied with re-
spect to the instance num-
ber in a region. Macro-step:
execute a micro-step concur-
rently in every region.

In rule-oriented design, perform
preparation phase and updating
phase. In region-oriented design,
perform object assignment phase
and production phase.

1. Persistence stage; 2. Inde-
pendent stage; 3. Assignment
stage; 4. Application stage;
5. Updating stage; 6. Halting
stage.

Extensibility Membrane-mediated features
cannot be added in, since
membranes are implicitly
represented by their contents.

Because of the region-oriented
design, Membrane-mediated fea-
tures such as symport and an-
tiport functions can be extended.

This implementation is de-
signed only for P systems
whose applicable multisets of
rules can be represented as
regular language. So its ex-
tensibility is limited.

Scalability With the increase of the
rules, the hardware usage
rises approximately propor-
tional. The clock rates decline
a small amount. The mem-
brane creation ability cripples
clock rate significantly.

The hardware consumption
scales linearly with respect
to the size of the P system
executed in both rule-oriented
and region-oriented design. The
performances grow linearly
when the number of rules
increase.

The hardware usage is scal-
able, but the rate of increase
in the performance is not al-
ways linear for different sys-
tems with distinct structures.

Contributions Membrane creation and dis-
solution functionality

Two kinds of methodology for P
system characterization and re-
source conflict resolution, DND
algorithm.

Put up with a new methodol-
ogy with absolute equiprob-
ability to implement non-
determinism.

Drawback Partially parallelism, no non-
determinism

The equiprobability of DND algo-
rithm has not been proven theo-
retically.

The types of P systems that
can be implemented are con-
fined to those whose rules can
be represented as regular lan-
guage.

• A medium scalability degree: The amount of resources depend on the GPU model, e.g., a K40
includes 2,880 cores and 12 GBytes of memory. If the resources of a GPU are not enough,
there are more scalable solutions such as multi-GPU systems, but they then require com-
munication among nodes;

• Low-medium flexibility: Although CUDA programming is based on C++, and hence pro-
grammers are free to use the same data structures than in CPU, both the algorithm and the
data structure have to be adapted for best performance on GPUs.

Simulation algorithms implemented on CUDA have a common structure, in which for each sim-
ulated computation step, first the rules are selected (obtaining a multiset of rules, while consuming
the left-hand sides), and secondly the rules are executed (based on the obtained multiset of rules,
and generating the right-hand side. This strategy is necessary to synchronize which rules get ex-
ecuted in the corresponding computation step. For some models—for example, for those ad hoc
simulators—the selection step is done in micro-stages.

In the following subsections, the existing CUDA simulations are summarized by organizing into
P system models.

7.1 Cell-like P Systems

The first test of concept for simulating P systems on GPUs was applied to P systems with active
membranes using CUDA [18]. This simulator performs only one computation out of the whole
tree to avoid non-determinism by requiring the confluence property to the simulated P systems.
Bearing this in mind, the “lowest-cost computation path” is selected: the one in which least mem-
branes and communication are required. This is achieved by giving preferences to rules that lead
to least membranes (e.g., dissolution over division rules). The simulation algorithm is composed of
two main stages: selection and execution of rules. Selection is where the semantics of the model is
actually simulated. Rules are chosen by following the defined constraints, altogether with a num-
ber of applications. The result of this stage is used for the next one, which is the execution of the
rules; that is, updating the P system configuration. This two-staged strategy allows to synchronize
the application of rules within and among membranes.

Both P systems and GPUs have a double-parallel nature [18], and this is harnessed for imple-
menting a mapping: (elementary) membranes are assigned to thread blocks and a subset of rules
to threads. Each thread is in charge of selecting rules for a portion of the defined objects in the
alphabet. Note that this is enough given that in P systems with active membranes, rules have no
cooperation. However, this mapping of parallelism is naive, since it assumes that all the objects in
the alphabet can be present within each membrane. This requires allocating memory space and
assigning resources (threads) to all of them. This, in fact, does not take place in the majority of P
systems to be simulated, but turns out to be the smallest worst case to handle. Thus, the perfor-
mance of the simulator completely depends on the P system being simulated and drops as long as
the variety of different objects appearing in membranes decreases.

Non-determinism is handled by imposing the simulated P systems to be confluent; that is, all
computations halt and they generate the same result [18]. This way, the simulator can choose any
path in the computation tree, since the aim is to find a halting configuration. The GPU simulator
takes advantage of this by preferring to select evolution rules rather than division or dissolution.

The performance of the simulator was analyzed on a GPU Tesla C1060 (240 cores, 4 GB memory)
by using two benchmarks [61]: a simple test P system designed in a convenient manner (up to 7×
of speedup), and a family of P systems designed to solve different instances of the SAT problem
(1.67× of speedup).

Improvements to this design have followed [61], reporting up to 38× of acceleration when tak-
ing advantage of shared memory and data-transfer minimization. By constructing a dependency
graph, the set of rules of the input model are arranged so that those having common objects in
the left-hand side and in the right-hand side (respectively) are more likely to be in a node. This
reduces communication given that thread blocks are assigned to nodes.

Another approach was to implement ad hoc simulators for a specific family of P system with
active membranes allowing to solve SAT in linear time [19]. In this way, the worst case assumed
before (all objects defined can appear in every membrane) i s further reduced by analyzing the
upper bound to the number of existing objects in membranes. In this way, the work done by threads
is maximized, and the design remains similar: Each elementary membrane is implemented by a
thread block, and each object of the input multiset is implemented by a thread. The experiments
carried out on an NVIDIA Tesla C1060 GPU reported up to 63× of speedup. Further developments
took place focusing on this family of simulators, with the aim at being better tailored to newer
GPU architectures, and also to enable multi-GPU systems and supercomputers [19].

A related work was to explore which P system ingredients are better suited to be handled by
GPUs. To this aim, another solution to SAT based on a family of tissue P systems having the
operation of cell division was simulated [61]. The design is similar to the previous case: Each cell is
simulated by a thread block, however, the constructed solution required a higher number of objects
to be placed inside each cell. At the same time, this simulator does not need to store nor handle
charges associated to membranes. Experiments on an NVIDIA Tesla C1060 GPU led to speedup
by 10×. This showed that using charges associated to membranes helped to save instantiation of
objects, and so, they entail a lightweight ingredient to be processed by threads.

7.2 Population Dynamics P Systems

Population Dynamics P (PDP) systems is a multi-environmental model successfully used for mod-
eling real ecosystems. Thus, their efficient simulation was critical for experimental validation. Sim-
ulators for PDP systems typically run several simulations to extract statistical information from
the models.

A CUDA simulator for PDP systems was presented in Reference [62]. The selected simulation
algorithm was the DCBA [63], since it provides better accuracy in the simulation results. The se-
lection of rules in DCBA consists of three phases: Phase 1 (distribution of objects), Phase 2 (maxi-
mality), and Phase 3 (probability). This algorithm uses a distribution table to distribute the objects
in a proportional way between competing rules, i.e., with overlapping left-hand sides. Moreover,
rules are grouped into rule blocks when having the same left-hand side.

