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On the general scaling theory for electrospraying

By ALFONSO M. GAÑÁN-CALVO
Grupo de Mecánica de Fluidos, E.S.I, Universidad de Sevilla,

Camino de los Descubrimientos s/n 41092 Spain

(Received 13 November 2003 and in revised form 1 March 2004)

A systematic dimensional rationale is proposed here to analyse the electrohydro-
dynamic equations governing liquid electrospraying phenomena in the well-known
steady cone-jet mode with no ambient discharges. As a result, a general, unified de-
scription of the complete parametrical space for the emitted current and droplet size is
given. Four main distinct subspaces, their relevant boundaries and corresponding scal-
ing laws are identified. Laws already proposed fit in their appropriate region, and
previously unknown laws are found. A closed solution for the electric current I when
inertia and polarization forces dominate is obtained, in agreement with published
experimental results.

1. Introduction
The use of electrohydrodynamic forces to disintegrate liquids from the micron down

to the nanometer range in an orderly way, e.g. by so-called cone-jet electrospraying
(Zeleny 1917; Taylor 1964; Cloupeau & Prunet-Foch 1989), has great relevance in the
field of liquid atomization, with thousands of publications per year and commercial
devices making use of it. Furthermore, since the droplets produced are highly charged,
it has been applied with much success to the mass spectrometry of large biomolecules.
Although electrospray is a robust and controllable phenomenon, many aspects remain
not completely understood, stirring much controversy.

This work aims to propose a general dimensional description of the entire working
parameter space for steady cone-jet electrospraying. As a result, we have established
a parametrical two-dimensional ‘chart’ with four distinct parametrical regions and
corresponding scaling laws for the droplet size and the emitted electric current, to
guide electrospray users for any given liquid and working conditions. Although two
of them have been already identified, two are new. These laws are compared with
available published experiments to show their validity.

Some numerical solutions were recently presented (Higuera 2003) to describe the
complete transition region between an infinite Taylor cone and an infinite asymptotic
jet (Gañán-Calvo 1997), which solve the eigenvalue problem of the emitted electric
current as a function of the liquid properties and the emitted flow rate. However, a
complete systematic parametrical study of the phenomenon, including the asymptotic
limits and regions of interest, has never been theoretically attempted. This work
is focused on the physical and mathematical modelling formalism of the cone-jet
electrospraying phenomenon in order to investigate whether a complete parametrical
description to identify all physically possible regimes and asymptotic limits can be
established (Barenblatt 1987, 1996).

2. Analysis rationale
Consider the cone-jet configuration of figure 1. A cone-like meniscus is attached

to a feeding tube with diameter D, from whose apex a thin liquid jet is emitted. The
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Figure 1. The cone-jet geometry and coordinates.

problem variables z, r , ξ , v, En, Ei
n, Es , and τs = εo(En − βEi

n)Es are respectively the
axial coordinate along the jet, radial coordinate, the jet radius, liquid velocity, normal
outer and inner electric fields on the jet surface, the surface electric field in the axial
direction, and the tangential surface stress (Melcher & Warren 1971; Gañán-Calvo
1997, 1999; Hohman et al. 2001b). The problem parameters σ, K, ρ, µ and Q are the
liquid–gas surface tension, liquid electric conductivity, density, viscosity and emitted
flow rate, respectively. β is the ratio of the liquid to vacuum permittivities β = εi/εo.

Using Coulomb’s law, one may express the potential Φ(r, z) due to the cone-jet
charged surface as that given by a charge line distribution A(z) at the axis:

Φ(z, r) =

∫ ∞

−∞

A(z′) dz′

4[(z − z′)2 + r2]1/2
(2.1)

where En and Es must be equal to the negative of the normal and tangential partial
derivatives of Φ , respectively, at the cone-jet surface given by r = ξ (z) (Hohman et al.
2001b). The electric problem so stated is left undetermined unless the appropriate
boundary conditions are given, which include the upstream applied electric potential
at the liquid feeding tube, and the downstream spray structure or electrode geometry
ahead of the issuing jet, together with the appropriate chain of electrostatic ‘images’
from −∞ to ∞ (Hohman et al. 2001b). In a virtual problem with no liquid emission
(Pantano, Gañán-Calvo & Barrero 1994), and therefore with an equipotential cone
surface, each applied electric potential within a narrow range would give a particular
cone-like meniscus geometry satisfying all boundary conditions. The local structure
of the electric field in the vicinity of the cone tip (characteristic length Lo, figure 1)
is shown to be Taylor’s (Taylor 1964; Pantano et al. 1994), where electrostatic and sur-
face tension forces alone balance. Locally, and assuming z = 0 at the cone tip, Taylor’s
electric field is equivalent to that given by the following charge line distribution:

A(z) = (σ/εo)
1/2Do2

1/2(−z)1/2 (2.2)

for negative z values, where Do = [tan(θT )Q′2
1/2(θT )]−1/2, and θT and Q′

1/2 are the Taylor
angle in the absence of emission (see Pantano et al. 1994; Gañán-Calvo 1997) and the
derivative of the Legendre function of order 1/2, respectively. Note that this expression
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On the general scaling theory for electrospraying 205

is independent of the applied potential. Imagine now that liquid emission is in the form
of a steady, extremely thin liquid jet of radius ξ , and that the local size Lo of the tip
region is sufficiently large compared to the typical jet radius. In this case, the problem
will be nearly independent of the outer, far boundary conditions and the applied
potential at the scale D (the small influences of the applied voltage and the presence
of the charged spray are not dealt with in this work). Thus, following previous studies
(Higuera 2003; Gañán-Calvo 1997), we will assume that the cone-jet transition with
typical dimension L is sufficiently local (L � Lo) to neglect the role of the applied
potential at the scale D, as long as this potential is sufficient to maintain the steady
cone-jet regime.

To describe the steady cone-jet electrospray phenomenon, we make the common,
well-established assumption of a ‘leaky dielectric’ (Saville 1997), which allows bulk free
charges to relax to the liquid surface in times te smaller than any other characteristic
time th of the process, i.e.

te = εi/K � th = d2LQ−1, (2.3)

thus defining a quasi-steady state (Saville 1997; Gañán-Calvo 1997), where d and L are
the characteristic transversal and axial distances, respectively (figure 1). This condition
will subsequently be verified and can be expressed as te/th = βεoQ(Kd2L)−1 � 1. Under
this condition, βEi

n � En, and thus the surface charge can be expressed as σe � εoEn.
The jet slenderness (Melcher & Warren 1971; Eggers & Dupont 1994; Gañán-Calvo,
Dávila & Barrero 1997; Gañán-Calvo 1997, 1999; Hohman et al. 2001b) also allows
some important simplifications. First, owing to the smallness of the jet diameter,
taking the limit of (2.1) for O(r = ξ ) � O(z) one can write

En � A/ξ (2.4)

at the outer jet surface. Secondly, since the surface stress is readily diffused into the
whole liquid jet section, we can assume a plug-flow-field axial velocity written by
continuity as

v = Q(πξ 2)−1. (2.5)

Thus, making use of cylindrical coordinates centred at the cone-jet necking (see
figure 1), the slender approximation of the liquid momentum equation in the z-
direction can be written as:

d

dz

(
σ

ξ
+

1

2π2

ρQ2

ξ 4

)
+

6µQ

πξ 2

d

dz

(
ξ−1 dξ

dz

)
=

2εoEnEs

ξ
+

εo

2

d

dz

[
E2

n +(β −1)E2
s

]
. (2.6)

The three terms on the left-hand side stand for the axial resultant of the surface
tension force, the liquid inertia, and the resultant of the viscous resistance in the
axial direction. The two terms on the right-hand side are the axial component of the
tangential electrostatic surface stress, and the axial resultant of the normal electrostatic
surface stress (comprising the electrostatic ‘suction’ and the polarization force). The
normal and tangential dynamical conditions at the liquid surface are included in (2.6).
Furthermore, the formal asymptotic boundary conditions at z → ∞ require dξ/dz → 0
(assuming that the jet breakup zone is far away), while dξ/dz ∼ O(1) for z < 0 (conical
region), with dξ/dz < 0 in the whole z domain.

