
Preprint - please cite: C. Vidal Silva, A. Felfernig, J. Galindo, M. Atas, and D. Bena-
vides, A Parallelized Variant of Junker’s QuickXPlain Algorithm, 25th International
Symposium on Methodologies for Intelligent Systems, Graz, Austria, pp. 457–468,
LNAI, 12117, 2020.

A Parallelized Variant of
Junker’s QUICKXPLAIN Algorithm

Cristian Vidal Silva1, Alexander Felfernig2,
José A. Galindo1, Müslüm Atas2, and David Benavides1

1 Catholic University of the North cristian.vidal@ucn.cl
2 University of Sevilla {benavides,jagalindo}@us.es

3 Graz University of Technology {afelfernig,muatas}@ist.tugraz.at

Abstract. Conflict detection is used in many scenarios ranging from interac-
tive decision making to the diagnosis of potentially faulty hardware components
or models. In these scenarios, the efficient identification of conflicts is crucial.
Junker’s QUICKXPLAIN is a divide-and-conquer based algorithm for the deter-
mination of preferred minimal conflicts. Motivated by the increasing size and
complexity of knowledge bases, we propose a parallelization of the original al-
gorithm that helps to significantly improve runtime performance especially in
complex knowledge bases. In this paper, we introduce a parallelized version of
QUICKXPLAIN that is based on the idea of predicting and executing parallel con-
sistency checks needed by QUICKXPLAIN.

1 Introduction
Conflict detection is used in many applications of constraint-based representations

(and beyond). Examples thereof are knowledge-based configuration [13] where users
define requirements and conflict detection is in charge of figuring out minimal sets
of potential changes to the given requirements in order to restore consistency (if the
configurator is not able to identify a solution), recommender systems [3,10], and many
other applications of model-based diagnosis [9]. Especially in interactive settings, there
is often a need of identifying preferred conflicts [7,11], for example, users of a car
configurator or a camera recommender who have strict preferences regarding the upper
price limit, are more interested in relaxations related to technical features (e.g., related
to the availability of a skibag in a car or a wide-aperture lens in a pocket camera).

Conflict detection helps to find combinations of constraints in the knowledge base
that are responsible for an inconsistency. QUICKXPLAIN is such a conflict detection
algorithm which is frequently used and works for constraint-based representations, de-
scription logics, and SAT solvers [7]. The algorithm is based on a divide-and-conquer
approach where consistency analysis operations are based on the division of a constraint
set C = {c1..cm} into two subsets Ca = {c1..ck} and Cb = {ck+1..cm} assuming, for
example, k = bm2 c. If Cb is inconsistent, the consideration set C can be reduced by half
since Ca must not be analyzed anymore (at least one conflict exists in Cb). Depending
on the QUICKXPLAIN variant, either Ca or Cb is checked for consistency.

Conflict detection is typically applied in combination with conflict resolution which
helps to resolve all existing conflicts. In this context, the minimality (irreducability) of
conflict sets is important since this allows to resolve each conflict by simply deleting
one of the elements in the conflict set. The elements to be deleted to restore global con-
sistency are denoted as hitting set and can, for example, be determined on the basis of

a hitting set directed acyclic graph [9]. Due to the increasing size and complexity of
knowledge bases, there is an increasing need to further improve the performance of so-
lution search and conflict detection / hitting set calculation [2,4,5,8]. Parallelizations of
algorithms in these scenarios have been implemented in different contexts. Approaches
to parallelization have, for example, been proposed on the reasoning level [2] where the
determination of a solution is based on the idea of identifying subproblems which can
be solved to some degree independently by the available cores. Due to today’s multi-
core CPU architectures, such parallelization techniques become increasingly popular in
order to be able to better exploit the offered computing resources.

