Spiking Hough for Shape Recognition
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Abstract. The paper implements a spiking neural model methodol-
ogy inspired on the Hough Transform. On-line event-driven spikes from
Dynamic Vision Sensors are evaluated to characterize and recognize the
shape of Poker signs. The multi-class system, referred as Spiking Hough,
shows the good performance on the public POKER-DVS dataset.

1 Introduction

Histogram based features are a useful tool employed in Computer Vision to
describe the content of an image. They are successfully used for object detection
associated with different kinds of classifiers. There exists several versions, such
as: HOG [4], SIFT [8], HO2L [9], etc.

Recently, a histogram based feature were proposed to characterize the shape
of objects captured by an Event-Driven Dynamic Vision Sensor (DVS) [10]. This
cameras are inspired on the neuromorphic behavior of the human visual system
[7]. They consist of an artificial retina where each pixel captures a light change
and generates a spike event. This event is defined as e = ((z,y),t,pol), (x,y)
being the coordinates of the pixel on the grid, ¢ the event time stamp, and pol the
polarity. Polarity is a binary ON/OFF output. ON polarity informs an illumi-
nation increase, and OFF polarity is obtained when illumination decreases. An
event flow composed of N consecutive events is defined as: wy = {ey,...,en}.
This kind of vision sensors is considered as “frameless” providing asynchronous
high temporal resolution data.

Others histograms representations using DVS events flows were proposed in
the literature. Clady et al. [3] proposed a hand-gesture recognition framework
using a histogram representation of flow motion vectors. In [5] they employed a
hierarchical model architecture (HOTS) consisting of several consecutive layers
of increasing detail and including a histogram representation of time-surface
activations for each object class. The architecture is based on a deep neural
network, similar to the Convolutional Spiking Neural Network in [11,18] for
object recognition.

The proposed system is denominated Spiking Hough, because it is inspired on
the Hough Transform and uses a spiking neural network approach. In [6,12
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the Hough transform is applied on the DVS outputs for straight edges and lane
detection. On the other hand, this paper proposes a methodology which captures
the spatial distribution of the events generated in the retina, and organize this
information in histogram features. The histograms feed a multi-class classifier to
recognize the shape of the objects.

The paper is organized as follow. Next section details the Spiking Hough app-
roach and the classification system. Section 3 presents and discusses the results.
The conclusions in Sect. 4 resume the work and propose some perspectives.

2 Spiking Hough Multi-class Classification System

The systems aims to classify the events flow into one of the four Poker signs.
The pipeline is presented in Fig. 1. Incoming events spike the neurons distributed
on the retina grid. The Spiking Hough receives the firing neurons, capturing the
configuration of the object’s shape and builds the cell histograms. The framework
counts the number of incoming events, and when this number reaches N, the
histograms features are evaluated with a multi-class Support Vector Machine
(SVM) [15] classifier. After the classification, the histograms are reset for the
next windows event.
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Fig. 1. Poker-DVS dataset extraction. Left image shows a RGB capture (image from
[11]), and right image shows the DVS retina captured events of a club sign.

2.1 Spiking Neural Network Model

Figure 2 shows a neuron model [1]. In this model, dendrites are the inputs termi-
nals to the nucleus, and the axons their outputs. The neural interfaces between
dendrites and axons are denominated synapses.

The dynamic of the neuron model is controlled by input spikes, an electrical
signal with short duration, arriving through the dendrites. The potential of these
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Fig. 2. (a) Neuron model [1], (b) PSP transient model and (c) Spiking neuron model
(from [17]) (Color figure online)

incoming spikes are accumulated in the neuron membrane. When the potential
reaches a threshold, the neuron fires a signal, an output spike, to the next neu-
rons via the axons. Synapses control the amplitude of the spike traveling to the
following neuron.