Finally, the charge continuity can be expressed as

I =
2Qεo

ξ
En + πξ 2KEs (2.7)
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206 A. M. Gañán-Calvo

where I stands for the total emitted electric current, which results for a given set of
liquid properties and emitted flow rate. Formally, the emitted electric current I is an
eigenvalue of the problem (Gañán-Calvo 1997).

In order to systematically search for possible asymptotically self-similar solutions
confirming the scalings sought, we will search for generalized affine transformations of
the problem equations with asymptotic invariance respect to the governing parameters
identified (Barenblatt 1987, 1996). To carry out this central task of this work, we
introduce the five characteristic dimensions L, d , E1, E2, associated with z, ξ, En, Es ,
respectively, and I . We emphasize central because we seek generalized self-similar
solutions of the equations (or invariant solutions with respect to the parameters) in the
intermediate region between the cone and the developed jet, since it is in this interme-
diate region where the eigenvalue of the problem (the emitted electric current) is fixed.

2.1. Dimensional arguments and derivation of the asymptotic scales

We emphasize here that the intermediate region under analysis is where the transition
from a dominant electric bulk conduction to a dominant surface charge convection
takes place. Thus, from equation (2.7), one can consistently define

Id

QεoE1

= 1,
I

d2KE2

= 1. (2.8)

It is also essential to note that the dominant part of the integral in (2.1) is due to the
presence of the conical meniscus (2.2). Thus, from (2.1) and (2.2) one can also define

E2 =

(
σ

εoL

)1/2

. (2.9)

The condition that the self-induction electric field of the jet is never dominant leads,
from (2.4), to the condition (

σL

εo

)1/2

� E1d. (2.10)

Finally, the momentum equation establishing a global balance between applied
forces (motors) and resistance forces provides the two closing dimensional arguments
to find the five characteristic dimensions (L, d, E1, E2, I ). A consistent analysis of this
balance involves the following two domain extremes:

2.1.1. Developed jet

In this region extreme,

I → 2QεoEn/ξ, Es → (σ/εo)
1/2Do2

1/2πz−1/2/4. (2.11)

Since dξ/dz < 0 everywhere, the only positive motor left in this region is the axial
component of the tangential electrostatic surface stress (note that both E2

n and E2
s

decrease with z) with a limiting value

2εoEnEs

ξ
→

(
σ

εo

)1/2
I

Q
Do2

1/2πz−1/2
/
4. (2.12)

Therefore, this term must be always dominant in the analysis of our transition scale
L. Thus, to compare surface tension, inertia and viscous forces to the dominant motor
(2.12), we define the non-dimensional numbers

Rσ =
ρQ3ε1/2

o

Iσ 1/2d4L1/2
, Rρ =

µQ2ε1/2
o

d2L3/2Iσ 1/2
, Rµ =

σ 1/2Qε1/2
o

IdL1/2
. (2.13)
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On the general scaling theory for electrospraying 207

There are three possibilities:
(I) Dominance of surface tension force. Defining Rσ =1, one must have Rρ � 1 and

Rµ � 1.
(II) Dominance of inertia. Defining Rρ = 1, one must have Rσ � 1 and Rµ � 1.
(III) Dominance of viscous force. Defining Rµ = 1, one must have Rσ � 1 and

Rρ � 1.

2.1.2. Cone-jet necking

In this opposite region extreme, I → πξ 2KEs . Since in this region the tangential
electrostatic surface stress decays faster than the axial component of the normal
electrostatic stress (note that the cone is eventually a pure balance between surface
tension and normal electrostatic stress), the electrostatic suction or the polarization
force may dominate. Thus, if one seeks the region joining the two extremes, one is
left with two possible definitions:

I

Q
=

β − 1

L

(
σεo

L

)1/2

or
I

Q
=

1

L

(
σεo

d

)1/2

, (2.14)

representing the dominance of either the electrostatic suction or the polarization
force, respectively (obviously, in either case the alternative expression must be a
limiting condition consistently with sub-dominance). The value of the liquid polarity
parameter β will determine which scenario prevails for a given Q.

