
Scene Context Classification with Event-
Driven Spiking Deep Neural Networks

Pablo Negri∗, Miguel Soto†, Bernabé Linares-Barranco† and Teresa Serrano-Gotarredona†
∗Instituto en Ciencias de la Computación (UBA-CONICET), Buenos Aires, Argentine

pnegri@dc.uba.ar
† Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain

Abstract—Event-Driven computation is attracting growing at-
tention among researchers for several reasons. On one hand,
the availability of new bio-inspired retina-like vision sensors
that provide spiking outputs, like the Dynamic Vision Sensor
(DVS) make it possible to demonstrate energy efficient and high-
speed complex vision tasks. On the other hand, the emergence
of abundant new nanoscale devices that operate as tunable
two-terminal resistive elements, which when operated through
dynamic pulsing techniques emulate learning and processing in
the brain, promise an explosion of highly compact energy efficient
neuromorphic event-driven applications. In this paper we focus
for the first time on a high-level cognitive task, namely scene
context classification, performed by event-driven computations
and using real sensory data from a DVS camera.

I. INTRODUCTION

Scene recognition targets the categorization of the environ-
ment where a particular view has been recorded. Knowledge
about the scene may enable a more intelligent vision process-
ing [1] and can provide valuable clues for navigation tasks and
developing assisted technologies for visually impaired people
that can make use of contextual information.

Previous works on scene recognition are based on im-
ages captured with conventional photograph or video cam-
eras. Images are acquired as periodic frames. In the present
work, scenes are captured from an unconventional event-
driven dynamic vision sensor (DVS) [2], [3], [4], [5], [6].
Taking inspiration from biological systems, event-based sens-
ing and recognition systems operate in a continuous and
asynchronous way. In a DVS sensor, each pixel responds to
temporal changes in the illumination, thus providing event-
driven sensory data. Several advantages emerge from such
event-driven computational paradigm. First of all, the commu-
nication and subsequent computation is performed only when
there is a change or relevant information transmitted saving
thus computation and communication power and bandwidth.
Secondly, the computation is performed on the fly, event by
event without waiting for full frames. Thus, recognition can be
performed with a very reduced latency [7], [8]. Thirdly, event-
driven neuromorphic computation fits naturally with emerging
nanoscale devices that can learn and process through spikes
(events), while resulting in highly compact, very low power
hardware, but capable of high-level cognitive computations.

This paper tackles for the first time a problem which com-
bines scene recognition with DVS information. The principal
objective is to identify known places, or to characterize the

content of a scene, in order to discriminate their particular
structure. The input queries will consist of scenes recorded by
a DVS carried by a walking person.

II. SCENE RECOGNITION SYSTEM

A. Dataset

The dataset was recorded by different people carrying a
DVS during hikes in different urban or in-door environments.
The sequences exceeded 15 minutes duration and include
indoor and outdoor locations. The recordings were split into
small temporal sequences e∆t, with ∆t = 50 msec, separated
by 100 msec.

To categorize the sequences, we defined J = 4 classes:
street, bridge, stairs, and corridor. Fig. 1 shows samples of
the J classes as RGB captures in order to illustrate the views,
and the DVS events from the places. Both street and bridge are
outdoors views. The class street is composed of urban scenes,
mainly captured from the sidewalk. This is the class with
the highest intra-class diversity, which have a great variety
of textures: buildings, trees, vehicles, etc. The bridge class
records the view crossing a bridge, as can be seen in Fig. 1.
The indoors views are represented by the classes stairs and
corridor. The samples of the former class always have a stair
in their view. Fig. 1 illustrates with two different samples the
diversity of views within this class. The corridor class captures
the view of corridors inside buildings.

B. Event-Driven Processing Simulator: MegaSim

The data flow captured by the event-driven DVS feeds
our scene classifier as a continuous stream of temporal asyn-
chronous events. The scene classifier is a neural network ar-
chitecture composed of several layers of interconnected event-
driven neuron populations. In order to simulate its behavior,
we employ a tool called MegaSim (Modular Event-Driven
Growing Asynchronous Simulator) [9].