It can be noticed that the approach of DCBA is to handle non-determinism by first using a uni-
form distribution of objects to competing rules. This requires an extra phase (2) to avoid rounding
errors; in this way, a random order is employed to control the remaining rules and which one takes
all objects. This phase is based on the procedure of DND.

The CUDA simulator for PDP systems [61, 62, 64] uses the following design: The contents of
environments and rule simulations are fractioned and distributed all-over thread blocks, while
individual rules are fractioned over threads. Phases 1, 3, and 4 are efficiently ma naged by the
GPU, but Phase 2 can become a bottleneck. For Phase 3, a random binomial variate generation
library was developed, so that binomial and multinominal distributions were supported for random
number generation. In the benchmark using a set of randomly generated PDP systems (having no
biological meaning), speedups of up to 7× were achieved on a Tesla C1060 with respect to a multi-
core version. The simulator was validated and tested by using a known ecosystem model of the
Bearded Vulture in the Catalan Pyrenees, leading to speedups of up to 4.9× with a C1060 and
18.1× using a Tesla K40 GPU (2,880 cores). Finally, the simulator was extended in Reference [64]

in such a way that it introduces high-level information provided by the model designer into the
code. This is accomplished through a new syntactical ingredient in P-Lingua 5 [80], called feature.
This ingredient was employed to define the usual algorithmic scheme based on rule modules when
designing biological models. This new version is called adaptative simulator and helped to obtain
an extra speedup of 2.5× on a Tesla K40 and 1.8× on a Tesla P100 GPU (3,584 cores).

7.3 Spiking Neural P Systems

Parallel simulation of Spiking Neural P (SNP) systems has been based on a matrix representation
so far [115]. The simulation algorithm uses the following vectors and matrices:

• Spiking transition matrix: stores information about rules and is employed for computing
transitions. It assigns a row per rule and a column per neuron. The values coded correspond
to the left-hand side of rules (as negative numbers) and to the right-hand sides (as positive
numbers).

• Spiking vector: defines a selection of rules to be fired in a transition step, using a position
per rule. Given the non-deterministic nature of SNP systems, there are more than one valid
spiking vectors for a given configuration.

• Configuration vector: defines the number of spikes per neuron, that is, the configuration in
a given time.

The algorithm is then used to compute the next configuration from a given one by performing
only vector-matrix operations. These operations are offloaded to the GPU, which is optimized to
handle matrices [15]. CuSNP is a simulator for SNP systems that is written in Python and the
CUDA kernels were launched by using the binding library PyCUDA. For the first approach, SNP
systems without delays were simulated by covering each computation path sequentially, leading
to speedups of up to 2.31× [15, 61].

Further extensions have followed, enabling delays, support of more types of regular expressions,
and input of P-Lingua files [17]. The support of delays is done by an extension of the matrix repre-
sentation, introducing vectors to control when rules fire after the delay is met and if neurons are
open. These led to up to 50× of acceleration on a GTX750 GPU [17]. Moreover, non-deterministic
SNP systems with delays are supported by generating all computation paths sequentially and us-
ing GPU to speed up the simulation [16] (with up to 2× on a GTX1070 for a non-uniform solution
to Subset Sum).

Furthermore, the simulation of Fuzzy Reasoning Spiking Neural (FRSN) P systems on the GPU
was explored [55]. FRSNP systems allows modeling fuzzy diagnosis knowledge and reasoning for
fault diagnosis applications. The simulation algorithm is also based on a matrix representation and
vector-matrix operations. The employed simulation framework was pLinguaCore, so the CUDA
kernels were launched by using the binding library JCUDA.

7.4 Other Models

Enzymatic Numerical P systems has been employed for modeling robot controllers and path plan-
ning, being significant for the Artificial Intelligence. A CUDA simulator was developed [61], where
the selection of applicable programs was first applied; second, the calculation of production func-
tions; and third, distribution of production function results according to repartition protocols. Pro-
duction functions are computed using a recursive solution. Simulators were implemented in Java
(inside pLinguaCore) and C programming languages as standalone tools. On a GeForce GTX 460M,
the achieved speedup was of up to 11×. Moreover, a model for RRT and RRT* algorithms for robotic
motion planning using ENPS was also simulated on CUDA [79] 24× faster than in multicore CPU
using an RTX2080.

Table 6. The Summing up of CUDA-GPU Implementations I

Item PCUDA PCUDASAT TSPCUDASAT

P system class Cell-like (recognizer P system
with active membranes).

Cell-like P system with active
membranes (resolve SAT in linear
time).

Tissue-like P system (resolve
SAT in linear time)

P system
ingredients
representation

Elementary membranes are
represented by thread blocks.
Threads are assigned to ob-
jects.

Each elementary is assigned a
thread block. Only the objects
appearing in the input multisets
will be assigned a thread.

Every cell is assigned a thread
block. More objects are re-
quested by every cell than the
PCUDASAT simulator.

Operation Process A transition step is performed
in selection stage and execu-
tion stage.

1. Generation; 2. Synchroniza-
tion; 3. Check-out; 4. Output.

1. Generation; 2. Exchange; 3.
Synchronization; 4. Check-in;
5. Output.

Experiment
models

(a) An illustrator model to
stress the simulator. (b) A
model aims at solving a SAT
problem.

A sequential and two CUDA-
based parallel simulators (one of
them is designed by a hybrid
method).

A CUDA-based simulator.

Size of the
simulated P
system

512 objects and 1,024 mem-
branes for (a) and 914 objects
and 4,096 membranes for (b).

256 objects and 4,096 membranes. 256 objects and 4,096 mem-
branes.

Speedup 7× for (a) and 1.67× for (b). The CUDA simulator is 63×
faster than the sequential simula-
tor and the hybrid CUDA simula-
tor is 9.3× faster than the normal
one.

10× higher than the sequen-
tial simulator.

The target CUDA-GPU is NVIDIA C1060 (240 cores) and the host platform is a computer with two Intel i5 Nehalem pro-
cessors (8 cores).

Evolution-Communication P systems with Energy (ECPE) [61] were also target for a CUDA
simulation. The employed simulation algorithm used a matrix representation and linear-algebra–
based algorithm, similarly as for the spiking neural P systems simulator: a configuration vector, a
trigger matrix, an application vector, and a transition vector.

The summary of CUDA-GPU implementations is concluded in Tables 6 and 7, providing an easy
checking for the CUDA-based simulations for academic communities. For the sake of presenting a
overview contrast of FPGA and CUDA-GPU implementation, we summarize the quantitative and
qualitative attributes and conclude their methodologies in Tables 8, 9, and 10. This overall contrast
presents a recapitalized conclusion about hardware implementations of P system.

8 OTHER APPROACHES

Besides FPGA-based and CUDA-enabled GPU-based hardware platforms developed for the imple-
mentation of P systems, there are several attempts to implement P systems on micro-controllers.
Serial algorithms and their hardware circuit designs in terms of the exhaustive investigation line
focusing on implementing the transition of configurations of P systems were developed. The cor-
responding research does not target concrete hardware devices, it is just designing the circuits
aiming at simulating certain operations of particular P systems with registers, logical gates, mag-
nitude comparators, and data buses.

