
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Mashup-based Framework for
Business Process Compliance Checking

Cristina Cabanillas, Manuel Resinas and Antonio Ruiz-Cortés

Abstract—Business process compliance ensures that the business processes of an organisation are designed and executed
according to the rules that enforce the compliance controls that govern the company. We faced the challenge of building a Business
Process Compliance Management System (BPCMS) for a process-aware organisation that had to provide support for several needs
that, despite having been identified in the literature, were only partially satisfied by existing approaches. The variability in the types of
rules and their interpretation generally restricts the existing support for compliance checking to specific types of rules (e.g., rules
affecting the control flow of the process), a specific phase of the business process management (BPM) lifecycle (e.g., design time or
run time), or certain information systems (ISs) for data retrieval (e.g., process event logs). Motivated by this, we designed a conceptual
framework for design-time and run-time compliance checking that relies on the use of mashups for rule specification and checking. It
presents the following advantages: (i) an open-ended set of types rules can be specified by designing and connecting mashup
components; (ii) (parts of) the definitions of the rules can be reused as needed; and (iii) the mashup-based compliance checking
(MCC) system can be integrated with ISs of the organisation, enabling the verification of actual facts on actions performed during the
execution of a process (e.g., the existence of a specific document in a concrete location). Design-time and run-time implementations of
the framework were conducted and tested in a real setting.

Index Terms—Business process compliance, business process management, compliance checking, compliance framework, mashups

F

1 INTRODUCTION

BUSINESS process compliance ensures that the business
processes of an organisation are designed and executed

according to the regulations and internal policies that gov-
ern the company. Based on these regulations and internal
policies a set of compliance controls1, which must be observed
by the organisation, can be defined. An example of com-
pliance control is “On a quarterly basis, a tax completion
checklist is used and signed by the Tax Manager and the
Financial Controller” (CC1). Each compliance control can
be further decomposed into a set of compliance rules or
constraints2 [1], [2]. These rules are specific checks that must
be carried out in order to evaluate whether the control is
being fulfilled. Therefore, rules specify how controls can be
materialised in the context of the business processes and the
Information Systems (ISs) of an organisation. Compliance
rules relate to different aspects of a process (a.k.a. business
process perspectives), such as the execution order of the ac-
tivities (control flow or behavioural perspective); the data
accessed and produced (informational perspective); or the
people (human resources or just resources) that participate
in the process (organisational perspective). For instance,
CC1 could be materialised in a rule like “Every four months,
it is necessary to check whether a new document has been
uploaded to the Document Management System (DMS) that
contains the checklist completed and signed by the Tax

• Cristina Cabanillas was with the Institute for Information Business,
Vienna University of Economics and Business, 1020 Vienna, Austria.

• Cristina Cabanillas, Manuel Resinas and Antonio Ruiz-Cortés are cur-
rently with the University of Seville, 41012 Seville, Spain.
E-mails: cristinacabanillas@us.es, resinas@us.es, aruiz@us.es

Manuscript received in August 2019; revised in –, 2020.
1. By compliance we always refer to business process compliance.
2. We will use rule, compliance rule and constraint interchangeably.

Manager and the Financial Controller” (CR1).
Compliance rules can be checked at different phases of

the Business Process Management (BPM) lifecycle [3], which
results in two big modalities [4]. On the one hand, forward
or pre-mortem compliance checking is the most proactive
way to check compliance and comprises design time and
run time. Design-time compliance checking is usually per-
formed after process modelling to ensure that the process is
compliant with the given rules before its execution, saving
time and effort to business analysts. Run-time compliance
checking (a.k.a. compliance monitoring or online audit-
ing [5]) assesses rules at run time using data stored in the
ISs of the organisation, so if a rule is violated or some
problematic situation arises while running the process we
might be able to solve the problem in time to avoid ending
in a non-compliant state. On the other hand, backward or
post-mortem compliance checking (a.k.a. offline auditing [5])
determines whether past instances of a process were compli-
ant with rules from data stored in the ISs of the organisation.
The result helps stakeholders to be prepared for potential
future audits. The complexity of checking business process
compliance has been acknowledged in the literature [6], [7].

