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Abstract—In this paper we propose the first bio-inspired six-
layer convolutional network (ConvNet) non-frame based that 
can be implemented with already physically available spike-
based electronic devices. The system was designed to recognize 
people in three different positions: standing, lying or up-side-
down. The inputs were spikes obtained with a motion retina 
chip. We provide simulation results showing recognition delays 
of 16 milliseconds from stimulus onset (time-to-first spike) with 
a recognition rate of 94%. The weight sharing property in 
ConvNets and the use of AER protocol allow a great reduction 
in the number of both trainable parameters and connections 
(only 748 trainable parameters and 123 connections in our 
AER system (out of 506998 connections that would be required 
in a frame-based implementation).  
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I. INTRODUCTION

Architectures based on frames have difficulties to solve 
the nowadays even more computationally demanding 
operations. An alternative could be to mimic brain behavior. 
Brains do not use the frame concept to process [1][2]. In the 
retina, spikes (also called events) are sent to the cortex when 
the retina pixels reach a threshold. Very active pixels will 
send more spikes than less active pixels. These spikes are 
processed and communicated from one layer to the following 
without waiting for the reception of the whole frame (“frame 
time”) before starting computations in each layer. One big 
problem encountered to implement bio-inspired (vision) 
processing systems is to overcome the massive 
interconnections among the neural layers existing in the 
human vision processing system. The Address Event 
Representation (AER) [3] approach, where pixel intensity is 
coded directly as pixel event frequency, is a possible 
solution. In AER, each time a pixel generates a spike, its x,y 
address is written on a shared bus. AER has been used in 
many applications [4][5][6] and several AER fully-
programmable-kernel convolution chips [7] allowing the 
design of several-layers convolution-based systems have 
been reported. In AER-based convolution chips, the 
convolution sum is implemented by adding a projection field 
(the convolution map) in a pixel array around the address 
coded by each one of the incoming spikes (or events). The 
results are the same in frame-based and AER-based 
implementations. However, in AER, only active pixels at the 
input produce spikes. Whenever an output pixel in the pixel 
array exceeds a fixed threshold level, it generates an output 
event, and the firing pixel is reset. This concept allows the 

assembly of multi-layer systems where events are generated, 
transmitted, and processed immediately, without waiting for 
any frame timing constraints. However, at present, complex 
AER-based applications and large scale hardware systems 
have not been reported yet. Probably the largest and complex 
AER system reported so far is the CAVIAR system [8], 
which uses four custom made AER chips (motion retina, 
convolution chip, winner-take-all chip, and learning chip) 
plus a set of FPGA based AER interfacing and mapping 
modules.  

In the present work we propose the first bio-inspired six-
layer convolutional network (ConvNet) non-frame based that 
can be implemented with already physically available AER-
based electronic devices [5][7].  

II. METHODOLOGY

Convolutional Neural Networks (ConvNets) [9][10] 
implement powerful applications in image and video 
processing [2][10]. ConvNets have a graceful scaling 
capability and they combine local receptive fields, shared 
weights and spatial subsampling to ensure some degree of 
shift, scale, and distortion invariance. In this work we 
propose a six-layer ConvNet similar to the Convolutional 
Network LeNet-5 implemented by Y. LeCun [10]. However 
our system has been implemented directly in AER to detect 
people in vertical, up-side-down and laying positions from 
real input data obtained with a physically available temporal 
contrast (motion) 128x128 AER-based retina [4].  

A. Frame-based Convolutional Network
First, the system was implemented and trained using a

frame-based architecture to get all the values of the weights 
and biases present in the system. The frame-based version of 
our AER six-layer ConvNet is shown in Fig. 1. The system 
receives as inputs 32x32 images obtained after collecting 
spikes from the electronic AER retina during 30ms. The 
output of each one of the six layers in the system is a set of 
output images or planes called feature maps. A feature map 
in one layer is only connected to a feature map in the 
following layer. There are no connections between neurons 
inside one layer. A unit ),( jixq  (also called pixel or neuron) 