In Reference [32], a digital circuit is presented to select active rules in the current configura-
tion. Each evolution rule is represented by two hardware registers. The first register characterizes
the left-hand side (antecedent) of a rule and the other specifies the r ight-hand s ide of the rule,
which also determines whether the rewritten objects go out from the current membrane or stay
where they are, or go into inner membranes. By comparing the left-hand side of each rule with
the multiset of objects in a region, the applicability of every rule can be determined. Next, an

Table 7. The Summing up of CUDA-GPU Implementations II

Item ABCD-GPU ENPS-GPU snpgpu and CuSNP

P system class Population Dynamics P sys-
tem.

Enzymatic numerical P system
(cell-like).

Spiking Neural P system.

P system
ingredients
representation

Environments and simula-
tions are distributed through
thread blocks. Rule blocks
are assigned among threads.

Each production function and
each repartition protocol element
is associated with a thread, re-
spectively.

Spiking transition matrices,
spiking vectors, and configu-
ration vectors are employed
to model the target systems.

Operation process (DCBA algorithm) Selection
stage (1. Distribution; 2. Max-
imality; 3. Probability) and
Execution stage.

1. Select the applicable programs;
2. Compute production func-
tions; 3. Distribute the results
of the precede step according to
repartition protocols.

Generate the matrix repre-
sentation for the model and
iterate the computation of
next configuration until a
stopping criterion is met.

Experiment
models

A set of randomly generated
PDP systems (without biolog-
ical meaning), the ecosystem
model of the Bearded Vul-
ture and a tritrophic example
model with modules defined
as features.

A dummy model and an expo-
nential function approximation
model.

(a) SNP systems covering
each computation path
sequentially, without delays.
(b) Extensions enabling
delays, support of more types
of regular expressions and
input of P-Lingua files.

Size of the
simulated P
system

Running 50 simulations, 20
environments, and more than
20,000 rule blocks.

Two membranes, range from 1 to
120,000 programs.

(a) From 1 to 16 neurons. (b)
Generalized sorting networks
with up to 512 neurons.

Speedup 7× (Tesla C1060) compared
with the sequential model, 3×
contrasted to the four cores
CPU. The speedup for the real
ecosystem, 4.9× with a C1060
and 18.1× using a Tesla K40
GPU (2,880 cores). Using the
adaptative simulator with the
tritrophic model using mod-
ules achieved an extra 2.5× on
a K40 GPU and 1.8× on a P100
GPU (3,584 cores).

6.5× for dummy model and 10×
for exponential model. 11× on
GeForce GTX 460M.

(a) 2.31× for the Python
version simulator. (b) 50×
on CUDA-based version
(GTX750 GPU).

algorithm computes the number of applications of active rules given the multiset of objects and
evolution rules [58]. The corresponding circuit is composed of logical gates, registers, multiplex-
ers, and sequential elements. The computation process is bounded. In Reference [47], a P system
circuit is constructed by means of PIC16F88 micro-processor enriched with the storage compo-
nent 24LC1025, connected by an I2C bus. Thus, the shortcoming of insufficient storage capacity
of the micro-processor is solved by the introduced external memory. The flexibility of the circuit
is acceptable, as the modification of the circuits is not difficult.

Continuing the research from Reference [58], Reference [59] presents an improved algorithm
and the corresponding circuit calculating the application times of active rules. The computing
process can be completed in minor steps and the theoretical performance is optimized. In Refer-
ences [6, 7], a draft of a circuit implementing the inherent parallelism of P system is presented.
Towards the parallelism, the rule treatment is similar with the region-based solution defined in
Section 6, namely, what applied is a multiset of rules instead of a single rule. An operating envi-
ronment is elaborated in Reference [42], which performs the automatic transformation of tasks
involved in the hardware simulation of P systems, including loading, execution, and interpre-
tation, into a distributed framework constructed on micro-controllers. The execution results of
the circuit, which are in the form of binary data, can be interpreted in a transparent manner.

Table 8. The Comparison of the Quantitative Attributes of the Implementations
between FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Inchoate year 2003 2009

Hardware Price $50–$4500 $150–$2000.

Concerned institute Southwest Jiaotong University, Univer-
sité Paris-Est Créteil Val de Marne, Xi-
hua University

Universidad de Sevilla, University of the
Philippines Diliman

Number of researchers 6 8

Implemented P system type Cell-like P system P systems with active membranes, tissue P
systems with cell division for a SAT solution,
Population dynamics P system, spiking Neu-
ral P system, enzymatic Numerical P system,
evolution communication P system.

Size of the simulated P
systems

No limit for objects and membranes,
but less than 1,000 rules

No limit as long as GPU resources (mainly
memory) are available.

Approximate time needed to
obtain a hardware system

Two months One month.

Speedup effect 2 × 107 computational steps per second
at present.

Depends on model, implementation, or GPU
device. Reported speedups from 2× to 90×
compared to a sequential counterpart.

Handling of
non-determinism

DND algorithm and formal power se-
rial theory.

DCBA, or ad hoc strategies (e.g., assuming
confluent P systems).

What should be emphasized here is that all the hardware circuits introduced are just on the
blueprints, which were never implemented in practice. They remain mostly theoretical and the
actual functionality and performances are unknown, unlike for FPGA-based and CUDA-based
hardware implementations/simulations that are carried out practically. In Reference [45], micro-
controllers are also chosen as target hardware to implement communication architectures of P
systems. A digital circuit carrying out massive parallelism in transition P Systems is established in
Reference [6].

As a new attempt for implementing neural P systems on different h ardware, DRAM-based
CMOS circuits are adopted to construct elementary spiking neural P systems. We do not carry
out an in-depth discussion about this topic and refer to Reference [113] for more details.

9 CONCLUSIONS

In this article, we gave an overview of different existing hardware implementations of P systems.
As expected, the FPGA-based approach is very promising, yielding truly parallel implementations
achieving a speedup of order 105. However, it requires a considerable amount of work, as the
corresponding hardware architecture should be created from scratch. Moreover, the hardware de-
scription languages like VHDL are very low-level and programming in such languages tends to
be extremely tedious. Also, as it was shown from the existing implementations, the most promis-
ing results are obtained using rule-based architectures, because of the smaller communication
cost.

By contrast, CUDA-based approach features a powerful unique hardware platform that can
be programmed using standard C/C++ language. While it gives less freedom and accuracy, this
approach gives a good trade-off between complexity, scalability, and maintenance. The achieved
speedups are relatively small (between 4× and 50×), however, due to the programming simplicity,
more types of P systems were implemented.

Table 9. The Comparison of Qualitative Attributes of the Implementations
between FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Complexity of the
parallel framework

Both region-level and system-level par-
allelism are realized, as well as the non-
determinism (the equiprobability of the
rules are guaranteed in Juan’s contribu-
tion).

Both region-level and system-level parallelism
are realized, several strategies are carried out
to sort out non-determinism (for PDP sys-
tems, based on DND algorithm in which the
equiprobability is not proven mathematically).

Extensibility Although the hardware consumptions
are no more than 30% when rules are no
more than 300, which means there are
amount of space to accommodate new
features of the P system, extending the
existing type of P system to additional
types needs significant revisions.

The programming framework is flexible
enough to support other ingredients, but it
might require a significant revision to the
parallel design.

