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Basis-independent partial matchings induced by morphisms
between persistence modules

R. Gonzalez Diaz, M. Soriano Trigueros

June 19, 2020
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{rogodi, msoriano4}@us.es

Abstract

In this paper, we study how basis-independent partial matchings induced by morphisms
between persistence modules (also called ladder modules) can be defined. Besides, we extend
the notion of basis-independent partial matchings to the situation of a pair of morphisms
with same target persistence module. The relation with the state-of-the-art methods is also
given. Apart form the basis-independent property, another important property that makes
our partial matchings different to the state-of-the-art ones is their linearity with respect to
ladder modules.

1 Introduction
Persistent homology [9] is one of the main tools of topological data analysis. The algebraic struc-
ture associated to persitent homology is persistence module [7, 12]. There are still many open
questions about persistence modules, specially multidimensional ones. Ladder modules [11] (that
is, morphisms between 1-dimensional persistence modules) are concrete cases of multidimensional
modules and therefore interesting objects of study. In this section we will introduce such con-
cept together with previous works that motivated our study. Unless stated otherwise, “persistence
modules” will refer to “1-dimensional persistence modules”.

Partial matchings induced by morphisms between persistence modules are needed to answer
questions that arise in topological data analysis. For example, consider a finite filtration K∗ of
simplicial complexes obtained from a given dataset:

K1 K2 . . . Kn.

The original dataset may vary, for example if it depends on time or if it is modified as part of
an experiment. Then, a new filtration L∗ may arise. In some cases, there exists a simplicial map
κi : Ki → Li between each pair of simplicial complexes (Ki, Li) making the following diagram
commutative:

L1 L2 . . . Ln

K1 K2 . . . Kn

κ1 κ2 κn (1)

Nevertheless, these simplicial maps cannot always be defined. Partial simplicial maps [10] (that is,
partially defined maps which are simplicial isomorphisms in their domains) are used to model such
situations. Let us denote a partial simplicial map between a pair of simplicial complexes (Ki, Li)
by µi : Ki 9 Li. Actually, µi can be expressed using simplicial maps. Consider the filtration:

K∗ ∪µ∗ L∗ = K∗ t L∗/ ∼µ∗

where x ∼µ∗ y if y = µ∗(x). Notice that there exists trivial injections betweenK∗, L∗ andK∗∪µ∗L∗.
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We obtain the following commutative diagram:

L1 L2 . . . Ln

K1 ∪µ1 L1 K2 ∪µ2 L2 . . . Kn ∪µn Ln

K1 K2 . . . Kn

(2)

When applying the homology functor with coefficients in a field to Diagrams (1) and (2), we obtain,
respectively, the commutative diagram:

U1 U2 . . . Un

V1 V2 . . . Vn

α1 α2 αn
(3)

that can be seen as a morphism α : V −→ U between the persistence modules V and U of length
n, and

U1 U2 . . . Un

W1 W2 . . . Wn

V1 V2 . . . Vn

β1 β2 βn

α1 α2 αn

(4)

that can be seen as a pair of morphisms V α−→ W β←− U between the persistence modules V, W
and U.

Since V and U are characterized up to isomorphism by their respective barcodes B(V) and B(U)
(this is a consequence of Gabriel’s Theorem [13], see [12]), the following question arises: How can
Diagrams (3) and (4) induce partial matchings between the multisets B(V) and B(U)?

It is proven in [11] that ladder modules with n ≤ 4 (which can be seen as morphisms between
persistence modules of length n) are finite decomposable. Such decomposition characterizes up
to isomorphism the ladder module (Diagram (3)) and, in particular, the morphism involved when
n ≤ 4. Nevertheless, ladder modules are infinite decomposable for n > 4.

A technique for computing partial matchings induced by morphisms between persistence mod-
ules of any length is introduced in [3] and extended recently in [4]. Despite being very useful
for theoretical purposes, such techniques factorizes through the image of the given morphism and
sometimes produces a different partial matching than the expected from the ladder module de-
composition.

Moreover, computing a partial matching induced by Diagram (4) is not straightforward. Once
we have the matching induced by Diagram (3), we could try to create the new one composing the
partial matching between B(V) and B(W), and the partial matching between B(W) and B(U).

Nevertheless, it is proven in [3] that there does not exist any functor from the category of
persistence modules to the category of multisets with partial matchings as morphisms. In other
words, composing partial matchings force us to make arbitrary basis choices. In [16], continuing
previous work [10], a persistence module K ⊂ W is defined and interpreted as the “common
persistence” between V and U. Nevertheless no explicit relation of the persistence module K to
the persistence modules V and U is given.

In this paper we will define basis-independent partial matchings such that:

• They are induced by morphisms between persistence modules (Diagram (3)).

• They are linear with respect to the direct sum of ladder modules (then, they do not factorize
through the image of the given morphism.)

Besides, we also extend the definition to basis-independent partial matchings induced by Diagram
(4) and describe their relation with the persistence module K defined in [16] thanks to the new
concept of enriched partial matchings presented here.
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2 Background
In this section, we briefly recall the concept of persistence modules and all the other concepts
mentioned in the introduction section. Notice that some of the classical definitions presented here
have been slightly modified to suit our situation. Please, pay attention to the remarks in this
section, they will be used later in the proofs of the main results of the paper. In addition, some
minor lemmas that may be needed later have also been added to this section. We have omitted
categorical or quiver concepts when possible to keep the paper readable by the widest audience.

2.1 Vector spaces and linear maps
From now on, we will consider vector spaces to be finite dimensional, and scalars in a fixed field
F. The following elementary remarks about vector spaces will be used later.

Remark 2.1. Given three vector spaces A,B,C, with B ⊆ A, we have:

dimA/B = dimA− dimB ≥ dimA ∩ C − dimB ∩ C = dimA ∩ C /B ∩ C

where dimV denotes the dimension of the vector space V .

Remark 2.2. Given a linear map α : A→ B between two vector spaces A and B, we have that:

dimA = dim
[
α(A)

]
+ dim

[
α−1(0)

]
,

dimB = dim
[
α−1(B)

]
− dim

[
α−1(0)

]
,

B = αα−1(B) and A ⊆ α−1α(A),

where α−1(0) denotes the kernel of α.

2.2 Zigzag, persistence and interval modules
Let us briefly introduce now the concept of zigzag, persistence and interval modules. See [5].

Definition 2.3. A zigzag module V is a sequence of vector spaces Vi together with linear maps
ϕV
i (called structure morphisms):

V1 V2 · · · Vn.
ϕV

1 ϕV
2

ϕV
n−1

If the linear map ϕV
i goes from Vi to Vi+1 then ϕV

i is denoted by fVi and, if the linear map ϕV
i goes

from Vi+1 to Vi then ϕV
i is denoted by gVi , that is,

fVi = ϕV
i : Vi −→ Vi+1 and gVi = ϕV

i : Vi+1 −→ Vi.

This way, the sequence of symbols f and g will determine the type of V. For example, the
structure of a zigzag module V of type τ3 = ffg will be:

V1 V2 V3 V4.
fV
1 fV

2 gV3

Definition 2.4. A persistence module V of length n is a zigzag module of type τn =

f
(n−1)-times
· · · · · · · · · f , that is,

V = V1 V2 · · · Vn.
fV
1 fV

2
fV
n−1

Remark 2.5. For the sake of clarity, the composition fVb−1 ◦ fVb−2 ◦ . . . ◦ fVa+1 ◦ fVa will be denoted
by fVa,b. In particular, observe that fVa will also be denoted by fVa,a+1 and fVa,a is the identity map
on Va.

Remark 2.6. We sometimes add the trivial spaces V0 = 0 and Vn+1 = 0 to a given persistence
module V of length n, together with zero maps fV0 : 0→ V1 and fVn : Vn → 0. Then, given a, b ∈ Z,
with 0 ≤ a ≤ b ≤ n, we have that fVa,b(Va) = 0 if b = n+ 1 or a = 0.

Zigzag modules can be decomposed in simple parts.
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Definition 2.7. Given two zigzag modules U,V of type τn, it is said U to be a submodule of V,
denoted U ⊆ V, if Ui ⊆ Vi and, ϕV

i (Ui) ⊆ Ui+1 if ϕV
i = fVi or ϕV

i (Ui) ⊆ Ui−1 if ϕV
i = gVi , for all i.

In particular, φUi is defined as φVi |Ui .
In addition, U is said to be a summand of V if there exists another submodule W of V such

that Vi = Ui⊕Wi for all i. In that case, we say V is the direct sum of U,W, denoted V = U⊕W.

Indecomposable modules are zigzag modules that cannot be expressed as a direct sum (except
themselves with the zero module). Indecomposable modules have the structure of interval modules
[5] which are defined as follows.