A similar motivation led to the development of parallelization techniques in model-
based diagnosis [9]. J. Marques-Silva. et al [6] propose a parallelization approach for
hitting set determination where Reiter’s approach to model-based diagnosis is paral-
lelized by a level-wise expansion of a breadth-first search tree with the goal of com-
puting minimal (cardinality) diagnoses. On each level, (minimal) conflict sets are de-
termined in parallel, however, the determination of individual conflict sets is still a se-
quential process (based on QUICKXPLAIN [7]). In diagnosis search, the efficient deter-
mination of minimal conflicts is a core requirement [6]. Especially in constraint-based
reasoning scenarios, the identification of minimal conflict sets is frequently based on
QUICKXPLAIN [7]. Compared to iterative approaches of removing elements from in-
consistent constraint sets [1], QUICKXPLAIN follows a divide-and-conquer strategy
that helps to reduce the number of needed consistency checks. Although the algorithm
is often used in interactive settings with challenging runtime requirements, up-to-now
no parallelized version has been proposed. In this paper, we propose an algorithm that
enables efficient parallelized minimal conflict detection and thus helps a.o. to signifi-
cantly improve the runtime performance of conflict detection in interactive applications.

The contributions of this paper are the following. First, we show how to parallelize
conflict detection with look-ahead strategies that scale with the number of available
computing cores. Second, we show how to integrate our approach with the QUICKX-
PLAIN algorithm that is often used in constraint-based applications. Third, we show the
applicability and improvements of our approach on the basis of performance evalua-
tions. Finally, we point out in which way the proposed approach can help to improve
the performance of existing diagnosis approaches. The remainder of the paper is orga-
nized as follows. In Section 2, we introduce the basic idea of Junker’s QUICKXPLAIN
using a working example. Thereafter, in Section 3 we introduce a parallelized variant of
the algorithm. In Section 4, we analyze the proposed approach and report the results of
a performance evaluation which shows significant improvements compared to standard
QUICKXPLAIN. The paper is concluded with Section 5.

2 Calculating Minimal Conflicts
In the remainder of this paper, we introduce our approach to parallelized conflict

detection on the basis of constraint-based knowledge representations [14]. A conflict set
can be defined as a minimal set of constraints that is responsible for an inconsistency,
i.e., a situation in which no solution can be found for a given constraint satisfaction
problem (CSP) (see Definitions 1–2).

Definition 1. A Constraint Satisfaction Problem (CSP) is a triple (V,D,C) with a set of
variables V = {v1..vn}, a set of domain definitions D = {dom(v1)..dom(vn)}, and a
set of constraints C = {c1..cm}.

Definition 2. Assuming the inconsistency of C, a conflict set can be defined as a subset
CS ⊆ C : CS is inconsistent. CS minimal if ¬∃CS′ : CS′ ⊂ CS.

Examples of a CSP and a conflict set are the following (see Examples 1–2).

Example 1. An example of a CSP for car configuration is the following: V =
{cartype, fuel, pdc, color, skibag}, D = {dom(cartype) = [s, c], dom(fuel) =
[p, d], dom(pdc) = [y, n], dom(color) = [b, r, g], dom(skibag) = [y, n]}, and C =
{c1 : fuel = d, c2 : skibag = y, c3 : color = b, c4 : cartype = c, c5 : pdc = y, c6 :
skibag = y → cartype = s, c7 : cartype = c→ color = b}.

Note that PCD refers to the Park Distance Control implemented in recent vehicles It is
convenient to distinguish between a consistent background knowledge B of constraints
that cannot be relaxed (in our case,B = {c6, c7}) and a consideration set C of relaxable
constraints (in our case, requirements C = {c1..c5}).

Example 2. In Example 1, there is one minimal conflict which is CS = {c2, c4}, since
{c2, c4} ⊆ C and inconsistent (CS). Furthermore, CS is minimal since there does not
exist a CS′ s.t. CS′ ⊂ CS. The execution trace of QUICKXPLAIN for this working
example is depicted in Figure 1.

[1]C = {c1..c5}, B = {c6, c7},
Bδ = ∅,C1 = {c1..c2}, C2 = {c3..c5}.

return({c2, c4}).

[2]C = {c1..c2}, B = {c3..c5, c6, c7},
Bδ = {c3..c5},C1 = {c1}, C2 = {c2}.

return({c2}).

[3]C = {c1},
B = {c2..c5, c6, c7},

Bδ = {c2}.
return({}).

