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Abstract: This paper delves into the study of critical sets of Latin squares having a given isotopism
in their autotopism group. Particularly, we prove that the sizes of these critical sets only depend on
both the main class of the Latin square and the cycle structure of the isotopism under consideration.
Keeping then in mind that the autotopism group of a Latin square acts faithfully on the set of entries of
the latter, we enumerate all the critical sets based on autotopisms of Latin squares of order up to five.
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1. Introduction

A partial Latin square of order n is an n × n array whose cells are either empty or filled by one
element of a set of n distinct symbols so that each symbol appears at most once per row and at most
once per column. The number of non-empty cells is its size. If this size is n2 (that is, if all the cells are
filled), then the partial Latin square is indeed a Latin square of order n.

From here on, let PLSn and LSn respectively denote the set of partial Latin squares of order n and
its subset of Latin squares of the same order, both of them having the set [n] := {1, . . . , n} as sets of
symbols. Every partial Latin square P = (pi j) ∈ PLSn is uniquely determined by its set of entries

Ent(P) := {(i, j, pi j) : i, j, pi j ∈ [n]}.

A completion of P is any Latin square L ∈ LSn such that Ent(P) ⊆ Ent(L). Then, it is said that P is
completable to L. If there exists precisely one such a Latin square L, then P is said to be uniquely
completable. The problem of deciding whether a partial Latin square is uniquely completable is NP-
complete [1], even if one such completion is previously given. In fact, the problem of deciding the
existence of a completion also is NP-complete [2].
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In 1977, John Ashworth Nelder [3] termed critical set of a Latin square L ∈ LSn to any partial Latin
square P ∈ PLSn that is uniquely completable to L and such that, for every P′ ∈ PLSn satisfying that
Ent(P′) ⊂ Ent(P), there exists a distinct Latin square L′ ∈ LSn \ {L} such that Ent(P′) ⊂ Ent(L′). It is
said to be minimal if there does not exist any critical set of L of a smaller size. Furthermore, it is said
to be strong if its set of entries can sequentially be filled by a series of forced entries. Remind in this
regard that a forced entry in a partial Latin square P ∈ PLSn is a triple (i, j, k) ∈ [n] × [n] × [n] such
that the cell (i, j) is the only empty one either in the ith row or the jth column of P, and the symbol k
is the only one not appearing in the respective row or column. Illustrative examples of strong minimal
critical sets of Latin squares of order up to six appear in [4] (for higher orders, see also [5, 6]).

Nelder also introduced the problem of determining the respective sizes, scs(n) and lcs(n), of the
smallest and largest critical set of any given Latin square of order n. Two years later, Bohdan Smetaniuk
[7] proved that scs(2n) ≤ bn2/4c, by also ensuring indeed the existence of critical sets of such size, as
conjectured by Nelder. At the same time, this fact was independently discovered by Donald Joseph
Curran and Gerrit Hendrik Johannes Van Rees [8], who also proved the same inequality for the odd
case. Moreover, they determined the value scs(n), for all n ≤ 5, together with some bounds for both
sizes scs(n) and lcs(n). This last value was also analyzed in 1982 by Douglas Robert Stinson and
van Rees [9]. Since these first studies, a wide amount of authors have dealt with critical sets of Latin
squares. For several surveys on this topic, we refer the reader to the manuscripts of Anne Penfold
Street [10], Keedwell [11–13] and Nicholas J. Cavenagh [14].

The set of critical sets of a given partial Latin square is known for all isotopism and main classes
of Latin squares of order up to seven [15, 16]. Remind in this regard that, if S n denotes the symmetric
group on the set [n], then every triple Θ = (α, β, γ) ∈ S n × S n × S n is called an isotopism from a partial
Latin square P = (pi j) ∈ PLSn to its isotopic partial Latin square PΘ ∈ PLSn, where

Ent(PΘ) = {(α(i), β( j), γ(pi j))) : (i, j, pi j) ∈ Ent(P)}.

In other words, the partial Latin square PΘ arises from P after permuting its rows, columns and symbols
respectively by α, β and γ. Further, if π ∈ S 3, then the partial Latin square Pπ ∈ PLSn, where

Ent(Pπ) = {(iπ(1), iπ(2), iπ(3)) : (i1, i2, i3) ∈ Ent(P)}

is said to be a conjugate of P, and the permutation π is called a parastrophism from P to Pπ. In
other words, the partial Latin square Pπ arises from P after interchanging the role of its rows, columns
and symbols. Finally, two partial Latin squares are said to be paratopic or to be in the same main
class if the former is isotopic to a conjugate of the latter. To be isotopic, conjugate and paratopic are
equivalence relations among partial Latin squares of the same order. The distribution of Latin squares
into isotopism and main classes is known [17–19] for order up to 11, and that of partial Latin squares
is known [20–24] for order up to six. Further, if PΘ = P, then the triple Θ is called an autotopism of the
partial Latin square P. It is known [25] that a Latin square of order n has at most nO(log n) autotopisms.

The set Atop(P) of all autotopisms of a partial Latin square P constitutes a group under composition
of permutations, which is termed the autotopism group of P. This group acts faithfully on the set of
entries of P. The study of autotopism groups of partial Latin squares is currently an active area of
research [20, 26–28], with special emphasis on the study of invariants that facilitate their computation
[29–34], and its possible applications in cryptography and coding theory [35–38]. For a recent survey
on the theory of isotopisms, we refer the reader to [39].

AIMS Mathematics Volume 6, Issue 1, 261–295.
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In the early 2000’s, the concept of completability was generalised [40, 41] to that of F-
completability, where F is any given set of Latin square isotopisms. More specifically, a partial Latin
square P ∈ PLSn is called F-completable if there exists a completion L ∈ LSn of the former such
that Θ ∈ Atop(L), for all Θ ∈ F. If such a Latin square is unique, then P is said to be uniquely
F-completable. Moreover, it is called an F-critical set of L if this last property does not hold for any
partial Latin square Q such that Ent(Q) ⊂ Ent(P). As such, these concepts generalise the classical ones,
which arise when the set F is formed only by the trivial isotopism. More generally, if F is formed by
only one isotopism Θ = (α, β, γ) ∈ S n × S n × S n, then the notion of being (uniquely) Θ-completable
and that one of being a Θ-critical set arise analogously [20]. In particular, if P is Θ-completable,
then it is also Θ-compatible [42], that is, every entry (i, j, k) ∈ Ent(P) satisfies that, for each positive
integer m, either the cell (αm(i), βm( j)) is empty, or (αm(i), βm( j), γm(k)) ∈ Ent(P). Some particular
cases of Θ-completability have already been considered in [43–45]. In spite of its implementations in
cryptography [40] and graph colouring games [42], not much is known about this topic.

This paper is organised as follows. Section 2 describes some preliminary lemmas that are later
used throughout the paper. In particular, Table 4 enumerates the cases that are enough to study for
determining the census of critical sets based on autotopisms of Latin squares of order up to five. Then,
we introduce in Section 3 the concept of Θ-orbits of a Latin square, where Θ is an isotopism in its
autotopism group. We show how this notion can be used for determining the possible sizes of the
corresponding Θ-critical sets. In Section 4, we introduce the notion of partial subsquares of a Latin
square as a generalization of a subsquare. The latter is any of the subarray of a Latin square that
within itself constitutes as a Latin square. Then, we show how the overlapping of Θ-orbits and partial
subsquares within a given Latin square may be used to determine its Θ-critical sets. Finally, due to the
high dependence on notation, Appendix A gives a glossary of repeatedly used notation.

2. Some preliminary lemmas

In this section, we establish a series of preliminary lemmas that are later used in our study. Our first
result deals with the composition of permutations and isotopisms.

Lemma 1. Let us consider an isotopism Θ = (δ1, δ2, δ3) ∈ S n × S n × S n and a permutation π ∈ S 3. Let
us define the isotopism

Θπ := (δπ(1), δπ(2), δπ(3)) ∈ S n × S n × S n.

Then, (Pπ)Θπ
= (PΘ)π, for all partial Latin square P ∈ PLSn,

Proof. Suppose Θ = (δ1, δ2, δ3). The result follows from the fact that

Ent
(
(Pπ)Θπ

)
=

{
(δπ(1)(iπ(1)), δπ(2)(iπ(2)), δπ(3)(iπ(3))) : (i1, i2, i3) ∈ Ent(P)

}
= {(iπ(1), iπ(2), iπ(3)) : (i1, i2, i3) ∈ Ent(PΘ)}

= Ent
(
(PΘ)π

)
.

�

AIMS Mathematics Volume 6, Issue 1, 261–295.
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Example 2. Let us consider the Latin square of order four

L ≡

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

and its conjugate by the permutation π = (123) ∈ S 3. That is,

Lπ ≡

1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

.

Now, let us consider the isotopism Θ = ((12)(34), (1234), (123)(4)) ∈ S 4 × S 4 × S 4. Then,

LΘ ≡

2 3 1 4
4 2 3 1
1 4 2 3
3 1 4 2

and
Θπ = ((123)(4), (12)(34), (1234)).

Hence,

(Lπ)Θπ

≡

3 4 1 2
1 2 3 4
2 3 4 1
4 1 2 3

≡ (LΘ)π.

Let L ∈ LSn and Θ ∈ Atop(L). From now on, let CSΘ(L) denote the set of Θ-critical sets of the
Latin square L. Furthermore, let scsΘ(L) and lcsΘ(L) respectively denote the sizes of the smallest and
the largest Θ-critical set of L. The following results enable us to ensure that the sizes of the smallest
and largest critical sets for the whole autotopism group of any given Latin square are only dependant
on the main class of the latter.

Lemma 3. There is a one-to-one correspondence between the autotopism groups of any pair of
paratopic partial Latin squares.