Definition 2.8. Given a, b, n ∈ Z, 1 ≤ a ≤ b ≤ n, an interval module I[a, b] of type τn is the
following zigzag module of type τn:

I1 I2 · · · In
ϕ

I[a,b]
1 ϕ

I[a,b]
2

ϕ
I[a,b]
n−1

where, for 1 ≤ i ≤ n,

Ii =

{
F, if i ∈ [a, b],
0, otherwise,

and
ϕ
I[a,b]
i =

{
the identity map if i ∈ [a, b− 1],
the zero map, otherwise.

Notice that, in topological data analysis, intervals are sometimes consider to be semi-open. If
the reader is used to that notation, please recall that in this paper [a, b+1) will be written as [a, b].

Zigzag modules can be expressed as direct sums of interval modules.

Theorem 2.9 (Interval Decomposition Theorem [5]). Let V be a zigzag module of type τn then:

V '
⊕

1≤a≤b≤n

I[a, b]m
V
a,b

where mV
a,b is the multiplicity of the interval module I[a, b].

2.3 Persistence diagrams and barcodes
Zigzag modules are unambiguously described (up to isomorphism) by interval modules I[a, b] and
their multiplicities. This information is usually represented in two equivalent ways: persistence
barcodes and persistence diagrams. Please, notice that the word “diagram” in “persistence diagram”
does not have any categorical meaning.

Definition 2.10. Let V '
⊕

1≤a≤b≤n I[a, b]
mV
a,b be a zigzag modules decomposed in interval

modules. The persistence diagram of V is the function

DV :∆+ −→ Z≥0

(a, b) 7→ mV
a,b

where ∆+ = {(a, b) ∈ Z2
≥0 such that a ≤ b}.

Definition 2.11. Let V '
⊕

1≤a≤b≤n I[a, b]
mV
a,b be a zigzag modules decomposed in interval

modules. The persistence barcode of V is a multiset1 formed by the intervals whose associated
interval modules have no null multiplicity, mathematically:

BV = {([a, b],mV
a,b) : mV

a,b > 0}.

The collection of all persistence barcodes will be denoted by Б. Although we will use the
concept of persistence diagrams along the paper, the concept of persistence barcodes will be useful
when defining enriched partial matchings in Section 4.

Before finishing this subsection, let us recall the formula for computing multilplicities of the
interval modules in the decomposition of a given persistence module. Let (a, b) ∈ ∆+, then:

DV(a, b) = dim
[
fVa,b(Va) ∩ ker fVb

]
− dim

[
fVa−1,b(Va−1) ∩ ker fVb

]
. (5)

This expression is well-defined taking into account Remark 2.6. This formula for persistence
modules and analogous formulas for zigzag modules can be found in [5].

1A multiset is a set where each element has associated a multiplicity.
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2.4 Ladder modules and morphisms between zigzag modules
In this subsection, morphisms between zigzag modules (also called 2-dimensional modules and
ladder modules [11]) are recalled.

Definition 2.12. A morphism α : V→ U between zigzag modules of type τn is a set of linear
maps

αi : Vi → Ui

such that the following diagram is commutative:

U1 U2 · · · Un

V1 V2 · · · Vn

ϕU
1 ϕU

2
ϕU
n−1

ϕV
1

α1

ϕV
2

α2

ϕV
n−1

αn

When all αi are injective (resp., surjective), we say α is injective (resp., surjective). Such diagrams
are called ladder modules of type τn.

Observe that ladder modules and morphisms between zigzag modules are different point of
views of the same concept as shown in [1].

Remark 2.13. Consider a morphism between two interval modules

I[a, b] α−→ I[a′, b′].

Then, all linear maps αi must be zero unless a′ ≤ a ≤ b′ ≤ b.
Definition 2.14. The image of a morphism α : V → U is the submodule of U whose vector
spaces are αi(Vi) for i ∈ Z≥0.

There is a decomposition theorem for ladder modules of type τn in indecomposable ladder
module when n ≤ 4. Nevertheless, when n > 4, ladder modules are, in general, representation-
infinite, that is, they can not be expressed as a finite direct sum of indecomposable ladder modules.

Theorem 2.15. [11] Let A be a ladder module of type τn with n ≤ 4. Then,

A '
⊕
I∈Γ0

Im
A
I

where mA
I is the multiplicity of the indecomposable ladder module I. The set of indecomposable

ladder modules of type τn with n ≤ 4 corresponds to the finite set of vertices Γ0 of the Auslander-
Reiten quiver [2] (Γ0,Γ1) of ladder modules of type τn with n ≤ 4.

In this paper, we will not define the Auslander-Reiten quiver (Γ0,Γ1) since it is not needed for
the understanding of our main results. Besides, the only decomposable ladder modules appearing
in this paper are the ones of type τ1 = f , τ2 = ff and τ3 = fff since we only deal with morphisms
between persistence modules. To illustrate Theorem 2.15, let us describe the indecomposable ladder
modules of type τ2 = ff (that will be represented by integer 2× 3 matrices) and give an example.

If an indecomposable ladder module I of type τ2 = ff is represented by an integer 2×3 matrix
with all entries being 0 or 1, then the linear maps αi of I are the identity map when possible and
the zero map otherwise. For example, 0 1 1

0 0 1 represents the following indecomposable ladder module
of type τ2 = ff :

0 F F

0 0 F.

Id

Id

There are another 28 indecomposable ladder modules of type τ2 = ff (see [11]), but only two of
them, represented by the matrices 1 2 1

0 1 1 and 1 1 0
1 2 1 , are not made up of only 0 and 1. Concretely,

such two matrices respectively represent the following indecomposable ladder modules:

F ⊕2F F

0 F F

[ 1
0 ] [ 0 1 ]

Id

[ 1
1 ] Id and

F F 0

F ⊕2F F

Id

[ 1
0 ]

Id
[ 0 1 ]

[ 1 1 ]
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Example 2.16. The ladder module

A =

⊕2F ⊕3F F

0 ⊕3F ⊕2F

[
1 0
0 0
0 1

]
[ 0 1 0 ]

[ 1 0 0
0 0 1 ]

[
1 0 0
1 0 0
0 0 1

]
[ 1 0 ]

of type τ2 = ff , has the following decomposition in indecomposable ladder modules:

A ' 1 2 1
0 1 1 ⊕ 1 1 0

0 1 1 ⊕ 0 0 0
0 1 0

Recall that the ladder module A can also be interpreted as a morphism α : V → U between two
persistence modules U and V where

α1 : 0→ ⊕2F, α2 =
[

1 0 0
1 0 0
0 0 1

]
: ⊕3F→ ⊕3F and α3 = [ 1 0 ] : ⊕2F→ F,

and V,U have the following decomposition in interval modules:

V ' I[2, 2]⊕ I[2, 3]2 and U ' I[1, 2]2 ⊕ I[2, 3].

2.5 Partial matchings
In this subsection, we recall how persistence barcodes are related to each other via “partial match-
ings”.

Definition 2.17. A partial matching between sets A and C is a partial bijection σ : A→ C or,
in other words, a bijection σ between the domain of σ, domσ ⊆ A, and the image of σ, imσ ⊆ C.

Given a map σ : A → C between two sets of points, the codomain and the coimage of σ are
defined, respectively, as follows:

codσ = A \ domσ and coimσ = C \ imσ.

Remark 2.18. A representation set of the multiset A, denoted by s(A), is a set obtained by
enumerating the elements of A.

Let us see an example.

Example 2.19. Consider the following two persistence barcodes:

BV = {([2, 3], 2), ([3, 3], 2)} and BU = {([1, 2], 1), ([2, 3], 2), ([3, 3], 2)}.

Then,
s(BV) = {[2, 3]1, [2, 3]2, [3, 3]1, [3, 3]2}

and
s(BU) = {[1, 2]1, [2, 3]1, [2, 3]2, [3, 3]1, [3, 3]2}.

A partial matching between s(BV) and s(BU) can be, for example, σ([2, 3]2) = [3, 3]1.

By abuse of language, we will say “partial matchings between persistence modules V,U” when
we mean “partial matchings between sets s(BV) and s(BU)”.

2.5.1 Bauer-Lesnick induced partial matching

A method for computing a partial matching induced by a morphism between persistence modules
is given in [3]. Such method is introduced in this subsection to show similarities and differences
with our approach. First, we have to give more notations.
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Notation 2.20. Given a, b ∈ N, consider the sets

{[ · , b]∗} = {[x, b]n : x, n ∈ N}

and
{[a, · ]∗} = {[a, y]n : y, n ∈ N}.

For x, x′, y, y′, n,m ∈ N, we write:

(x, b)n < (x′, b)m if
{
x < x′, or
x = x′ and n < m.

and, respectively,

(a, y)n < (a, y′)m if
{
y > y′, or
y = y′ and n < m.