[4]C = {c2},
B = {c3..c5..c7},

Bδ = ∅.
return({c2}).

[5]C = {c3..c5}, B = {c2, c6, c7},
Bδ = {c2},C1 = {c3}, C2 = {c4..c5}.

return({c4}).

[6]C = {c3},
B = {c2, c4..c7},
Bδ = {c4, c5}.
return({}).

[7]C = {c4..c5},
B = {c2, c6, c7},Bδ = ∅
C1 = {c4},C2 = {c5}.

return({c4}).

[8]C = {c4},
B = {c2, c5..c7},Bδ = {c5}.

return({c4}).

[9]C = {c5},
B = {c2, c4, c6, c7},Bδ = {c4}.

return({}).

Fig. 1: QX execution trace for C = {c1..c5} and B = {c6, c7} assuming a minimal conflict set
CS = {c2, c4}. Underlined Bs denote QX consistency checks. For example, in the incarnation
[2] of the QX function, the consistency check activated is {c3..c5, c6, c7}.

QUICKXPLAIN [7] (a variant is shown in Algorithms 1 and 2) supports the deter-
mination of minimal (irreducible) conflicts in a given set of constraints (C). QUICK-
XPLAIN is activated if the background knowledge B (often assumed to be empty or a
consistent set of constraints) is inconsistent with the set of constraints C (we assume
this consistency check to be performed by a direct solver call). The core algorithm is im-
plemented in the function QX (Algorithm 2) that determines a minimal conflict which
is a minimal subset of the constraints in C with the conflict set property.

The function QX (Algorithm 2) focuses on isolating those constraints that are part
of a minimal conflict. If C includes only one element (C = {cα}), this element can
be considered as element of the conflict - this is due to the invariant property inconsis-
tent(C ∪B). If the B is consistent and C has more than one element, C is divided into
two separate sets, where (in our QX variant) the second part (Cb) is added to B in or-
der to analyse further elements of the conflict. The function QX activates a consistency

check (INCONSISTENT) to figure out whether the considered background knowledge is
inconsistent, i.e., no solution exists. Bδ indicates constraints added to B.

Algorithm 1 QUICKXPLAIN(C,B) : CS

1: if CONSISTENT(B ∪ C) then
2: return(’no conflict’)
3: else if C = ∅ then
4: return(∅)
5: else
6: return(QX(C,B, ∅))
7: end if

Algorithm 2 QX(C = {c1..cm}, B,Bδ) : CS
1: if Bδ 6= ∅ and INCONSISTENT(B) then
2: return(∅)
3: end if
4: if C = {cα} then
5: return({cα})
6: end if
7: k = bm

2
c

8: Ca ← c1...ck;Cb ← ck+1...cm;
9: ∆2 ← QX(Ca, B ∪ Cb, Cb); ∆1 ← QX(Cb, B ∪∆2,∆2);

10: return(∆1 ∪∆2)

In many of the mentioned application scenarios, there exists an exponential number
of conflicts and ways to resolve a conflict [7]. Especially in interactive scenarios, it is
extremely important to identify preferred conflicts, i.e., conflicts with a high probability
of being the basis of a relaxation acceptable for the user. For example, if a user is
strongly interested in low-priced digital cameras, a conflict set that includes a price
limit might be of low relevance for the user (since the user is not willing to change
the price limit). QUICKXPLAIN [7] supports the determination of preferred conflicts.
Although our discussions focus on constraint-based representations, the approach can
be applied to any kind of satisfiability problem such as propositional satisfiability (SAT)
and description logics (DL). We assume monotonic satisfiability (see Proposition 1).

Proposition 1. If a solution for a CSP satisfies all constraints ci ∈ C then it also
satisfies every proper subset C ′ ⊂ C.

QUICKXPLAIN determines one minimal preferred conflict at a time which includes
constraints one might be willing to relax. In the line with [7], an explanation X is
preferred over an explanation Y under the following condition (see Definition 3).