MegaSim, which is written in C, allows the analysis of
arbitrary neural networks topologies described in a netlist text
file. The topology is described as a network of modules and
AER (Address Event Representation) nodes. In an AER node
(bus) many inter-neuron connections are time-multiplexed
[10]. Each module is connected to one or more input AER
nodes and one or more output AER nodes. Each module
represents a neural population with a particular behavior that
can be defined by the user. Each AER node is represented by



Fig. 1. (Left) Two dimensional representations of the event-based information provided by the DVS, captured by a walking pedestrian. DVS frames show
the information accumulated during 50 msec. (Right) RGB images are shown to illustrate the appearance diversity within the classes.

a list of events generated along time by the neurons whose
outputs are connected to that particular AER node.

Initially, the event lists in the network internal AER nodes
are empty. Only the node corresponding to the DVS output is
full with the events corresponding to the DVS recordings. As
the simulation runs, the DVS event data are processed by the
subsequent neural modules that generate new events that are
progressively added to the corresponding output AER nodes.
At each simulation time step, the simulator looks for the older
unprocessed event in the network and calls the corresponding
modules receiving it. Megasim is a powerful tool to simulate
Spiking Neural Networks behavior, and to perform a rapid
prototyping and testing before building hardware architectures,
i.e. on FPGAs or ASICs.

C. SNN Architectures

The Spiking Neuron Network of our system employs a leaky
integrate-and-fire neuron model (LIF), where the potential
vj(t) of post-synaptic neuron j (also called neuron state)
receives the contribution of presynaptic neurons via weighted
synapses. In this simple form the neuron is modeled by:

∂vj(t)

∂t
= −vj(t) + C

τl
(1)

where C is a constant, and τl defines the leakage rate. If
there is no input spike increasing or decreasing the neuron
state, vj(t) is subject to leakage only. When vj(t) reaches a
certain threshold TMAX , the neuron generates a spike output
event to the subsequent neurons in the network, and vj(t) gets
instantaneously a reset value vr.

We propose two topologies for the spiking neural network
event-driven classifier.

The first proposed topology is a two-layer architecture as
depicted in Fig. 2. This topology, proposed in [11], has a
feature extraction (FE) phase composed by layer C1 followed
by a subsampling process S1, a flattening process (recoding
neuron addresses from 2D to 1D), and a fully connected output
classification/prediction layer.

.
  .
    .

F
L
A
T
T
E
N

Input
Layer

 nxn

C1
18 Features

Maps

Flattening

Output
Prediction

.
  .
    .

S1
Subsampling

y
1

y
2

y
J

Fig. 2. Two-Layer Spiking Neural Network.

The spikes generated in the n×n DVS retina, with n = 128,
feed the C1 convolutional Feature Maps with kernels of size
k × k, also called receptive fields. The kernels consist of 18
Gabor Filters with the following equations:

g(x, y, λ, θ, φ, σ) = exp

(
−1

2

(
x′2

σ2
x

+
y′2

σ2
y

))
× cos

(
2π
x′

λ
+ φ

)
(2)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, λ is
the wavelength of the sinusoidal, θ is the orientation of the
Gabor filter, φ is the phase offset, and σ is the Gaussian’
width. The 18 kernels are obtained using 9 orientations and 2
phase values1. We use k = 7 in this paper. The total number
of neurons in C1 is 18× ((n− k + 1)× (n− k + 1)).

The subsampling process S1 applies a factor 2 down sam-
pling. The output of S1 is rearranged into a one-dimensional
vector by module “Flattening” in Fig. 2. Its size is N =
18 × (((n − k + 1)/2) × ((n − k + 1)/2)). The flattening
module output is fully connected to the output classifier which
consist of J neurons. Pre-synaptic spikes from neuron i in the
flattening module contribute to the voltage membrane of each

1The value of these parameters are; θ =
[0, 20, 40, 60, 80, 100, 120, 140, 160], σ = 4, λ = 8, φ = [0.0, 1.7]



output neuron j by decrementing or incrementing their state
vj proportionally to the corresponding synaptic weights |w(1)

ij |.

.
  .
    .

F
L
A
T
T
E
N

Input
Layer

 nxn

C1
18 Features

Maps

Flattening

Output
Prediction

Hidden
Layer

.
  .
    .

S1
Subsampling

y
1

y
2

y
J

z
1

z
2

z
3

z
M

Fig. 3. Three-Layer Spiking Neural Network.

In a second topology, a Hidden Layer with M neu-
rons is added between the flattening module and the classi-
fier/prediction layer, as illustrated in Fig. 3. This time, output
neuron state vj accumulates post-synaptic spikes produced in
the new hidden layer, using the corresponding set of synaptic
weights |w(2)

hj |. The superscript (2) indicates that the parameter
corresponds to the weights of the second layer of the network,
In this architecture, the hidden layer neuron states vh depend
on the flattening module outputs, which are weighted by their
corresponding parameter |w(1)

ih |.