To compute a partial matching induced by an injective morphism between persistence modules
α : V → U, fix b ∈ N and consider the ordered sets A = {[ · , b]∗} ⊂ s(BV) and B = {[ · , b]∗} ⊂
s(BU). It is proven in [3] that the number of elements of A is less or equal than the number of
elements of B, that is, #A ≤ #B, so a partial matching between the two sets can be defined by
matching the i-th element of A with the i-th element of B, for 1 ≤ i ≤ #A. Putting together the
partial matchings obtained for all b ∈ N, we obtain a new partial matching between s(BV) and
s(BU) denote by ια.

A similar procedure is followed in [3] when α is surjective. In this case, fix a ∈ N and consider
the sets A = {[a, · ]∗} ⊆ s(BV) and B = {[a, · ]∗} ⊆ s(BU). We have that #B ≤ #A. Again, a
partial matching between the two sets can be defined by matching the i-th element of B with the
i-th element of A, for 1 ≤ i ≤ #B. Putting together the partial matchings obtained for all a ∈ N,
we obtain a new partial matching between s(BV) and s(BU) denoted by λα.

Finally, since any morphism α between persistence modules can be decomposed in a surjective
and an injective morphism between persistence modules, a partial matching induced by α can
always be computed.

Definition 2.21. Given a morphism between persistence modules α : V→ U, and its deocompo-
sition α = γ ◦ β where β is surjective and γ is injective:

V β−→ imα
γ−→ U,

theBauer-Lesnick partial matching (or BL-matching) induced by α is the partial matching
σ = λγ ◦ ιβ obtained by the composition of partial matchings ιβ and λγ :

s(BV)
λβ−→ s(Bimα)

ιγ−→ s(BU).

Let us see a very simple example of a BL-matching.

Example 2.22. Let us consider the ladder module α : V→ U where V = I[a, b] and U = I[a′, b′],
being a, b, a′, b′ ∈ N, a ≤ a′ ≤ b ≤ b′ and αi = Id when i ∈ [a′, b]. Then,

I[a, b] β−→ imα = I[a′, b] γ−→ I[a′, b′]

and
s(BV) = {[a, b]1}

λβ−→ s(Bimα) = {[a′, b]1}
ιγ−→ s(BV) = {[a′, b′]1}

where
λβ
(
[a, b]1

)
= [a′, b]1 and ιγ

(
[a′, b]1

)
= [a′, b′]1.

Therefore, the BL-matching σ = ιγ ◦ λβ satisfies that:

σ
(
[a, b]1

)
= [a′, b′]1.

and it is zero otherwise.
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Notice that fixed two persistence modules, the BL-matchings induced by morphisms between
them coincide if the images of such morphisms coincide. In other words, consider two different
morphisms α1 and α2 between the same persistence modules. If the persistence modules imα1

and imα2 coincide then the BL-matching induced by α1 and the BL-matching induced by α2

coincide. As we will see later, this is not always the case when we compute basis-independent
partial matchings following our approach.

Example 2.23. Let us consider the following ladder module α : V→ U of type τ2 = ff :

A =

⊕2F ⊕3F F

0 ⊕3F ⊕2F

[
1 0
0 0
0 1

]
[ 0 1 0 ]

fV
2 =[ 1 0 0

0 0 1 ]

[
1 0 0
1 0 0
0 0 1

]
[ 1 0 ]

Then, α = γ ◦ β where
V β−→ imα

γ−→ U,

β is surjective and γ is injective. The persistence module imα is:

0 ⊕2F F
[ 1 0 ]

and its decomposition in interval modules is:

imα ' I[2, 3]⊕ I[2, 2].

To construct the BL-matching between V and U, recall that V ' I[2, 2]⊕ I[2, 3]2 and U ' I[1, 2]2⊕
I[2, 3] (see Example 2.16 in page 6). Then:

s(BV) = {[2, 3]1, [2, 3]2, [2, 2]1},
s(Bimα) = {[2, 3]1, [2, 2]1} and

s(BU) = {[1, 2]1, [1, 2]2, [2, 3]1}.

Therefore,
λβ([2, 3]1) = [2, 3]1, λβ([2, 3]2) = [2, 2]1, λβ([2, 2]x1) = ∅,

ιγ([2, 2]1) = [1, 2]1, and ιγ([2, 3]1) = [2, 3]1.

Finally, the composition σ of λβ and ιγ produces the BL-matching σ induced by α:

σ([2, 3]1) = [2, 3]1, σ([2, 3]2) = [1, 2]1, σ([2, 2]1) = ∅.

Observe that replacing α2 =
[

1 0 0
1 0 0
0 0 1

]
by, for example, α2 =

[
1 0 0
1 0 0
0 1 0

]
, will not change σ since both

imα and the decomposition of V do not change.

3 Basis-independent partial matchings
Observe that when we transform a multiset into a set using the map s, we are making arbitrary
basis choices. If we want to define a basis-independent partial matching we should not perform
such operation. As an alternative, we can define the partial matching using multiplicities instead
of pairings. Let us define what basis-independent partial matchings mean in this paper.

Definition 3.1. A basis-independent partial matching between two persistence modules
V,U of length n is a function

MU
V : ∆+ ×∆+ → Z≥0

such that: ∑
1≤b′≤n

∑
1≤a′≤b′

MU
V(a, b, a′, b′) ≤ DV(a, b) and

∑
1≤b≤n

∑
1≤a≤b

MU
V(a, b, a′, b′) ≤ DU(a′, b′).
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Notice that a partial matching σ between s(BV) and s(BU) always induces a basis-independent
partial matching between the persistence modules V and U as follows. Assume that a partial
matching σ between s(BV) and s(BU) exists. Define

MU
V(a, b, a′, b′) = #

{
[a, b]x ∈ s(BV)

∣∣∃ y ∈ N such that σ([a, b]x) = [a′, b′]y
}
.

Then, ∑
1≤b′≤n

∑
1≤a′≤b′

MU
V(a, b, a′, b′) = #

{
[a, b]x

∣∣ [a, b]x ∈ dom σ
}
≤ DV(a, b)

and ∑
1≤b≤n

∑
1≤a≤b

MU
V(a, b, a′, b′) = #

{
[a′, b′]x

∣∣ [a′, b′]y ∈ imσ
}
≤ DU(a′, b′).

In particular, given a a BL-matching, we can always compute its corresponding basis-independent
partial matching that will be denoted byMα

BL.

Example 3.2. Consider the ladder module α : V→ U of type τ2 = ff described in Example 2.16
and the BL-matching σ between s(BV) = {[2, 3]1, [2, 3]2, [2, 2]1} and s(BU) = {[1, 2]1, [1, 2]2, [2, 3]1}
given in Example 2.23 and detailed below:

σ([2, 3]1) = [2, 3]1, σ([2, 3])2) = [1, 2]1, σ([2, 2]1) = ∅.

Then

Mα
BL(2, 3, 2, 3) = 1, Mα

BL(2, 3, 1, 2) = 1 and Mα
BL(a, b, a′, b′) = 0 otherwise.

Besides, due to the properties of the function MU
V given in Definition 3.1, we always can

obtain a (non-unique) partial matching between persistence modules starting from a concrete
basis-independent partial matching. Nevertheless, contrary to what happens with composition
of partial matchings, the composition of basis-independent partial matchings is not well-defined.
Specifically, it has been proven in [3] that no functor from the category of peristence modules
to the category of multisets with partial matchings as morphisms can exist. Nevertheless, using
basis-independent partial matchings, we do not need any arbitrary choice of the elements of the
multisets BV and BU, that is, any choice of the basis of V and U, gaining in versatility.

3.1 Basis-independent partial matchings induced by ladder modules
In this subsection, we will define a basis-independent partial matching with the following charac-
teristics (already mentioned in the introduction):

• It is induced by a given morphism between persistence modules.

• It is a linear map with respect to the direct sum of ladder modules and then it does not
factorize through the image of the given morphism.

The following subspaces will play a very important role in this subsection.

Notation 3.3. Let V be a persistence module of length n. Let a, b ∈ Z≥0. Then, SV
a,b denotes the

following subspace:

SV
a,b =

{
fVa,b(Va) ∩ ker fVb if 1 ≤ a ≤ b ≤ n,
0 otherwise.

Observe that SV
a,b can be seen as the subspace of Va which “persists” in Vb through fVa,b. Now,

observe that Expression (5) in page 4 can be written as

DV(a, b) = dimSV
a,b − dimSV

a−1,b. (6)

Therefore, the multiplicity DV(a, b) can be seen as the dimension of the subspace of Va which is
not a subspace of Va−1 and “persists” in Vb through fVa,b . This interpretation is usually called as
“the elder rule” in the literature [9].
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The following diagram can help us to figure out how we can define a basis-independent partial
matching between two persistent modules U and V induced by a morphism α : V→ U:

Ua′ Ub′ Ub′+1

Va Vb′ Vb Vb+1.

fU
a′,b′ fU

b′

fV
a,b′

αb′

fV
b′,b fV

b

(7)

But before giving such definition, we need to introduce a new notation.