Definition 3. We define a total order < on the constraints in C = {c1..cm} which is
represented as [c1 < c2 < .. < cm]. If ci < cj , i.e., the importance of ci is higher
than cj , then i < j. If X and Y are two lexicographical constraint orderings of c1..cn,
Y is preferred over X (Y >lex X) iff ∃k : ck ∈ X − Y and X ∩ {ck−1..c1} =
Y ∩ {ck−1..c1}.

Example 3. Given the constraint ordering [c3 < c4 < c5 < c6] and two binary conflict
sets X = {c3, c4} and Y = {c4, c5}, Y is preferred over X since c3 ∈ X − Y with
X ∩ {c2, c1} = Y ∩ {c2, c1}.

3 Parallelizing QUICKXPLAIN

Our approach to parallelize the consistency checks in QX substitutes the direct solver
call INCONSISTENT(B) in QX with the activation of a lookahead function (QXGEN)
in which consistency checks are not only triggered to directly provide feedback to QX
requests, but also to be able to provide fast answers for consistency checks potentially
relevant in upcoming states of a QX instance. In the parallelized variant of QUICKX-
PLAIN, consistency checking is activated by QX with INCONSISTENT(C,B,Bδ) (see
Algorithm 3). This also activates the QXGEN function (see Algorithm 4) that starts to
generate and trigger (in a parallelized fashion) further consistency checks that might
be of relevance in upcoming QX phases. For the description of QXGEN, we employ
a two-level ordered set notation which requires, for example, to embed the QX B into
{B}, etc. In QXGEN, C, Bδ, and B are interpreted as ordered sets.

Algorithm 3 INCONSISTENT(C,B,Bδ):Boolean
1: if ¬EXISTSCONSISTENCYCHECK(B) then
2: QXGEN({C}, {Bδ}, {B −Bδ}, {Bδ}, 0)
3: end if
4: return(¬LOOKUP(B))

QXGEN-generated consistency checking tasks are stored in a LOOKUP table (see,
e.g., Table 1). Thus, in the parallelized variant, QX has to activate the consistency check
with INCONSISTENT(C,B,Bδ). In contrast to the original QUICKXPLAIN approach,
C and Bδ are needed as additional parameters to conduct inferences about needed fu-
ture consistency checks. While in the standard QX version Bδ ⊆ B, we assume Bδ
and B to be separate units in QXGEN.

node-id constraint set inconsistent
1 {c3, c4, c5, c6, c7} true
1.1 {c2, c3, c4, c5, c6, c7} false
1.1.1 {c1, c6, c7} true
1.2.1 {c4, c5, c6, c7} -

Table 1: LOOKUP table indicating the consistency of individual constraint sets. The consistency
checking tasks have been generated by ADDCC in the QXGEN function (see Figure 2) and
are executed in parallel. The ’-’ entry for the constraint set {c4, c5, c6, c7} indicates that the
corresponding consistency check is still ongoing or has not been started up to now. Algorithm 3
uses the LOOKUP function to test the consistency of a constraint set.

The QXGEN function (see Algorithm 4) predicts future potentially relevant consis-
tency checks needed by QX and activates individual consistency checking tasks in an
asynchronous fashion using the ADDCC (add consistency check) function. The AD-
DCC function triggers an asynchronous service that is in charge of adding consistency
checks (parameter of ADDCC) to a LOOKUP table and issuing the corresponding solver
calls. The global parameter lmax is used define the maximum search depth of one ac-
tivation of QXGEN.

In QXGEN, |f(X)| denotes the number of constraints ci in X (it is introduced due
to the subset structure in C). Furthermore, SPLIT(C,Ca, Cb) splits C at position b |C|2 c
if |C| > 1 or C1 (the first element of C) at position b |C1|

2 c if |C| = 1 and |C1| > 1 into
Ca and Cb. Otherwise, no split is needed (C1 is a singleton).

The first inner condition of QXGEN (|f(δ)| > 0) generates a consistency check if this
is needed. A consistency check is needed, if Bδ gets extended from C or a singleton
C has been identified which then extends B. The function ADDCC is used to add
consistency check tasks which can then be executed asynchronously in a parallelized
fashion. Thus, a consistency check in the LOOKUP table can be easily identified by an
ordered constraint set that has also been used as parameter of ADDCC, for example,
ADDCC({{c4, c5}, {c6, c7}}) results in the LOOKUP table enty {c4, c5, c6, c7} which
is internally represented with 4567.