Proof. Let P1, P2 ∈ PLSn be two paratopic partial Latin squares. Thus, there exist a permutation π ∈ S 3

and an isotopism Θ ∈ S n × S n × S n such that P2 = ((P1)π)Θ. Then, the result follows straightforwardly
from Lemma 1. More specifically, if Θ1 ∈ Atop(P1), then ΘΘπ

1Θ−1 ∈ Atop(P2). �

Proposition 4. Let L1, L2 ∈ LSn be two paratopic Latin squares such that L2 = ((L1)π)Θ, for some
permutation π ∈ S 3 and some isotopism Θ ∈ S n × S n × S n. Let Θ1 ∈ Atop(L1) and let Θ2 = ΘΘπ

1Θ−1 ∈

Atop(L2). Then, there is a one-to-one correspondence between both sets CSΘ1(L1) and CSΘ2(L2) so
that scsΘ1(L1) = scsΘ2(L2) and lcsΘ1(L1) = lcsΘ2(L2).

AIMS Mathematics Volume 6, Issue 1, 261–295.



265

Proof. The result follows straightforwardly from the proof of Lemma 3. More specifically, if P ∈
CSΘ1(L1), then (Pπ)Θ ∈ CSΘ2(L2). �

From the previous results, our study may focus on the following representatives of main classes of
Latin squares of order 2 ≤ n ≤ 5. (Notice that the case n = 1 is trivial.)

L2 ≡
1 2
2 1

L3 ≡

1 2 3
2 3 1
3 1 2

L4.1 ≡

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

L4.2 ≡

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

L5.1 ≡

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

L5.2 ≡

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

(2.1)

In practice, it is not necessary to study the whole autotopism group of a given Latin square L in order
to compute the sizes of its Θ-critical sets, for all Θ ∈ Atop(L). More specifically, it is enough to focus
on a representative of each conjugacy class of the autotopism group. Remind in this regard that two
elements a and b of a given group G are said to be conjugate if and only if there exists a third element
c ∈ G such that b = cac−1. To be conjugate constitutes an equivalence relation among the elements of
the group. Hence, conjugacy classes determine a partition of the group under consideration.

Lemma 5. Let Θ1 and Θ2 be two conjugate autotopisms within the autotopism group of a Latin square
L ∈ LSn. Then, there is a one-to-one correspondence between both sets CSΘ1(L) and CSΘ2(L) so that
scsΘ1(L) = scsΘ2(L) and lcsΘ1(L) = lcsΘ2(L).

Proof. Let Θ = (α, β, γ) ∈ Atop(L) be such that Θ2 = ΘΘ1Θ
−1. In order to prove the result, it is

enough to describe a one-to-one correspondence between both sets CSΘ1(L) and CSΘ2(L). To this end,
if P ∈ CSΘ1(L), let us see that PΘ ∈ CSΘ2(L).

Firstly, notice that Ent(P) ⊆ Ent(L), because P ∈ CSΘ1(L). As a consequence, Ent(PΘ) ⊆ Ent(LΘ) =

Ent(L), because Θ ∈ Atop(L).
Now, suppose the existence of an entry e = (i, j, k) ∈ Ent(P) and a Latin square L′ ∈ LSn \ {L} such

that Ent(PΘ) \ {e} ⊂ Ent(L′) and Θ2 ∈ Atop(L′). Let PΘ
{e} denote the partial Latin square of order n that

results after removing the entry e from PΘ. Then,
(
PΘ
{e}

)Θ−1

is the partial Latin square of order n that
results after removing the entry Θ−1(e) = (α−1(i), β−1( j), γ−1(k)) from P. Hence, Ent(P) \ {Θ−1(e)} ⊂
Ent

(
L′Θ

−1)
. Moreover, Θ1 ∈ Atop

(
L′Θ

−1)
, because(

L′Θ
−1)Θ1

= L′Θ1Θ−1
= L′Θ

−1Θ2 =
(
L′Θ2

)Θ−1

= L′Θ
−1
.

Furthermore, notice that L′Θ
−1
, L. Otherwise, it would be L′ = LΘ = L, which is not possible. Thus,

P < CSΘ1(L), which is a contradiction. As a consequence, PΘ ∈ CSΘ2(L). �

AIMS Mathematics Volume 6, Issue 1, 261–295.
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Notice also that all the autotopisms within the same conjugacy class have the same cycle structure.
Remind in this regard that the cycle structure of an isotopism Θ = (α, β, γ) ∈ S n × S n × S n is defined
as the triple zΘ := (zα, zβ, zγ) formed by the respective cycle structures of the permutations α, β and
γ. Remind also to this end that the cycle structure of a permutation π ∈ S n is the expression zπ :=
nλ

π
n . . . nλ

π
1 , where λl(π) denotes the number of cycles of length l in the unique decomposition of π as

a product of disjoint cycles. In practice, it is written only those factors for which λπl > 0. Moreover,
each factor of the form l1 is replaced by l. Thus, for instance, the cycle structure of the permutation
(123)(45)(67)(8) ∈ S 8 is 3221, and that one of the isotopism ((123)(4), (12)(34), (1234)) ∈ S 4 × S 4 ×

S 4 is the triple (31, 22, 4). It is known that the number of Latin squares having a given isotopism
in their autotopism group only depends on the cycle structure of such an isotopism. This number
has computationally been determined [46] for all autotopisms of Latin squares of order up to seven.
Furthermore, the set of cycle structures of Latin squares of order n is currently known [20, 47] for all
n ≤ 17.

In this paper, we focus on the autotopisms of Tables 1–3, which constitute representatives of the
conjugacy classes of each one of the autotopism groups of the Latin squares described in (2.1). To this
end we have made use of the library pls.lib, which is available online on http://personales.us.
es/raufalgan/LS/pls.lib, for the open computer algebra system for polynomial computations
SINGULAR [48]. From here on, we denote Idn the trivial permutation in the symmetric group S n.
Moreover, fixed points are not explicitly indicated. In addition, in order to illustrate the computation
of representatives of conjugacy classes in Tables 1–3, the following example describes the case when
n = 3 in detail.

Table 1. Representatives of conjugacy classes of the autotopism groups of L2 and L3.

L ∈ LSn Θ ∈ Atop(L) zΘ

L2 (Id2, Id2, Id2) (12, 12, 12)
(Id2, (12), (12)) (12, 2, 2)
((12), Id2, (12)) (2, 12, 2)
((12), (12), Id2) (2, 2, 12)

L3 (Id3, Id3, Id3) (13, 13, 13)
(Id3, (123), (123)) (13, 3, 3)
((123), Id3, (123)) (3, 13, 3)
((123), (132), Id3)) (3, 3, 13)
((12), (12), (13)) (21, 21, 21)
((123), (123), (132)) (3, 3, 3)

AIMS Mathematics Volume 6, Issue 1, 261–295.
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Table 2. Representatives of conjugacy classes of the autotopism groups of L4.1 and L4.2.

L ∈ LSn Θ ∈ Atop(L) zΘ

L4.1 (Id4, Id4, Id4) (14, 14, 14)
(Id4, (12)(34), (12)(34)) (14, 22, 22)
((12)(34), Id4, (12)(34)) (22, 14, 22)
((12)(34), (12)(34), Id4) (22, 22, 14)
((23), (14), (14)) (212, 212, 212)
((24), (1234), (1234)) (212, 4, 4)
((1234), (24), (1234)) (4, 212, 4)
((1234), (1234), (24)) (4, 4, 212)
((243), (134), (134)) (31, 31, 31)
((12)(34), (13)(24), (14)(23)) (22, 22, 22)

L4.2 (Id4, Id4, Id4) (14, 14, 14)
(Id4, (12)(34), (12)(34)) (14, 22, 22)
((12)(34), Id4, (12)(34)) (22, 14, 22)
((12)(34), (12)(34), Id4) (22, 22, 14)
(Id4, (1324), (1324)) (14, 4, 4)
((1324), Id4, (1324)) (4, 14, 4)
((1423), (1324), Id4) (4, 4, 14)
((34), (14)(23), (14)(23)) (212, 22, 22)
((13)(24), (12), (14)(23)) (22, 212, 22)
((13)(24), (14)(23), (34)) (22, 22, 212)
((12), (12), (34)) (212, 212, 212)
((12)(34), (1423), (1324)) (22, 4, 4)
((1423), (12)(34), (1324)) (4, 22, 4)
((1324), (1324), (12)(34)) (4, 4, 22)

Table 3. Representatives of conjugacy classes of the autotopism groups of L5.1 and L5.2.

L ∈ LSn Θ ∈ Atop(L) zΘ

L5.1 (Id5, Id5, Id5) (15, 15, 15)
(Id5, (12345), (12345)) (15, 5, 5)
((12345), Id5, (12345)) (5, 15, 5)
((12345), (15432), Id5) (5, 5, 15)
((12)(35), (13)(45), (14)(23)) (221, 221, 221)
((2354), (1243), (1243)) (41, 41, 41)
((12345), (12345), (13524)) (5, 5, 5)

L5.2 (Id5, Id5, Id5) (15, 15, 15)
((345), (345), (345)) (312, 312, 312)
((13)(45), (25)(34), (13)(45)) (221, 221, 221)

Example 6. The autotopism group of the Latin square L3 described in (2.1) is formed by the following
18 isotopisms of the symmetric group S 3:

AIMS Mathematics Volume 6, Issue 1, 261–295.
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Θ1 = (Id3, Id3, Id3) Θ7 = ((13)(2), (23)(1), (13)(2)) Θ13 = ((123), Id3, (123))
Θ2 = ((12)(3), (12)(3), (13)(2)) Θ8 = ((23)(1), (12)(3), (12)(3)) Θ14 = ((132), Id3, (132))
Θ3 = ((12)(3), (13)(2), (23)(1)) Θ9 = ((23)(1), (13)(2), (13)(2)) Θ15 = ((123), (132), Id3)
Θ4 = ((12)(3), (23)(1), (12)(3)) Θ10 = ((23)(1), (23)(1), (23)(1)) Θ16 = ((132), (123), Id3)
Θ5 = ((13)(2), (12)(3), (23)(1)) Θ11 = (Id3, (123), (123)) Θ17 = ((123), (123), (132))
Θ6 = ((13)(2), (13)(2), (12)(3)) Θ12 = ((Id3, (132), (132)) Θ18 = ((132), (132), (123))

It is partitioned into the following six conjugacy classes:

• The trivial autotopism Θ1 constitutes as a conjugacy class within itself.
• The conjugacy class described by the isotopism Θ2 within the autotopism group Atop(L3) is the

set {Θ2,Θ3,Θ4,Θ5,Θ6,Θ7,Θ8,Θ9,Θ10}, because

Θ3 = Θ4Θ2Θ
−1
4 , Θ4 = Θ3Θ2Θ

−1
3 , Θ5 = Θ8Θ2Θ

−1
8 , Θ6 = Θ10Θ2Θ

−1
10 ,

Θ7 = Θ9Θ2Θ
−1
9 , Θ8 = Θ5Θ2Θ

−1
5 , Θ9 = Θ7Θ2Θ

−1
7 , Θ10 = Θ6Θ2Θ

−1
6 .