Definition 3.4. Let α : V→ U be a morphism between persistence modules of length n. Then,

Xα : Z4
≥0 → Z≥0

is defined as follows:

Xα(a, b, a′, b′) =


dim

[
SV
a,b ∩ fVb′,b α

−1
b′ (SU

a′,b′)
]

−dim
[
SV
a,b ∩ fVb′,bα

−1
b′ (0)

]
if b′ ≤ b ≤ n,

0 otherwise.

For the sake of simplicity, we sometimes denote Xα(a, b, a′, b′) by b
aX b

′

a′ if there is no need to
explicitly mention the morphism α.

Looking at Diagram (7), we can interpret Xα as the dimension of the subspace of SU
a′,b′ that

“persists” in SV
a,b “through” α

−1. In the context of zigzag homology, observe that Xα is the value
D[2, 6] of the following zigzag module:

Ub′+1 fUa′,b′(Ua′) Ub′

Vb′ fVa,b′(Va) Vb Vb+1

fU
b′

αb′

fV
b′,b fV

b

Remark 3.5. Since U0 = V0 = Vn+1 = Un+1 = 0, then b
aX b

′

a′ = 0 if any of the variables a, b, a′, b′

is 0 or n+ 1. Besides, by definition of S we have that b
aX b

′

a′ = 0 if b < a, b′ < a′.

To define the basis-independent partial matching induced by α, the function Xα will play a
similar role to dimS in the definition of D in Expression (6) of page 9. This way, we will also make
use of an “elder rule operator” defined as follows.

Definition 3.6. Given a function F : Zn → Z, let us define Ei(F) as follows:

Ei(F)(x1, . . . , xn) =F(x1, . . . , xi−1, xi, xi+1, . . . , xn)

−F(x1, . . . , xi−1, xi − 1, xi+1, . . . , xn)

where E denotes the elder rule operator. We will write Ej(Ei(F)) as Ei,j(F).

For example, let V be a persistence module. Consider the function dimSV : (a, b) 7→ dimSV
a,b.

Then, Expression (6) in page 9 can be written as:

DV(a, b) = E1(dimSV)(a, b).

Definition 3.7. Let α : V → U be a morphism between persistence modules. Define Mα :
∆+ ×∆+ → Z≥0 as:

Mα = E1,3(Xα)

or, equivalently,
Mα(a, b, a′, b′) = b

aX b
′

a′ −
b

a−1X b
′

a′ −
b
aX b

′

a′−1 + b
a−1X b

′

a′−1.

The non-negative integerMα(a, b, a′, b′) can be interpreted as the amount of interval modules
I[a, b] in the decomposition of V that are “sent” by α to interval modules I[a′, b′] in the decomposition
of U. Before proving that Mα is, in fact, a basis-independent partial matching, let us introduce
some technical results.
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Lemma 3.8. If a ≤ a′ then b
aX b

′

a′ = b
aX b

′

c for any c ∈ Z≥0 such that a ≤ c ≤ a′.

Proof. Note that, by definition,

b
aX b

′

a′ −
b
aX b

′

c = dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′)

]
− dim

[
SV
a,b ∩ fVb′,b α−1

b′ (SU
c,b′)

]
.

Since c ≤ a′ then fUc,b′(Uc) ⊆ fUa′,b′(Ua). Therefore, SU
c,b′ ⊆ SU

a′,b′ then

C = SV
a,b ∩ fVb′,b α−1

b′ (SU
c,b′) ⊆ A′ = SV

a,b ∩ fVb′,b α−1
b′ (SU

a′,b′).

Let us see that A′ ⊆ C. Consider x ∈ A′. Then, in particular, there exists y ∈ Va such that
fVa,b(y) = x and there exists z ∈ α−1

b′ (SU
a′,b′) such that fVb′,b(z) = x. Then, necessarily, fVa,b′(y) = z

and αb′ fVa,b′(y) ∈ SU
a′,b′ = fUa′,b′(Ua′) ∩ ker fUb′,b′+1. Since a ≤ c ≤ a′ ≤ b′ then

αb′ f
V
a,b′(y) = αb′ f

V
c,b′ f

V
a,c(y) = fUc,b′ αc f

V
a,c(y) ∈ fUc,b′(Ua′) ∩ ker fUb′,b′+1 = SU

c,b′ .

Therefore, x ∈ SV
a,b ∩ fVb′,b α

−1
b′ (SU

c,b′) = C, concluding the proof.

Lemma 3.9. If b′ ≤ a then b
aX b

′

a′ = b
cX b

′

a′ for any c ∈ Z≥0 such that b′ ≤ c ≤ a.

Proof. Similar to the proof of Lemma 3.8, since b′ ≤ c ≤ a, then SV
c,b ⊆ SV

a,b and therefore

C = SV
c,b ∩ fVb′,b α−1

b′ (SU
a′,b′) ⊆ A = SV

a,b ∩ fVb′,b α−1
b′ (SU

a′,b′).

Let us prove that A⊆ C. Note that fVb′,b α
−1
b′ (SU

a′,b′) = fVc,b f
V
b′,c α

−1
b′ (SU

a′,b′), then

fVb′,b α
−1
b′ (SU

a′,b′) ⊆ fVc,b(Vc).

Then,

SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′) ⊆ ker fVb,b+1 ∩ fVb′,b α−1

b′ (SU
a′,b′) ⊆ fVb,c(Vc)

concluding that A ⊆ C.

The following lemma is deduced directly from the definition of the elder rule operator.

Lemma 3.10. If i 6= j then

∑
a≤xj≤b

Ei(F) = Ei

 ∑
a≤xj≤b

F

 .

Another useful lemmas are the following.

Lemma 3.11. If 1 ≤ i ≤ n then:∑
a+1≤xi≤b

Ei(F)(x1, . . . , xi−1, xi, xi+1 . . . , xn) =F(x1, . . . , xi−1, b, xi+1, . . . , xn)

−F(x1, . . . , xi−1, a, xi+1, . . . , xn).

Proof. Writing down the sum we have∑
a+1≤xi≤b

Ei(F)(. . . , xi, . . .) = F(. . . , b, . . .)−F(. . . , b− 1, . . .)

+ F(. . . , b− 1, . . .)−F(. . . , b− 2, . . .)

...
+ F(. . . , a+ 1, . . .)−F(. . . , a, . . .).

Cancelling addends with opposite signs, we obtain the desired result.
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Lemma 3.12. Let V be a persistence module of length n. Then, for any b ∈ Z with 1 ≤ b ≤ n and
any subspace Ab ⊆ Vb, we have that:

dimAb =
∑
b≤i≤n

dim
[
fVb,i(Ab) ∩ ker fVi,i+1

]
.

Proof. First, by Remark 2.2, we have that:

dimAb = dim
[
fVb,b+1(Ab)

]
+ dim

[
ker fVb,b+1

]
. (8)

Second, for any i ∈ Z with b ≤ i ≤ n and for any subspace Ai ⊆ Vi we have:

dimAi = dim
[
fVi,i+1(Ai)

]
+ dim

[
Ai ∩ ker fVi,i+1

]
(9)

Then, applying recursively Property (9) to Expression (8), we have:

dimAb = dim
[
fVb,b+1(Ab)

]
+ dim

[
ker fVb,b+1

]
= dim

[
fVb,b+2(Ab)

]
+ dim

[
fb,b+1(Ab) ∩ ker fVb+1,b+2

]
+ dim

[
ker fVb,b+1

]
= · · ·
= dim

[
fVn,n+1f

V
b,n(Ab)

]
+ dim

[
fVb,n(Ab) ∩ ker fVn−1,n

]
+ · · ·

+ dim
[
fVb,b+1(Ab) ∩ ker fVb+1,b+2

]
+ dim

[
ker fVb,b+1

]
.

Now, since An+1 = 0, fVn,n+1f
V
b,n(Ab) = 0 and fb,b is the identity, we have that ker fVb,b+1 =

fVb,b(Ab) ∩ ker fVb,b+1. Then,

dimAb = dim
[
fVb,n(Ab) ∩ ker fVn−1,n

]
+ · · ·+ dim

[
fVb,b(Ab) ∩ ker fVb,b+1

]
concluding the proof.

Lemma 3.13. Let α : V → U be a morphism between persistence modules. Let a, b ∈ Z≥0 with
a ≤ b and consider a subspace Aa ⊆ Ua. Then:

fVa,b α
−1
a (Aa) ⊆ α−1

b fUa,b(Aa).