Algorithm 4 QXGEN(C,Bδ,B, δ, l)
C = {C1..Cr} ... consideration set (subsets Cα)
Bδ = {Bδ1..Bδn} ... added knowledge (subsets Bδβ)
B = {B1..Bo} ... background (subsets Bγ)
δ = {D1..Dp} ... to be checked (subsets Dπ)
l ... current lookahead depth

1: if l < lmax then
2: if |f(δ)| > 0 then
3: ADDCC(Bδ ∪B)
4: end if
5: {Bδ ∪B assumed consistent}
6: if |f(C)| = 1 ∧ |f(Bδ)| > 0 then
7: QXGEN(Bδ, ∅, B ∪ {C1}, {C1}, l + 1)
8: else if |f(C)| > 1 then
9: SPLIT(C,Ca, Cb)

10: QXGEN(Ca, Cb ∪Bδ,B,Cb, l + 1)
11: end if
12: {Bδ ∪B assumed inconsistent}
13: if |f(Bδ)| > 0 ∧ |f(δ)| > 0 then
14: QXGEN({Bδ1}, Bδ − {Bδ1}, B, ∅, l + 1)
15: end if
16: end if

If Bδ ∪ B is assumed to be consistent, additional elements from C have to be in-
cluded such that an inconsistent state can be generated (which is needed for identifying
a minimal conflict). This extension ofBδ can be achieved by dividingC (if |f(C)| > 1,
i.e., more than one constraint is contained in C) into two separate sets Ca and Cb and
to add Cb to Bδ. If |f(C)| = 1, this singleton can be added to B which is responsible
of collecting constraints that have been identified as being part of the minimal conflict.
This is the case due to the already mentioned invariant property, i.e., C ∪ Bδ ∪ B is
inconsistent. If C contains only one constraint, i.e., C1 is a singleton, it is part of the
conflict set. If Bδ ∪B is assumed to be inconsistent, it can be reduced and at least one
conflict element will be identified in the previously added Bδ1. If δ does not contain an
element, no further recursive calls are needed sinceBδ−Bδ1 has already been checked.

The QXGEN function (Algorithm 4) is based on the idea of issuing recursive calls
and adapting the parameters of the calls depending on the two possible situations 1)
consistent(Bδ ∪ B) and 2) inconsistent(Bδ ∪ B). In Table 2, the different parameter
settings are shown in terms of FOLLOW sets representing the settings of C,Bδ, B, and
δ in the next activation of QXGEN.

Optimizations. To further improve the performance of QX, we have included mech-
anisms that help to identify irrelevant executions of consistency checks (see Table 3).

FOLLOW SETS
COND. C Bδ B δ
|f(C)| = 1 Bδ ∅ B ∪ {C1} {C1}
|f(C)| > 1 Ca Cb ∪Bδ B Cb
|f(Bδ)| > 0 {Bδ1} Bδ − {Bδ1} B ∅

Table 2: FOLLOW sets of the QXGEN function. Depending on the assumption about the consis-
tency of Bδ ∪B, the follow-up activations of QXGEN have to be parameterized differently.

If a consistency check has been completed, we are able to immediately decide whether
some of the still ongoing or even not started ones can be canceled since they are not rel-
evant anymore. For example, if the result of a consistency check is {c3..c7} is true (see
Figure 2), the check {c4..c7} does not have to be executed anymore (see also Proposi-
tion 1) or has to be canceled since QUICKXPLAIN will not need this check (see Figure
2). The deletion criteria for ongoing or even not started consistency checks can be pre-
generated for lmax. An example for lmax = 3 is provided in Table 3.

RESULT OF CONSISTENCY CHECK
NODE-ID true false
1 del(1.2.x) del(1.1.x)
1.1 del(1.1.2.x) del(1.1.1.x)
1.2 del(1.2.2.x) del(1.2.1.x)

Table 3: Optimizing the execution of consistency checks by detecting irrelevant ones. If the result
of a specific check is known, LOOKUP (Algorithm 3) triggers the corresponding delete (del)
operation. Nodes without associated consistency check are ignored.