• The conjugacy class described by Θ11 is the set {Θ11,Θ12}, because Θ12 = Θ2Θ11Θ
−1
2 .

• The conjugacy class described by Θ13 is the set {Θ13,Θ14}, because Θ14 = Θ3Θ13Θ
−1
3 .

• The conjugacy class described by Θ15 is the set {Θ15,Θ16}, because Θ16 = Θ4Θ15Θ
−1
4 .

• The conjugacy class described by Θ17 is the set {Θ17,Θ18}, because Θ18 = Θ2Θ17Θ
−1
2 .

The following result shows that, in the case of dealing with a Latin square that is symmetric by
means of a certain paratopism, it is not necessary to study all the representatives of the conjugacy
classes of its autotopism group. More specifically, this results enables us to identify certain conjugacy
classes whose cycle structures coincide up to permutation among their row, column and symbol
components.

Lemma 7. Let us consider a Latin square L ∈ LSn, a pair of isotopisms Θ1 ∈ Atop(L) and Θ2 ∈ S n ×

S n × S n, and a permutation π ∈ S 3. If (Lπ)Θ2 = L, then there is a one-to-one correspondence between
both sets CS Θ1(L) and CS Θ2Θπ

1Θ−1
2

(L) so that scsΘ1(L) = scsΘ2Θπ
1Θ−1

2
(L) and lcsΘ1(L) = lcsΘ2Θπ

1Θ−1
2

(L).

Proof. Notice that Θ2Θ
π
1Θ−1

2 ∈ Atop(L), because, from Lemma 1, we have that

LΘ2Θπ
1Θ−1

2 =
(
(Lπ)Θ2

)Θ2Θπ
1Θ−1

2
=

(
(Lπ)Θπ

1

)Θ2
=

(
(LΘ1)π

)Θ2
= (Lπ)Θ2 = L.

Then, similarly to the proof of Lemma 5, the result follows straightforwardly from the fact that, if
P ∈ CSΘ1(L), then (Pπ)Θ2 ∈ CSΘ2Θπ

1Θ−1
2

(L). �

Example 8. Let us consider the Latin square L3 that is described in (2.1), the pair of isotopisms
Θ1 = ((123), Id3, (123)) ∈ Atop(L3) and Θ2 = ((23), Id3, Id3) ∈ S 3 × S 3 × S 3, and the permutation
π = (23) ∈ S 3. In particular, the following two partial Latin squares are Θ1-critical sets of L3.

P ≡
1 2

and Q ≡
1

3
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Furthermore, since (Lπ3)Θ2 = L3, the proof of Lemma 7 enables one to ensure that the following
two partial Latin squares are Θ2Θ

π
1Θ−1

2 -critical sets of L3. Notice in this regard that Θ2Θ
π
1Θ−1

2 =

((132), (132), Id3) ∈ Atop(L3).

(Pπ)Θ2 = P ≡
1 2

and (Qπ)Θ2 ≡

1

2

In a similar way to Example 8, since those Latin squares described in (2.1) satisfy that

L2 = L(12)
2 = L(23)

2 , L3 = L(12)
3 =

(
L(23)

3

)((23),Id,Id3)
,

L4.1 = L(12)
4.1 = L(23)

4.1 , L4.2 = L(12)
4.2 =

(
L(23)

4.2

)(Id4,(13)(24),(13)(24))
and L5.1 = L(12)

5.1 = L(23)
5.1 ,

Table 4. Autotopism of L2–L5.2.

L Θ ∈ Atop(L) zΘ |CSΘ(L)| EC scsΘ(L) lcsΘ(L) Reference
L2 (Id2, Id2, Id2) (12, 12, 12) 4 4 1 1 [15]

((12), (12), Id2) (2, 2, 12) 4 2 1 1 Example 13
L3 (Id3, Id3, Id3) (13, 13, 13) 27 27 2 3 [15]

((12), (12), (13)) (21, 21, 21) 14 4 1 2 Example 21
((123), (132), Id3)) (3, 3, 13) 27 3 2 2 Example 15
((123), (123), (132)) (3, 3, 3) 9 3 1 1 Example 18

L4.1 (Id4, Id4, Id4) (14, 14, 14) 576 576 5 7 [15]
((12)(34), (12)(34), Id4) (22, 22, 14) 192 12 4 4 Example 26
((23), (14), (14)) (212, 212, 212) 256 32 4 4 Example 27
((12)(34), (13)(24), (14)(23)) (22, 22, 22) 256 32 3 3 Example 30
((243), (134), (134)) (31, 31, 31) 90 10 2 2 Example 22
((1234), (1234), (24)) (4, 4, 212) 64 4 2 2 Example 17

L4.2 (Id4, Id4, Id4) (14, 14, 14) 736 736 4 6 [15]
((12)(34), (12)(34), Id4) (22, 22, 14) 192 12 4 4 Example 26
((13)(24), (14)(23), (34)) (22, 22, 212) 224 28 3 3 Example 31
((12), (12), (34)) (212, 212, 212) 256 32 4 4 Example 28
((1324), (1324), (12)(34)) (4, 4, 22) 64 4 2 2 Example 29
((1423), (1324), Id4) (4, 4, 14) 256 4 3 3 Theorem 16

L5.1 (Id5, Id5, Id5) (15, 15, 15) 53250 53250 6 10 [15]
((12)(35), (13)(45), (14)(23)) (221, 221, 221) 3088 116 3 5 Example 34
((2354), (1243), (1243)) (41, 41, 41) 832 13 3 3 Example 23
((12345), (15432), Id5) (5, 5, 15) 3125 5 4 4 Theorem 16
((12345), (12345), (13524)) (5, 5, 5) 250 10 2 2 Example 19

L5.2 (Id5, Id5, Id5) (15, 15, 15) 48462 48462 7 11 [15]
((13)(45), (25)(34), (13)(45)) (221, 221, 221) 2896 116 3 5 Example 35
((345), (345), (345)) (312, 312, 312) 8424 56 5 6 Example 32
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Lemma 7 enables us to focus on those autotopisms that are listed in Table 4, where, for each one
of these autotopisms Θ ∈ Atop(L), with L ∈ {L2, L3, L4.1, L4.2, L5.1, L5.2}, the number of Θ-critical sets
of L is also indicated, together with both values scsΘ(L) and lcsΘ(L). The values associated with the
trivial autotopism (Idn, Idn, Idn) ∈ S n × S n × S n corresponding to the already known [15] values scs(L)
and lcs(L), which denote the respective sizes of the smallest and largest critical sets of a Latin square
L are also given. In the following two sections, we will establish the methodology and procedures
that we have used in order to determine the rest of the values in Table 4. The corresponding results or
references from which the values have been derived are shown in the last column of the table.

Notice that the data shown in Table 4 satisfies in particular the following result about the relationship
amongst critical sets based on distinct powers of the same Latin square autotopism.

Lemma 9. Let L ∈ LSn and Θ ∈ Atop(L). If P ∈ PLSn is Θt-completable to L, for some positive
integer t, then P is also Θ-completable to L. As a consequence,

scsΘ(L) ≤ scsΘt(L),

for every positive integer t. In particular,

scsΘ(L) ≤ scs(L),

Proof. The result follows straightforwardly from the definition of being Θ-completable, together with
the fact that Θ ∈ Atop(L). �

3. Orbits based on Latin square autotopisms

We have already mentioned in the introductory section that the autotopism group of any partial
Latin square acts faithfully on its set of entries. Based on this fact, in this section we show how this
action constitutes a good approach for determining the possible sizes of those critical sets based on a
given Latin square autotopism.

Let L ∈ LSn. Keeping in mind that every autotopism Θ = (α, β, γ) ∈ Atop(L) generates a subgroup
of Atop(L) that also acts faithfully on the set of entries Ent(L), we define the Θ-orbit of an entry
(i, j, k) ∈ Ent(L) as the set

OrbΘ((i, j, k)) := {(αm(i), βm( j), γm(k)) : m ≥ 0} ⊆ Ent(L).

In addition, if P ∈ PLSn is Θ-compatible, then we define the set

OrbΘ(P) :=
⋃

e∈Ent(P)

{OrbΘ(e)} .

Moreover, OrbΘ(L) is the set formed by all the Θ-orbits of the Latin square L. The following result
establishes that the size of any such Θ-orbit and also the size of the set OrbΘ(L) only depend on the
cycle decomposition of the permutations α and β. Notice that, for each positive integer i ≤ n, we use
the notation `π(i) to denote the length of the cycle C in the unique decomposition of a permutation
π ∈ S n into disjoint cycles such that π(i) = C(i).
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Lemma 10. Let L ∈ LSn and Θ = (α, β, γ) ∈ Atop(L). For each entry (i, j, k) ∈ Ent(L), we have that

|OrbΘ((i, j, k))| = lcm(`α(i), `β( j)).

As a consequence,

|OrbΘ(L)| =
n∑

i=1

gcd(λi(α), λi(β))

Proof. The result holds because Θlcm(`α(i),`β( j)) preserves the entry (i, j, k), and Θm((i, j, k)) ,
Θm′((i, j, k)), for every pair of distinct non-negative integers m, m′ < lcm(`α(i), `β( j)). �

Let us show now how Θ-orbits can be used for determining an upper bound for the size of any
Θ-critical set. Recall to this end that λl(π) denotes the number of cycles of length l in the unique
decomposition of a permutation π as a product of disjoint cycles.