2.2. The six fundamental asymptotic scales

The six possible condition pairs between the three possibilities described in § 2.1.1 and
the two described in § 2.1.2, together with equations (2.8) and (2.9), provide the six
different sets of parametrical equations defining the six candidate generalized affine
transformations of the problem equations which may yield asymptotically self-similar
or invariant solutions with respect to the problem parameters, when the limiting
conditions are considered asymptotically, i.e. assuming total dominance of the terms
considered. To save space, we will only give the resulting expressions for the electric
current I and jet diameter d . It is important to note that the non-dimensional equa-
tions resulting from the proposed scalings (affine transformations) are asymptotically
independent of all governing parameters, and therefore their solutions (should they
exist) are generalized self-similar.

2.2.1. IE-scaling: dominance of inertia and electrostatic suction

This is the most common parametrical regime encountered in the electrospray
literature, which yields an invariant formulation whose scaling of the electric current
and jet diameter is

I = (σKQ)1/2, d =

(
ρεoQ

3

σK

)1/6

. (2.15)

Defining the two non-dimensional parameters

αρ =
ρKQ

σεo

, αµ =
K2µ3Q

ε2
oσ

3
, (2.16)

the validity limits of this asymptotic invariant formulation given by all the limiting
conditions may be finally expressed as

αρ � α1/4
µ , αρ/(β − 1) � 1. (2.17)
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208 A. M. Gañán-Calvo

This scaling was originally proposed by Gañán-Calvo (1999) and Hartman et al.
(1999) without mentioning its limits of validity. Since it has been widely verified
in numerous experimental works (e.g. Gañán-Calvo 1999; Hartman et al. 1999;
Gamero-Castaño & Hruby 2002) and extensively calculated by Higuera (2003), we
omit any further analysis. The scaling proposed in Gañán-Calvo (1997) lies within
this region, but in that work the asymptotic analysis was closed in the neck region by
an approximate patching that missed the physical details in that region described by
the complete, non-dimensional equations studied here. Although the scaling for the jet
diameter was correct, that approximation resulted in the appearance of a logarithm
of δρ in the scaling of the emitted current not satisfactorily supported by experiments.

2.2.2. IP-scaling: dominance of inertia and polarization forces

In this case, we obtain

I =

(
ρK2Q2

(β − 1)εo

)1/2

, d =

(
ρεoQ

3

σK

)1/6

(2.18)

with required conditions expressed asymptotically as

1 � αρ

(β − 1)
� αµ

(β − 1)4
. (2.19)

This new asymptotic scaling holds for polar liquids within the limits given above. Note
that the expression for the jet diameter is the same as in the previous IE-scale. Thus,
droplet size measurements should be invariant with respect to whether electrostatic
or polarization forces are dominant.

Furthermore, reducing this formulation to its limits, the momentum equation yields
a beautiful, uniformly valid equality at the cone-jet necking (where I � πξ 2KEs) for
sufficiently large liquid polarities:

d

dz

(
1

2π2

ρQ2

ξ 4

)
� εo

2

d

dz

[
(β − 1)E2

s

]
=⇒ I �

(
ρK2Q2

εo(β − 1)

)1/2

. (2.20)

For consistency and for the specialized reader, it is important to mention here that our
transition region in this regime is preceded by a slender region around z = 0 (figure 1)
with characteristic diameter d∗ = (ρQ2/σ )1/3 and length L∗ = (β − 1)d∗ � d∗ where
one can easily verify that, given the characteristic axial electric field proportional
to Taylor’s (E∗

2 = (σε−1
o L∗−1)1/2), then (i) the electric conduction is dominant (I =

πξ 2KEs), (ii) the electrostatic suction is of the order of the polarization force, of
inertia, and of the surface tension force, i.e. σ/d∗ ∼ ρQ2d∗−4 ∼ εoE

2
n ∼ εo(β − 1)E2

s ,
and (iii) the term 2εoEsEnξ

−1 is not dominant. This intermediate region provides the
consistent grounds for matching the cone to our transition region downstream.