Scalability With the size of the subject P systems
growing, the computation clock rates de-
crease not too much and the hardware
usages are approximately proportional
to the size.

Newer GPUs showed to reach higher perfor-
mance, but the simulations have been demon-
strated to be memory bandwidth bounded. It
requires to run large models to see a positive
speedup.

Experiment subject Cell-like P systems with 10–1,000 rules,
1 to 55 regions, 3–165 objects.

(a) P systems with active membranes with 914
objects/rules and 4,096 membranes, (b) SAT
solutions in active membranes and cell divi-
sion 256 objects/rules and 4,096 membranes,
(c) PDP systems up to 200,000 rules on 50 simu-
lations and 20 environments, (d) SN P systems
with 16 to 512 neurons, (e) ENP systems with
2 membranes and up to 120,000 programs.

Difficulties Programming with HDL is difficult con-
trasting with its software counterpart,
and the synchronization of intricate cir-
cuits. It usually costs 8–10 months to be
proficient with HDL programming and
to comprehend the parallel architecture.

Work assignation for a parallel design can be
the most difficult task when developing GPU
simulators, since the restrictions of GPU com-
puting meets with P system semantics. Need
to think on GPU architecture for high perfor-
mance: memory accesses, memory transfers,
thread synchronization, and so on.

Application The prototypes are developed but no ap-
plications for concrete problems to date.

Several applications for biological simulations
have to executed. Solutions to computationally
hard problems.

The central problem in both approaches—the object distribution problem—was tackled from dif-
ferent points of view, the most fruitful attempts being the variations of the DND algorithm and
direct approaches using mathematical properties of the dependency relation between rules. Fu-
ture research can be done in this direction by providing new classes of P systems suitable for the
precomputation of possible rule applications. Another research direction related to software im-
plementation of P systems is given by the construction from Section 4, which features a novel
reduction of the object distribution problem to ILP. This reduction handles well the maximal par-
allelism and allows to define criteria for the choice of the solution. Then, it would be possible to
design a software framework that would use existing solvers and algorithms to quickly obtain the
desired solution, including those optimized for parallel hardware [10, 23, 96, 97, 102, 120].

Finally, as a future research interest, we mention a robust implementation of different features
of P systems like membrane creation/dissolution, as well as non-classical variants of P systems
like numerical P systems. The motivation for such research is that the corresponding models
feature numerous applications, so their scalable implementation would immediately allow to test
the acceleration of corresponding algorithms and their practical usage.

Table 10. The Conclusion of the Implementations for FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Advantages The computation speed is fast, and the hard-
ware framework is adjustable. The compro-
mises between implementing the P system
model and constructing the most proximate
hardware are relatively ideal.

Relatively convenient way to implement P systems
for the established parallel framework in the GPU.
The programming is similar with the classic soft-
ware developing process.

Disadvantages Building the parallel architecture from scratch
is a laborious and challenging venture.

Slower than FPGA. Sometimes big concessions are
indispensable, as the architectures are unchange-
able.

Contributions Introducing the reconfigurable hardware to
develop the real parallel architectures that can
exploit the maximal parallelism of the P sys-
tems substantially.

The tremendous potential of the emergent universal
computing GPU is concentrated, which the ready-
made parallel framework is off-the-shelf, to estab-
lish a P system computing platform conveniently.

Conclusions We can develop sophisticated P systems hard-
ware circuits that implement the target models
as approximate as possible on FPGA devices.
The expense we should pay is also consider-
ablly high, taking the painstaking effort into
account.

CUDA-GPU provides a relatively comfortable and
alternative choice to implement P systems, which
the simulation results are acceptable, nevertheless
at a price of the modification of the source models.
GPUs worth when simulating large P system mod-
els.

ACKNOWLEDGMENTS

The authors are grateful to the Editor-in-Chief, Prof. Sartaj Sahni, the anonymous handling edi-
tor and all reviewers for their insightful and detailed comments on this manuscript, and are also
indebted to Academician Gheorghe Păun for his useful discussions and valuable suggestions.

REFERENCES

[1] Rick Merritt. 2017. Roadmap Says CMOS Ends ∼2024. IRDS points to chip stacks, new architectures. Retrieved from
https://web.archive.org/web/20170324022546/, https://www.eetimes.com/document.asp?doc_id=1331517.

[2] Gordon Moore. 1975. Progress in digital integrated electronics. International Electron Devices Meeting. IEEE, 11–13.
[3] Oana Agrigoroaiei, Gabriel Ciobanu, and Andreas Resios. 2010. Evolving by maximizing the number of rules: Com-

plexity study. In Proceedings of the 10th International Workshop on Membrane Computing (WMC’09) (LNCS), Gheo-
rghe Păun, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer,
149–157.

[4] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. 2002. Molecular Biology

of the Cell (4th ed.). Garland.
[5] Artiom Alhazov. 2005. Maximally parallel multiset-rewriting systems: Browsing the configurations. In Proceedings

of the 3rd Brainstorming Week on Membrane Computing (RGNC Report), M. A. Gutiérrez-Naranjo, A. Riscos-Núñez,
F. J. Romero-Campero, and D. Sburlan (Eds.). 1–10.

[6] Santiago Alonso, Luis Fernández, Fernando Arroyo, and Javier Gil. 2008. A circuit implementing massive parallelism
in transition P systems. Int. J. Inform. Technol. Knowl. 2, 1 (2008), 35–42.

[7] Santiago Alonso, Luis Fernández, Fernando Arroyo, and Javier Gil. 2008. Main modules design for a HW implemen-
tation of massive parallelism in transition P-systems. Artif. Life Robot. 13, 1 (2008), 107–111.

[8] Himanshu Kushwah Anil Sethi. 2015. Multicore processor technology—Advantages and challenges. Int. J. Res. Eng.

Technol. 4, 9 (2015), 87–89.
[9] Alberto Arteta, Luis Fernández, and Javier Gil. 2008. Algorithm for application of evolution rules based on lin-

ear diofantic equations. In Proceedings of the 10th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC’08), Viorel Negru, Tudor Jebelean, Dana Petcu, and Daniela Zaharie (Eds.). IEEE
Computer Society, 496–500.

[10] Jambhlekar P. Arun, Manoj Mishra, and Sheshasayee V. Subramaniam. 2011. Parallel implementation of MOPSO on
GPU using OpenCL and CUDA. In Proceedings of the 18th International Conference on High Performance Computing.
1–10.

[11] Angel V. Baranda, Fernando Arroyo, Juan Castellanos, and Rafael Gonzalo. 2001. Towards an electronic implemen-
tation of membrane computing: A formal description of non-deterministic evolution in transition P systems. In

https://web.archive.org/web/20170324022546/
https://www.eetimes.com/document.asp?doc_id=1331517

Proceedings of the 7th International Workshop on DNA-Based Computers: DNA Computing (LNCS), N. Jonoska and N.
C. Seeman (Eds.), Vol. 2340. Springer, 350–359.

[12] Sankar Basu, Randal E. Bryant, Giovanni De Micheli, Thomas Theis, and Lloyd Whitman. 2019. iFLEX: A fully
open-source high-density field-programmable gate array (FPGA)-based hardware co-processor for vector similarity
searching. Proc. IEEE 107, 1 (2019), 11–18.