Proposition 11. Let L ∈ LSn and Θ = (α, β, γ) ∈ Atop(L). Then, no Θ-critical set of the Latin square
L has more than one entry in the same Θ-orbit. As a consequence,

0 < scsΘ(L) ≤ lcsΘ(L) ≤ |OrbΘ(L)|.

Proof. By definition, it must be 0 < scsΘ(L) ≤ lcsΘ(L). The upper bound follows from Lemma 10,
together with the fact that every Θ-orbit of the Latin square L is uniquely determined by any of its
elements. �

As it has been indicated in the proof of the previous result, every entry in a partial Latin square
with the isotopism Θ in its autotopism group uniquely determines its corresponding Θ-orbit. Based on
this fact, we may generalize the concept of forced entry described in the introductory section. More
specifically, we define a Θ-forced entry of a Θ-completable partial Latin square P ∈ PLSn as an entry
of the Θ-completable partial Latin square ΦΘ(P) ∈ PLSn that arises recursively from P as follows.

1. We initialise the partial Latin square as ΦΘ(P) := P.
2. Then, we perform Ent(ΦΘ(P)) := Ent(ΦΘ(P)) ∪

⋃
e∈Ent(P) OrbΘ(e).

3. If the resulting partial Latin square does not have any forced entry, then the procedure finishes.
Otherwise, we add its forced entries, together with all the subsequent ones, to the set Ent(ΦΘ(P)).
Then, we go back to the second step.

Notice in particular that, if Θ is the trivial isotopism, then this definition of Θ-forced entry coincides
with the usual one of forced entry. Furthermore, ΦΘ may be considered as a function that maps any
Θ-completable partial Latin square P to the Θ-completable partial Latin square ΦΘ(P). We term it the
Θ-forcing map.

Example 12. Let us consider the isotopism Θ = ((12)(34), (13)(24), (14)(23)) ∈ S 4 × S 4 × S 4 and the
Θ-completable partial Latin square

P ≡

1 2

.
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In particular,

OrbΘ((1, 1, 1)) = {(1, 1, 1), ((2, 3, 4)} and OrbΘ((1, 2, 2)) = {(1, 2, 2), ((2, 4, 3)}.

The inclusion of both entries (2, 3, 4) and (2, 4, 3) into the set Ent(P) gives rise to the partial Latin
square

1 2
4 3

whose forced entries give rise in turn to the partial Latin square

ΦΘ(P) ≡

1 2 3 4
2 1 4 3

.

Belonging to the same Θ-orbit is an equivalence relation among the entries in the set Ent(L) and
hence, the set OrbΘ(L) formed by all the Θ-orbits of the Latin square L constitutes a partition of its entry
set. In order to visualise this partition in an easier way, we will colour the cells of L that are associated
to the same Θ-orbit in the same colour. We will term the Θ-colouring of L any such colouring of its
cells. The following example illustrates all the previous concepts and results.

Example 13. Let us consider the autotopism Θ = ((12), (12), Id2) of the Latin square L2 ∈ LS2 that
is described in (2.1). The set OrbΘ(L2) constitutes a partition of the set of entries Ent(L2), which is
formed by the two Θ-orbits

OrbΘ((1, 1, 1)) = {(1, 1, 1), (2, 2, 1)} and OrbΘ((1, 2, 2)) = {(1, 2, 2), (2, 1, 2)}.

A Θ-colouring of the Latin square L2 is, therefore,

1 2
2 1

.

From Proposition 11, it is known that lcsΘ(L2) ≤ 2. Indeed, it is readily verified that every entry in the
set Ent(L2) is Θ-forced by any other given entry. So, scsΘ(L2) = lcsΘ(L2) = 1 and |CSΘ(L2)| = 4.

Based on Proposition 11, we say that two Θ-critical sets P and Q of a given Latin square with the
isotopism Θ as an autotopism are equivalent if they have the same size and OrbΘ(P) = OrbΘ(Q). To be
equivalent is an equivalence relation among critical sets based on a Latin square isotopism. Thus, for
instance, the Θ-critical sets

1
and

1
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of the Latin square L2 in Example 13 are equivalent. Moreover, the corresponding set CSΘ(L2) is
distributed into two equivalence classes. They can be represented, for instance, by the Θ-critical sets

1
and

2
.

The number of distinct equivalence classes associated to each case in Table 4 is indicated therein in
the column labeled EC. Exhaustive lists of representatives of each one of these equivalence classes are
available online in [49].

Furthermore, both Θ-orbits in Example 13 play the same role in determining Θ-critical sets.
Nevertheless, this is not generally the case. In order to see it, let L ∈ LSn and Θ ∈ Atop(L). Then, we
say that a Θ-orbit of L is trivial, if it contains exactly one entry. Otherwise, we say that it is

• principal, if every pair of entries (i, j, k) and (i′, j′, k′) verifies that i , i′, j , j′ and k , k′; or
• secondary, if it contains two distinct entries with one common component.

In addition, we say that a secondary Θ-orbit is row-monotone (respectively, column-monotone) if all
its entries are in the same row (respectively, column). Moreover, two row-monotone (respectively,
column-monotone) Θ-orbits are parallel if both the set of columns and the set of symbols (respectively,
the set of rows and the set of symbols) of all their respective entries coincide. Further, a secondary Θ-
orbit is said to be symbol-monotone if the symbols of all its entries coincide. Two symbol-monotone
Θ-orbits are parallel if both the set of rows and the set of columns of their respective entries coincide.
If a secondary Θ-orbit is not row-monotone, column-monotone or symbol-monotone, it is said to be
non-monotone. As an example, both Θ-critical sets in Example 13 are secondary, symbol-monotone
and parallel.

Proposition 14. Let L ∈ LSn and Θ ∈ Atop(L). If there exist m secondary parallel Θ-orbits of the
same type (that is, row-, column- or symbol-monotone), then every Θ-critical set of L contains at least
m − 1 entries. Hence,

scsΘ(L) ≥ m − 1.

Proof. Let P ∈ PLSn be a Θ-critical set of L, whose size is less than m − 1. Then, there exist at least
two parallel secondary Θ-orbits of the same type in L such that none of their entries belong to the set
Ent(P). The parallelism of these two Θ-orbits implies the existence of a one-to-one correspondence
among their sets of entries so that two entries are uniquely associated if and only if one the following
two assertions hold.

• Either both Θ-orbits are row-monotone or both of them are symbol-monotone. In any case, the
pair of uniquely associated entries share the same column.
• Both Θ-orbits are column-monotone and the pair of uniquely associated entries share the same

row.

Let L′ be the Latin square resulting after switching the symbols of each pair of such associated entries.
Then, it is readily verified that P is also Θ-completable to L′, which is a contradiction with the fact that
P is a Θ-critical set of L. �
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Example 15. Let us consider the autotopism Θ = ((123), (132), Id3) of the Latin square L3 ∈ LS3 that
is described in (2.1). Notice from the Θ-colouring of L3

1 2 3
2 3 1
3 1 2

that the set OrbΘ(L3) is formed by three parallel symbol-monotone Θ-orbits. Then, Propositions 11
and 14 imply that 2 ≤ scsΘ(L3) ≤ lcsΘ(L3) ≤ 3. Indeed, it is easily verified that every entry in
the set Ent(L3) is Θ-forced by any two entries belonging to two distinct secondary Θ-orbits. Hence,
scsΘ(L3) = lcsΘ(L3) = 2. Moreover, the set CSΘ(L3) is distributed into three equivalence classes and
thus, |CSΘ(L3)| = 3 · 32 = 27.

Notice that both autotopisms appearing in Examples 13 and 15 are formed by singular length n
row- and column-permutations, and a trivial symbol-permutation. The following result characterises
the critical sets based on this kind of autotopism.

Theorem 16. Let L ∈ LSn and Θ = (α, β, Idn) ∈ Atop(L). If zα = zβ = n, then the following assertions
hold.

a) scsΘ(L) = lcsΘ(L) = n − 1.
b) |CS Θ(L)| = nn.

Proof. As γ=Idn, it follows that the set OrbΘ(L) is formed by n secondary Θ-orbits, with each orbit
consisting of the n occurrences of each of the n symbols of L. It is then straightforwardly verified
from Proposition 11 that every Θ-critical set of L is formed by exactly n − 1 entries, each one of them
associated to a different symbol. Hence, assertion (a) holds. The second assertion follows from the
number of possible choices of these n − 1 entries. �

Now, let us illustrate the case of a Latin square containing different types of secondary Θ-orbits.

Example 17. Let us consider the autotopism Θ = ((1234), (1234), (24)) of the Latin square L4.1. Notice
from the Θ-colouring of L4.1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

that the set OrbΘ(L4.1) is formed by two parallel symbol-monotone and two non-monotone Θ-orbits.
Proposition 14 implies that every Θ-critical set of L4.1 contains one entry of a symbol-monotone Θ-
orbit. It is easily verified that such a Θ-critical set is indeed a partial Latin square of order two
containing also an entry of a non-monotone Θ-orbit. Hence, scsΘ(L4.1) = lcsΘ(L4.1) = 2. Moreover, the
set CSΘ(L4.1) is distributed into four equivalence classes and thus, |CSΘ(L4.1)| = 4 · 42 = 64.

Let us show now a pair of cases in which all the corresponding Θ-orbits are principal. In both cases,
Θ = (α, β, γ) is an isotopism such that zα = zβ = zγ = n.
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Example 18. Let us consider the autotopism Θ = ((123), (123), (132)) of the Latin square L3 ∈ LS3

that is described in (2.1). Notice from the Θ-colouring of L3

1 2 3
2 3 1
3 1 2

that the set OrbΘ(L3) is formed by three principal Θ-orbits. From Proposition 11, we have that
lcsΘ(L3) ≤ 3. In this case, it is straightforwardly verified that every Θ-critical set of L3 is a partial
Latin square formed by only one of its entries. Hence, scsΘ(L3) = lcsΘ(L3) = 1. Moreover, the set
CSΘ(L3) is distributed into three equivalence classes and thus, |CSΘ(L3)| = 3 · 3 = 9.