The potential of the membrane receiving an excitation from an spike has a
transient behavior commonly referred as Post-Synaptic Potential (PSP). PSP
can affects the membrane’s potential by: Excitatory PSP (EPSP) which incre-
ments the potential, or Inhibitory PSP (IPSP) which decrements the potential.
Figure 2(b) shows the PSP potential computed using the Integrate-and-Fire app-
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roach, with equation u(t — t;) = Vy(e™ 7m — 67%)7 where 7, and 7, denote
decay time constants of the membrane integration, and V normalizes the poten-
tial so that the maximum value is 1.

The spiking neural model is shown in Fig.2(c). Two neurons, Ny and Ny,
with three afferent synapses inputs. The spikes on the input synapses are shown
as blue signals. After the spike, the PSP model shows the individual afferent
transient potential added the membrane potential w;(t). For Ny all PSP signals
corresponds to excitatory PSPs, with different synapses weights. In the case
of N synapses 1 corresponds to a IPSP which provides a negative potential
to u1(t). In the example, after the three spikes of their afferent synapses, the
potential of Ny reaches threshold u;, and generating an output spike. Then, the
potential uj(¢) is reset to the u,es¢ value. Neuron Ny did not fires, because their
potential never cross the threshold in the temporal window.

Spiking neural models are well adapted to be employed with the DVS data
flow. The flow of individual events feed the neurons which are trained to trigger
when a special configuration is detected. The spiking model is adapted to a
Hough analysis in the next section.

2.2 Hough Transform Analysis

The Hough Transform projects data from the image zy-plane to a new 6p—plane.
In this space, the equation of a single line passing through the point (zg,yo),
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Fig. 3. Original Hough Transform straight lines projection. Hough transform on a
W =200 windows event of a diamond sign.

Fig. 3(a), can be written as: x sin 6y + y cos g = p,, which corresponds to a point
in the 6p — plane. Thus, the infinite lines which pass through (z¢,yo) generate
a curve in the Hough plane, Fig.3(a). The Hough Transform identifies when
several points lying on the same line. The curves on the Hough plane generated
by the points intersects at (6y, po) in the 8p — plane, which are the parameters of
the line. Computationally, the Hough Transform converts the 6p — plane into a
so-called accumulator cell. A cell (6;, p;) receiving a high number of votes shows
that several points in the zy-plane lay on the line with this parameters.

Because Hough Transform is based on a votes algorithm it is robust against
noise. In Fig. 3(b), voting cells in the Hough space having maximal votes are
placed at § = —7/4 and § = 7/4 as expected for the diamond shape. The two
maximums for each orientation corresponds to the two different p values of the
two edges with the same orientation. In Fig.3(c) the 32 x 32 pixels retina was
split in four cells. This allows a local analysis of the edges, which is in fact a
more discriminant way to describe the shape. The four Hough accumulators,
one for each cell, are dominated for a maximum value placed at the orientation
associated with the diamond shape edge.

2.3 Spiking Hough for Feature Extraction

The Spiking Hough defines a set of 12 neurons inspired on the Hough parameter
space. Such space, referred as Spiking Hough Space, is discretized by four orien-
tations and three biases, as shown Fig. 4(a). The neurons fire when the sequential
events spikes at all the gray positions, and then reset their potential membrane.
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Fig. 4. (a) Spiking Hough Space containing 12 neurons specialized on each orientation,
(b) Example of the activation of a neuron and the building of the cell histogram, (c)
Histogram feature result for the diamond shape using N = 200 events. (Color figure
online)

The poker signs are contained in retina of 32 x 32 pixels size. Similar to
Sect. 2.2, the Poker retina is subdivided into four non-overlapped cells. Each cell
has 16 x 16 pixels size. Inside each cell, overlapped patches of 3 x 3 elements
receive the events spikes. There are 36 overlapped patches inside each cell to
cover all their pixels. To be robust against the stochastic nature of the DVS,
each element in the 3 x 3 patch corresponds to 2 x 2 pixels of the retina.