D. Learning Methods

We propose two learning strategies to compute the set of
synapses weights.

1) Single-Layer Frame Based: In this strategy, the training
is not performed in the spiking domain [11]. Using the spiking
simulator MegaSim, an input sequence s is applied to the
spiking neural network generating a list of events at the output
of module “Flattening”. A histogram, where each bin corre-
sponds to one neuron, is then obtained by counting the number
of times a neuron spikes. The histogram is normalized with
respect to the maximum value, resulting in a feature vector
with values in the interval [0, 1]. This vector x = (x1, ...xN )T ,
referred as “frame”, describes the spatio-temporal information
within s.

In the case of the two layer topology (see Fig. 2), a logistic
regression classifier is trained using stochastic gradient descent
[11]. We follow the mini-batch stochastic gradient descent
(MSGD) method [12] without bias, to compute the set of
synaptic weights Wj for each class j (or each neuron j in
the classifier layer). Given an input vector x, the probability
that corresponds to class j is computed by using the soft-max
function f :

p(y = j|x,Wj) = f(
N∑
i=1

w
(1)
ij xi) =

eWjx

Z
(3)

where y is the output of the overall system, Wj is the set of
synaptic weights w(1)

ij connecting the flattening module output
i to neuron j, and Z =

∑
j e

Wjx is a factor that normalizes
the output to the range [0,1].

The predicted class y of the model for input x is taken as
the maximum probability between the output neurons:

y = argmax
j=1,...,J

(p(y = j|x,Wj)) (4)

2) Multi-Layer Frame Based: The architecture in Fig. 3 is
a feed-forward multi-layer network, with an additional hidden
layer of M neurons which are fully connected between the
flattening module output and the classifier/prediction layer.

To compute the output probability of neuron j in the hidden
layer, M linear combinations of the input x are computed as:

zh = g(
N∑
i=1

w
(1)
ih xi) (5)

where h = 1, ...,M , and g(.) is the tanh non-linear activation
function.

The output probability of neuron j in the output prediction
layer is now computed as:

p(y = j|x) = f(
M∑
h=1

w
(2)
hj zh) (6)

The training of the network is performed in two learning
stages. First, the multi-layer network is trained as a regular
network using the flattening module output “frames” x. The
classical back-propagation algorithm is employed to obtain the
weight values w(1)

ih and w
(2)
hj . Dropout regularization is also

used. Then, Megasim loads the training set into the topology
that uses the obtained weights which were scaled to an integer
value (see Section II-D3).

Then, from the spikes generated by the new hidden layer a
new set of “frames” z are computed. This time, the histograms
count the number of times a hidden neuron fires given an input
sequence s. With these new z vectors, we train the weights
of the second layer w(2)

hj with the same procedure detailed in
Section II-D1.

3) From Static to Spiking: After training, the synapse
weights have a real value in <. When mapping to the SNN
framework, we scale them to an integer value in Z proportional
to the neuron threshold. In the simulations, this value is about
10e6.

E. DVS Scene Recognition

The SNN system produces a continuous stream of spiking
events at the output classification layer. The classifier accumu-
lates the number of times that an output neuron j spikes and
predicts with the maximum value, within a window of a fixed
number of input DVS events. Fig. 4 shows the recognition
accuracy of the different architectures versus the percentage
of input events. As can be seen, the best results are obtained
when all 100% of events are considered.

III. RESULTS

The system employs the recorded Places-DVS dataset2,
mentioned in Section II-A, to train the SNN. It chooses 1000

2http://www2.imse-cnm.csic.es/caviar/SCENES DVS.html



20 40 60 80 100 20 40 60 80 100

% of input events

60

65

70

75

80

85

90
C

la
ss

ifi
ca

ti
o
n
 a

cc
u
ra

cy
 (

%
)

lsgd
mlp - M=50
mlp - M=100
mlp - M=200

Fig. 4. Classification results for each SNN architecture as a function of the
percentage of sequential input events per sample.

