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ABSTRACT | State-of-the-art image sensors suffer from

significant limitations imposed by their very principle of

operation. These sensors acquire the visual information as a

series of ‘‘snapshot’’ images, recorded at discrete points in

time. Visual information gets time quantized at a predeter-

mined frame rate which has no relation to the dynamics

present in the scene. Furthermore, each recorded frame

conveys the information from all pixels, regardless of whether

this information, or a part of it, has changed since the last frame

had been acquired. This acquisition method limits the temporal

resolution, potentially missing important information, and

leads to redundancy in the recorded image data, unnecessarily

inflating data rate and volume. Biology is leading the way to a

more efficient style of image acquisition. Biological vision

systems are driven by events happening within the scene in

view, and not, like image sensors, by artificially created timing

and control signals. Translating the frameless paradigm of

biological vision to artificial imaging systems implies that

control over the acquisition of visual information is no longer

being imposed externally to an array of pixels but the decision

making is transferred to the single pixel that handles its own

information individually. In this paper, recent developments in

bioinspired, neuromorphic optical sensing and artificial vision

are presented and discussed. It is suggested that bioinspired

vision systems have the potential to outperform conventional,

frame-based vision systems in many application fields and to

establish new benchmarks in terms of redundancy suppression

and data compression, dynamic range, temporal resolution,

and power efficiency. Demanding vision tasks such as real-time

3-D mapping, complex multiobject tracking, or fast visual

feedback loops for sensory-motor action, tasks that often pose

severe, sometimes insurmountable, challenges to conventional

artificial vision systems, are in reach using bioinspired vision

sensing and processing techniques.
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I . INTRODUCTION

Despite all the impressive progress made during the last

decades in the fields of information technology, micro-

electronics, and computer science, artificial sensory and
information processing systems are still much less

effective in dealing with real-world tasks than their

biological counterparts. Even small insects outperform

the most powerful computers in routine functions

involving, e.g., real-time sensory data processing, percep-

computation devices, biological neural systems rely on a

large number of relatively simple, slow, and noisy

processing elements and obtain performance and robustness
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from a massively parallel principle of operation and a high
level of redundancy where the failure of single elements

usually does not induce any observable system perfor-

mance degradation. Studying and understanding the

computational principles of the brain and how they can

be exploited to build intelligent artificial systems are

fundamental for devising a new generation of neuro-

morphic systems, that, as the biological systems they

model, are adaptive, fault tolerant and scalable, and process
information using energy-efficient, asynchronous, event-

driven methods.

A. Neuromorphic Engineering
Nature has been a source of inspiration for engineers

since ancient times. In diverse fields such as aerodynamics,

robotics, the engineering of surfaces and structures, or

material sciences, approaches developed by nature through
long evolutionary processes offer stunning solutions to

engineering problems. Many synonymous terms like

bionics, biomimetics, or bioinspired engineering have

been used to name the flow of concepts from biology to

engineering [1].

Also the idea of applying computational principles of

biological neural systems to artificial information proces-

sing has existed for decades. An early work from the 1940s
by McCulloch and Pitts introduced a neuron model and

showed that it was able to perform computation [2].

Around the same time, Hebb developed the first models

for learning and adaptation [3]. In 1952, Hodgkin and

Huxley linked biological signal processing to electrical

engineering in their famous paper entitled ‘‘A quantitative

description of membrane current and its application to

conduction and excitation in nerve’’ [4], in which they
describe a circuit model of electrical current flow across a

nerve membrane.

In the late 1980s, Mead at the California Institute of

Technology (Caltech, Pasadena, CA, USA) introduced the

‘‘neuromorphic’’ concept to describe systems containing

analog and asynchronous digital electronic circuits that

mimic neural architectures present in biological nervous

systems [5]–[7]. This concept revolutionized the frontier of
computing and neurobiology to such an extent that a new

engineering discipline emerged, whose goal is to design and

build artificial neural systems, like computational arrays of

synapse-connected artificial neurons, retinomorphic vision

systems or auditory processors, using (micro)electrical

components and circuits. This quickly expanding field is

referred to as neuromorphic engineering.

The term ‘‘neuromorphic’’ has also been coined by
Mead to name artificial systems that adopt the form of, or

morph, neural systems. In a ground-breaking paper on

neuromorphic electronic systems, published in 1990, in

the Proceedings of the IEEE [6], Mead argues that the

advantages of biological information processing can be

attributed principally to the use of elementary physical

phenomena as computational primitives, and to the

representation of information by the relative values of
analog signals, rather than by the absolute values of digital

signals. He further argues that this approach requires

adaptive techniques to correct for differences of nominally

identical components, and that this adaptive capability

naturally leads to systems that learn about their environ-

ment. Experimental results suggest that adaptive analog

systems are 100 times more efficient in their use of silicon

area, consume 10 000 times less power than comparable
digital systems, and are much more robust to component

degradation and failure than conventional systems [6].

Following further along these lines, it has been

argued that these types of circuits can be used to develop

a new generation of computing technologies based on

the organizing principles of the biological nervous

system [8], [9]. Indiveri and Furber argue that the

characteristics of neuromorphic circuits offer an attrac-
tive alternative to conventional computing strategies,

especially if one considers the advantages and potential

problems of future advanced very large scale integration

(VLSI) fabrication processes. By using massively parallel

arrays of computing elements, exploiting redundancy to

achieve fault tolerance, and emulating the neural style of

computation, neuromorphic VLSI architectures can

exploit to the fullest potential the features of advanced
scaled VLSI processes and future emerging technologies,

naturally coping with the problems that characterize

them, such as device inhomogeneities and imperfections

[10], [11].

B. Implementing Neuromorphic Systems
Neuromorphic devices today are usually implemented

as VLSI integrated circuits or systems-on-chip (SoCs) on
planar silicon, the mainstream technology used for

fabricating the ubiquitous microchips that can be found

in practically every modern electronically operated device.