Spiking Hough identifies the predominant edges configuration by firing a
corresponding neurons on its space. Figure 4(c) illustrates the firing of a neuron.
At time tg there arrives an event eg at the cell lying on the 3 x 3 patch corner,
painted in red. This event spikes the neurons with this position activated (in
gray), increasing their potential. A sequence of events produce spikes on others
positions of the patch. Later, at time t,, an event e, fires the neuron with
(63, p1). Then, the firing neuron triggers and increments the 3rd. bin of the cell
histogram, which correspond to the orientation of the detected edge.

2.4 Supervised Classification

The multi-class SVM classifier framework was trained using the LIBSVM library
[2] and the best parameters for the linear and the RBF kernels were estimated



using a 5 cross-fold validation approach. The framework was composed of the four
SVM classifiers, trained using the one-against-one approach. LIBSVM uses [16]
to obtain a single probability score for each class k: 7V (w;), with k = 1,2, 3,4.

Pe(wiy) = afi(wiy) + (1= o) fu(wiy") (1)
k* = argmazy—1 .23 4P (W) (2)

For a input window w;, the probability to belong to sign k is computed
with Eq.1, where o is a memory factor. Thus Py(w?%;) uses the current and
previous event window classification functions fx(w?) and fi,(wh ') to smooth
the response and become robust to noisy windows. Sample wfv is classified as in
class k* which P;(w?;) produces the largest probability output on Eq. 1.

3 Experiments and Results

The Spiking Hough classification system was conducted on the 2015 Poker-DV'S
dataset [13]. On their website, the authors share a complete recording of the
asynchronous events while they were browsing the poker cards, as well as a set
of 131 individual files of cropped events. Each file has a name indicating the
sign to which the flow of events corresponds. A character ‘i’ is added if the card
is inverted. There are 30 club signs (13 inverted), 43 diamonds (8 inverted), 23
hearts, and 35 spades (10 inverted).

Given the low number of samples per class, the tests were conducted using the
Leave-One-Out approach. This methodology employs all the samples of the set
to train the multi-class classifier, except for one sample which is evaluated by the
classifier and the result is saved in a confusion matrix. The overall performance
is then obtained by computing the accuracy on the diagonal of the matrix.

The event flow of a test sample feeds the Spiking Hough system until the
number of events reaches N. This event window is referred w%, and is then
evaluated by the four SVM classifiers using Egs. 1 and 2, and o = 0.5 (which
gives the best results on the tests). In this way, the output of the classification
accumulates votes for each sign. This procedure is repeated to the next events
of the sign, until the end of the flow, and the output of each w¥; is evaluated
with Egs. 1 and 2. The test sample is finally classified by the sign that receives
the highest number of votes.

Linear and Radial Basis Function (RBF) kernels are used to implement the
SVM multi-classification. The results of the linear and non-linear (RBF) ker-
nels are compared on Fig.5. There were also tested to cell grids. One with 4
non-overlapped cells, as shows Fig. 4(b). The other configuration incorporates 4
more cells overlapping the original ones, to obtain 8 cells in total. The last con-
figuration helps the system to be robust against little movements of the shape,
and the fact that the 32 x 32 Poker retina is not necessarily centered all the
time. The length of the event window N was also evaluated, from a minimum
of 100 events to a maximum of 500. The Figure also shows the associated time
delays representing the different lengths of event windows. It was calculated as
the average value of all the w in the dataset for a specified N.
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Fig. 5. Results of different classifiers and features extractions approaches.

The systems shows a good robustness, even if there exist several signs that
are inverted. The non-linear RBF kernel on the configuration of 8 cells using
N = 300 obtains an accuracy of 100%. This result outperforms the best perfor-
mance published in the state of the art [14]. For this case, all the Poker signs
were correctly classified. From the temporal axis, this event windows lengths
corresponds on average to 1.256 mseg.

4 Conclusions

The Spiking Hough methodology describes on-line the shape of the events gener-
ated by an object moving in front of the DVS camera. The resulting histograms
features show a good discriminating power for the Poker sign recognition.

Further research should be oriented to obtain a complete system which works
on-line from the feature generation until the classification. Also, the system must
be prepared to moving object and different scales in order to be though as a good
choice to be implemented in real applications.
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