In figure 2, we have plotted the electric current, I/IG (where IG =(σKQ)1/2), versus
the parameter αρ/(β −1), from several available data sets. We have used Fernández de
la Mora & Loscertales’s (1994) data for formamide, water, and octanol. Octanol data
agree with IE-scaling (horizontal line), while the trends for water and formamide tend
to match the IP-scaling solution (inclined straight line) within its limits of validity. We
have also plotted a set of interesting data for water (López-Herrera et al. 2004), which
together with Fernandez de la Mora’s data illustrate two possible solutions (‘long’ and
‘short’ cones), already reported in Chen, Pui & Kaufman (1995) for two very slightly
different applied voltages (less than 0.1%). These two experimental branches suggest
the existence of a solution bifurcation (in fact, a bi-stable solution is experimentally
found), where the branch with larger current might involve local gas ionization effects
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I
IG

1

0.1 1 10 100

αρ(β – 1)–1

Figure 2. Comparison of experimental data with IE- and IP-scalings of the electric current
made non dimensional with IG. Horizontal line: IE scaling. Line of slope 1: IP scaling.
Fernandez de la Mora’s data: �, formamide; �, ethylene glycol; �, water; �, octanol.
López-Herrera’s data: �.

around the cone tip (López-Herrera et al. 2004). Note that te/th � 1 corresponds here
to αρ � 1, which is verified for all published experimental data within this region
(β � 1).

2.2.3. VE-scaling: dominance of viscous force and electrostatic suction

This regime is found in electrospinning conditions when the liquid has a sufficiently
large electric conductivity. Its characteristic emitted electric current and jet diameter
scale as

I = (σKQ)1/2, d =

(
µε2

oQ
3

σK2

)1/8

(2.21)

with validity limits

αρ � α1/4
µ ,

αµ

(β − 1)4
� 1. (2.22)

Here, te/th � 1 consistently gives αρ � α1/4
µ . This scaling, which holds in a variety

of experimental situations for high-viscosity liquids, was recently and independently
proposed by Higuera (2003). Figure 3 shows many different results from the literature
(Gamero-Castaño & Hruby 2002; Chen et al. 1995; Gañán-Calvo et al. 1997) which
agree with IE scaling (αρα

−1/4
µ > 1) for the droplet diameters, while the recent results

by Ku et al. (2001) using glycerol with different electrical conductivities confirm the
trend of this VE-scaling (αρα

−1/4
µ � 1). The plotted straight lines illustrate the slope

of the two jet diameters from IE- and VE-scalings. However, care is required when
using the VE-scaling for the jet diameter, since high-viscosity liquids usually yield
very long jets, with a strong thinning far downstream of our transition L scale. One
could end up with almost any droplet size dependence (increasing or decreasing) on
the liquid viscosity (see for example Jayasinghe & Edirisinghe 2002), depending on
the location of the breakup point. Typically, there is a larger jet-to-drop diameter
ratio in a viscous breakup compared to a nearly inviscid one, but this problem is
outside the scope of the present work.
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Figure 3. Data to the left (�), droplet diameters dg from Ku et al. (2001) using one liquid
only, compared to the VE-scaling for the jet diameter (continuous line). Data to the right,
droplet diameters taken from the literature (Gamero-Castaño & Hruby 2002; Chen et al. 1995;
Gañán-Calvo et al. 1997) for different liquids, compared to the IE-scaling (horizontal line).
Data made non-dimensional with d from the IE scaling.

2.2.4. VP-scaling: dominance of viscous force and polarization force

This scaling is given by

I =

(
µ3K3Q2

(β − 1)4σ 2ε2
o

)1/2

, d =

(
µQ

(β − 1)σ

)1/2

(2.23)

with consistent validity limits

αρ

(β − 1)
� αµ

(β − 1)4
� 1. (2.24)

The requirement te/th � 1 now gives αµ � 1. This is also a new scaling which holds for
very viscous polar liquids within the conditions given above. However, the author has
not found published experiments under these conditions reporting the existence of a
capillary conical meniscus, i.e. all situations belonging to this asymptotic regime show
a very elongated meniscus shape which hardly resembles a well-defined cone region.