The primary silicon primitive is the transistor. Inter-

estingly, transistors share several physical and functional

characteristics with biological neurons. For example, in

the weak-inversion region of operation, the current

through a metal–oxide–semiconductor (MOS) transistor
exponentially relates to the voltages applied to its

terminals. A similar dependency is observed between the

active populations of ion channels as a function of the

membrane potential of a biological neuron. Exploiting

such physical similarities allows, e.g., constructing elec-

tronic circuits that implement models of voltage-con-

trolled neurons and synapses and realize biological

computational primitives such as phototransduction,
multiplication, inhibition, correlation, thresholding, or

winner-take-all selection [4], [6].

Representing a new paradigm for the processing of

sensor signals, the greatest success of neuromorphic

systems to date has been in the emulation of sensory

signal acquisition and transduction, most notably in

vision.



II . BIOINSPIRED VISION

A. Biological Retinas
The retina of vertebrates, e.g., humans, is a multilay-

ered neural network lining the back hemisphere of the

eyeball. The retina, initiating some 600 million years ago as

an assembly of some light sensitive neural cells and further

developed during a long evolutionary process, is the place

where acquisition and first stage of processing of the visual
information happens. As shown in Fig. 1, the retina is a

complex structure with three primary layers: the photore-

ceptor layer, the outer plexiform layer, and the inner

plexiform layer [13]–[16].

The photoreceptor layer consists of two classes of cells:

cones and rods, which transform the incoming light into an

electrical signal which affects neurotransmitter release in

the photoreceptor output synapses. The photoreceptor
cells in turn drive horizontal cells and bipolar cells in the

outer plexiform layer.

The two major classes of bipolar cells, the on bipolar

cells and the off bipolar cells, separately code for bright

spatio–temporal contrast and dark spatio–temporal con-

trast changes. They do this by comparing the photorecep-

tor signals to spatio–temporal averages computed by the

laterally connected layer of horizontal cells, which form a
resistive mesh.

The horizontal cells are connected to each other by

conductive pores called gap junctions and are connected to

bipolar cells and photoreceptors in complex triad synapses.

Together with the input current produced at the photo-

receptor synapses, this network computes spatio–temporal

low-passed copies of the photoreceptor outputs. The

horizontal cells feed back onto the photoreceptors to
help set their operating points and also compute a spatio–

temporally smoothed copy of the visual input.

The bipolar cells are effectively driven by differences

between the photoreceptor and horizontal cell outputs. In

the even more complex outer plexiform layer, the on and

off bipolar cells synapse onto many types of amacrine cells

and many types of on and off ganglion cells in the inner

plexiform layer. The horizontal and amacrine cells mediate
the signal transmission process between the photorecep-

tors and the bipolar cells, and the bipolar cells and the

ganglion cells, respectively.

The bipolar and ganglion cells can be further divided

into two different groups: cells with more sustained

responses and cells with more transient responses. These

cells carry information along at least two parallel pathways

in the retina: the magno–cellular pathway, where cells are
sensitive to temporal changes in the scene, and the parvo–

cellular pathway where cells are sensitive to forms in the

scene. This picture of a simple partition into sustained and

transient pathways is too simple; in reality, there are many

parallel pathways computing many views (probably at least

50 in the mammalian retina) of the visual input. In the

following, a simplified view of biological vision that is

feasible for silicon integrated circuit focal-plane imple-
mentation is presented.

The retina converts spatio–temporal information

contained in the incident light from the visual scene into

spike trains and patterns, output and conveyed to the

visual cortex by retinal ganglion cells, whose axons form

the fibers of the optic nerve. The information carried by

these spikes is maximized by the retinal processing,

encompassing highly evolved adaptive filtering and sam-
pling mechanisms to improve coding efficiency [17], such

as follows.

• Local automatic gain control at the photoreceptor

and network levels: it eliminates the dependency

on absolute lighting levels, and instead the

receptors respond to changes in the incident light

(also knows as temporal contrast). Local adapta-

tion extends the retina’s input dynamic range (DR)
without increasing its output range.

• Bandpass spatio–temporal filtering: it limits spatial

and temporal frequencies to an intermediate range,

reducing redundancy by rejecting low frequencies

and noise by rejecting high frequencies.

• Rectification in on and off output cell types: it

reduces spike-firing rates that would be required to

signal both positive and negative signals on a single
channel. on/off encoding is used in bipolar cells as

well as in ganglion cells, the retina’s output cells.

• The varying distribution of different receptor types

along with corresponding pathways across the

retina (e.g., magno– and parvo–cellular pathways

with more transient and more sustained response)

combined with precise rapid eye movements elicit

Fig. 1. Biological retina extracts multiple simultaneous ‘‘views’’ of the 
visual input by processing the photoreceptor outputs in several

layers, using a multitude of cell types. Silicon retinas to date almost all 
simplify the biological functions to the highlighted cells, which

extract rectified spatio–temporal contrast. (Adapted from [12] with 
permission.)



the illusion of high spatial and temporal resolution
everywhere, while, in reality, the retina samples

coarsely in time in the center (however, at high

spatial resolution) and coarsely in space in the

periphery (however, at high temporal resolution).

In comparison to the human retina, a conventional

image sensor sampling at the Nyquist rate requires

transmitting more than 20 Gb/s to match the human

eyes’ photopic range (exceeding 100 dB), its spatial and
temporal resolution, and its field of view. In contrast, by

coding 2 b of information per spike [18], the optic nerve

transmits just about 20 Mb/s to the visual cortexVa

thousand times less.

Biological retinas have many desirable characteristics

which are lacking in conventional image sensors but

inspire and drive the design of retinomorphic vision

devices. As discussed throughout this paper, many of these
advantageous characteristics have been modeled and

implemented on silicon. Local gain control, spatio–

temporal filtering, and redundancy suppression encoding

lead to unprecedented wide DR operation, video compres-

sion through redundancy suppression, and temporal

resolution of pixel response far beyond that of most

conventional, frame-based devices.