In Table 3, the used node-ids are related to QXGEN instances, for example, in Figure
2 the consistency check {c3..c7 = true} has the node-id 1.

QXGEN [1]
C = {{c1, c2}}, Bδ = {{c3, c4, c5}},

B={{c6, c7}}, δ = {{c3, c4, c5}}
ADDCC({{c3, c4, c5}, {c6, c7}})
Ca = {{c1}}, Cb = {{c2}}

QXGEN [1.1]
C = {{c1}}, Bδ = {{c2}{c3, c4, c5}},

B = {{c6, c7}}, δ = {{c2}}
ADDCC({{c2}, {c3, c4, c5}, {c6, c7}})

QXGEN [1.1.1]
C = {{c2}},Bδ = {{c3, c4, c5}},
B = {{c1}, {c6, c7}}, δ = {{c1}}

ADDCC({{c1}{c3, c4, c5}{c6, c7}})

QXGEN [1.1.2]
C = {{c2}},

Bδ = {{c3, c4, c5}},
B = {{c6, c7}}, δ = ∅

QXGEN [1.2]
C = {{c3, c4, c5}},Bδ = ∅,
B = {{c6, c7}}, δ = ∅,

Ca = {{c3}}, Cb = {{c4, c5}}

QXGEN [1.2.1]
C = {{c3}},Bδ = {{c4, c5}},
B = {{c6, c7}}, δ = {{c4, c5}}

ADDCC({{c4, c5}, {c6, c7}})

Fig. 2: QXGEN execution trace for C = {{c1..c5}}, Bδ = ∅, B = {{c6, c7}}, δ = ∅, and
lmax = 3. The consistency checks {c3, c4, c5, c6, c7} and {c2, c3, c4, c5c6, c7} (flattened list
generated by ADDCC) can be used by the QUICKXPLAIN instance of Figure 1. The QXGEN
nodes {[1],[1.1],[1.1.2]} represent the first part of the QUICKXPLAIN search path in Figure 1.

4 Analysis
QX complexity. Assuming a splitting k = bm2 c ofC = {c1..cm}, the worst case time

complexity of QUICKXPLAIN in terms of the number of consistency checks needed for
calculating one minimal conflict is 2k × log2(mk) + 2k where k is the minimal conflict

set size and m represents the underlying number of constraints [7]. Since consistency
checks are the most time-consuming part of conflict detection, the runtime performance
of the underlying algorithms must be optimized as much as possible.

QXGEN complexity. The number (nc) of different possible minimal conflict sets that
could be identified with QXGEN for an inconsistent constraint set C consisting of m
constraints is represented by Formula 1.

nc(C) =

(
m

1

)
+

(
m

2

)
+ ...+

(
m

m

)
(1)

The upper bound of the space complexity in terms of recursive QXGEN calls for
lmax = n is in the worst case 2n−1 − 1. Due to the combinatiorial explosion, only
those solutions make sense that scale lmax depending on the available computing cores
(see the reported evaluation results).

If the non-parallelized version of QUICKXPLAIN is applied, only sequential con-
sistency checks can be performed. The approach presented in this paper is more flex-
ible since #processors consistency checks can be performed in parallel. Assuming
a maximum QXGEN search depth of lmax = 4, the maximum number of generated
consistency checks is 2lmax−1

2 due to the binary structure of the search tree, i.e., 4 in
our example. Out of these 4 checks, a maximum of 3 will be relevant to QX , the re-
maining ones are irrelevant for identifying the conflict in the currentQX session. Thus,
the upper bound of relevant consistency checks generated by QXGEN is lmax, i.e.,
one per QXGEN search level (see the outer left search path in Figure 2), the minimum
number of relevant consistency checks is d lmax2 e, i.e., 2 in our example. Assuming
#processors = 16, our approach can theoretically achieve a performance boost of
factor 3 since max. 3 relevant consistency checks can be performed in parallel. It is
important to mention, that within the scope of these upper and lower bounds, a perfor-
mance improvement due to the integration of QXGEN can be guaranteed independent
of the underlying knowledge base.