[13] Francesco Bernardini and Marian Gheorghe. 2004. Population P systems. J. Univ. Comput. Sci. 10, 5 (2004), 509–539.
[14] Catalin Buiu, Cristian Vasile, and Octavian Arsene. 2012. Development of membrane controllers for mobile robots.

Inf. Sci. 187 (2012), 33–51.
[15] Francis G. C. Cabarle, Henry N. Adorna, Miguel A. Martínez-del-Amor, and Mario J. Pérez-Jiménez. 2012. Improving

GPU simulations of spiking neural P systems. Roman. J. Inf. Sci. Technol. 15, 1 (2012), 5–20.
[16] Jym P. Carandang, Francis G. C. Cabarle, Henry N. Adorna, Nestine H. S. Hernandez, and Miguel Á. Martínez-del-

Amor. 2019. Handling non-determinism in spiking neural P systems: Algorithms and simulations. Fundam. Inform.

164 (2019), 139–155.
[17] Jym P. A. Carandang, John M. B. Villaflores, Francis G. C. Cabarle, Henry N. Adorna, and Miguel A. Martínez-del-

Amor. 2017. CuSNP: Spiking neural P systems simulators in CUDA. Roman. J. Inform. Sci. Technol. 20, 1 (2017),
57–70.

[18] José M. Cecilia, José M. García, Ginés D. Guerrero, Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, and Mario
J. Pérez-Jiménez. 2010. Simulation of P systems with active membranes on CUDA. Brief. Bioinform. 11, 3 (2010),
313–322.

[19] José M. Cecilia, José M. García, Ginés D. Guerrero, Miguel A. Martínez-del-Amor, Mario J. Pérez-Jiménez, and Manuel
Ujaldon. 2012. The GPU on the simulation of cellular computing models. Soft Comput. 16, 2 (2012), 231–246.

[20] Gabriel Ciobanu, Solomon Marcus, and Gheorghe Păun. 2009. New strategies of using the rules of a P system in a
maximal way: Power and complexity. Roman. J. Inform. Sci. Technol. 12, 2 (2009), 157–173.

[21] Gabriel Ciobanu and Andreas Resios. 2009. Complexity of evolution in maximum cooperative P systems. Nat. Com-

put. 8, 4 (31 Jan. 2009), 807.
[22] Gabriel Ciobanu and Guo Wenyuan. 2003. P systems running on a cluster of computers. In Proceedings of the Interna-

tional Workshop Membrane Computing (WMC’03) (Lecture Notes in Computer Science), Carlos Martín-Vide, Giancarlo
Mauri, Gheorghe Páun, Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 2933. Springer, 123–139.

[23] Daniele D’Agostino, Giulia Pasquale, and Ivan Merelli. 2014. A fine-grained CUDA implementation of the multi-
objective evolutionary approach NSGA-II: Potential impact for computational and systems biology applications. In
Proceedings of the 11th International Meeting of Computational Intelligence Methods for Bioinformatics and Biostatistics

(CIBB’14) (LNCS), Clelia Di Serio, Pietro Liò, Alessandro Nonis, and Roberto Tagliaferri (Eds.), Vol. 8623. Springer,
273–284.

[24] Ren T. A. de la Cruz, Francis G. C. Cabarle, and Henry N. Adorna. 2019. Generating context-free languages using
spiking neural P systems with structural plasticity. J. Memb. Comput. 1, 3 (2019), 161–177.

[25] Daniel Díaz-Pernil, Miguel A. Gutiérrez-Naranjo, and Hong Peng. 2019. Membrane computing and image processing:
A short survey. J. Memb. Comput. (04 Feb. 2019).

[26] Matthew S. Dodd, Dominic Papineau, Tor Grenne, John F. Slack, Martin Rittner, Franco Pirajno, Jonathan O’Neil,
and Crispin T. S. Little. 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543,
7643 (2017), 60–64.

[27] Matthias Ehrgott. 2005. Multicriteria Optimization (2nd ed.). Springer.
[28] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. 2012. Neural acceleration for general-purpose approximate

programs. In Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’12).
IEEE Computer Society, 449–460.

[29] R. Uribe, F. Varela, and H. Maturana. 1974. Autopoiesis: The organization of living systems, its characterization and
a model. BioSystems 5, 4 (1974), 187–196.

[30] Luis Fernández, Fernando Arroyo, Ivan Garcia, and Gines Bravo. 2007. Decision trees for applicability of evolution
rules in transition P systems. Inf. Theor. Applic. 14, 3 (2007), 223–230.

[31] Luis Fernández, Fernando Arroyo, Jorge A. Tejedo, and Juan Castellanos. 2006. Massively parallel algorithm for
evolution rules application in transition P systems. In Proceedings of the 7th Workshop on Membrane Computing,
Hendrik Jan Hoogeboom, Gheorghe Păun, and Grzegorz Rozenberg (Eds.). Universiteit Leiden, 337–343.

[32] Luis Fernández, Victor J. Martínez, Fernando Arroyo, and Luis F. Mingo. 2005. A hardware circuit for selecting active
rules in transition P systems. In Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC’05), Daniela Zaharie, Dana Petcu, Viorel Negru, Tudor Jebelean, Gabriel Ciobanu,
Alexandru Cicortas, Ajith Abraham, and Marcin Paprzycki (Eds.). IEEE Computer Society, 415–418.

[33] Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Verlan, and Claudio Zandron. 2013.
Flattening in (Tissue) P systems. In Proceedings of the 14th International Conference on Membrane Computing

(CMC’13) (Lecture Notes in Computer Science), Artiom Alhazov, Svetlana Cojocaru, Marian Gheorghe, Yurii Rogozhin,
Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 8340. Springer, 173–188.

[34] Rudolf Freund, Ignacio Pérez-Hurtado, Agustín Riscos-Núñez, and Sergey Verlan. 2013. A formalization of mem-
brane systems with dynamically evolving structures. Int. J. Comput. Math. 90, 4 (2013), 801–815.

[35] Rudolf Freund and Sergey Verlan. 2007. A formal framework for static (Tissue) P systems. In Proceedings of the 8th

International Workshop on Membrane Computing (WMC’07) (Lecture Notes in Computer Science), George Eleftherakis,
Petros Kefalas, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 4860. Springer, 271–284.

[36] Zsolt Gazdag and Gábor Kolonits. 2019. A new method to simulate restricted variants of polarizationless P systems
with active membranes. J. Memb. Comput. 1, 4 (2019), 251–261.

[37] Marian Gheorghe, Andrei Păun, Sergey Verlan, and Gexiang Zhang. 2017. Membrane Computing, Power and Com-

plexity. Springer Berlin, 1–16.
[38] Francisco J. Gil, Luis Fernández, Fernando Arroyo, and Juan Alberto de Frutos. 2008. Parallel algorithm for P systems

implementation in multiprocessors. In Proceedings of the 13th International Symposium on Artificial Life and Robotics

(AROB’08), M. Sugisaka and H. Tanaka (Eds.). 10–25.
[39] Francisco J. Gil, Luis Fernández, Fernando Arroyo, and Jorge A. Tejedor. 2007. Delimited massively parallel algorithm

based on rules elimination for application of active rules in transition P systems. In Proceedings of the 5th International

Conference on Information Research and Applications (i.TECH’07), Krassimir Markov and Krassimira Ivanova (Eds.),
Vol. 1. Institute of Information Theories and Applications FOI ITHEA, Bulgaria, 182–188.