TABLE I
CLASSIFICATION RESULTS FOR EACH ARCHITECTURE

Architecture Classification Accuracy (%)

Single-Layer (lsgd) 81.2± 2.8

Multi-Layer: M=50 82.2± 3.8

Multi-Layer: M=100 83.8± 2.4

Multi-Layer: M=200 84.4± 3.6

TABLE II
CONFUSION MATRIX (LSGD) (%)

bridge street stairs corridor

bridge 84.4 12.1 2.5 1.0
street 10.6 72.9 11.0 5.5
stairs 5.7 8.8 75.6 9.9

corridor 2.0 4.0 8.5 85.5

samples from each class randomly. We applied a 5 cross-
validation methodology by randomly splitting the total dataset
into 5 sets of 200 samples. At each iteration, each set is
preserved for the tests, and the remaining 800 samples are
employed for learning and validation. Final results, correspond
to the average obtained on each test set.

Table I depicts the accuracy of the two architectures, single
and multi-layer. The interval from the mean value is obtained
from the 5 cross-validation results. For the multi-layer, we
test three values of the number of hidden neurons M =
50, 100, 200, increasing the complexity of the classifier. As
expected, the multi-layer topology with the maximum number
of hidden layer neurons, i.e. the more complex, gets the best
results. It is not shown here, but further increasing the value
of M does not improve the overall results.

Table II shows a confusion matrix obtained using the LSGD
classifier. We choose the classifier obtaining the worst result,

because it better illustrates the confusion between classes. As
can be seen, bridge and corridor are the classes with highest
accuracy. They correspond to views with a specific structure,
the walls and doors for corridor, or the way and the railing
for the bridge. On the other hand, the street class can have
several components in the view, i.e. buildings, trees, cars, etc.,
incrementing their information and giving more problems to
the classifiers to generalize the class. The same happens with
the stairs class, as can be appreciated on Fig. 1.

IV. CONCLUSIONS

We present two Event-Driven neuromorphic architectures
for performing scene context classification on visual data
captured by a DVS camera. The results shown confirm the
suitability of this approach for performing the proposed cog-
nitive task.

ACKNOWLEDGMENTS

This work was funded by EU H2020 grants 644096 (ECO-
MODE) and 687299 (NEURAM3), and by Spanish grant from
the Ministry of Economy and Competitivity TEC2015-63884-
C2-1-P (COGNET) (with support from the European Regional
Development Fund).

REFERENCES

[1] M. Szummer and R. W. Picard, “Indoor-outdoor image classification,”
in International Workshop on Content-Based Access of Image and Video
Database, Jan 1998, pp. 42–51.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128*128 120db 15us
latency asynchronous temporal contrast vision sensor,” JSSC, vol. 43,
no. 2, pp. 566–576, 2008.

[3] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB Dynamic
Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video
Compression and Time-Domain CDS,” IEEE J. of Solid-State Circ.,
vol. 46, no. 1, pp. 259–275, Jan. 2011.

[4] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128x128 1.5sen-
sitivity 0.9sensor using transimpedance preamplifiers,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 3, pp. 827–838, 2013.

[5] M. Guo, J. Huang, and S. Chen, “Live demonstration: A 768×640
pixels 200Meps dynamic vision sensor,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–1.

[6] B. Son, Y. Suh, S. Kim, H. Jung, J. S. Kim, C. Shin, K. Park, K. Lee,
J. Park, J. Woo, Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu,
“4.1 A 640x480 dynamic vision sensor with a 9um pixel and 300Meps
address-event representation,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC), Feb 2017, pp. 66–67.

[7] J. Pérez-Carrasco et al., “Mapping from frame-driven to frame-free
event-driven vision systems by low-rate rate coding and coincidence
processing–application to feedforward convnets,” PAMI, vol. 35, no. 11,
pp. 2706–2719, 2013.

[8] I. A. Lungu, F. Corradi, and T. Delbrck, “Live demonstration: Con-
volutional neural network driven by dynamic vision sensor playing
roshambo,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2017.

[9] MegaSim. Available on may 2018. [Online]. Available: https:
//bitbucket.org/bernabelinares/megasim

[10] M. Sivilotti, “Wiring considerations in analog VLSI systems with
application to field-programmable networks,” PhD, Computation and
Neural Systems, Caltech, Pasadena California, 1991.

[11] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-
Barranco, “An Event-Driven Classifier for Spiking Neural Networks
Fed with Synthetic or Dynamic Vision Sensor Data,” Frontiers in
Neuroscience, vol. 11, p. 350, 2017.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in International Conference on Computational Statistics.
Physica-Verlag HD, 2010, pp. 177–187.