Example 19. Let us consider the autotopism Θ = ((12345), (12345), (13524)) of the Latin square
L5.1 ∈ LS5 that is described in (2.1). Notice from the Θ-colouring of L5.1

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

that the set OrbΘ(L5.1) is formed by five principal Θ-orbits. A simple study of cases enables us to ensure
that every entry in the set Ent(L5.1) is Θ-forced by any two entries of a pair of different Θ-orbits. Hence,
scsΘ(L5.1) = lcsΘ(L5.1) = 2. Moreover, the set CSΘ(L5.1) is distributed into ten equivalence classes and
thus, |CSΘ(L5.1)| = 10 · 52 = 250.

The following result shows how the existence of exactly one trivial Θ-orbit simplifies the
construction of Θ-critical sets.

Lemma 20. Let L ∈ LSn and let Θ = (α, β, γ) ∈ Atop(L) be such that λα1 = λ
β
1 = 1. Then, no Θ-critical

set of L contains the entry of its trivial Θ-orbit.

Proof. Let i, j, k ≤ n be the only three positive integers such that `α(i) = `β( j) = `γ(k) = 1. This implies
that every Latin square that contains the isotopism Θ within its autotopism group has to contain the
entry (i, j, k). Thus, the existence of such an entry in a uniquely Θ-completable partial Latin square
does not provide any extra information and can be removed from the latter in order to obtain a Θ-critical
set. �

In the case of dealing with a non-trivial autotopism Θ of a Latin square L of order n > 1, the
existence of exactly one trivial Θ-orbit of L implies the existence of principal and secondary Θ-orbits
of L. Let us finish this section by illustrating this fact in the following examples, where we also show
the relevance of each kind of Θ-orbit for determining the corresponding Θ-critical sets.

Example 21. Let us deal with the autotopism Θ = ((12), (12), (13)) of the Latin square L3 ∈ LS3 that
is described in (2.1). Notice from the Θ-colouring of L3

1 2 3
2 3 1
3 1 2
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that the set OrbΘ(L3) is formed by a principal Θ-orbit (OrbΘ((1, 1, 1))), a row-monotone Θ-
orbit (OrbΘ((3, 1, 3))), a column-mononone Θ-orbit (OrbΘ((1, 3, 3))), a symbol-monotone Θ-orbit
(OrbΘ((1, 2, 2))) and a trivial Θ-orbit (OrbΘ((3, 3, 2))). The study of these five Θ-orbits enables us
to determine the set of Θ-critical sets of the Latin square L3. Thus, for instance, Lemma 20 implies that
no Θ-critical set of L3 contains the entry (3, 3, 2). A simple study of cases based on Θ-forced entries
enables us to ensure that every Θ-critical set of L3 contains exactly either

• one entry belonging to the principal Θ-orbit; or
• two entries belonging to two distinct secondary Θ-orbits.

Hence, scsΘ(L3) = 1 < lcsΘ(L3) = 2. Moreover, the set CSΘ(L3) is distributed into four equivalence
classes having the following arrays as possible representatives.

1 2 3 2

3

3

3

Thus, |CSΘ(L3)| = 1 · 2 + 3 · 22 = 14.

Example 22. Let us consider the autotopism Θ = ((243), (134), (134)) of the Latin square L4.1 ∈ LS4

that is described in (2.1). Notice from the Θ-colouring of L4.1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

that the set OrbΘ(L4.1) is formed by two principal Θ-orbits (OrbΘ((2, 3, 4)) and OrbΘ((2, 4, 3))), a row-
monotone Θ-orbit (OrbΘ((1, 1, 1))), a column-monotone Θ-orbit (OrbΘ((2, 2, 1))), a symbol-monotone
Θ-orbit (OrbΘ((2, 1, 2))) and a trivial Θ-orbit (OrbΘ((1, 2, 2))). From Lemma 20, no Θ-critical set of
L4.1 contains the entry (1, 2, 2). In addition, every Θ-critical set of L4.1 contains exactly a pair of entries
of two different non-trivial Θ-orbits. Hence, scsΘ(L4.1) = lcsΘ(L4.1) = 2. Moreover, the set CSΘ(L4.1) is
distributed into ten equivalence classes and thus, |CSΘ(L4.1)| = 10 · 32 = 90.

Example 23. Let us consider the autotopism Θ = ((2354), (1243), (1243)) of the Latin square L5.1 ∈

LS5 that is described in (2.1). Notice from the Θ-colouring of L5.1

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

that the set OrbΘ(L5.1) is formed by three principal Θ-orbits (OrbΘ((2, 1, 2)), OrbΘ((2, 2, 3))
and OrbΘ((2, 3, 4))), a row-monotone Θ-orbit (OrbΘ((1, 1, 1))), a column-monotone Θ-orbit
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(OrbΘ((2, 5, 1))), a symbol-monotone Θ-orbit (OrbΘ((2, 4, 5))) and a trivial Θ-orbit (OrbΘ((1, 5, 5))).
From Lemma 20, no Θ-critical set of L5.1 contains the entry (1, 5, 5). In addition, every Θ-critical set
of L5.1 must contain at least one principal Θ-orbit, because, the Latin square shown below is another
Latin square whose autotopism group contains the isotopism Θ and this Latin square also contains the
same secondary Θ-orbits as the Latin square L5,1. In order to highlight the differences between this
Latin square and the Latin square L5.1, common Θ-orbits have been assigned the same colouring as
those used in the Θ-colouring of L5,1, and any differing cells have been left uncoloured.

1 2 3 4 5
3 4 2 5 1
4 1 5 3 2
2 5 4 1 3
5 3 1 2 4

Nevertheless, it is readily verified that the knowledge of only one principal Θ-orbit will not enough to
recover the whole Latin square L5.1. Thus, for instance, the Latin square

3 1 4 2 5
2 5 3 1 4
1 4 2 5 3
5 3 1 4 2
4 2 5 3 1

has Θ as an autotopism, but it has in common with L5.1 only one principal Θ-orbit and, of course, its
trivial Θ-orbit (both of them highlighted with the corresponding colours). Further, the knowledge of
only a principal Θ-orbit and other distinct non-trivial Θ-orbit is similarly not enough for determining
a Θ-critical set of L5.1. Similarly to the two previous cases, this fact is illustrated by the following
three Latin squares, all of them having the isotopism Θ in their autotopism group, and containing the
principal Θ-orbit OrbΘ((2, 1, 2)).

1 2 3 4 5
2 5 4 1 3
3 4 2 5 1
5 3 1 2 4
4 1 5 3 2

3 1 4 2 5
2 3 5 4 1
5 4 3 1 2
4 2 1 5 3
1 5 2 3 4

4 3 2 1 5
2 1 3 5 4
1 4 5 2 3
3 5 1 4 2
5 2 4 3 1

Now, a simple study of cases enables us to ensure that every Θ-critical sets of L5.1 is a partial Latin
square of size three, whose entries are taken from

• three distinct principal Θ-orbits;
• two distinct principal Θ-orbits and the symbol-monotone Θ-orbit; or
• a principal Θ-orbit and two distinct secondary Θ-orbits.

Hence, scsΘ(L5.1) = lcsΘ(L5.1) = 3. Moreover, the set CSΘ(L5.1) is distributed into 13 equivalence
classes and thus, |CSΘ(L5.1)| = 13 · 43 = 832.
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4. Overlapping orbits and partial subsquares

In this section we describe a new approach for determining critical sets based on Latin square
autotopisms. More specifically, we focus on Latin squares of order n that may be partitioned into
subsquares of a same order 1 < m ≤ b n

2c. This is the case, for instance, for every partial Latin square
of order four, which can always be partitioned into four intercalates (term introduced by Norton [50]
to denote any subsquare of order two within a Latin square). Thus, in this instance, there exist exactly
three different partitions of the Latin square L4.1 into intercalates described in (2.1). The following
three squares represent each of these parititions. In each one of the individual squares below, we have
coloured the entries of each distinct intercalate in a different colour.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Due to their relevance in subsequent results, we designate each of the 12 intercalates its own term I4.1.i,
for all i ∈ {1, . . . , 12}, so that

Ent(I4.1.1) = {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}, Ent(I4.1.2) = {(1, 3, 3), (1, 4, 4), (2, 3, 4), (2, 4, 3)},
Ent(I4.1.3) = {(3, 1, 3), (3, 2, 4), (4, 1, 4), (4, 2, 3)}, Ent(I4.1.4) = {(3, 3, 1), (3, 4, 2), (4, 3, 2), (4, 4, 1)},
Ent(I4.1.5) = {(1, 1, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1)}, Ent(I4.1.6) = {(1, 2, 2), (1, 4, 4), (3, 2, 4), (3, 4, 2)},
Ent(I4.1.7) = {(2, 1, 2), (2, 3, 4), (4, 1, 4), (4, 3, 2)}, Ent(I4.1.8) = {(2, 2, 1), (2, 4, 3), (4, 2, 3), (4, 4, 1)},
Ent(I4.1.9) = {(1, 1, 1), (1, 4, 4), (4, 1, 4), (4, 4, 1)}, Ent(I4.1.10) = {(1, 2, 2), (1, 3, 3), (4, 2, 3), (4, 3, 2)},
Ent(I4.1.11) = {(2, 1, 2), (2, 4, 3), (3, 1, 3), (3, 4, 2)}, Ent(I4.1.12) = {(2, 2, 1), (2, 3, 4), (3, 2, 4), (3, 3, 1)}.

Similarly, we can look at the partition of the Latin square L4,2 into intercalates. The following array
highlights each intercalate of the Latin square L4.2 described in (2.1) in a distinct colour.

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

Again, due to their relevance in subsequent results, we designate these four intercalates a unique term
I4.2.i, for all i ∈ {1, 2, 3, 4}, so that

Ent(I4.2.1) = Ent(I4.1.1), Ent(I4.2.2) = Ent(I4.1.2),
Ent(I4.2.3) = Ent(I4.1.3), Ent(I4.2.4) = {(3, 3, 2), (3, 4, 1), (4, 3, 1), (4, 4, 2)}.