[40] Francisco J. Gil, Jorge A. Tejedor, and Luis Fernández. 2008. Fast linear algorithm for active rules application in
transition P systems. In Algorithmic and Mathematical Foundations of the Artificial Intelligence (International Book

Series INFORMATION SCIENCE & COMPUTING), Krassimir Markov, Krassimira Ivanova, and Ilia Mitov (Eds.), Vol.
Supple. Institute of Information Theories and Applications FOI ITHEA, Sofia, Bulgaria, 35–44.

[41] Fernando Arroyo Ginés Bravo, Luis Fernández, and Juan Frutos. 2008. A hierarchical architecture with parallel
communication for implementing P systems. Inf. Technol. Knowl. 2, 1 (2008), 43–48.

[42] Sandra M. Gomez-Canaval, Abraham Gutiérrez, and Santiago Alonso. 2008. Hardware implementation of P systems
using microcontrollers. An operating environment for implementing a partially parallel distributed architecture.
In Proceedings of the 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC’08), Viorel Negru, Tudor Jebelean, and Dana Petcuand Daniela Zaharie (Eds.). IEEE, 489–495.
[43] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. 2003. Introduction to Parallel Computing (2nd ed.).

Addison-Wesley.
[44] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Santiago Alonso. 2007. Hardware and software archi-

tecture for implementing membrane systems: A case of study to transition P systems. In Proceedings of the 13th

International Meeting on DNA Computing (LNCS), Max H. Garzon and Hao Yan (Eds.), Vol. 4848. Springer, 211–220.
[45] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Santiago Alonso. 2008. Suitability of using microcon-

trollers in implementing new P-system communications architectures. Artif. Life Robot. 13, 1 (01 Dec. 2008), 102–106.
[46] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Ginés Bravo. 2007. Optimizing membrane system im-

plementation with multisets and evolution rules compression. In Proceedings of the 8th Workshop on Membrane

Computing, G. Ekeftherakis, P. Kefalas, and Gh. Păun (Eds.). 345–362.
[47] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Victor J. Martínez. 2006. Design of a hardware archi-

tecture based on microcontrollers for the implementation of membrane systems. In Proceedings of the 8th Interna-

tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Viorel Negru, Dana Petcu, Daniela
Zaharie, Ajith Abraham, Bruno Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joël Quinqueton (Eds.). IEEE
Computer Society, 350–353.

[48] Francisco Javier Gil, Luis Fernández, Fernando Arroyo, and Jorge Tejedor. 2008. Delimited massively parallel al-
gorithm based on rules elimination for application of active rules in transition P systems. Inf. Technol. Knowl. 2, 1
(2008), 56–61.

[49] Z. B. Jimenez, Francis G. C. Cabarle, Ren T. A. de la Cruz, Kelvin C. Buño, Henry N. Adorna, Nestine H. S. Hernan-
dez, and Xiangxiang Zeng. 2019. Matrix representation and simulation algorithm of spiking neural P systems with
structural plasticity. J. Memb. Comput. 1, 3 (2019), 145–160.

[50] Ignacy Kaliszewski, Janusz Miroforidis, and Dmitry Podkopaev. 2016. Multiple Criteria Decision Making by Multiob-

jective Optimization–A Toolbox. Int. Series in Operations Research & Management Science, Vol. 242. Springer.
[51] Takahiro Katagiri. 2019. High-performance computing basics. In The Art of High Performance Computing for Compu-

tational Science, Vol. 1, Techniques of Speedup and Parallelization for General Purposes, Masaaki Geshi (Ed.). Springer,
1–25.

[52] David Kirk and Wen-Mei Hwu. 2010. Programming Massively Parallel Processors: A Hands On Approach. Morgan
Kaufmann.

[53] Julien Legriel. 2011. Multi-Criteria Optimization and Its Application to Multi-Processor Embedded Systems. Universite
de Grenoble, Grenoble, France.

[54] Jianping Kelvin Li, Jia-Kai Chou, and Kwan-Liu Ma. 2015. High performance heterogeneous computing for collabo-
rative visual analysis. In Proceedings of the SIGGRAPH Asia Visualization in High Performance Computing Conference.
ACM, 12:1–12:4.

[55] Luis F. Macías-Ramos, Miguel A. Martínez-del-Amor, and Mario J. Pérez-Jiménez. 2015. Simulating FRSN P systems
with real numbers in P-Lingua on sequential and CUDA platforms. In Proceedings of the 16th International Conference

on Membrane Computing (CMC’15) (LNCS), G. Rozenberg, A. Salomaa, J. M. Sempere, and C. Zandron (Eds.). 262–276.
[56] Vincenzo Manca. 2019. From biopolymer duplication to membrane duplication and beyond. J. Memb. Comput. 1, 4

(2019), 292–303.
[57] Víctor Martínez, Santiago Alonso, and Abraham Gutiérrez. 2010. Hardware circuit for the application of evolution

rules in a transition P-system. Artif. Life Robot. 15, 1 (01 Aug. 2010), 89–92.
[58] Victor Martínez, Fernando Arroyo, Abraham Gutiérrez, and Luis Fernández. 2006. Hardware implementation of a

bounded algorithm for application of rules in a transition P-system. In Proceedings of the 8th International Sympo-

sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’06), Viorel Negru, Dana Petcu, Daniela
Zaharie, Ajith Abraham, Bruno Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joel Quinqueton (Eds.). IEEE,
343–349.

[59] Victor Martínez, Luis Fernández, Fernando Arroyo, and Abraham Gutiérrez. 2007. HW implementation of a opti-
mized algorithm for the application of active rules in a transition P-system. Inf. Theor. Applic. 14, 4 (2007), 324–331.

[60] Victor J. Martínez, Fernando Arroyo, Abraham Gutiérrez, and Luis Fernández. 2006. Hardware implementation of a
bounded algorithm for application of rules in a transition P-system. In Proceedings of the 8th International Sympo-

sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’06), Viorel Negru, Dana Petcu, Daniela
Zaharie, Ajith Abraham, Bruno Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joël Quinqueton (Eds.). IEEE
Computer Society, 343–349.

[61] Miguel A. Martínez-del-Amor, Manuel García-Quismondo, Luis F. Macías-Ramos, Luis Valencia-Cabrera, Agustin
Riscos-Núñez, and Mario J. Pérez-Jiménez. 2015. Simulating P systems on GPU devices: A survey. Fundam. Inform.

136, 3 (2015), 269–284.
[62] Miguel A. Martínez-del-Amor, Luis F. Macías-Ramos, Luis Valencia-Cabrera, and Mario J. Pérez-Jiménez. 2016. Par-

allel simulation of population dynamics P systems: Updates and roadmap. Nat. Comput. 15, 4 (2016), 565–573.
[63] Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, Manuel García-Quismondo, Luis F. Macías-Ramos, Luis

Valencia-Cabrera, Álvaro Romero Jiménez, Carmen Graciani Díaz, Agustin Riscos-Núñez, Maria Angels Colomer,
and Mario J. Pérez-Jiménez. 2012. DCBA: Simulating population dynamics P systems with proportional object dis-
tribution. In Proceedings of the 13th International Conference on Membrane Computing (CMC’12) (Lecture Notes in

Computer Science), Erzsébet Csuhaj-Varjú, Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and György Vaszil
(Eds.). 257–276.