Proof. By commutativity and Remark 2.2:

fVa,b α
−1
a (Aa) ⊆ α−1

b αb f
V
a,b α

−1
a (Aa) = αbf

U
a,b αa α

−1
a (Aa) = αbf

U
a,b(AA).

Lemma 3.14. Let α be a morphism between persistence modules. Then:∑
1≤a′≤b′

Mα(a, b, a′, b′) = b
aX b

′

b′ −
b

a−1X b
′

b′

and ∑
1≤a≤b

Mα(a, b, a′, b′) = b
bX b

′

a′ −
b
bX b

′

a′−1.

Proof. Both relations can be proven in an analogous way. Let us prove the first one. Using
Lemmas 3.10 and 3.11 we have:∑

1≤a′≤b′
Mα(a, b, a′, b′) =

∑
1≤a′≤b′

E1,3(Xα)(a, b, a′, b′)

= E1

∑
1≤a′≤b′

E3(Xα)(a, b, a′, b′) = E1 (Xα(a, b, b′, b′)−Xα(a, b, 0, b′)) .

Using Xα(a, b, 0, b′) = 0 by Remark 3.5, we have that:∑
1≤a′≤b′

Mα(a, b, a′, b′) = E1 (Xα) (a, b, b′, b′) = b
aX b

′

b′ −
b

a−1X b
′

b′ .

12



Finally, let us prove that Mα is, in fact, a basis-independent partial matching induced by a
morphism α between persistence modules.

Theorem 3.15. Let α be a morphism between two persistence modules U and V of length n. Then,∑
1≤b′≤n

∑
1≤a′≤b′

Mα(a, b, a′, b′) ≤ dimSV
a,b − dimSV

a−1,b = DV(a, b)

and ∑
1≤b′≤n

∑
1≤a≤b

Mα(a, b, a′, b′) ≤ dimSU
a′,b′ − dimSU

a′−1,b′ = DU(a′, b′).

Proof. Let us start with the first inequality. By Lemma 3.14, we have:∑
1≤b′≤n

∑
1≤a′≤b′

Mα(a, b, a′, b′) =
∑

1≤b′≤n

b
aX b

′

b′ −
b

a−1X b
′

b′ .

By definition,

b
aX b

′

b′ −
b

a−1X b
′

b′ = dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
b′,b′)

]
− dim

[
SV
a−1,b ∩ fVb′,b α−1

b′ (SU
b′,b′)

]
− dim

[
SV
a,b ∩ fVb′,bα−1

b′ (0)
]

+ dim
[
SV
a−1,b ∩ fVb′,bα−1

b′ (0)
]
. (10)

Now, denote

A = SV
a,b ∩ fVb′,bα−1

b′ (0), B = SV
a−1,b ∩ fVb′,bα−1

b′ (0) and C = fVb′−1,bα
−1
b′−1(SU

b′−1,b′−1).

Since SV
a−1,b ⊆ SV

a,b then B ⊆ A. Besides, using Lemma 3.13 we have:

C = fVb′,bf
V
b′−1,b′ α

−1
b′−1(SU

b′−1,b′−1) ⊆ fb′,b α−1
b′ f

U
b′−1,b′(S

U
b′−1,b′−1) = fVb′,b α

−1
b′ (0).

Therefore,
A ∩ C = SV

a,b ∩ fVb′−1,bα
−1
b′−1(SU

b′−1,b′−1)

and
B ∩ C = SV

a−1,b ∩ fVb′−1,bα
−1
b′−1(SU

b′−1,b′−1)

and from Remark 2.1 we have:

− dim
[
SV
a,b ∩ fVb′,b α−1

b′ (0)
]

+ dim
[
SV
a−1,b ∩ fVb′,b α−1

b′ (0)
]

≤ −dim
[
SV
a,b ∩ fVb′−1,b α

−1
b′−1(SU

b′−1,b′−1)
]

+ dim
[
SV
a−1,b ∩ fVb′−1,bα

−1
b′−1(SU

b′−1,b′−1)
]
.

Then, applying this last result to Expression (10):∑
1≤b′≤b

b
aX b

′

b′ −
b

a−1X b
′

b′

≤
∑

1≤b′≤b

dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
b′,b′)

]
− dim

[
SV
a,b ∩ fVb′−1,b α

−1
b′−1(SU

b′−1,b′−1)
]

− dim
[
SV
a−1,b ∩ fVb′,b α−1

b′ (SU
b′,b′)

]
+ dim

[
SV
a−1,b ∩ fVb′−1,b α

−1
b′−1(SU

b′−1,b′−1)
]
.

Cancelling addends with opposite signs, we get:∑
1≤b′≤b

b
aX b

′

b′ −
b

a−1X b
′

b′ ≤dim
[
SV
a,b ∩ fVb,b α−1

b (SU
b,b)
]
− dim

[
SV
a,b ∩ fV0,b α−1

0 (SU
0,0)
]

− dim
[
SV
a−1,b ∩ fVb,b α−1

b (SU
b,b)
]

+ dim
[
SV
a−1,b ∩ fV0,b α−1

0 (SU
0,0)
]
.

Since fV0,b and f
V
b,b are, respectively, the zero and the identity map, we have:∑

1≤b′≤b

∑
1≤a′≤b′

Mα(a, b, a′, b′) ≤ dim
[
SV
a,b ∩ α−1

b (SU
b,b)
]
− dim

[
SV
a−1,b ∩ α−1

b (SU
b,b)
]
.
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Applying again Remark 2.1 with A = SV
a,b, B = SV

a−1,b and C = SU
b,b, we obtain:∑

1≤b′≤b

∑
1≤a′≤b′

Mα(a, b, a′, b′) ≤ dimSV
a,b − dimSV

a−1,b = DV(a, b).

Besides, since b
aX b

′

a′ = 0 if b < b′ by Remark 3.5, then:∑
1≤b′≤n

∑
1≤a′≤b′

Mα(a, b, a′, b′) =
∑

1≤b′≤b

∑
1≤a′≤b′

Mα(a, b, a′, b′)

obtaining the desired result. For the second inequality, we will proceed in a similar way. First, by
definition,

b
aX b

′

a′ −
b
aX b

′

a′−1 = dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′)

]
− dim

[
SV
a,b ∩ fVb′,b(kerαb′)

]
− dim

[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′−1,b′)

]
+ dim

[
SV
a,b ∩ fVb′,b(kerαb′)

]
= dim

[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′)

]
− dim

[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′−1,b′)

]
.

Now, applying Remark 2.1 to

A = fVb′,b α
−1
b′ (SU

a′,b′) ∩ ker fVb , B = fVb′,b α
−1
b′ (SU

a′−1,b′) ∩ ker fVb and C = SV
a,b,

we obtain that:

dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′)

]
− dim

[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′−1,b′)

]
(11)

≤ dim
[
fVb′,b α

−1
b′ (SU

a′,b′) ∩ ker fVb
]
− dim

[
fVb′,b α

−1
b′ (SU

a′−1,b′) ∩ ker fVb
]
.

Besides, since b
aX b

′

a′ = 0 if b < b′, again by Remark 3.5, then:∑
1≤b≤n

∑
1≤a≤b

Mα(a, b, a′, b′) =
∑

b′≤b≤n

∑
1≤a≤b

Mα(a, b, a′, b′).

By Lemma 3.14 and Expression (11), we have:∑
b′≤b≤n

∑
1≤a≤b

Mα(a, b, a′, b′) =
∑

b′≤b≤n

b
aX b

′

a′ −
b
aX b

′

a′−1

≤
∑

b′≤b≤n

dim
[
fVb′,b α

−1
b′ (SU

a′,b′) ∩ ker fVb
]
− dim

[
fVb′,b α

−1
b′ (SU

a′−1,b′) ∩ ker fVb
]

and by Lemma 3.12,∑
b′≤b≤n

dim
[
fVb′,b α

−1
b′ (SU

a′,b′) ∩ ker fVb
]
− dim

[
fVb′,b α

−1
b′ (SU

a′−1,b′) ∩ ker fVb
]

= dim
[
α−1
b′ (SU

a′,b′)
]
− dim

[
α−1
b′ (SU

a′−1,b′)
]
.

Finally, by Remark 2.2:

dim
[
α−1
b′ (SU

a′,b′)
]
− dim

[
α−1
b′ (SU

a′−1,b′)
]

= dim
[
SU
a′,b′

]
+ dim

[
kerαb′

]
− dim

[
SU
a′−1,b′

]
− dim

[
kerαb′

]
= dim

[
SU
a′,b′

]
− dim

[
SU
a′−1,b′

]
= DU(a′, b′),

concluding the proof.

Proposition 3.16. Mα(a, b, a′, b′) = 0 unless a′ ≤ a ≤ b′ ≤ b.