B. Limitations in Vision Engineering
In order to appreciate how biological approaches and

neuromorphic engineering techniques could be beneficial

for advancing artificial vision, it is inspiring to look at some

shortcomings of conventional machine vision.

State-of-the-art image sensors suffer from limitations

imposed by their frame-based operation. The sensors

acquire the visual information as a series of ‘‘snapshots’’
recorded at discrete points in time, hence time quantized

at a predetermined frame rate. Biology does not know the

concept of a frame. In fact, comparing the performance of

biological vision systems to the best state-of-the-art

artificial vision devices, frames do not appear to be a

very useful or efficient form of encoding visual informa-

tion. This is even more obvious if one considers that the

world, the source of the visual information we are
interested in, works asynchronously and in continuous

time. As a consequence, depending on the time scale of

changes in the observed scene, a problem that is very

similar to undersampling, known from other engineering

fields, arises. Things happen between frames, and infor-

mation gets lost. This may be tolerable for the recording of

video for a human observer, but artificial vision systems in

demanding applications such as, e.g., autonomous robot
navigation, high-speed motor control, visual feedback

loops, etc., may fail as a consequence of this shortcoming.

Nature suggests a different approach: Biological vision

systems are driven and controlled by events happening

within the scene in view, and not, like image sensors, by

artificially created timing and control signals that have no

relation whatsoever to the source of the visual information

and its dynamics. Translating the frameless paradigm of
biological vision to artificial imaging systems implies that

control over the acquisition of visual information is no

longer being imposed externally to an array of pixels but

the decision making is transferred to the single pixel that

handles its own information individually.

The second problem that is also a direct consequence of

the frame-based acquisition of visual information is

redundancy. Each recorded frame conveys the information
from all pixels, regardless of whether this information, or a

part of it, has changed since the last frame had been

acquired. This method obviously leads, depending on the

dynamic contents of the scene, to a more or less high

degree of redundancy in the acquired image data.

Acquisition and handling of these dispensable data

consume valuable resources and translate into high

transmission power dissipation, increased channel band-
width requirements, increased memory size, and post-

processing power demands.

Devising an engineering solution that follows the

biological pixel-individual, frame-free approach to vision

can potentially solve both problems.

C. Modeling the Retina in Silicon
The first silicon VLSI retina by Mahowald and Mead

implemented a model of the photoreceptor cells, horizon-

tal cells, and bipolar cells [19]. Each silicon photoreceptor

mimics a cone cell and contains both a continuous-time

photosensor and adaptive circuitry which adjusts its

response to cope with changing light levels [20]. A

network of MOS variable resistors mimics the horizontal

cell layer, furnishing feedback based on the average

amount of light striking nearby photoreceptors; the bipolar
cell circuitry amplifies the difference between the signal

from the photoreceptor and the local average and rectifies

this amplified signal into on and off outputs. The

response of the resulting retinal circuit approximates the

behavior of the human retina [4], [21].

Zaghloul and Boahen implemented simplified models of all

five layers of the retina on a silicon chip starting in 2001 [8],

[22]. This parvo–magno retina is a very different type of silicon
retina that was focused on modeling of both outer and inner

retinas including sustained (parvo) and transient (magno)

types of cells, based on histological and physiological findings.

It is an improvement over the first retina by Mahowald and

Mead which models only the outer retina circuitry, that is, the

cones, horizontal cells, and bipolar cells [19]. The parvo–

magno design captures key adaptive features of biological

retinas including light and contrast adaptation, and adaptive
spatial and temporal filtering. By using small transistor log-

domain circuits that are tightly coupled spatially by diffuser

networks and single-transistor synapses, they were able to

achieve 5760 phototransistors at a density of 722 per mm2 and

3600 ganglion cells at a density of 461 per mm2 in a 3.5 �
3.3-mm2 silicon area, using a 0.25-�m complementary MOS

(CMOS) process.



The outer retina’s synaptic interactions realize spatio–
temporal bandpass filtering and local gain control. The

model of the inner retina realizes contrast gain control

(the control of sensitivity to temporal contrast), through

modulatory effects of wide-field amacrine cell activity. As

temporal contrast increases, their modulatory activity

increases, the net effect of which is to make the transient

ganglion cells respond more quickly and more transiently.

This silicon retina outputs spike trains that capture the
behavior of on- and off-center wide-field transient and

narrow-field sustained ganglion cells, which provide 90%

of the primate retina’s optic nerve fibers. These are the

four major types that project, via thalamus, to the primary

visual cortex. Clearly, the parvo–magno retina has

complex and interesting properties, but the extremely

large mismatch between pixel response characteristics

makes it quite difficult to use.

III . FROM BIOLOGICAL MODELS TO
PRACTICAL VISION DEVICES

Many of the early developers of retinomorphic vision devices

originated from the biological sciences community and saw

their chips mainly as a means for demonstrating neurobio-

logical models and theories, but did not relate their devices to
real-world applications. Very few of the sensors so far have

been used in practical applications, let alone in industry

products. Many conceptually interesting pixel designs lack

technical relevance because of, e.g., circuit complexity, large

silicon area, low fill factors, or high noise levels, preventing

realistic application. Furthermore, many of the early designs

suffer from technical shortcomings of VLSI implementation

and fabrication such as device mismatch, and did not yield
practically usable devices.

Recently, an increasing amount of effort has been put

into the development of practicable vision sensors based

on biological principles [24], [25]. In this endeavor, the

focus is less on a faithful reproduction of a biological model

or a retina function, and more on devising engineering

solutions to real-world vision problems.

Biologists have reported between 20 and up to 50
different types of cells in biological retinas [14], [23]. Their

exact functionalities are still being investigated, however

most experts agree on the following retina cell functions.

There are: 1) cells sensitive to transients in luminance;

2) cells sensitive to sustained luminance (which is then, in

turn, used to adjust other cells ‘‘operating point’’

depending on ambient light); 3) cells sensitive to direction

of motion (which specialize to specific directions); and
4) cells sensitive to spatial contrast (which perform

computations of the type on-center off-surround).