[64] Miguel Á. Martínez-del-Amor, Ignacio Pérez-Hurtado, David Orellana-Martín, and Mario J. Pérez-Jiménez. 2020.
Adaptative parallel simulators for bioinspired computing models. Fut. Gen. Comput. Syst. 107 (2020), 469–484.

[65] Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Agustin Riscos-Núñez, and M. Angels
Colomer. 2010. A new simulation algorithm for multienvironment probabilistic P systems. In Proceedings of the 5th

International Conference on Bio-Inspired Computing: Theories and Applications, M. Gong, L. Pan, T. Song, and G.
Zhang (Eds.). 59–68.

[66] Neil Mathur. 2002. Beyond the silicon roadmap. Nature 419 (Oct. 2002), 573–575.
[67] George H. Mealy. 1955. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34, 5 (1955), 1045–1079.
[68] Anthony Nash and Sara Kalvala. 2019. A P system model of swarming and aggregation in a Myxobacterial colony.

J. Memb. Comput. 1, 2 (2019), 103–111.
[69] Van Nguyen. 2010. An Implementation of the Parallelism, Distribution and Nondeterminism of Membrane Computing

Models on Reconfigurable Hardware. Ph.D. Dissertation. University of South Australia.
[70] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2007. Balancing performance, flexibility, and scalability in a

parallel computing platform for membrane computing applications. In Proceedings of the 8th International Workshop

on Membrane Computing (LNCS), G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.), Vol.
4860. Springer, 385–413.

[71] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2008. An algorithm for non-deterministic object distribution
in P systems and its implementation in hardware. In Proceedings of the 9th International Workshop on Membrane

Computing (WMC’08) (LNCS), D. W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.), Vol. 5391.
Springer, 325–354.

[72] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2008. An implementation of membrane computing using re-
configurable hardware. Comput. Inform. 27, 3 (2008), 551–569.

[73] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2009. A region-oriented hardware implementation for mem-
brane computing applications. In Proceedings of the 10th International Workshop on Membrane Computing (WMC’09)

(LNCS), Gh. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and A. Salomaa (Eds.), Vol. 5957. Springer,
385–409.

[74] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2010. An extensible, maintainable and elegant approach to
hardware source code generation in Reconfig-P. J. Logic Algeb. Program. 79, 6 (2010), 383–396.

[75] Taishin Y. Nishida. 2006. A Membrane Computing Model of Photosynthesis. Springer, 181–202.
[76] David Orellana-Martín, Miguel A. Martínez-del-Amor, Luis Valencia-Cabrera, Bosheng Song, Linqiang Pan, and

Mario J. Pérez-Jiménez. 2020. P systems with symport/antiport rules: When do the surroundings matter? Theoret.

Comput. Sci. 805 (2020), 206–217.
[77] David Orellana-Martín, Luis Valencia-Cabrera, Agustín Riscos-Núñez, and Mario J. Pérez-Jiménez. 2019. Minimal

cooperation as a way to achieve the efficiency in cell-like membrane systems. J. Memb. Comput. 1, 2 (2019), 85–92.
[78] Ana Pavel, Octavian Arsene, and Catalin Buiu. 2010. Enzymatic numerical P systems—A new class of membrane

computing systems. In Proceedings of the 5th International Conference on Bio-Inspired Computing: Theories and Ap-

plications (BIC-TA’10), A. K. Nagar, R. Thamburaj, K. Li, Z. Tang, and R. Li (Eds.). IEEE, 1331–1336.
[79] Ignacio Pérez-Hurtado, Miguel Á. Martínez-del-Amor, Gexiang Zhang, Ferrante Neri, and Mario J. Pérez-Jiménez.

2020. A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning. Integ. Comput.-

Aided Eng. 27 (2020), 121–138.
[80] Ignacio Pérez-Hurtado, David Orellana-Martín, Gexiang Zhang, and Mario J. Pérez-Jiménez. 2019. P-Lingua in two

steps: Flexibility and efficiency. J. Memb. Comput. 1, 2 (01 June 2019), 93–102.
[81] Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Gexiang Zhang, and David Orellana-Martín. 2018. Simulation of

rapidly-exploring random trees in membrane computing with P-lingua and automatic programming. Int. J. Comput.

Commun. Contr. 13, 6 (2018), 1007–1031.
[82] Biljana Petreska and Christof Teuscher. 2003. A reconfigurable hardware membrane system. In Proceedings of the

International Workshop on Membrane Computing (WMC’03) (Lecture Notes in Computer Science), Carlos Martín-Vide,
Giancarlo Mauri, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 2933. Springer, 269–285.

[83] Andrew Pohorille and David Deamer. 2009. Self-assembly and function of primitive cell membranes. Res. Microbiol.

160, 7 (2009), 449–456.
[84] Gheorghe Păun. 2000. Computing with membranes. J. Comput. Syst. Sci. 61, 1 (2000), 108–143.
[85] Gheorghe Păun. 2002. Membrane Computing: An Introduction. Springer-Verlag, Berlin.
[86] Gheorghe Păun and Radu A. Păun. 2006. Membrane computing and economics: Numerical P systems. Fundam.

Inform. 73, 1–2 (2006), 213–227.
[87] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). 2009. The Oxford Handbook of Membrane Computing.

Oxford University Press.
[88] Juan Quiros, Sergey Verlan, Julian Viejo, Alejandro Millán, and Manuel J. Bellido. 2016. Fast hardware implementa-

tions of static P systems. Comput. Inform. 35, 3 (2016), 687–718.
[89] Raúl Reina-Molina, Daniel Díaz-Pernil, and Miguel A. Gutiérrez-Naranjo. 2011. Integer linear programming for

tissue-like P systems. In Proceedings of the 9th Brainstorming Week on Membrane Computing, M. A. Martínez-del-
Amor, Gh. Păun, I. Pérez-Hurtado, F. J. Romero-Campero, and L. Valencia-Cabrera (Eds.).

[90] Haina Rong, Kang Yi, Gexiang Zhang, Jianping Dong, Prithwineel Paul, and Zhiwei Huang. 2019. Automatic imple-
mentation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems. Complexity

2019 (2019), 2635714:1–2635714:16.
[91] Grzegorz Rozenberg and Arto Salomaa (Eds.). 1997. Handbook of Formal Languages. Vol. 1–3. Springer.
[92] Eduardo Sánchez-Karhunen and Luis Valencia-Cabrera. 2019. Modelling complex market interactions using PDP

systems. J. Memb. Comput. 1, 1 (2019), 40–51.
[93] James E. Smith. 1984. Decoupled access/execute computer architectures. ACM Trans. Comput. Syst. 2, 4 (1984), 289–

308.
[94] Yasuhiro Suzuki, Yoshi Fujiwara, Junji Takabayashi, and Hiroshi Tanaka. 2000. Artificial life applications of a class

of P systems: Abstract rewriting systems on multisets. In Proceedings of the Workshop on Membrane Computing -

Multiset Processing (LNCS), C. S. Calude, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.). Springer, 299–346.
[95] Yasuhiro Suzuki and Hiroshi Tanaka. 2006. Modeling p53 Signaling Pathways by Using Multiset Processing. Springer

Berlin, 203–214.
[96] El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao Ishibuchi, Günter Rudolph, and Carlos A. Coello Coello.