Proof. By Remark 3.5, if b < b′ then b
aX b

′

a′ = 0 and so Mα(a, b, a′, b′) = 0. If a < a′, then, by
Lemma 3.8,

b
aX b

′

a′ = b
aX b

′

a′−1 and b
a−1X b

′

a′ = b
a−1X b

′

a′−1.

Similarly, when b′ < a, by Lemma 3.9,

b
aX b

′

a′ = b
a−1X b

′

a′ and b
aX b

′

a′−1 = b
a−1X b

′

a′−1.

ThenMα(a, b, a′, b′) = 0 in both cases.
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Recall that ladder modules of type τ = ff . . . f and morphism between persistence modules
are different points of view of the same concept. We will writeML instead ofMα when we want
to focus on the point of view of ladder modules.

Remark 3.17. Denote the collection of ladder modules of type τ = ff . . . f by PLM and define
∆4

+ = {(a, b, a′, b′) ∈ Z4
≥0 such that a′ ≤ a ≤ b′ ≤ b}. By the previous proposition, we can think in

M as a function
M : PLM ×∆4

+ → Z≥0

such that M(L, ∗) = ML(∗). Let PM denote the collection of persistence modules, then let D
denote the function:

D : PM ×∆+ → Z≥0

such that D(U, ∗) = DU(∗). This way,M could be seen as a generalization of persistence barcodes
for ladder modules of type τ = ff . . . f .

Before giving an example, let us prove thatM is linear with respect to the direct sum of ladder
modules.

Proposition 3.18 (Linearity of the function M). Let L,L1,L2 be ladders modules of type τ =
ff . . . f such that L ' L1 ⊕ L2. Then,

ML =ML1 +ML2 .

Proof. It is enough to prove that abX b
′

a′(L) = a
bX b

′

a′(L1) + a
bX b

′

a′(L2). Notice that since L ' L1 ⊕ L2

we can decompose Va = (Va)1 ⊕ (Va)2, Ua′ = (Ua′)1 ⊕ (Ua′)2 and αa = (αa)1 ⊕ (αa)2. Then,

SV
a,b = fVa,b((Va)1 ⊕ (Va)2) ∩ ker fVb

=
(
fVa,b(Va)1 ∩ ker fVb

)
⊕
(
fVa,b(Va)1 ∩ ker fVb

)
= (SV

a,b)1 ⊕ (SV
a,b)2

Analogously, SU
a′,b′ = (SU

a′,b′)1 ⊕ (SU
a′,b′)2. We also have

fVb′,b α
−1
b′

(
(SU
a′,b′)1 ⊕ (SU

a′,b′)2

)
= fVb′,b(αb′)

−1
1 (SU

a′,b′)1 ⊕ fVb′,b(αb′)−1
2 (SU

a′,b′)2

Since (SU
a′,b′)1 ∩ (SU

a′,b′)2 = 0, we get:

a
bX b

′

a′(L) = dim
[
SV
a,b ∩ fVb′,b α−1

b′ (SU
a′,b′)

]
− dim

[
SV
a,b ∩ fVb′,b α−1

b′ (0)
]

= dim
[(

(SV
a,b)1 ⊕ (SV

a,b)2

)
∩
(
fVb′,b(αb′)

−1
1 (SU

a′,b′)1 ⊕ fVb′,b(αb′)−1
2 (SU

a′,b′)2

)]
− dim

[(
(SV
a,b)1 ⊕ (SV

a,b)2

)
∩ α−1

b′ (0)
]

= dim
[(

(SV
a,b)1 ∩ fVb′,b(αb′)−1

1 (SU
a′,b′)1

)
⊕
(
(SV
a,b)2 ∩ fVb′,b(αb′)−1

2 (SU
a′,b′)2

)]
− dim

[(
(SV
a,b)1 ∩ (αb′)

−1
1 (0)

)
⊕
(
(SV
a,b)2 ∩ (αb′)

−1
2 (0)

)]
= dim

[
(SV
a,b)1 ∩ fVb′,b(αb′)−1

1 (SU
a′,b′)1

]
+ dim

[
(SV
a,b)2 ∩ fVb′,b(αb′)−1

2 (SU
a′,b′)2

]
− dim

[
(SV
a,b)1 ∩ (αb′)

−1
1 (0)

]
− dim

[
(SV
a,b)2 ∩ (αb′)

−1
2 (0)

]
= a

bX b
′

a′(L1) + a
bX b

′

a′(L2).

Example 3.19. Recall that the ladder module A from Example 2.16 can be decomposed as follows:

A ' 1 2 1
0 1 1 ⊕ 1 1 0

0 1 1 ⊕ 0 0 0
0 1 0 = L1 ⊕ L2 ⊕ L3.

By Proposition 3.18, we have:
MA =ML1 +ML2 +ML3 .

In the case of L1, observe that V ' I[2, 3] and U ' I[1, 2]⊕ I[2, 3]. Then,

SV
2,3 = F, SU

1,2 = 〈[ 1
0 ]〉 , SU

2,3 = F,

fV2,3 α
−1
2 (SU

1,2) = 0 and fV3,3 α
−1
3 (SU

2,3) = F.
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In addition, kerα2 = kerα3 = 0. The only non-trivial calculations for X is:

3
2X 3

2 = dim
[
SV

2,3 ∩ fV3,3 α−1
3 (SU

2,3)
]
− dim

[
SV

2,3 ∩ fV3,3(kerα3)
]

= 1− 0 = 1.

Then, the resulting matching is:

ML1(2, 3, 2, 3) = 3
2X 3

2 −
3
1X 3

2 −
3
2X 3

1 + 3
1X 3

1 = 1− 0− 0 + 0 = 1

andML1(a, b, a′, b′) = 0 otherwise. Similar calculation givesML2(2, 3, 1, 2) = 1 andML2(a, b, a′, b′) =
0 otherwise. ML3(∗) is always zero. Finally,

MA(2, 3, 2, 3) = 1, MA(2, 3, 1, 2) = 1 and MA(a, b, a′, b′) = 0 otherwise.

Let us notice that, in this case, MA = Mα
BL, where Mα

BL is the basis-independent partial
matching obtained in Example 3.2 in page 9. Nevertheless,MA andMα

BL do not always coincide,
as the following example shows.

Example 3.20. Consider again the ladder module A of Example 2.23 but replacing α2 by
[

1 0 0
1 0 0
0 1 0

]
.

As mentioned in that example,MA
BL will not change since V, U and imα remain the same up to

isomorphism. Nevertheless, now

A ' 1 2 1
0 1 1 ⊕ 1 1 0

0 1 0 ⊕ 0 0 0
0 1 1

and applying Proposition 3.18, we have:

MA =ML1 +ML2 +ML3

with MLi(∗) being zero for i = 1, 2, 3, except for

ML1(2, 3, 2, 3) = 1 and ML2(2, 2, 1, 2) = 1.

Then

MA(2, 3, 2, 3) = 1, MA(2, 2, 1, 2) = 1 and MA(a, b, a′, b′) = 0 otherwise.

Observe that, in this case, MA 6= Mα
BL where Mα

BL is the basis-independent partial matching
obtained in Example 3.2 in page 9. In particular, MA is the basis-independent partial matching
that we might expect by looking at the decomposition of the ladder module A.

Remark 3.21. Taking into account Remark 3.17 we might ask: doesM characterize up to isomor-
phism ladder modules as D characterizes up to isomorphism persistence modules? Unfortunately,
the answer is no. For example, ladder modules A = 1 2 1

0 1 1 and B = 1 1 0
0 0 0 ⊕ 0 1 1

0 1 1 are not isomorphic
butMA =MB.

4 Enriched partial matchings
The aim of this section is to compute a basis-independent partial matching between persistence
modules V and U from a pair of morphism V α−→W β←− U between persistence modules. As said
in the introduction, this problem is related to the persistence module K ⊂ W described in [16]
which can be seen as the persistence submodules of U and V that “matches” and “persists” in W
through the morphisms α and β. Before explaining our approach, let us introduce a motivating
example.

Example 4.1. Consider the following diagrams:

F F . . . F F

F F . . . F 0

F F . . . F F

1

1 1

1 1 1

1 0

1 1 1 0

1

1 1

1

1 1

1 0

(12)
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F F . . . F F

F 0 . . . 0 0

F F . . . F F

1

1 0

1 1 1

0 0

0 0 0 0

1

1 1

0

1 1

0 0

(13)

In both of them, the upper and lower persistence modules consist of the interval module I[1, n]. The
top and bottom interval modules “should be matched” if we compute partial matchings induced
by any of the two diagrams. Nevertheless, we should make a difference between both situations:
in Diagram (13), a “minor change” of the persistence module in the middle “may remove” the
matching while Diagram (12) is much more robust. A solution could be giving “persistence” to our
matching: in the first case, the persistence of the matching should be [1, n− 1] and, in the second
case, [1, 2].