Besides this, there are cells sensitive to the wavelength

of light (color), and in some animals, retinas have foveated

topography. In the remainder of this paper, we will focus

only on two of these aspects: sensitivity to light transients

and sensitivity to absolute luminance.

A. Adapting to Technology: Address–Event
Representation

Even though we observe striking parallels between

VLSI hardware used to implement neuromorphic devices

and neural wetware, some approaches taken by nature

cannot be adopted in a feasible way. One prominent

challenge posed is often referred to as the ‘‘wiring

problem.’’ Mainstream VLSI technology does not allow

for the dense 3-D wiring observed everywhere in biological
neural systems.1

In vision, the optic nerve connecting the retina to

the visual cortex in the brain is formed by the axons of

the about one million retinal ganglion cells, the spiking

output cells of the retina. Translating this situation to

an artificial vision system would imply that each pixel of

an image sensor would have its own wire to convey its

data out of the array. Given the restrictions posed by
chip interconnect and packaging technologies, this is

obviously not a feasible approach. However, VLSI

technology does offer a workaround. Leveraging the

five orders of magnitude or more of difference in

bandwidth between a neuron (typically spiking at rates

between 10 and 1000 Hz) and a digital bus enables

engineers to replace thousands of dedicated point-to-

point connections with a few metal wires and lots of
switches, and to time multiplex the traffic over these

wires using a packet-based or ‘‘event-based’’ data

protocol called address–event representation (AER).

AER was originally proposed more than 20 years ago in

Mead’s Caltech research lab [26], [28], [29]. For over ten

years, AER sensory systems were reported by only a

handful of research groups, examples being Lazzaro et al.
[30] and The Johns Hopkins University (Baltimore, MD,
USA) [31] pioneering work on audition, or Boahen’s early

developments on retinas [32], [33]. However, during these

years, some basic progress was made. A better under-

standing of asynchronous design [34], [35] leading to

robust unarbitrated [36] and arbitrated [17] asynchronous

event readout, combined with the availability of user-

friendly field-programmable gate array (FPGA) external

support for interfacing and new submicrometer technol-
ogies allowing complex pixels in reduced areas, heralded a

new trend in AER bioinspired spiking sensor develop-

ments. Since 2003, many researchers have embraced this

trend and AER has been widely used with retinomorphic

vision sensors, in auditory systems and even for systems

distributed over wireless networks [37].

In a point-to-point AER link, a transmitter chip (or

module) includes, e.g., an array of neurons generating
spikes. Each neuron is assigned an address, such as its x; y-

coordinate within the array. Neurons generate spikes at

1Although neuromorphic engineers, inspired by cortical architectures,
have looked at the increasingly available 3-D integrated circuit fabrication
techniques and have built several experimental systems, 3-D VLSI yet
remains a niche solution for neuromorphic devices [26], [27].



low frequency (10–1000 Hz), and these are arbitrated and
put on an interchip (or intermodule) high-speed asyn-

chronous AER bus, implementing a time-multiplexing

strategy where all computing elements (pixels, neurons,

etc.) share the same physical bus to transmit their pulses,

together with the (implicit) timing information. In this

asynchronous protocol, temporal information is self-

encoded in the timing of the events, and it is explicitly

added to the address in the form of a timestamp only when
processing takes place in ‘‘non-AER’’ processing units, such

as FPGAs or digital processors. Fig. 2(a) illustrates an AER

interface servicing an array of spiking pixels. The on-chip

AER periphery contains address encoders, bus arbiters,

and handshake circuitry, implementing a four-phase

handshake with the data receiver [Fig. 2(b)] [17].

The AER bus is a multibit (either parallel, serial, or

mixed) bus which transmits the addresses of the emitting
neurons. Typical delays for transmitting address events

between AER chips range from about 30 ns [38] to 1 �s
[48] per event for parallel AER, and have been reported

down to 16 ns per event for serial AER [39].2

Addresses are received, read, and decoded by the

receiver chip (or module) and sent to the corresponding

destination neuron or neurons. The use of AER splitters

and mergers [40] allows extension to one-to-many, many-

to-one, or many-to-many AER links. Inserting AER

mappers [40] allows coordinate transformations (rota-
tions, translations, etc.) to be performed while address

events travel between modules. Current research is

looking at how large numbers of AER convolutional

modules can be combined through independent and

multiple AER links to build high-speed object and texture

recognition systems [41].

B. Retinomorphic Vision Devices
Today, practically all bioinspired vision sensors with

spiking output use the AER protocol to communicate their

data. These devices come in a variety of different types.
One class of bioinspired image sensors relies on AER to

transmit pixel intensity values that are encoded in the

relative timing or in the instantaneous rates of spike-like

events, generated by pixel circuits in response to incident

light levels [25]. These sensors do not achieve redundancy

suppression or latency reduction, yet have interesting

properties such as intrinsic wide DR operation and support

for pixel-level analog-to-digital (AD) conversion.
The family of sensors, which are the most advanced and

productized bioinspired vision devices today and that are

the main focus of this paper, however follow the natural,

event-driven, frame-free approach, capturing and being

driven by transient events in the visual scene. These

sensors’ output is compressed at the sensor level, without

the need of external processors, optimizing data transfer,

storage, and processing, hence increasing power efficiency
and compactness of the vision system. The dynamic vision

sensor (DVS) is the first practically usable device of this

class and has triggered a plethora of research in event-

based vision. The asynchronous time-based image sensor

(ATIS) continues the maturing and push to real-world

applicability of bioinspired vision and derives its unique

characteristics from combining the advantages of event-

driven acquisition and time-domain spiking encoding of
image information. The DAVIS sensor proposes a hybrid

between frame-based and frame-free sensor technology.

Fig. 2. (a) Block level schematic of a pixel array embedded in AER

communication periphery. (b) Timing diagram of a communication

cycle for one ON event: RRVrow request, RAVrow acknowledge,

CRONVcolumn request ON polarity, CAVcolumn acknowledge,

resetVpixel reset, REQVexternal request signal, ACKVexternal

acknowledge signal. Delays are nondeterministic internal propagation

delays except between REQ and ACK which is determined by the

external receiver. (Adapted from [48].)