The following two results are fundamental for the approach that is described in this section. Let us
remind that the shape of a partial Latin square P = (pi j) ∈ PLSn is the set of cells

Sh(L) := {(i, j) ∈ [n] × [n] : (i, j, pi j) ∈ Ent(P)}.

Shapes of partial Latin squares play an important role in the computation of critical sets, by means of
the so-called Latin trades [14,51–54]. Furthermore, us denote the set of symbols appearing in a partial
Latin square P ∈ PLSn by the notation Sym(P).
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Lemma 24. Let P ∈ PLSn be such that |Sym(P)| ≥ 2, and let Θ ∈ Atop(P). Then, there exists a partial
Latin square P′ ∈ PLSn \ {P} such that Sh(P′) = Sh(P), Sym(P′) = Sym(P) and Θ ∈ Atop(P′).

Proof. Let us suppose that Θ = (α, β, γ). If γ(k) = k, for all k ∈ Sym(P), then it is enough to switch two
distinct symbols within all the cells of P containing them. Distinct from P, the resulting partial Latin
square has the same shape and the same set of symbols as P, and has Θ as an autotopism. Otherwise,
if there exists at least one symbol k0 ∈ Sym(P) such that γ(k0) , k0, then let us define P′ so that

Ent(P′) = {(i, j, γ−1(k)) : (i, j, k) ∈ Ent(P)}.

It can be readily verified that P′ is a partial Latin square with the same shape and the same set of
symbols as P, with Θ as a member of its autotopism group. Moreover, since γ is not the trivial
permutation, there exists at least one entry of the partial Latin square P′ that is not an entry of P.
Hence, P′ , P. �

The previous lemma is of particular interest when dealing with certain partial Latin squares using
our proposed method. In this regard, we define a partial subsquare of a Latin square L ∈ LSn as a
partial Latin square P ∈ PLSn such that |Sym(P)| ≥ 2 and all the symbols in the set Sym(P) appear in
all the non-empty rows and all the non-empty columns of P. Thus, every subsquare of L having order
m ≥ 2 is a partial subsquare. Moreover, any two parallel symbol-monotone Θ-orbits of a Latin square
having Θ as an autotopism is also a partial subsquare. This last case is illustrated in Example 32.

The following result shows how to use of partial subsquares in order to obtain information about
critical sets based on Latin square autotopisms. Here, we denote, respectively, Row(P) and Col(P) the
set of rows and the set of columns of a given partial Latin square L ∈ PLSn.

Proposition 25. Let P and Q be two partial subsquares (not necessarily distinct) of a Latin square
L ∈ LSn such that one of the following three conditions hold.

• Row(P) = Row(Q);
• Col(P) = Col(Q); or
• Sym(P) = Sym(Q).

In addition, let Θ ∈ Atop(L) be such that PΘ = Q and QΘ = P. Then,

(Ent(P) ∪ Ent(Q)) ∩ OrbΘ(R) , ∅

for all Θ-critical sets, R, of the Latin square L.

Proof. We prove the case Sym(P) = Sym(Q). The other two cases follow by parastrophism.
Let P ∈ PLSn be such that Ent(P) = Ent(P) ∪ Ent(Q). From the hypothesis, we have that Θ ∈

Atop(P). Then, let P
′
∈ PLSn \ {P} be the partial Latin square that results from P after following

the constructive proof of Lemma 24. In addition, let L′ ∈ LSn \ {L} be the Latin square that results
from L after replacing the entries in P by those ones in P

′
. It is well-defined because, again from the

hypothesis, we can ensure that Ent(P
′
) = Ent(P′)∪Ent(Q′), where P′ and Q′ are two partial subsquares

of L′ such that Sym(P′) = Sym(Q), and whose shapes coincide, respectively, with those ones of P and
Q. The result follows readily from the fact that, if R ∈ PLSn is a partial Latin square Θ-completable to
L such that (Ent(P) ∪ Ent(Q)) ∩ OrbΘ(R) = ∅, then it is also Θ-completable to L′. �
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Let us illustrate with a series of examples how to make use of Proposition 25 in order to determine
critical sets based on autotopisms of the Latin squares L4.1 and L4.2, which are described in (2.1). In
the first three examples, all the subsquares are preserved by the corresponding autotopisms. That is,
the two subsquares indicated in Proposition 25 coincide.

Example 26. Let Θ = ((12)(34), (12)(34), Id4) ∈ Atop(L4.1) ∩ Atop(L4.2). Respective Θ-colouring of
the Latin squares L4.1 and L4.2 are, for instance,

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

and

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

.

Let i ∈ {1, 2}. Notice that the set OrbΘ(L4.i) is formed by eight secondary Θ-orbits. Moreover, the
autotopism Θ preserves the four intercalates I4.i.1 to I4.i.4. Thus, Proposition 25 implies that every Θ-
critical set of the Latin square L4.i contains at least one entry of each one of these four intercalates.
Hence, scsΘ(L4.i) ≥ 4. This lower bound is indeed reached. Thus, for instance, the following two
partial Latin squares are Θ-critical sets of L4.1.

1 4

3 2

1 4

1
3

In fact, a simple study of cases enables us to ensure that every Θ-critical set P of L4.i is a partial Latin
square of size four satisfying the following two assertions.

• It contains one entry of each one of the four intercalates I4.i.1 to I4.i.4.
• |Sym(P)| ≥ 3.

Hence, scsΘ(L4.i) = lcsΘ(L4.i) = 4. Moreover, the set CSΘ(L4.i) is distributed into 12 equivalence
classes. Eight of them contain four distinct symbols, and the other four contain only three distinct
symbols. Thus, |CSΘ(L4.i)| = 12 · 24 = 192.

Example 27. Let Θ = ((23), (14), (14)) ∈ Atop(L4.1). Notice from the Θ-colouring of L4.1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

that the set OrbΘ(L4.1) is formed by six secondary and four trivial Θ-orbits. Moreover, the autotopism
Θ preserves the four intercalates I4.9 to I4.12. Thus, Proposition 25 implies that every Θ-critical set
of the Latin square L4.1 contains at least one entry of each one of these four intercalates. Hence,
scsΘ(L4.i) ≥ 4. Again, this lower bound is reached. Thus, for instance, the following four partial Latin
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squares are Θ-critical sets of L4.1.

1 2
2 1

1 2
1

3

1 2
3

1

1
3

4
2

In fact, every partial Latin square of order and size four having an entry of each one of the four
intercalates I4.9 to I4.12 constitutes a Θ-critical set of L4.1. Thus, no Θ-critical set of size five exists
and hence, scsΘ(L4.1) = lcsΘ(L4.1) = 4. Moreover, the set CSΘ(L4.1) is distributed into 32 equivalence
classes and |CSΘ(L4.1)| = 44 = 256.

Example 28. Let Θ = ((12), (12), (34)) ∈ Atop(L4.2). Notice from the Θ-colouring of L4.2

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

that the set OrbΘ(L4.2) is formed by six secondary and four trivial Θ-orbits. Moreover, the autotopism
Θ preserves the four intercalates I4.1 to I4.4. Similarly to Example 27, we can ensure that scsΘ(L4.2) =

lcsΘ(L4.2) = 4. Moreover, the set CSΘ(L4.2) is distributed into 32 equivalence classes and |CSΘ(L4.2)| =
44 = 256.

Now, let us illustrate with a series of examples the case in which the two subsquares indicated in
Proposition 25 are distinct.

Example 29. Let us consider the autotopism Θ = ((1324), (1324), (12)(34)) of the Latin square L4.2.
Notice from the Θ-colouring of L4.2

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

that the set OrbΘ(L4.2) is formed by four non-monotone Θ-orbits. Moreover, the autotopism Θ switches
the intercalates I4.1 and I4.4, as well as the intercalates I4.2 and I4.3. Thus, Proposition 25 implies that
every Θ-critical set of the Latin square L4.2 contains at least one entry of Ent(I4.1) ∪ Ent(I4.4), and one
entry of Ent(I4.2) ∪ Ent(I4.3). It is readily verified that every Θ-critical set of L4.2 is indeed of this form.
Hence, scsΘ(L4.2) = lcsΘ(L4.2) = 2. Moreover, the set CSΘ(L4.2) is distributed into four equivalence
classes and |CSΘ(L4.2)| = 4 · 42 = 64.

Example 30. Let us consider the autotopism Θ = ((12)(34), (13)(24), (14)(23)) of the Latin square
L4.1. Notice from the Θ-colouring of L4.1

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
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that the set OrbΘ(L4.1) is formed by eight principal Θ-orbits. Moreover, the autotopism Θ preserves the
partial subsquares

P ≡

1 4
1 4
4 1

4 1

and Q ≡

2 3
2 3
3 2

3 2

.

Proposition 25 implies that every Θ-critical set of the Latin square L4.1 contains an entry of each one
of these two partial subsquares. As a consequence, scsΘ(L4.1) ≥ 2. Moreover, there are 64 distinct
candidates for Θ-critical sets of L4.1 having size two. If we focus on those ones containing the entry
(1, 1, 1) and we keep in mind that every Θ-orbit is uniquely determined by any of its entries, then we
can restrict the study of all these candidates, for instance, to the four partial Latin squares

1 2 1 3 1

3

and

1

2

.

According to our reasoning, each one of these four partial Latin squares represents 16 distinct
candidates of the 64 mentioned ones. After applying the Θ-forcing map ΦΘ to each one of these
four arrays, we obtain, respectively, the partial Latin squares

1 2 3 4
2 1 4 3

1 3
2 4

1
4

2
3

and

1 3
2 4
3 1
4 2

.

None of them is a Θ-critical set of the Latin square L4.1. As a consequence, scsΘ(L4.1) ≥ 3. This lower
bound is indeed reached. Thus, for instance, the following partial Latin square is a Θ-critical set of
L4.1.

1 2

3

Now, in order to determine all the Θ-critical sets of L4.1, notice also that the autotopism Θ switches the
six pairs of intercalates

I4.1.1 with I4.1.2, I4.1.3 with I4.1.4, I4.1.5 with I4.1.7,

I4.1.6 with I4.1.8, I4.1.9 with I4.1.12 and I4.1.10 with I4.1.11.