located at position (i,j) inside a feature map qx  (of size KxL) 
will have a value that follows the expression:  
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Where py  is the input feature map p (of a previous 
layer) of size MxN, pqW ,  is the map of weight values 
connecting output feature map qx  with input feature map 

py  and qb  is the bias corresponding to the output units 

located in feature map qx . A and S are constants.  
Similarly to LeNet-5 [10] the proposed system has six 

layers. As in [10], the inputs to the system are 32x32 images. 
The first layer (C1) of our system is a trainable filter bank 
with 6 filters and six 28x28 output feature maps, the second 
layer (S2) is a subsampling block with six 14x14 output 
feature maps, the third layer (C3) is a trainable 5x5 kernels 
filter bank with two 10x10 output feature maps, the fourth 
layer (S4) is a subsampling block again with two 5x5 output 
feature maps, the fifth layer (C5) is a trainable 5x5 kernel 
filter bank with eight 1x1 output feature maps and sixth layer 
(C6) is a fully connected trainable perceptron with four 
output units. However, we have substituted the trainable first 
layer by a bank of 10x10 Gabor filters with two scales and 
three orientations because this way we do not need to train 
the first layer thus avoiding this way 606 trainable 
parameters and because a bank of Gabor filtering is often the 
first stage of visual processing in many systems and in the 
human brain [1][2]. In addition, Gabor filters are selective to 
different scales and orientations and they remove noise due 
to sparse spikes produced by the retina. The whole system 
has only 748 trainable parameters, which have been 
computed using backpropagation [10] and 506998 
connections. 

B. AER-based Convolutional Network
In Fig. 2 the non-frame-based AER-based system is

shown. The input is a flow of events captured with an AER 
motion sensing retina. Each input event is replicated to six 
output channels using a splitter module [5]. The bank of 
Gabor filters in first layer is implemented using a set of six 
AER convolution chips [7] programmed with these Gabor 
filters as kernels. The output spikes (coding each one of the 
28x28 address space of each output image) are sent to 
subsampling modules. These modules can be easily 
implemented as follows: address of each input spike is 
modified so that address (i,j), for i,j=1,…,28, turns to (k,l), 
for k,l=1,…,14. The output of each subsampling module is 
sent to a splitter to replicate the output in two channels and 

each channel is connected to one input of the two 
convolution structures with six input ports available in third 
layer. One of these convolution structures is shown in Fig. 3. 
In this structure, each time a spike is received, a convolution 
map (projection field) is added around the input spike 
address in the pixel array (output feature map). Each time a 
neuron (unit or pixel) in the feature map reaches a threshold 
and the time since the last output spike (Toutput) is higher 
than an established time value (Trefractory), a new output 
spike is fired to the following layers coding the neuron 
address and the neuron is reset to the bias value in the feature 

Figure 1.  Structure of the frame-based ConvNet   

Figure 2.  AER-based ConvNet 

Figure 3.  Convolution structure in third layer 



map. Using this idea of limiting the neurons maximum 
spiking rate with these refractory periods [4] to allow 
neurons to fire, we solve an important problem found in 
AER which is the computation of non-linearities, since with 
already available hardware AER devices it is not easy to 
implement sigmoid functions. Refractory times were used in 
third and fifth layers to emulate the corresponding sigmoid 
functions implemented in the same layers of the frame-based 
implementation. 

The number of events fired by a neuron at position (i,j) in 
the feature map qx  is computed as 
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Where p
hein  is the event h coming to input port p coding 

the address (m,n), p
qW  is the convolution map connecting 

feature map qx  with input feature map py  and qThreshold

is the threshold selected for output feature map qx . The 
number of events fired by a neuron in layers C3 and C5 is 
limited to that allowed by the corresponding refractory 
periods in those layers. 

Layer S4 implements subsampling again. Output spikes 
from layer S4 are connected to neurons in layer C5 in the 
same way as in layer C3. Each spike produced in layer C5 is 
replicated in four different outputs which are fully connected 
to the four output neurons in layer F6. Neurons at layer F6 
will fire positive or negative events indicating that the input 
has been or not categorized as the class coded by the firing 
neuron. 