2The speed advantage of the reported interchip serial AER interface is
due to the use of low-voltage differential signaling (LVDS) transmission
over pairs of impedance matched microstrip lines that can be driven near
the physical limit of several gigabits per second. For example, for 32-b
events using an 8-b/10-b encoding (which results in 40 b per event), an
event is transmitted in only 16 ns [39]. Comparable transmission speeds
are difficult to achieve with parallel AER connections as multiple parallel
bit lines would need to be jitter- and skew-free down to the level of a few
picoseconds.



1) Encoding Images in the Time Domain: First, let us have
a closer look at one species of ‘‘event-based’’ cameras that

use AER to encode and transmit pixel illuminance data. As

in biology, these devices encode illuminance in the time

domain, i.e., in the timing or rate of spike ‘‘events.’’ Yet

these devices are not ‘‘event driven’’ in the sense that their

pixels autonomously react to visual events in the scene.

From an engineering point of view, time-domain

encoding of visual information has technical merits as it
optimizes the phototransduction individually for each

pixel by abstaining from imposing a fixed integration time

for all pixels in an array. Exceptionally high DR and

improved signal-to-noise ratio (SNR) as compared to

conventional imaging techniques are immediate benefits

of this approach [25]. In particular, DR is no longer limited

by the power-supply rails as in standard CMOS active pixel

sensors, thus providing relative immunity to the aggressive
supply-voltage scaling of modern CMOS technologies.

The so-called ‘‘octopus retina’’ [42] encodes and

communicates individual pixel intensities in the instanta-

neous frequency (or interspike intervals) of AER events

emitted concurrently by each pixel. In contrast to

conventional, serially scanned arrays that allocate an equal

portion of the bandwidth to all pixels independently of

activity, this biologically inspired readout method offers
activity-driven, pixel-parallel readout. In the octopus

sensor, brighter pixels are favored because their integration

threshold is reached faster than darker pixels, thus their

AER events are communicated at a higher frequency.

Consequently, brighter pixels request the output bus more

often than darker ones and are updated more frequently.

The rather large fixed-pattern noise (FPN) makes the

sensor hard to sell for conventional imaging. The octopus
sensor has the advantage of a smaller pixel size compared to

other AER retinas, but has the disadvantage that the bus

bandwidth is allocated according to the local scene

luminance. Because there is no reset mechanism and the

event interval directly encodes intensity, a dark pixel can

take a long time to emit an event, and a single highlight in

the scene can saturate the AER communication bus.

Another drawback of this approach is the complexity of
the digital frame grabber required to count the spikes

produced by the array. The buffer must either count events

over some time interval, or hold the latest spike time and

use this to compute the intensity value from the interspike

interval to the current spike time. This, however, leads to a

noisier image. The octopus retina would probably be most

useful for tracking small and bright light sources.

A biologically inspired approach based on relative spike
timing is implemented in the so-called ‘‘time-to-first spike’’

(TTFS) imager [43]–[45]. In this encoding method, the

system does not require the storage of large number of

spikes since every pixel generates only one spike per

frame. This coding method was also suggested as a scheme

used by neurons in the visual system to code information

[46]. The global threshold for generating a spike in each

pixel can be reduced over the frame time so that dark
pixels will still emit a spike in a reasonable amount of time.

A disadvantage of the TTFS sensors is that uniform parts of

the scene all try to emit their events at the same time,

overwhelming the AER bus. This problem can be mitigated

by serial reset of the, e.g., rows of pixels, but, of course,

then the problem can arise that a particular image still

causes simultaneous emission of events.

Fig. 3. Three-layer model of a human retina and corresponding DVS pixel circuitry (left). Typical signal waveforms of the pixel circuit are shown 
top right. The upper trace represents a voltage waveform at the node Vlog tracking the photocurrent through the photoreceptor. The bipolar 
cell circuit responds with spike events ðVdiffÞ of different polarity to positive and negative changes of the photocurrent, while being monitored by 
the ganglion cell circuit that also transports the spikes to the next processing stage; the amount of log-intensity change is encoded in the 
number of events, the rate of change in interevent intervals. The bottom right image shows the response of an array of DVS pixels to a natural 
scene (person moving in the field of view of the sensor). Events have been collected for some tens of milliseconds and are displayed as an 
event map image with ON (going brighter) and OFF (going darker) events drawn as white and black dots.



2) Pixel-Autonomous Detection of Temporal ContrastVDVS:
Practically all conventional frame-based image sensors

completely neglect the dynamic information immanent to

natural scenes and perceived in nature by the magno–

cellular transient pathway. In an attempt to realize a

practical transient vision device based on the functioning

of the magno–cellular pathway, the DVS was developed

[47]–[49]. This type of vision sensor is sensitive to the

scene dynamics and directly responds to changes, i.e.,
temporal contrast, pixel individually, and near real time. The

gain in terms of temporal resolution with respect to standard

frame-based image sensors is dramatic. But also other

performance parameters like the intrascene DR greatly profit

from the biological approach. This type of sensor is very well

suited for a plethora of machine vision applications involving

high-speed motion detection and analysis, object tracking,

and shape recognition.
The DVS pixel models a simplified three-layer retina

(Fig. 3), implementing an abstraction of the photoreceptor-

bipolar-ganglion cell information flow. Single pixels are

spatially decoupled but take into account the temporal

development of the local light intensity. The DVS pixel

autonomously responds to relative changes in intensity at

microsecond temporal resolution over six decades of

illumination [49].
These properties are a direct consequence of abandon-

ing the frame principle and modeling three key properties

of biological vision: the sparse, event-based output; the

representation of relative luminance change (thus directly

encoding scene reflectance change); and the rectification

of positive and negative signals into separate output

channels (on/off). The major consequence of this

bioinspired approach and most distinctive feature with
respect to standard imaging is that the control over the

acquisition of the visual information is no longer being

imposed to the sensor in the form of external timing

signals such as shutter or frame clock, but the decision

making is transferred to the single pixel that handles its

own visual information individually and autonomously.