2.2.5. Marginal scalings: dominance of surface tension forces

The dominance of surface tension is a marginal situation that some authors have
already theoretically considered (Cherney 1999; Higuera 2003). We mention it here for
formal completeness, although we have never observed a well-defined range of experi-
mental data belonging to a regime where surface tension dominates in absolutely
stable conditions, and therefore we omit a detailed analysis. There are two possibilities:

(i) Dominance of electrostatic suction: If β − 1 is small enough and surface tension
force dominates, the resulting invariant formulation gives

I = (σKQ)1/2, d =

(
εoQ

K

)1/2

(2.25)

which is valid under conditions αρ � 1, αµ � 1, (β − 1) � 1. This obviously holds for
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Figure 4. The four main parameter subspaces: white (IE-scaling), dark grey (IP-scaling), light
grey (VE-scaling) and medium grey (VP-scaling). Note that the data in the IP region and close
to its vertical boundary consistently tend to follow the IP-scaling in figure 2 for the current,
while data in the VE region tend to follow the VE-scaling in figure 3 for the jet size.

non-polar liquids only, in the admisible limits of stability. In this scaling d = L, which
is a limiting situation (d must be d � L).

(ii) Dominance of polarization force: If β is large enough and surface tension force
dominates, the resulting asymptotic invariant formulation yields

I =

(
σKQ

β − 1

)1/2

, d =

(
εoQ

K

)1/3

, (2.26)

under conditions αρ � 1, (β − 1) � 1, αµ � (β − 1)3. This last scaling was originally
proposed by Fernández de la Mora & Loscertales (1994), and subsequently studied
by Cherney (1999). However, experimental data reported in Fernández de la Mora &
Loscertales (1994) belong to any of the other four parameter subspaces (IE, IP, VE,
VP), and do not seem to follow their proposed marginal scaling (see figure 2).

To summarize, the parameter space resulting from this analysis is plotted in figure 4.
We show how the dimensional variables should scale with the problem parameters
within each region of asymptotic validity. In each of the four parameter subspaces
of interest, the set of resulting non-dimensional equations is, sufficiently far from
the boundaries, independent of the problem parameters. We have proposed a closed
solution for the electric current I when inertia and polarization forces dominate
(IP-scaling) in agreement with published results.

Finally, it should be emphasized that the absence of applied voltage difference
between the liquid and the electrode in this analysis is applicable in experimental
conditions when there is an almost conical static meniscus shape held by electrostatic
forces. This is typical when IE- and IP-scalings hold. When viscous forces are do-
minant (most electrospinning situations) the cone deforms by viscous forces at large
upstream distances from the jet, making the cone hardly distinguishable from the jet in
some cases (Hohman et al. 2001a; Feng 2002), which may invalidate our assumptions.
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discussions and to Dr J.M. López-Herrera for providing data for water in figure 2.

REFERENCES

Barenblatt, G. I. 1987 Dimensional Analysis . Gordon and Breach.

Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics . Cambridge University
Press.

Chen, D. R., Pui, D. Y. H. & Kaufman, S. L. 1995 Electrospraying of conducting liquids for
monodisperse aerosol generation in the 4 nm to 1.8 µm diameter range. J. Aerosol Sci. 26,
963–977.

Cherney, L. 1999 Structure of Taylor cone-jets: limit of low flow rates. J. Fluid Mech. 378, 167–181.

Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone-jets mode.
J. Electrostatics 22, 135–159.

Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the
Navier-Stokes equations. J. Fluid Mech. 262, 205–221.

Feng, J. J. 2002 The stretching of an electrified non-newtonian jet: A model for electrospinning.
Phys. Fluids 14, 3912–3926.

Fernández de la Mora, J. & Loscertales, I. 1994 The current emitted by highly conducting
Taylor cones. J. Fluid Mech. 260, 155–184.

Gamero-Castaño, M. & Hruby, V. 2002 Electric measurements of charged sprays emitted by
cone-jets. J. Fluid Mech. 459, 245–276.
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Note added to online version

There are typographical errors in equations (2.13) and (2.14) in the paper as printed.
The correct equations are

Rρ =
ρQ3ε1/2

o

Iσ 1/2d4L1/2
, Rµ =

µQ2ε1/2
o

d2L3/2Iσ 1/2
, Rσ =

σ 1/2Qε1/2
o

IdL1/2
, (2.13)

I

Q
=

L

d2

(σεo

L

)1/2

or
I

Q
=

β − 1

L

(σεo

L

)1/2

. (2.14)
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