Termination of QXGEN. If the parameter lmax = n, recursive calls ofQXGen stop
at level n − 1. In every recursive step, based on the inconsistency invariant between
C ∪ Bδ ∪ B, either 1) C is reduced to Ca and Bδ gets extended with Cb (if Bδ ∪ B
is consistent) or to B ∪ C if C is a singleton, or 2) Bδ is further reduced (if Bδ ∪ B
is inconsistent). Obviously, in the second case, the constraints in C are not relevant
anymore, since a conflict can already be found in Bδ (which is inconsistent with B).

QX-conformance of QXGEN. QXGEN correctly predicts QX consistency checks.
It follows exactly the criteria of QX . If |f(C)| = 1, i.e., C includes only one constraint
cα, Bδ ∪ B is consistent and - as a consequence of the inconsistency invariant - cα is
a conflict element and therefore has to be added to B. The issued consistency check is
B∪C - if inconsistent, a conflict has already been identified. If |f(C)| > 1,Cb∪Bδ∪B
has to be checked, since Bδ ∪ B is consistent and by adding Cb we follow the goal of
restoring the inconsistency of Bδ ∪B. Finally, if Bδ ∪B is inconsistent, no check has
to be issued since Bδ − {Bδ1} ∪B has already been checked in the previous QXGen
call and obviously was considered consistent. Thus, QXGEN takes into account all
QX states that can occur in the next step and exactly one of the generated consistency
checks (if needed) will be relevant for QX . Finally, the generated consistency checks
are irredundant since each check is only generated if new constraints from C are added
to Bδ or a new constraint (singleton C) is added to B.

Runtime Analysis. The following evaluations have been conducted on the basis of
a Java 8 based implementation of the parallelized QUICKXPLAIN (QX) version pre-
sented in this paper. For the implementation, we applied the ForkJoin framework for
running parallel tasks in Java. This, while being less automatic than newer java im-
plementations allowed us to fully control when threads are created and destroyed. For
representing our test knowledge bases and conducting the corresponding consistency
checks, we have used the SAT solving enviroment SAT4j (see www.sat4j.org). All ex-
periments reported in the following have been conducted using an Intel Xeon multi-core
(16 cores) E5-2650 of 2.60GHz computer and 64 GB of RAM that supports hyperthread-
ing simulation of 64 cores which would allow us to run up to lmax=6. We have selected
configuration knowledge bases (feature models) from the publicly available BETTY
toolsuite [12], which allows for a systematic testing of different consistency checking
and conflict detection approaches for knowledge bases. The knowledge base instances
(represented as background knowledge B in QUICKXPLAIN) that have been selected
for the purpose of our evaluation, range from 500 to 5.000 binary variables and also vary
in terms of the number of included constraints (B 25-1.500 binary constraints). On the
basis of these knowledge bases, we randomly generated requirements (ci ∈ C) that cov-
ered 30% − 50% of the variables included in the knowledge base. These requirements
have been generated in such a way that conflict sets of different cardinalities could be
analyzed (see Table 4). In order to avoid measuring biases due to side effects in thread
execution, we repeated each evaluation setting 3×.

The results of our QXGEN performance analysis are summarized in Table 4. On
an average, the runtime needed by standard QUICKXPLAIN (lmax = 1) to identify a
preferred minimal conflict of cardinality 1 is 3.2× higher compared to a parallelized
solution based on QXGen (lmax = 5). In Table 4, each entry represents the aver-
age runtime in msec for all knowledge bases with a preferred conflict set of cardinal-
ity n, where the same set of knowledge bases has been evaluated for lmax sizes 1–6
(lmax = 1 corresponds to the usage of standard QX without QXGEN integration).
In this context, we have introduced an additional baseline version 6(rd), where only
a randomly selected set of QXGEN consistency checks has been evaluated. It can be
observed that with an increasing lmax the performance of QX increases. Starting with
lmax = 6, a performance deterioration can be observed which can be explained by the
fact that the number of pre-generated consistency checks starts to exceed the number
of physically available processors. In the line of our algorithm analysis, the number of
relevant consistency checks that can be performed with lmax = 5 is between 5 and
3. Taking into account the overheads for managing the parallelized consistency checks,
the shown results support our theoretical analysis of QXGEN.