Fig. 4 illustrates the DVS principle of operation and

demonstrates the high-speed, high-temporal-resolution
operation of event response. Each DVS pixel produces a

continuous-time spatio–temporal representation of the

visual dynamics in its field of view by detecting relative

changes (i.e., temporal contrast) in illuminance. In this

example, a DVS pixel array is observing a light dot on an

analog oscilloscope screen moving in a spiral pattern

which is repeated at a 500-Hz rate [Fig. 4(a)]. The address

events describe the motion of the dot at microsecond
temporal resolution in space and time [Fig. 4(b)]. Fig. 3

shows the basic block diagram of a typical DVS pixel circuit

[49], [52], [61], [64]. The first stage transduces photocur-

rent to a voltage proportional to the logarithm of light

Vlog ¼ VDC þ AvUT ln Iph

where UT is thermal voltage, Av is a voltage gain factor, and

VDC is a light independent direct current (dc) voltage level

with high interpixel mismatch. The second stage amplifies
Vlog by C1=C2 resetting the charge integrated at C2 every

time Vdiff ¼ ðC1=C2ÞVlog varies a fixed threshold �Vth set

by the comparators. This also eliminates the dc component

at Vlog. The result is that each pixel generates a signed

asynchronous output ‘‘event’’ every time its light changes

by ln Iphðt2Þ � ln Iphðt1Þ ¼ ��ev, with

�ev ¼
C2Vth

C1UTAv
:

Consequently, pixel information is obtained not synchro-

nously at fixed time steps �t (as in conventional video

Fig. 4. Illustration of DVS output. (a) A DVS is observing a 500-Hz spiral

on an analog oscilloscope. (b) DVS output is a continuous sequence

of address events ðx;yÞ in time. Each address event signals that the

pixel at that coordinate experienced a change of light at that instant.

Red and blue events represent a positive (increase) or negative

(decrease) change of light.



sensors), but asynchronously, driven by data at fixed
relative light increments �ev ¼ j lnðIphðt2Þ=Iphðt1ÞÞj, as

shown in Fig. 3. The event output of the pixel encodes

the temporal development of the local illuminance,

however, it does not at any time contain information on

the absolute intensity seen by the pixel, commonly

referred to as gray level. Hence, DVSs do not acquire

image information in the conventional sense.

Parameter �ev represents the minimum detectable
temporal contrast or ‘‘contrast sensitivity’’ of a DVS pixel

�ev ¼ ln
Iphðt2Þ
Iphðt1Þ

� �����
���� � DIph

Iph

����
����

in practice limited by the noise of the photoreceptor front–

end and its bandwidth. In practical designs, noise-equivalent

contrasts (NECs) with related contrast sensitivities of around
1% have been achieved [50], [52], [53].

The demand for compact pixel size imposes the use of

simple, area-efficient two-transistor comparators with

offset voltage mismatch standard deviations around 10–

20 mV, resulting in minimum practical values for Vth of

between 50 and 100 mV. In order to approach the contrast

sensitivity levels achievable with single pixels, the effect of

mismatch must be minimized by maximizing overall the
voltage gain AT ¼ AvC1=C2. Several approaches to increas-

ing this gain factor have been proposed, including

increasing the voltage gain Av of the front–end [50],

adding a preamp stage [51], [52] or using a two-stage

capacitive feedback amplifier configuration [54].

Fig. 5(a) shows the original phototransduction stage

[49], [64] with Av ¼ nn, where nn is the subthreshold slope

factor of NMOS transistor Mn1. An overall voltage gain was
obtained by setting C1=C2 ¼ 20.

An alternative photoreceptor front–end circuit with

additional preamplification stage is shown in Fig. 5(b).

Increased front–end voltage gain combined with a reduced
capacitor ratio improves overall voltage gain to about 60 (a

factor 3 increase) while saving capacitor area [50].

Fig. 5(c) illustrates an improved transimpedance amplifi-

er-based technique to increase contrast sensitivity by about

a factor 10 while minimizing additional mismatch. To

achieve this, gain Av is now nnN, where N, the number of

stacked diode-connected transistors of a preamplification

stage, is a mismatch-free factor. Voltage headroom limits
the practical number of stacked transistors to N ¼ 4 and

the circuit reduces intrascene DR [52]. A two-stage version

of the capacitive feedback amplifier also yielded an overall

gain increase by about a factor 10, as reported in [54].

A recent DVS pixel design [55] is aimed at color vision

[color DVS (cDVS)]. The cDVS simultaneously detects

relative intensity and absolute wavelength change events

using a single buried double junction (BDJ) photodiode.
Measurements show that the cDVS color change pathway

can detect light wavelength changes as small as 15 nm [55],

although basic limitations on the color separation capabil-

ities and dark current of parasitic BDJs make this approach

challenging.

DVS relative change events and gray-level image

frames are two highly orthogonal representations of a

visual scene. The former contains the information on local
relative changes, hence encodes all dynamic contents, yet

there is no information about absolute light levels or static

parts of the scene. The latter is a snapshot that carries an

absolute intensity map at a given point in time, however

has no information about any motion; hence, if scene

dynamics are to be captured, one needs to acquire many of

those frames. In principle, there is no way to recreate DVS

change events from image frames nor can gray-level
images be recreated from DVS events.

3) Pixel-Individual Image AcquisitionVATIS: Combining

relative change detection with absolute exposure mea-

surement at the pixel level leads to a sensor with very rich

Fig. 5. (a) DVS original photocurrent transduction circuit [49], (b) alternate transduction with mismatch sensitive preamplification [50],

and (c) transimpedance transduction with mismatch insensitive preamplification [52].



visual information output that provides the means to

overcome some of the persistent limitations faced in

today’s vision engineering.