Let us now give a new definition of partial matching that takes into account the idea of “per-
sistent matchings”. Recall that we denoted the collection of persistence barcodes as Б.

Definition 4.2. An enriched partial matching between two persistence modules U,V of length
n is a map

GUV : ∆+ ×∆+ → Б

such that:
GUV(a, b, a′, b′) = ∅ if n < a, a′, b, b′,

∑
1≤b′≤n

∑
1≤a′≤b′

#GUV(a, b, a′, b′) ≤ DV(a, b) and

∑
1≤b≤n

∑
1≤a≤b

#GUV(a, b, a′, b′) ≤ DU(a′, b′).

Its associated basis-independent partial matching is:

MU
V(a, b, a′, b′) = #GUV(a, b, a′, b′).

Example 4.3. An enriched partial matching of Diagram (12) in Example 4.1 is:

GUV(1, n, 1, n) = {([1, n− 1], 1)} and GUV(a, b, a′, b′) = ∅ otherwise.

4.1 Enriched partial matchings induced by morphisms between persis-
tence modules

Our motivation in this subsection is to obtain an enriched partial matching induced by the following
diagram:

U1 U2 . . . Un

W1 W2 . . . Wn

V1 V2 . . . Vn

β1

fU
1 fU

2

β2

fU
n−1

βn

fW
1 fW

2
fW
n−1

fV
1

α1 α2

fV
2

fV
n−1

αn

(14)

Following a similar procedure than before, we will study the relation between the subspaces SV
a,b

and SU
a′,b′ through the morphisms α and β. Consider the following subspaces:

R(a, b, c, d) =

{
αd

(
fVa,d(Va) ∩ ker fVd,b+1

)
∩ SW

c,d if a, c ≤ d ≤ b,
0 otherwise;

and

L(a′, b′, c, d) =

{
βd

(
fUa′,d(Ua′) ∩ ker fUd,b′+1

)
∩ SW

c,d if a′, c ≤ d ≤ b′,
0 otherwise.
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Taking into account that:

fVd,b
(
fVa,d(Va) ∩ ker fVd,b+1

)
= SV

a,b and

fVa,d(Va) ∩ ker fVd,b+1 = fVa,d(Va) ∩ (fVd,b)
−1
(
SV
a,b

)
,

the intersection R(a, b, c, d)∩L(a′, b′, c, d) may be interpreted as the common subspace of SV
a,b and

SU
a′,b′ that “persists” in the subspace SW

c,d.

Lemma 4.4. The following relations hold:

R(a, b, c, d) = fWa,d αa
(
ker fVa,b+1

)
∩ SW

c,d and

L(a′, b′, c, d) = fWa′,d βa′
(
ker fUa′,b′+1

)
∩ SW

c,d.

Proof. First, observe that:

Va ∩ ker fVa,b+1 = ker fVa,b+1 and fVa,d(Va) ∩ ker fVd,b+1 = fVa,d(ker fVa,b+1).

Then,

R(a, b, c, d) = αd f
V
a,d

(
ker fVa,b+1

)
∩ SW

c,d and

L(a′, b′, c, d) = βd f
U
a′,d

(
ker fUa′,b′+1

)
∩ SW

c,d.

By commutativity of Diagram (14), we obtain the desired result.

As in the previous section, we need to “count” the dimensions before applying the elder rule
operator E. Define the function Y : Z6

≥0 → Z≥0 as follows:

Y(a, b, a′, b′, c, d) = dim(R(a, b, c, d) ∩ L(a′, b′, c, d)).

Notice that if a > b′ or a′ > b then

Y(a, b, a′, b′, c, d) = 0.

Now, apply the elder rule operator E to Y five times to define the enriched partial matching.

Definition 4.5. The enriched partial matching induced by morphisms V α−→ W β←− U
between persistence modules of length n, is the map

Gα,β : ∆+ ×∆+ → Б

defined as:
Gα,β(a, b, a′, b′) = {([c, d], ec,d) : ec,d > 0}

where (c, d) ∈ ∆+ and ec,d = E1,2,3,4,5(Y)(a, b, a′, b′, c, d).

Theorem 4.6. Fix a pair of morphisms V α−→ W β←− U between persistence modules of length
n. The operator Gα,β is, in fact, an enriched partial matching. In other words, Gα,β(a, b, a′, b′) =
∅ if n < a, a′, b, b′, ∑

1≤b′≤n

∑
1≤a′≤b′

#Gα,β(a, b, a′, b′) ≤ DV(a, b) and

∑
1≤b≤n

∑
1≤a≤b

#Gα,β(a, b, a′, b′) ≤ DU(a′, b′).

Proof. The property Gα,β(a, b, a′, b′) = ∅ if n < a, a′, b, b′ can be followed directly from the
definition of Gα,β . In order to prove the above inequalities, note that∑

1≤b≤n

∑
1≤a≤b

#Gα,β(a, b, a′, b′) =
∑

1≤b≤n

∑
1≤a≤b

#Gβ,α(a′, b′, a, b).
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Therefore, we only have to proof one of the two equalities. Let us prove the first one. Let
m = max{a, a′} and M = min{b, b′}. Observe that:

#Gα,β(a, b, a′, b′) = # {([c, d], e) such that m ≤ d ≤M and c ≤ d}

=
∑

m≤d≤M

∑
1≤c≤d

ec,d =
∑

m≤d≤M

∑
1≤c≤d

E1,2,3,4,5(Y)(a, b, a′, b′, c, d).

Notice that Y(a, b, a′, b′, 0, d) = 0. By Lemma 3.11, we have:

#Gα,β(a, b, a′, b′) =
∑

m≤d≤M

E1,2,3,4(Y)(a, b, a′, b′, d, d).

In particular, since a ≤ m, M ≤ b and all addends are positive, then:

#Gα,β(a, b, a′, b′) ≤
∑
a≤d≤b

E1,2,3,4(Y)(a, b, a′, b′, d, d).

By Remark 3.10, we have∑
d≤b′≤n

∑
1≤a′≤d

∑
a≤d≤b

E1,2,3,4(Y)(a, b, a′, b′, d, d)

=
∑

d≤b′≤n

∑
1≤a′≤d

E3,4

 ∑
a≤d≤b

E1,2(Y)

 (a, b, a′, b′, d, d).

Again, by Lemma 3.11 and since

Y(a, b, d, d− 1, d, d) = Y(a, b, b′, 0, d, d) = 0,

we obtain:

#Gα,β(a, b, a′, b′) ≤
∑
a≤d≤b

E1,2Y(a, b, d, n, d, d).

By Lemma 4.4, we have:

Y(a, b, d, n, d, d) = dim(R(a, b, d, d) ∩ L(d, n, d, d))

= dim
(
fWa,d αa

(
ker fVa,b+1

)
∩ fWd,dβd

(
ker fUd,n+1

)
∩ SW

d,d

)
= dim

(
fWa,d αa

(
ker fVa,b+1

)
∩ βd (Ud) ∩ SW

d,d

)
= dim

(
fWa,d αa

(
ker fVa,b+1

)
∩ βd (Ud) ∩ ker fWd

)
.

Notice that

fWa−1,d αa−1

(
ker fVa−1,b+1

)
⊂ fWa,d αa

(
ker fVa,b+1

)
,

fWa,d αa
(
ker fVa,b

)
⊂ fWa,d αa

(
ker fVa,b+1

)
.

Let

A = fWa,d αa
(
ker fVa,b+1

)
∩ ker fWd ,

B = fWa−1,d αa−1

(
ker fVa−1,b+1

)
∩ ker fWd ,

C = βd (Ud) .

Then dim(A ∩ C)− dim(B ∩ C) ≤ dim(A)− dim(B) by Remark 2.1. Again, let

B′ = fWa,d αa
(
ker fVa,b

)
∩ ker fWd .

Then, dim(A ∩ C) − dim(B′ ∩ C) ≤ dim(A) − dim(B′) by Remark 2.1. Putting together both
inequalities, we obtain:

2 dim(A ∩ C)− dim(B ∩ C)− dim(B′ ∩ C) ≤ 2 dim(A)− dim(B)− dim(B′),
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and, in particular,

dim(A ∩ C)− dim(B ∩ C)− dim(B′ ∩ C) ≤ dim(A)− dim(B)− dim(B′). (15)

Therefore,

E1,2Y(a, b, d, n, d, d) = Y(a, b, d, n, d, d)− Y(a− 1, b, d, n, d, d)

− Y(a, b− 1, d, n, d, d) + Y(a− 1, b− 1, d, n, d, d)

= dim(A ∩ C)− dim(B ∩ C)− dim(B′ ∩ C)

+ Y(a− 1, b− 1, d, n, d, d).