In this paper we introduce a conceptual framework
for forward compliance checking that, besides supporting
most of the Compliance Monitoring Funcionalities (CMFs)
identified and addressed in the literature [5], tackles the
needs encountered when building and deploying a fully-
fledged Business Process Compliance Management System
(BPCMS) [8] in a real organisation. These needs, related to
the heterogeneity of the ISs and the number and variability
of compliance rules, can be covered if three requirements are
met. The fact that the requirements have also been identified
and partially addressed in the literature as we discuss next
shows that their interest goes beyond a particular case.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Requirement 1 (Req 1). Seamless integration with
enterprise ISs. Several authors have already identified the
need for compliance systems to obtain and integrate the
required data from heterogeneous data sources [7], [9],
[10]. Based on this observation, Giblin et al. identify the
challenge of managing compliance rules in such distributed
and heterogeneous IT environments [10], and Sadiq and
Governatori highlight that integration technologies can be
helpful in that regard [7]. This heterogeneity of sources
is particularly relevant because approaches that assume
homogeneous data sources may not be well suited for these
scenarios. For instance, many proposals [11] consider as a
unique data source the event logs of the process which, in
turn, must be very complete in order to enable doing checks
on the different process perspectives. However, in some
cases, a direct evaluation of a system or database state may
be more useful. This holds in cases in which it is inefficient
to transform all data necessary to check the compliance
rules into events [10] either because of the complexity of
the transformation or because it might not be reasonable to
include some required information in the log (e.g., when the
check involves querying the content of a document).

Requirement 2 (Req 2). Support for an open-ended
set of types of rules at design time and at run time.
A compliance system must be able to specify and check
rules regardless of the phase of the BPM lifecycle in which
compliance is checked [12] and the business process per-
spectives involved. The challenge is that each business
process perspective includes many types of rules [5]. This
variability [4] leads to consider that supporting several
formalisms for expressing rules is a desirable feature for
frameworks. Moreover, even for the same type of rule, the
system must provide the ability to fine tune its meaning.
For instance, a well-known type of compliance rule is the
separation of duties. While it is typically implemented to
prevent the same person from performing two specific tasks
of a process, under certain circumstances it is extended
to enforce that the two people involved must also have
different roles [5], [13]. Therefore, it is convenient to have
a system that is not closed as to the types of rules that can
be defined in it and the formalism used to check them.

Requirement 3 (Req 3). Rule specification reuse. The
importance of compliance rule specification reuse has al-
ready been identified in several proposals [1], [12], [14]. All
of them provide evidence on the existence of a high similar-
ity between some compliance rules and the convenience of
having a mechanism that enables reusing their specification
instead of having to redefine them from scratch. This would
help to save effort since only the adaptation to the business
process at hand would be necessary [10], [14].

Research proposals have mostly focused on developing
specific techniques for compliance checking, tending to disre-
gard (some of) these 3 requirements. Moreover, assumptions
usually made in terms of the required input data or the
formalism used limit their ability to be extended to consider
them. Exceptions to this are frameworks like [2], [15], [16],
[17], [18] that focus on the problem of implementing a
general architecture or infrastructure for compliance check-
ing. However, as we discuss in Section 2, in the best case,
they only partially address some of these requirements,
which may limit their applicability in scenarios with high

IS heterogeneity and a large variety of compliance rules.
Our proposal is related to such existing frameworks as

we do not develop a new specific technique for compliance
checking. We propose to use mashups [19] as a means to
provide a homogeneous framework to specify rules and
check design-time and run-time business process compli-
ance, and we present an implementation of the framework
that has been applied in a real setting within an R&D project.
Mashups are easy to understand and use [20], and they can
be implemented in many ways (e.g., by using spreadsheets
[21]). Different formalisms can be combined in a single
mashup provided that there is a way to connect the infor-
mation resulting from a technique with the input required
by another approach3. That enables their use to support an
open-ended set of types of rules by integrating techniques of
different nature (Req 2). Mashups offer flexibility, portability
and reusability [19] so (part of) already defined rules can
be saved and used to build other mashups (Req 3). The
fact that mashups are designed for information integration
(Req 1) and that they have already been used for analysis
purposes in other domains [22], [23] motivated us to explore
their applicability to check compliance rules. Throughout
this paper we will describe how our approach addresses
the 3 requirements as well as a methodology to use it. The
framework has been validated with a detailed comparison
to similar frameworks and by using it on real data.

The rest of the paper is structured as follows. Section 2
examines the state of the art on compliance checking, es-
pecially on compliance frameworks. Section 3 describes our
mashup-based framework for forward compliance checking
and exemplifies its use with a running example. Section 4
introduces a methodology for the use of the framework.
Section 5 reports on our experience when applying it on
real data. Finally, Section 6 presents the conclusions drawn
from this work and outlines potential future work.