2008. Parallel approaches for multiobjective optimization. In Multiobjective Optimization, Interactive and Evolu-

tionary Approaches (LNCS), J. Branke, K. Deb, K. Miettinen, and R. Slowinski (Eds.), Vol. 5252. Springer, 349–
372.

[97] El-Ghazali Talbi. 2018. A unified view of parallel multi-objective evolutionary algorithms. J. Parallel Distrib. Comput.

133 (2018), 349–358.
[98] Jorge A. Tejedor, Luis Fernández, Fernando Arroyo, and Sandra Gómez-Canaval. 2007. Algorithm of rules applica-

tions based on competitiveness of evolution rules. In Proceedings of the 8th Workshop on Membrane Computing, G.
Ekeftherakis, P. Kefalas, and Gh. Păun (Eds.). 567–580.

[99] Jorge A. Tejedor, Luis Fernández, Fernando Arroyo, and Abraham Gutiérrez. 2007. Algorithm of active rule elimi-
nation for application of evolution rules. In Proceedings of the 8th WSEAS International Conference on Evolutionary

Computing, Akshai Aggarwal (Ed.). 259–267.
[100] Jorge A. Tejedor, Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, Ginés Bravo, and Sandra Gómez-Canaval.

2007. Optimizing evolution rules application and communication times in membrane systems implementation. In
Proceedings of the 8th International Workshop on Membrane Computing (WMC’07) (Lecture Notes in Computer Sci-

ence), George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 4860.
Springer, 298–319.

[101] Roman Trobec, Marián Vajteršic, and Peter Zinterhof. 2009. Parallel Computing. Springer.
[102] Christos Tsotskas, Timoleon Kipouros, and Anthony Mark Savill. 2014. The design and implementation of a GPU-

enabled multi-objective Tabu-Search intended for real world and high-dimensional applications. Proced. Comput.

Sci. 29 (2014), 2152–2161.
[103] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Sravanthi Kota Venkata, Michael Bedford Taylor, and Steven

Swanson. 2011. QSCORES: Trading dark silicon for scalable energy efficiency with quasi-specific cores. In Proceed-

ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11). 163–174.
[104] Sergey Verlan. 2010. Study of Language-Theoretic Computational Paradigms Inspired by Biology. Habilitation thesis,

Université Paris Est.
[105] Sergey Verlan. 2013. Using the formal framework for P systems. In Proceedings of the 14th International Conference

on Membrane Computing (CMC’13) (Lecture Notes in Computer Science), Artiom Alhazov, Svetlana Cojocaru, Marian
Gheorghe, Yurii Rogozhin, Grzegorz Rozenberg, and Arto Salomaa (Eds.), Vol. 8340. Springer, 56–79.

[106] Sergey Verlan and Juan Quiros. 2012. Fast hardware implementations of P systems. In Proceedings of the 13th Inter-

national Conference on Membrane Computing (CMC’12) (Lecture Notes in Computer Science), Erzsébet Csuhaj-Varjú,
Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and György Vaszil (Eds.), Vol. 7762. Springer, 404–423.

[107] Tao Wang, Gexiang Zhang, and Mario J. Pérez-Jiménez. 2015. Fuzzy membrane computing: Theory and applications.
Int. J. Comput. Commun. Contr. 10 (2015), 904–935.

[108] Tao Wang, Gexiang Zhang, Junbo Zhao, Zhenyou He, Jun Wang, and Mario J. Pérez-Jiménez. 2015. Fault diagnosis
of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30, 3 (2015),
1182–1194.

[109] Xueyuan Wang, Gexiang Zhang, Ferrante Neri, Tao Jiang, Junbo Zhao, Marian Gheorghe, Florentin Ipate, and
Raluca Lefticaru. 2016. Design and implementation of membrane controllers for trajectory tracking of nonholo-
nomic wheeled mobile robots. Integ. Comput.-Aided Eng. 23, 1 (2016), 15–30.

[110] Xueyuan Wang, Gexiang Zhang, Junbo Zhao, Haina Rong, Florentin Ipate, and Raluca Lefticaru. 2015. A modified
membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. Int. J. Comput.

Commun. Contr. 10, 5 (2015), 732–745.
[111] Nicholas Wilt (Ed.). 2013. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison Wesley.
[112] Erica Wiseman. 2016. Next generation computing. National Research Council of Canada/Gov. of Canada (2016). https:

//cradpdf.drdc-rddc.gc.ca/PDFS/unc268/p805200_A1b.pdf.
[113] Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, and Yu Cao. 2014. The stochastic loss of spikes in spiking

neural P systems: Design and implementation of reliable arithmetic circuits. Fund. Inform. 134, 1–2 (2014), 183–200.
[114] Jianying Yuan, Dequan Guo, Gexiang Zhang, Prithwineel Paul, Ming Zhu, and Qiang Yang. 2019. A resolution-free

parallel algorithm for image edge detection within the framework of enzymatic numerical P systems. Molecules 24,
7 (2019).

[115] Xiangxiang Zeng, Henry Adorna, Miguel A. Martínez-del-Amor, Linqiang Pan, and Mario J. Pérez-Jiménez. 2010.
Matrix representation of spiking neural P systems. In Proceedings of the 11th International Conference on Membrane

Computing (CMC’10) (LNCS), Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa (Eds.). 377–391.

[116] Gexiang Zhang, Jixiang Cheng, Marian Gheorghe, and Qi Meng. 2013. A hybrid approach based on differential
evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems.
Appl. Soft Comput. 13, 3 (2013), 1528–1542.

[117] Gexiang Zhang, Marian Gheorghe, Linqiang Pan, and Mario J. Pérez-Jiménez. 2014. Evolutionary membrane com-
puting: A comprehensive survey and new results. Inform. Sci. 279 (2014), 528–551.

https://cradpdf.drdc-rddc.gc.ca/PDFS/unc268/p805200_A1b.pdf
https://cradpdf.drdc-rddc.gc.ca/PDFS/unc268/p805200_A1b.pdf

[118] Gexiang Zhang, Mario J. Pérez-Jiménez, and Marian Gheorghe. 2017. Real-life Applications with Membrane Comput-

ing (1st ed.). Springer Publishing Company, Incorporated.
[119] Gexiang Zhang, Haina Rong, Ferrante Neri, and Mario J. Pérez-Jiménez. 2014. An optimization spiking neural P

system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24, 5 (2014), 1440006.
[120] Weihang Zhu, Ashraf Yaseen, and Yaohang Li. 2011. DEMCMC-GPU: An efficient multi-objective optimization

method with GPU acceleration on the Fermi architecture. New Gen. Comput. 29, 2 (2011), 163–184.