Both intercalates from each of these six pairs either have the same set of rows, the same set of columns
or the same set of symbols. Thus, from our previous reasoning, together with Propositions 11 and 25,
we may ensure that every Θ-critical set of the Latin square L4.1 satisfies the following assertions.
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• It contains at least three entries.
• It contains at least one entry of each one of the two partial subsquares P and Q.
• It contains at least one entry of each one of the six pairs of intercalates that we have previously

indicated.
• It does not contain two entries in the same Θ-orbit.

A simple study of cases enables us to affirm that every partial Latin square Θ-completable to L4.1,
having size three and satisfying the last three assertions, is indeed a Θ-critical set of L4.1. In order to
illustrate this fact, we highlight with the symbol x those cells corresponding to entries in L4.1 that may
be considered as the third one to be added to each one of the four partial Latin squares of size two of
our initial study of cases.

1 2

x x x x
x x x x

1 3

x x
x x

1 x x x
x x x
x x x
x 3 x x

and

1 x x
x x
x x
x 2 x

No other Θ-critical sets exists and hence, scsΘ(L4.1) = lcsΘ(L4.1) = 3. Moreover, the set CSΘ(L4.1) is
distributed into 32 equivalence classes and |CSΘ(L4.1)| = 32 · 23 = 256.

Example 31. Let us consider the autotopism Θ = ((13)(24), (14)(23), (34)) of the Latin square L4.2 ∈

LS4 that is described in (2.1). Notice from the Θ-colouring of L4.2

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

that the set OrbΘ(L4.2) is formed by four principal Θ-orbits and four non-parallel symbol-monotone Θ-
orbits. Moreover, the autotopism Θ switches both intercalates I4.1 and I4.4, and also both intercalates
I4.2 and I4.3. Thus, Proposition 25 implies that every Θ-critical set of the Latin square L4.2 contains
at least one entry of each mentioned pair of intercalates, and hence, scsΘ(L4.2) ≥ 2. Similarly to the
reasoning followed in Example 30, the study of the 64 candidates for size 2 Θ-critical sets of L4.2 may
be focused on the partial Latin squares pertaining to the triple (1,1;1) (each one of them representing
to 16 distinct candidates)

1 3 1 4 1
4

and

1
3
.

After applying the Θ-forcing map ΦΘ to each one of these four arrays, we obtain, respectively, the
partial Latin squares

1 2 3 4

3 4 2 1

1 4

3 1

1
1 4

1
3 1

and

1 4
2 3
3 1
4 2

.
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None of the above constitute a Θ-critical set of the Latin square L4.2. As a consequence, scsΘ(L4.2) ≥ 3.
This lower bound is indeed reached. One example of a size 3 Θ-critical set of L4.2 is given by the
following partial Latin square.

1 3
2

Let us highlight with the symbol x those cells corresponding to entries in L4.2 that may be considered
as a third one to be added to each one of the four partial Latin squares of size two of our study of cases
in order to determine a Θ-critical set of L4.2 having size three.

1 3
x x x x

x x x x

1 4
x

x

1 x x x
x 4 x
x x x
x x

and

1 x x
x x 3
x x
x x

.

No other Θ-critical sets exists and hence, scsΘ(L4.2) = lcsΘ(L4.2) = 3. Moreover, the set CSΘ(L4.2) is
distributed into 28 equivalence classes and |CSΘ(L4.2)| = 28 · 23 = 224.

In order to finish the study of cases described in Table 4, let us focus now on those autotopisms of
the Latin squares L5.1 and L5.2 that have not still been dealt with.

Example 32. Let us consider the autotopism Θ = ((345), (345), (345)) of the Latin square L5.2 ∈ LS5.
Notice from the Θ-colouring of L5.2

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

that the set OrbΘ(L5.2) is formed by

• the principal Θ-orbit
OrbΘ((3, 3, 5));

• the two parallel row-monotone Θ-orbits

OrbΘ((1, 3, 3)) and OrbΘ((2, 3, 4));

• the two parallel column-monotone Θ-orbits

OrbΘ((3, 1, 3)) and OrbΘ((3, 2, 4));

• the two parallel symbol-monotone Θ-orbits

OrbΘ((3, 4, 1)) and OrbΘ((3, 5, 2));
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• and the four trivial Θ-orbits

OrbΘ((1, 1, 1)), OrbΘ((1, 2, 2)), OrbΘ((2, 1, 2)), and OrbΘ((2, 2, 1)).

Moreover, the autotopism Θ preserves the two partial subsquares

1 2
2 1

and 1 2
2 1
1 2

.

Thus, Proposition 25 implies that every Θ-critical set of the Latin square L5.2 contains at least one entry
of each one of the two previous partial subsquares. In addition, Proposition 14 implies that such a Θ-
critical set also contains one entry of a row-monotone Θ-orbit and one entry of a column-monotone
Θ-orbit. Nevertheless, it is readily verified that these four entries do not constitute by themselves a
Θ-critical set of L5.2. We illustrate this fact with the following three Latin squares. All of them have the
isotopism Θ in their corresponding autotopism group. We highlight in each case the common Θ-orbits
with L5.2.

1 2 3 4 5
2 1 5 3 4
5 4 2 1 3
3 5 4 2 1
4 3 1 5 2

1 2 3 4 5
2 1 4 5 3
3 5 2 1 4
4 3 5 2 1
5 4 1 3 2

1 2 3 4 5
2 1 5 3 4
3 5 4 1 2
4 3 2 5 1
5 4 1 2 3

A simple study of cases enables us to ensure that every Θ-critical set of L5.2 is

• a partial Latin square of size five containing exactly one entry of each one of the five types of
Θ-orbits; or
• a partial Latin square of size six containing a trivial Θ-orbit, an entry of a given pair of secondary

Θ-orbits of the same type, and four entries belonging to distinct secondary Θ-orbits of the
remaining two types.

Hence, scsΘ(L5.2) = 5 < 6 = lcsΘ(L5.2). Moreover, the set CSΘ(L5.2) is distributed into 56 equivalence
classes, from which 32 are Θ-critical sets of size five and 24 are Θ-critical sets of size six. Thus,
|CSΘ(L5.2)| = 32 · 34 + 24 · 35 = 8424.

The last two examples focus on autotopisms having the cycle structure (221, 221, 221). The
following lemma is useful to deal with this cycle structure.

Lemma 33. Let L ∈ LSn and Θ,Θ′ ∈ S n × S n × S n be such that Θ ∈ Atop(L) ∩ Atop(LΘ′) and
Θ′ < Atop(L). Then, every Θ-critical set of L contains at least one entry of the set Ent(L) \ Ent(LΘ′).

Proof. The result follows naturally from the fact that every partial Latin square P ∈ PLSn such that
Ent(P) ⊆ Ent(L) ∩ Ent(LΘ′) is Θ-completable to both Latin squares L and LΘ′ . �

AIMS Mathematics Volume 6, Issue 1, 261–295.



286

Example 34. Let us consider the autotopism Θ = ((12)(35), (13)(45), (14)(23)) of the Latin square
L5.1 ∈ LS5. Notice from the Θ-colouring of L5.1

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

that the set OrbΘ(L5.1) is formed by 13 Θ-orbits (six principal, two row-monotone, two column-
monotone, two symbol-monotone and one trivial). In order to determine all the Θ-critical sets of
L5.1, it is enough to focus on an entry of each one of the 12 non-trivial Θ-orbits. Thus, we can focus on
the entries of the partial Latin square

P ≡

1 2 3 4 5

3 4 5 1 2
4 3

.

Further, since the Latin square L5.1 satisfies the hypothesis of Lemma 33 for each one of the isotopisms

((12), Id5, Id5), ((35), Id5, Id5), (Id5, (13), Id5),

(Id5, (45), Id5), (Id5, Id5, (14)) and (Id5, Id5, (23)),

Lemma 33 implies that every Θ-critical set of L5.1 contains at least one entry of each one of the
following six partial Latin squares.

1 2 3 4 5
2 3 4 5 1

3 4 5 1 2

5 1 2 3 4

1 3
2 4
3 5
4 1
5 2

4 5
5 1
1 2
2 3
3 4

1 4
4 1

4 1
4 1

1 4

2 3
2 3
3 2

2 3
2 3

Thus, those Θ-critical sets of L5.1 having only entries in the set Ent(P) must contain at least one entry
of each one of the following six partial Latin squares.

1 2 3 4 5

3 4 5 1 2

1 3

3 5
4
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4 5

1 2
3

1 4

4 1
4

2 3

3 2
3

Hence, scsΘ(L5.1) ≥ 2. Up to distinct choice in the same Θ-orbit, the candidates for Θ-critical sets of
L5.1 having size two and entries in Ent(P) are the following three arrays.

1

2

3

1

4

3

Nevertheless, none of these three arrays is a Θ-critical set of the Latin square L5.1. As a consequence,
scsΘ(L5.1) ≥ 3. This lower bound is reached. Thus, for instance, the following two partial Latin squares
are Θ-critical sets of L5.1.

Q1 ≡

1

3 1 Q2 ≡

3 4

2

They are indeed the only ones of size three containing all their entries in the set Ent(P). Notice also
that each one of them is associated to three distinct principal Θ-orbits of L5.1.

Now, let us determine the Θ-critical sets of L5.1 having size four and entries in the set Ent(P). To this
end, we enumerate by brute force all the partial Latin squares of size four and entries in Ent(P), which
are uniquely Θ-completable to L5.1. From the resulting list, we remove those partial Latin squares
containing all the entries of Ent(Q1) or Ent(Q2). By definition, none of the removed partial Latin
squares is a Θ-critical set of L5.1. The resulting list is formed by 36 partial Latin squares, whose
entries are taken from

• three distinct principal Θ-orbits and one secondary-Θ-orbit (12 arrays); or
• two distinct principal Θ-orbits and two distinct secondary Θ-orbits (24 arrays).

They are indeed all the Θ-critical sets of L5.1 having size four and entries in Ent(P). Let us illustrate
them separately with the following two arrays.