III. RESULTS

We have simulated the proposed system with our 
validated AER C++ Simulator Tool [6] as the large number 
of filters needed is not available electronically yet. However, 
the system was simulated with real input stimuli from a 

retina chip and the performance figures from already 
physically available AER hardware [7][8].  

The system was first trained and tested using the frame-
based version depicted in Fig. 1. First, we used the events 
captured during 8s with the electronic retina to create 32x32 
images by collecting spikes in intervals of 30ms. This way 
we created 262 images of people walking. We rotated these 
images to create the corresponding images in horizontal and 
up-side-down positions. Finally, to add some distracters we 
used 262 noise images of some objects moving obtained with 
the retina. Thus, we generated a database composed of 1048 
images representing a total of four different categories. 
Using 600 of these images to train the system and the rest 
448 to test it, we obtained a 98% recognition rate with the 
training set and 93.2% with the testing set.  

All the weights, filters and biases computed in the 
training stage with this frame-based version of our system 
were then used in the AER frame-free system. To compute 
the refractory periods to be used in layers C3 and C5, we 
established relations between the values that produce the 
saturation of the sigmoid functions in the frame-based 
implementation and the number of events fired by a neuron 
in the same layers in the AER-based implementation. This 
way we obtained the values 0.5ms and 23ms for refractory 
periods in layers C3 and C5 respectively.  

Finally, the AER system was tested with three new flows 
of spikes of visual information. The first flow (corresponding 
to up position) was directly obtained using the AER motion 
sensing retina capturing spikes during 10s. Several people 
appear in the recording at different times (the images 
obtained after reconstruct the spikes captured by the retina 
are similar to those appearing in Fig. 1). Then, the flow of 
spikes (corresponding to up position) was rotated 90 and 180 
degrees to create the corresponding flows for lying and up-
side-down positions. As each flow had 102572 spikes, this 
supposed an approximate firing input of 10keps (kilo-events 
per second). The system was tested with these three different 
flows as input. In Fig. 4 we show the four output channels 
when the input testing flow corresponds to the up position. 
Positive events in a particular output channel indicate that 
the system recognizes input events as belonging to the 

Figure 4.  Output events when input is UP  



category represented by that output channel. Negative events 
indicate the opposite. We have considered the recognition 
rate to be the ratio between the positive events due only to 
the output channel in which we are interested and the total 
positive output events. Computing the results for the three 
different input flows a total performance accuracy of 94% 
was obtained. The system misclassified mainly up position 
(classifying it as the up-side-down) when there were 
transitions between people. The minimum time-to-first spike 
(time to get the first correct output spike since the input 
stimulus was presented) indicating the system delay was of 
16ms. This means that only over 160 input spikes were 
needed, which corresponded approximately to an average of 
3 spikes per pixel. The maximum firing rate in each output 
channel leaded to minimum delays between spikes in the 
order of 15ms. These delays are very low, but even so they 
are not determined by computation process within the 
convnet, in the order of microseconds [7], but by the reduced 
input firing frequency provided by the retina. 

IV. CONCLUSIONS

The AER system developed constitutes the first step in 
the design of learned frame-free bio-inspired systems. 
Moreover, the design of such systems is becoming a reality 
as ConvNets show good up scaling behavior and are 
susceptible of being implemented efficiently with new nano 
scale hybrid CMOS/nonCMOS technologies [11]. The 
weight sharing property in ConvNets and the use of AER 
protocol allow a great reduction in the number of both 
trainable parameters and connections. Our AER system has 
only 748 trainable parameters and 123 connections (out of 
506998 connections in the frame-based version).  

The AER system is able to work in real time providing 
very quick output flows. This real-time working possibility is 
due to the availability of AER convolution chips with delays 
between input and output flows of events of the order of 
microseconds, making both flows in practice simultaneous. 
In a frame-based system the high number of convolutions 
(38) would suppose a bottleneck problem. Furthermore, the
combination of Gabor filters in the first layer together with a
motion sensing retina allows the removal of static objects
and noise together with the selection of certain scales at
different orientations. This two-step preprocessing stage also

supposes a high computation load in most of frame-based 
systems. 
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