Besides limited temporal resolution, data redundancy is

the other major drawback of conventional frame-based
imaging. Each frame contains data from all pixels, regardless

of whether the information has changed since the last frame

had been acquired. Consequently, pixel values from

unchanged parts in the scene get recorded and transmitted

over and over, even though they do not contain any (new)

information. This serious inefficiency of the standard

paradigm of image acquisition has been tolerated for decades

and no viable remedy has been found until recently.
Ideally, only information that is relevantVbecause

unknownVshould be acquired, transmitted, and processed.

Approaches such as sensor-level and even pixel-parallel

frame differencing have been proposed [56]–[59], however

all frame differencing imagers still rely on acquisition and

processing of full frames of image data and are not able to

self-consistently suppress temporal redundancy and provide

real-time compressed video output. Furthermore, even when
processing and difference quantization is done at the pixel

level, the temporal resolution of the acquisition of the scene

dynamics, as in all frame-based imaging devices, is still

limited to the achievable frame rate and is time quantized to

this frame rate. The main obstacle for sensor-driven video

compression lies in the necessity to combine a pixel identifier

and the corresponding grayscale value and implement

conditional readout using the available array scanning
readout techniques.

As with many surprisingly simple solutions to persis-

tent problems, a combination of approaches developed

independently in seemingly unrelated fields led to a

breakthrough. Developing a detector readout chip for a

high-energy physics experiment in the 1990s [60], [61], we

proposed a circuit that detects an ‘‘event’’ (the event of an

elementary particle passing through a particle detector)

and encodes information on electrical charge related to

this event asynchronously in the time domain (i.e., in the

time between two pulse edges). Later, we discovered that

AER, discussed in Section III-A, would provide the means

to conveying asynchronous time-domain information off a
large array of pixels and include the spatial information

about the location of the source of the information in the

array (the pixel x; y address). Finally, with an array of DVS

pixel circuits [47]–[49], we now dispose of the information

where in a visual scene and when (at very high temporal

precision) something has changed and new information is

available to be acquired. Combining these techniques, it

becomes possibleVfor the first timeVto acquire image
information not frame-wise but conditionally only from

parts in the scene where there is new information, and so

to overthrow the seemingly inviolable paradigm of frame-

based image acquisition [62].

The ATIS [63], [64] introduces fully autonomous pixels

that combine a DVS change detector and a conditional

exposure measurement circuit. The change detector

independently and asynchronously initiates the measure-
ment of a new exposure/grayscale value only ifVand

immediately afterVa brightness change of a certain

magnitude has been detected in the field of view of the

respective pixel (Fig. 6). The exposure measurement

circuit acquires absolute instantaneous pixel illuminance

by converting the integrated photocharge into the timing

of asynchronous pulse edges (see Figs. 7 and 8).

Letting each exposure measurement be triggered by a
change detection, the ATIS pixel does not rely on external

timing signals and autonomously requests readout access only

when it has a change event or a new grayscale timing pulse to

communicate. At the readout periphery, change and grayscale

events are arbitrated, furnished with the pixel’s array address

by an address encoder and sent out on an asynchronous bit-

parallel AER bus [17], [65]. Fig. 6 shows a functional diagram

of the ATIS pixel.

Fig. 6. The ATIS pixel containing a change detector circuit and a conditional exposure block. An exposure measurement is executed when

triggered by a change detection. As a result, two types of asynchronous AER events, encoding change and exposure information, are generated

and transmitted separately. On the right, change detection events recorded during a short time window are displayed; associated gray-level

updates at the corresponding pixel positions are shown below.



The benefits of ATIS image data acquisition are
manifold.

• Sensor-level video compression: The temporal

redundancy suppression of the change-detector-

controlled operation ideally yields lossless focal-

plane video compression with compression factors

depending only on scene dynamics. Theoretically

approaching infinity for static scenes, in practice,

due to background noise-triggered events, the
achievable compression factor reaches 1000 for

bright low-activity scenes. Typical dynamic scenes

yield compression ratios between 20 and several

hundred. Fig. 9 shows a typical surveillance scene

generating a 2500–50 000 events/s @ 18 bit/event

continuous-time video stream.

• Fine temporal resolution: ATIS avoids the unnat-

ural time quantization of frame-based image data
acquisition. Continuous-time operation results in a

temporal resolution of the acquired scene dynam-

ics (depending on light levels) orders of magnitude

better than standard imagers [e.g., 1000 frames per

second (fps) equivalent at > 100 lux].

• Wide DR and improved SNR: Time-domain

encoding of the intensity information automati-

cally optimizes the integration time separately for
each pixel instead of imposing a fixed integration

time for the entire array, resulting in exception-

ally high DR and improved SNR: An intrascene

DR of 143 dB (static) and 125 dB at 30 fps

equivalent temporal resolution, and an SNR of

> 56 dB have been measured. In contrast to

conventional image sensors, SNR of time-domain

encoding image sensors is largely independent of
light levels [64].

4) Hybrid DVS Plus APS Sensor: DAVIS: Another recent

approach to combine dynamic and static information into a

single pixel is the so-called dynamic and active pixel vision

sensor (DAVIS) [67], shown in Fig. 10. This pixel

combines conventional frame-based sampling of intensity

with asynchronous detection of log intensity changes. It
relies on the fact that a logarithmic photoreceptor can

continuously measure the photocurrent without consum-

ing it, so the photocurrent can also be integrated over time

to produce a voltage signal. The DAVIS has the advantages

of sharing the same photodiode with the DVS circuit and a

small readout circuit that only adds a few transistors to the

pixel, increasing the DVS pixel area by about 5%. It allows

to capture conventional images, which are compatible with
years of research in machine vision. Of course, this also

brings back the disadvantages of providing a redundant,

sampled intensity output with linear encoding of intensity.

It remains to be seen if the DVS output can be used to

efficiently trigger frame captures. If so, then perhaps the

DAVIS can bring together conventional machine vision

and bioinspired, event-based approaches.