1 3

1
3

5

3 1
4

A similar procedure may be done in order to compute all the Θ-critical sets of L5.1 having size five
and entries in the set Ent(P). There are 78 such partial Latin squares, whose entries are taken from
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• three distinct principal Θ-orbits and two secondary-Θ-orbits of distinct types (12 arrays);
• two distinct principal Θ-orbits and three distinct secondary Θ-orbits of pairwise distinct types

(12 arrays);
• two distinct principal Θ-orbits and three distinct secondary Θ-orbits, from which exactly two of

them are of the same type (24 arrays);
• one principal Θ-orbit and four distinct secondary Θ-orbits, from which exactly two of them are of

the same type (24 arrays); or
• one principal Θ-orbit and four distinct secondary Θ-orbits of exactly two distinct types (6 arrays).

Let us illustrate them separately with the following five arrays.

1 3 5

2
3

1 3 5

4
3

1 3 5

5
3

1 2 5

5
3

5

5 1
4 3

The same procedure enables us to ensure that no Θ-critical set of higher size exists. Hence, scsΘ(L5.1) =

3 < 5 = lcsΘ(L5.1). Moreover, the set CSΘ(L5.1) is distributed into 116 equivalence clases, from which
two of them have size three, 36 of them have size four and 78 of them have size five. Thus,

|CSΘ(L5.1)| = 2 · 23 + 36 · 24 + 78 · 25 = 3088.

Example 35. Let us consider the autotopism Θ = ((13)(45), (25)(34), (13)(45)) of the Latin square
L5.2 ∈ LS5. Notice from the Θ-colouring of L5.2

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

that the set OrbΘ(L5.2) is formed by 13 Θ-orbits (six principal, two row-monotone, two column-
monotone, two symbol-monotone and one trivial). In order to determine all the Θ-critical sets of
L5.2, it is enough to focus on an entry of each one of the 12 non-trivial Θ-orbits. Thus, we can focus on
the entries of the partial Latin square

P ≡

1 2 3 4 5
1 4

4 5 2 3 1
.
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Further, since the Latin square L5.2 satisfies the hypothesis of Lemma 33 for each one of the isotopisms

((13), Id5, Id5), ((45), Id5, Id5), (Id5, (25), Id5),

(Id5, (34), Id5), (Id5, Id5, (13)), and (Id5, Id5, (45)),

Lemma 33 implies that every Θ-critical set of L5.2 contains at least one entry of each one of the
following six partial Latin squares.

1 2 3 4 5

3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

2 5
1 3
4 2
5 1
3 4

3 4
4 5
5 1
2 3
1 2

1 3
1 3

3 1
3 1

3 1

4 5
4 5

4 5
4 5
5 4

Thus, those Θ-critical sets of L5.2 having only entries in the set Ent(P) must contain at least one entry
of each one of the following six partial Latin squares.

1 2 3 4 5

4 5 2 3 1

2 5
1

5 1

3 4
4

2 3

1 3
1

3 1

4 5
4

4 5

Hence, scsΘ(L5.2) ≥ 2. Up to distinct choice in the same Θ-orbit, the candidates for Θ-critical sets of
L5.2 having size two and entries in Ent(P) are the following three arrays.

3

5

4

1

5

3

None of them is a Θ-critical set of the Latin square L5.2. As a consequence, scsΘ(L5.2) ≥ 3. This lower
bound is reached. Thus, for instance, the following two partial Latin squares are Θ-critical sets of L5.2.
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They are the only Θ-critical sets of size three containing all their entries in the set Ent(P).

3 5

1

4

5 3

By following a similar procedure to that one shown in Example 34, we have that, under the assumption
of having all their entries in the set Ent(P), there are

• 48 Θ-critical sets of L5.2 having size four, whose entries are taken from

– three distinct principal Θ-orbits and one secondary-Θ-orbit (24 arrays); or
– two distinct principal Θ-orbits and two distinct secondary Θ-orbits (24 arrays); and

• 66 Θ-critical sets of L5.2 having size five, whose entries are taken from

– two distinct principal Θ-orbits and three distinct secondary Θ-orbits of pairwise distinct
types (12 arrays);

– two distinct principal Θ-orbits and three distinct secondary Θ-orbits, from which exactly two
of them are of the same type (24 arrays);

– one principal Θ-orbit and four distinct secondary Θ-orbits, from which exactly two of them
are of the same type (24 arrays); or

– one principal Θ-orbit and four distinct secondary Θ-orbits of exactly two distinct types (6
arrays).

Let us illustrate them separately with the following six arrays.

3 4

5 2

5
4

4 3

3 4
1

4 2

5
1 4

2 3

1 2 4
1

2

1 2 4

4 2

The same procedure enables us to ensure that no Θ-critical set of higher size exists and hence,
scsΘ(L5.2) = 3 < 5 = lcsΘ(L5.2). Moreover, the set CSΘ(L5.2) is distributed into 116 equivalence
clases, from which two of them have size three, 48 of them have size four and 66 of them have size five.
Thus,

|CSΘ(L5.2)| = 2 · 23 + 48 · 24 + 66 · 25 = 2896.
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5. Conclusion and further works

In this paper, we have dealt with the problem of determining Θ-critical sets of Latin squares
containing a given isotopism Θ in their autotopism groups. We have proved in Section 2 that the set of
such Θ-critical sets only depends on both the main class of the Latin square under consideration and the
cycle structure of the autotopism Θ. In Sections 3 and 4, we have respectively introduced the notions
of Θ-orbit and partial subsquare, which play a relevant role in the computation of Θ-critical sets. We
have made use of both notions in determining a constructive and illustrative way of finding all the
critical sets based on non-trivial autotopisms of Latin squares of order up to five. In this regard, Table
4 constitutes the main contribution of this paper, together with the explicit enumeration of equivalence
classes of critical sets, which is available in [49].

In order to deal with higher orders, a much deeper study (combining theoretical and computational
techniques) is required. It is proposed as further work. Furthermore, let us propose some open
questions for further work on this subject.

Question 36. Let P ∈ PLSn and Θ ∈ Atop(L). What is the computational complexity of deciding
whether the partial Latin square P is Θ-completable?

Question 37. Does a Θ-critical set of size m exist for every m such that, scsΘ(L) ≤ m ≤ lcsΘ(L), for
every L ∈ LSn and Θ ∈ Atop(L)?

Question 38. Let Θ ∈ S n × S n × S n. We denote the smallest and largest sizes of Θ-critical sets of any
given Latin square of order n by scsΘ(n) and lcsΘ(n) respectively. In a similar way to the classic case,
is it possible to find some lower and upper bounds values for both scsΘ(n) and lcsΘ(n) depending on
the order n?

Question 39. Except for Example 17, in which two non-monotone Θ-orbits appear, all secondary Θ-
orbits shown in the rest of examples of this paper are row-, column- or symbol-monotone. Nevertheless,
the existence of non-monotone Θ-orbits is more common amongst Latin squares of higher orders. Thus,
for instance, let us consider the isotopism Θ = ((123456), (123)(456), (14)(25)(36)) ∈ S 6 × S 6 × S 6. It
constitutes as an autotopism of the following Latin square, note the Θ-colouring associated with this
autotopism is also shown in this diagram.

1 2 3 4 5 6
6 4 5 3 1 2
2 3 1 5 6 4
4 5 6 1 2 3
3 1 2 6 4 5
5 6 4 2 3 1

The set of entries of this Latin square under this autotopism are partitioned into six non-monotone
Θ-orbits, each one of them formed by six entries that are associated to only three columns and two
symbols. In this regard, they differ from the two mentioned non-monotone Θ-orbits in Example 17,
whose respective entries are associated to distinct rows and columns. Thus, the question is, how many
types of non-monotone orbits based on Latin square autotopisms exist and what is the role played by
each one of them in the construction of the corresponding critical sets?
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Question 40. In Theorem 16, we have indicated a pair of formulas concerning the values scsΘ(L),
lcsΘ(L) and |CSΘ(L)|, for any autotopism Θ ∈ S n × S n × S n with the cycle structure (n, n, 1n). Is it
possible to find this kind of general formula for other cycle structures?

Question 41. Let P ∈ PLSn be a Θ-critical set of a given Latin square. We say that P is Θ-strong if its
set of entries can be filled by making use of the Θ-forcing map ΦΘ. It generalizes the concept of strong
critical set [55] described in the introductory section, which arises from our definition when Θ is the
trivial autotopism. An illustrative case ensuring the existence of Θ-critical sets that are not Θ-strong,
for a non-trivial autotopism Θ, appears in Example 35. More specifically, it is readily verified that
every Θ-critical set of size three in such an example is not Θ-strong. Thus, the question is, what about
the existence of non-Θ-strong Θ-critical sets for any given autotopism Θ?

Question 42. In Examples 34 and 35, we have described a procedure from which we have obtained that
the smallest Θ-critical sets are formed by three entries, each one of them corresponding to a distinct
candidate for Θ-critical set of size two. May this procedure (and, more specifically, this property) be
generalized to some other autotopisms?

Question 43. It is known [25] that every Latin square of order n has at most nO(log k) subsquares of
order k. What about partial subsquares?
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A. Glossary of symbols

Atop(P) Autotopism group of a partial Latin square P.
CSΘ(L) Set of Θ-critical sets of a Latin square L.
Ent(P) Set of entries of a partial Latin square P.
ΦΘ Θ-forcing map that establishes how to add Θ-forced entries to a Θ-compatible partial

Latin square.
lcsΘ(L) Size of the largest Θ-critical set of a Latin square L.
LSn Set of Latin squares of order n.
`π(i) Length of the cycle C in the unique decomposition of a permutation π into disjoint cycles

such that π(i) = C(i).
λl(π) Number of cycles of lenght l in the unique decomposition of a permutation π as a product

of disjoint cycles.
[n] The set {1, . . . , n}.
PLSn Set of partial Latin squares of order n.
scsΘ(L) Size of the smallest Θ-critical set of a Latin square L.
S n Symmetric group on the set [n].
zπ Cycle structure of a permutation π.
zΘ Cycle structure of an isotopism Θ.
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