5 Conclusions
We have introduced a parallelized variant of the QUICKXPLAIN algorithm that is

used for the determination of minimal conflict sets. Example applications are the model-
based diagnosis of hardware designs and the diagnosis of inconsistent user requirements
in configuration and recommender applications. Current approaches to the detection of
minimal conflicts do not take into account the capabilities of multi-core architectures.
Our parallelized variant of QUICKXPLAIN provides efficient conflict detection espe-
cially when dealing with large and complex knowledge bases.

www.sat4j.org

Conflict Cardinality
lmax 1 2 4 8 16
1 103993.0 286135.4 11006.4 30995.3 177354.7
2 69887.3 193354.2 9528.0 26258.7 154093.7
3 49823.5 130657.5 11094.6 28639.6 154155.0
4 50042.8 136150.8 7577.0 19753.1 120992.0
5 32481.4 88963.7 7750.0 18975.6 98242.7
6 34946.2 94783.0 6367.6 17743.7 95816.3
6(rd) 105678.3 195987.5 112546.8 28676.1 179876.2

Table 4: Avg. runtime (in msec) of parallelized QX when determining minimal conflicts.

References
1. Bakker, R., Dikker, F.: Diagnosing and Solving Over-determined Constraint Satisfaction

Problems. In: 13th International Joint Conference on Artificial Intelligence (IJCAI’93). pp.
276–281. Chambéry, France (1993)

2. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with Massively Parallel Constraint
Solving. In: 21st International Joint Conference on Artifical Intelligence. pp. 443–448. Mor-
gan Kaufmann Publishers, San Francisco, CA, USA (2009)

3. Felfernig, A., Burke, R.: Constraint-based Recommender Systems: Technologies and Re-
search Issues. In: ACM International Conference on Electronic Commerce (ICEC’08). pp.
17–26. Innsbruck, Austria (2008)

4. Gent, I., Miguel, I., Nightingale, P., McCreesh, C., Prosser, P., Nooore, N., Unsworth, C.: A
Review of Literature on Parallel Constraint Solving. Theory and Practice of Logic Program-
ming 18(5–6), 725–758 (2018)

5. Hamadi, Y., Sais, L.: Handbook of Parallel Constraint Reasoning. Springer (2018)
6. Jannach, D., Schmitz, T., Shchekotykhin, K.: Parallelized Hitting Set Computation for

Model-Based Diagnosis. In: 29th AAAI Conference on Artificial Intelligence. pp. 1503–
1510. AAAI Press, Austin, Texas (2015)

7. Junker, U.: QuickXPlain: Preferred Explanations and Relaxations for Over-constrained Prob-
lems. In: 19th national conference on Artifical intelligence. pp. 167–172. AAAI Press, San
Jose, CA (2004)

8. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On Computing Minimal Cor-
rection Subsets. In: 23rd international Joint Conference on Artificial Intelligence. pp. 615–
622. Beijing, China (2013)

9. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 23(1), 57–95
(1987)

10. Ricci, F., Rokach, L., Shapira, B., Kantor, P.: Recommender Systems Handbook. Springer
(2011)

11. Rossi, F., Venable, K., Walsh, T.: A Short Introduction to Preferences: Between Artificial
Intelligence and Social Choice. Morgan & Claypool Publishers (2011)

12. Segura, S., Galindo, J., Benavides, D., Parejo, J., Ruiz-Cortés, A.: BeTTy: Benchmarking
and Testing on the Automated Analysis of Feature Models. In: 6th International Workshop
on Variability Modeling of Software-Intensive Systems. pp. 63–71. VaMoS’12, ACM, New
York, NY, USA (2012)

13. Stumptner, M.: An Overview of Knowledge-based Configuration. Ai Communications 10(2),
111–125 (1997)

14. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)

	A Parallelized Variant of Junker's QuickXPlain Algorithm