Time-based encoding of image data: Instead of encoding
pixel values in electrical quantitiesVvoltage, current, or

chargeVimage data can also be encoded in the time domain

[25]. The basic principle of time-domain image sensors is

illustrated in Fig. 7(a). To initiate a photomeasurement

cycle, the photodiode node is reset to a defined voltage level

Vpix; 0 by applying a short pulse signal Vreset to a reset

switch. Subsequently, the photodiode is discharged by the

photo-generated current. The integration, and hence the
photomeasurement, is finished not after a fixed exposure

time as in standard imagers, but when the integration

voltage reaches a given threshold level. The exposure

information is encoded in the time between the Vout pulse

and the reset with the incident light intensity being

inversely proportional to the integration time tint.

To eliminate comparator offset FPN, switching delay

errors, and kTC noise, a time-domain differential mode
can be realized. As shown in Fig. 7(b), an illuminance-

proportional integration time tint is established by mea-

suring the time difference for the voltage Vpix to drop from

a first reference voltage VrefH to a second reference voltage

VrefL, such implementing a time-domain correlated double

sampling (TCDS) light-to-time transduction [66]. The

TCDS in-pixel circuitry uses a single comparator and pixel-

level asynchronous digital logic to automatically control
the switching between two reference voltages within the

same integration cycle.

Fig. 7. (a) Principle of time-based imaging. (b) Time-based

imaging with TCDS.

Fig. 8. ATIS pixel exposure measurement circuit.



IV. DISCUSSION AND CONCLUSION

This paper focused on retinomorphic vision sensor de-

signs. There are many areas of possible improvement and

innovation in the design of silicon retinas and the
processing of their outputs.

The CMOS image sensor (CIS) industry seems still to

be mired in the ‘‘megapixel race,’’ where a main aim is to

offer more pixels for less money without sacrificing basic

image capturing capability. Bioinspired vision sensors also

face this problem, because pixels that are too large are hard

to sell in mass production.

Event-based silicon retinas offer either spatial or
temporal processing and none of them offer powerful

spatial redundancy reduction. No one has thus far built a

high-performance color silicon retina, although color is a

basic feature of biological vision in all diurnal animals.

The rather poor quantum efficiencies and fill factors of

silicon retinas are also a consequence of using standard

CMOS technologies. One solution is the use of integrated

microlenses, which concentrate light onto the photodiode.

However, standard microlenses offered in CIS processes

are optimized for pixels smaller than 5 um, so a CIS
technology offering large micolenses is required. Another

possible improvement could come from backside illumi-

nation (BSI). Normally, a vision sensor is illuminated from

the top (front) of the wafer. However, for tiny-pixel CMOS

imagers frontside illumination (FSI) is a big problem,

because the photodiode sits at the bottom of a tunnel

through all the overlaying metal and insulator layers,

making it difficult to capture light, particularly at the edges
of the sensor when using a wide angle lens. This problem

led the development of BSI, where the wafer is thinned

down to less than 20 �m and is illuminated from the back

Fig. 10. The DAVIS vision sensor. (a) The pixel circuit combines conventional APS with a DVS circuit. (b) Snapshot from 240� 180 sensor showing a

captured APS frame in grayscale with the DVS events in color. The ball was flying toward the person. (c) 5 ms of output right after the frame

capture of the ball.

Fig. 9. Typical surveillance scene data acquired with an ATIS, generating a 2500–100 000 events/s @ 18 bit/event continuous-time video

stream. The actual event rate depends on instantaneous scene activity. Comparing corresponding bit ratesV45 000 to 1 800 000 b/sVto the

raw data rate of a QVGA 8-b grayscale sensor at 30 fps of 18 Mb/s demonstrates lossless video compression with compression factors

between 10 and 400 for this example scene. Positive (ON) and negative (OFF) change events collected during 30 ms and displayed as black and

white pixels (left); gray levels measured by the pixels that have registered a change event during the past 30 ms, for better illustration

shown on an empty background. The effect of objects triggering exposure measurement in the pixel they hit while moving across the focal plane

becomes apparent (middle); same point in time into the video sequence with full background data displayed, showing compressed video

output from the ATIS.



rather than the front. Now all the silicon area can receive
light and, if properly designed, most of the photocharge is

collected by the photodiode. Intense development of BSI

image sensors by industry may shortly make this technol-

ogy more accessible for prototyping. New problems can

arise, such as unwanted parasitic photocurrents in

junctions other than the photodiode. These currents can

disturb the pixel operation, particularly when the pixel

stores a charge on a capacitor like a global-shutter CMOS
imager or the DVS pixel.

The retina implementations described here show the

variety of approaches taken toward building high-quality

AER vision sensors. These sensors can now be used for

solving practical machine vision problems. In order to take

full advantage of the characteristics of these silicon retinas,

development of customized, event-based processing techni-

ques is required. Image processing for frame-based vision is
highly developed as the field has been expanding for many

decades. As a consequence, open source processing

packages such as OpenCV are available. Event-based sensing

and processing is a quite incipient field. Although event-

based sensors have been reported for some time now, higher

level processing is still very premature. Nonetheless, there
are some initial promising results already reported. For

example, Pérez-Carrasco et al. [68] have shown 1-ms symbol

recognition latency including both sensing and processing

under indoor light illumination, based on event-driven

convolutional neural networks. Similarly, O’Connor et al.
[69] have shown handwritten character recognition using

event-driven stochastic encoding learning and processing.

No complete package such as OpenCV for event-driven
vision processing exists to date, but there is a growing open-

source Java-based environment for controlling AER-type

hardware as well as performing basic processing like optic

flow, spatial filtering, ego-motion suppression, etc. [70].

Future developments in bioinspired vision will focus on

continued sensor improvements, together with develop-

ments of algorithms and hardware architectures for

processing the sensor outputs. These approaches should
further improve performance in artificial vision systems,

e.g., for wide DR high-speed imaging, while at the same

time decreasing computational cost and latency by taking

advantage of the sparsity and the precise timing of the

event-based visual information encoding. h
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