Using Expression (15) and that

Y(a− 1, b− 1, d, n, d, d) ≤ dim
(
fWa−1,d αa−1

(
ker fVa−1,b

)
∩ ker fWd

)
,

we obtain:

E1,2Y(a, b, d, n, d, d) ≤ dim
(
fWa,d αa−1

(
ker fVa,b+1

)
∩ ker fWd

)
− dim

(
fWa−1,d αa−1

(
ker fVa−1,b+1

)
∩ ker fWd

)
− dim

(
fWa,d αa

(
ker fVa,b

)
∩ ker fWd

)
+ dim

(
fWa−1,d αa−1

(
ker fVa−1,b

)
∩ ker fWd

)
. (16)

Besides, by Lemma 3.12, we have:

dim αa
(
ker fVa,b+1

)
=
∑
a≤i≤n

dim
[
fWa,i αa

(
ker fVa,b+1

)
∩ ker fWi

]
that is equal to ∑

a≤i≤b

dim
[
fWa,i αa

(
ker fVa,b+1

)
∩ ker fWi

]
since fWa,i αa

(
ker fVa,b+1

)
= 0 for i ≥ b+ 1. Extending this reasoning to the other cases, we have:

dim fWa−1,a αa−1

(
ker fVa,b+1

)
=
∑
a≤i≤b

dim
[
fWa−1,i αa−1

(
ker fVa−1,b+1

)
∩ ker fWi

]
,

dim αa
(
ker fVa,b

)
=

∑
a≤i≤b−1

dim
[
fWa,i αa

(
ker fVa,b

)
∩ ker fWi

]
=
∑
a≤i≤b

dim
[
fWa,i αa

(
ker fVa,b

)
∩ ker fWi

]
,

dim fWa−1,a αa−1

(
ker fVa−1,b

)
=

∑
a≤i≤b−1

dim
[
fWa−1,i αa−1

(
ker fVa−1,b

)
∩ ker fWi

]
=
∑
a≤i≤b

dim
[
fWa−1,i αa−1

(
ker fVa−1,b+1

)
∩ ker fWi

]
.

Using Expression (16) and the relations above, we have:∑
a≤d≤b

E1,2Y(a, b, d, n, d, d) ≤dim αa
(
ker fVa,b+1

)
− dim fWa−1,a αa−1

(
ker fVa−1,b+1

)
− dim αa

(
ker fVa,b

)
+ dim fWa−1,a αa−1

(
ker fVa−1,b

)
.

Using the second expression of Remark 2.2 we have:

dim αa
(
ker fVa,b+1

)
− dim αa

(
ker fVa,b

)
= dim ker fVa,b+1 − dim ker fVa,b

which is equal to dimSV
a,b by definition. Analogously,

−dim fWa−1,a αa−1

(
ker fVa−1,b+1

)
+ dim fWa−1,a αa−1

(
ker fVa−1,b

)
= −dim ker fVa−1,b+1 + dim ker fVa−1,b = −dimSV

a−1,b
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Finally, putting all together∑
1≤b′≤n

∑
1≤a′≤b′

#Gα,β(a, b, a′, b′) ≤
∑
a≤d≤b

E1,2Y(a, b, d, n, d, d)

≤ dimSV
a,b − dimSV

a−1,b = DV(a, b).

concluding the proof.

4.2 Relation between Gα,β and the persistence module K
As mentioned in the introduction, our work is related to the work developed in [16]. Although
the persistence module K is constructed in that paper for a diagram different than Diagram (14),
we can adapt such construction to our case. Notice that all the columns Vi −→ Wi ←− Ui in
Diagram (14) are zigzag modules. For those familiar with zigzag modules, observe that D[1, 3] =
dim (αi(Vi) ∩ βi(Ui)). Therefore, the vector spaces

Ki = αi(Vi) ∩ βi(Ui)

encode the relation between V and U through W, but this is true only if we consider each column
separately in the diagram. How can we extend this construction to the whole diagram? The answer
is the following result.

Proposition 4.7. The persistence module K, formed by vector spaces Ki and structure linear
maps fKa,b = fWa,b|Ka , is well-defined and is a submodule of W.

Proof. We have to prove that im fWa,b|Ka ⊂ Kb or equivalently,

fWa,b (αa(Va) ∩ βa(Ua)) ⊂ αb(Vb) ∩ βb(Ub).

Notice that if x ∈ αa(Va) ∩ βa(Ua) then, in particular, x ∈ αa(Va) and there exists y ∈ Va such
that fWa,b αa(y) = fWa,b(x). Then, αb fVa,b(y) = fWa,b(x) by commutativity of Diagram (14). Therefore,
fWa,b(x) ∈ αb(Vb). Following a similar procedure for U, we have that fWa,b(x) ∈ βb(Ub), concluding
the proof.

This way, K is a persistence module obtained without fixing any basis on the given persistence
modules. Nevertheless, K gives no explicit relation between the decomposition of V and the
decomposition of U as the operator Gα,β does. The relation between Gα,β and K is given by the
following theorem that uses induced enriched partial matchings.

Theorem 4.8. Let us consider a pair of morphisms V α−→W β←− U between persistence modules
of length n. Let (a, b, a′, b′, c, d) ∈ Z6

≥0 such that 1 ≤ a, a′, c ≤ d ≤ b, b′ ≤ n. Then,∑
1≤c≤d

E1DK(c, d)

=
∑

d≤b≤n

∑
1≤a≤d

∑
d≤b′≤n

∑
1≤a′≤d

∑
1≤c≤d

#
{

([c, d], e) ∈ Gα,β(a, b, a′, b′)
}
.

In other words, the number of intervals in BK with endpoint d equals the number of intervals
in Gα,β with endpoint d.

Proof. By the definition of Gα,β and Y. and by Lemma 3.11 we have:∑
d≤b≤n

∑
1≤a≤d

∑
d≤b′≤n

∑
1≤a′≤d

#
{

([c, d], e) : ([c, d], e) ∈ Gα,β(a, b, a′, b′)
}

=
∑

d≤b≤n

∑
1≤a≤d

∑
d≤b′≤n

∑
1≤a′≤d

∑
1≤c≤d

E1,2,3,4,5(Y)(a, b, a′, b′, c, d)

= Y(d, n, d, n, d, d).

By Lemma 3.11, we have: ∑
1≤c≤d

E1DK(c, d) = SK
d,d.
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Besides, by Lemma 4.4, we get:

Y(d, n, d, n, d, d) = fWd,d αd
(
ker fVd,n+1

)
∩ fWd,dβd

(
ker fUd,n+1

)
∩ SW

d,d

= αd (Vd) ∩ βd (Ud) ∩ SW
c,d = Kd ∩Wd ∩ ker fWd,d+1 = SK

d,d,

concluding the proof.

We conclude the section with the following final result.

Corollary 4.9. Let us consider a pair of morphisms V α−→W β←− U between persistence modules
of length n. Let (a, b, a′, b′) ∈ ∆+ ×∆+. Then,∑

1≤b≤n

∑
1≤b′≤n

∑
1≤a≤b

∑
1≤a′≤b′

#Gα,β(a, b, a′, b′) = #BK

In other words, the sum of the cardinals of all multisets appearing in Gα,β is equal to the cardinal
of BK.

5 Concluding remarks and future work
In this paper, we have studied how a morphism between persistence modules (also called ladder
modules) can induce a basis-independent partial matching between their corresponding persistence
barcodes or diagrams. We have also proved the linearity of our method with respect to direct sum
of ladder modules. In addition, the concept of enriched partial matching have been introduced. It
has been used to study the relation between persistence modules V,U through a pair of morphisms
V α−→ W β←− U. Explicit relations with other state-of-the-art tools (Bauer-Lesnick matching [3],
ladder modules [11] and K [16]) have been given. Future work could follow these directions:

• Implementation: although our definitions and proofs are constructive, the implicit algo-
rithm can only be applied to vector spaces. It would be interesting to implement algorithms
acting directly in more common spaces like simplicial complexes. The algorithms of [8] and
[6] may be good starting points.

• Stability: is the induced basis-independent partial matching stable with respect to mod-
ifications of the morphism α? and is the enriched partial matching stable with respect to
morphisms α and β? Stability theorems from [10] and [16] offer a great background to
proceed.

• Generalization: persistence modules can be defined in any poset and not only for finite
sequences. Can we extend our partial matching to persistence modules over a real parameter
or to zigzag modules? What is the exact relation of induced (enriched) basis-independent
partial matchings with multidimensional persistence modules?

• Applications: we think induced (enriched) basis-independent partial matching can be used
to model real world application. One example could be given by dynamical metric spaces
(see [14, 15]) where the object of study is point clouds evolving in time.
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