2 RELATED WORK

A conceptual model of compliance checking similar to other
conceptual models [1], [2] is depicted in Figure 1. A Com-
pliance Source (e.g., a Regulation or an Internal Policy) defines
a set of Compliance Controls that must be observed by the
organisation. The compliance controls are not necessarily
specific to a compliance source but may be shared by several
of them. When the compliance sources are abstract, a con-
sultant company is usually hired to define the compliance
controls that apply to the organisation. Each control can be
further decomposed into a set of Rules that specify how
the controls can be materialised. This is usually dependent
on the ISs used. For example, the rule CR1 (cf. Section 1)
would be defined differently if the checklist was created in
a dedicated IS instead of being a document uploaded to a
DMS. At design time, rules are assessed once for the whole
process (e.g., one could check whether the organisation has
a document specifying its security policies) but at run time,
rules have to be assessed for each process instance (e.g.,
one could check that a given action has been recorded
in an IS for each instance of the change request process).
Moreover, rules have a Process Context in which they apply.

3. The complexity of a mashup lies within each component, and the
greatest effort is put into how to integrate them.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Compliance
Source

Compliance
Control

1..*
define

Regulation Internal
policy

Rule

decomposed into
1..*

Evidence

0..1
design-time

Compliance
mashup

0..1
run-time

1
applies toProcess

context

Geographic region

Business unit

...

...

0..*
proves

refers to
1

Business
process

Context

0..*

Fig. 1: Conceptual model of compliance checking

This includes the Business Process to which the rule refers
and an optional Context within that process like a specific
geographic region or a certain business unit of the company.
Finally, there must be Evidences, like documents or log
traces, that prove that the rules are being fulfilled (for CR1,
the evidence would be the document uploaded to the DMS).

The main approaches addressing business process com-
pliance checking up to 2010 were analysed according to
several criteria in [24]. Later, Ly et al. derived 10 CMFs
from a systematic literature review and several case studies
in [5], which can be used as an evaluation framework of
compliance checking approaches. The CMFs are divided
into 3 groups: the CMFs on modelling requirements refer to the
ability to deal with constraints that address aspects beyond
control flow and they include constraints referring to time
(CMF 1), constraints referring to data (CMF 2) and constraints
referring to resources (CMF 3); the CMFs on execution require-
ments refer to requirements imposed by the execution do-
main in which compliance checking is performed and they
include supporting non-atomic activities (CMF 4), supporting
activity life cycles (CMF 5) and supporting multiple instances
constraints (CMF 6); lastly, the CMFs on user requirements
refer to aspects that improve the user experience and they
include the ability to reactively detect and manage violations
(CMF 7), the ability to pro-actively detect and manage violations
(CMF 8), the ability to explain the root cause of a violation (CMF
9) and the ability to quantify the degree of compliance (CMF 10).

Ly et al. also classified compliance monitoring ap-
proaches into 5 categories [5]. One category includes core
compliance approaches, which provide specific techniques for
compliance checking with limited scopes. Most research ef-
forts lie in this category. Regarding design-time compliance
checking, many solutions separately model the business
process and the rules, convert the 2 models into formal rep-
resentations and apply model-checking algorithms to assess
the degree of compliance [25], [26], [27]. These approaches
especially focus on control-flow constraints and usually
show the violations with counterexamples. Patterns are
sometimes used either to simplify rule modelling or to facil-
itate compliance checking in scenarios that often recur [25],
[27], [28]. Consequently, new pattern-based languages have
been designed for the purpose of defining rules, such as
PENELOPE [29] and BPMN-Q [27]. Other approaches anno-

tate the process models using different formalisms for rule
definition and analyse the annotated models for compliance
checking [30], [31]. As far as run-time compliance checking
is concerned, a detailed classification of approaches can be
found in [5], including MobuconEC [32], which supports the
monitoring of temporal and data constraints (among others)
based on Event Calculus; MobuconLTL [33], which can
monitor any rule that can be expressed in Linear Temporal
Logic (LTL); and Seaflows [11], which uses Compliance Rule
Graphs (CRGs) to monitor a stream of events encoded in a
predefined format.

Another category of compliance checking approaches [5]
includes enabling technologies like Complex Event Processing
(CEP) or conformance checking. CEP can be very useful at
run time in systems with a large amount of events and near
real-time requirements but it cannot be used for design-time
compliance checking. Moreover, having as input a stream
of events prevents the execution of some checks, such as
the verification of the content of a document. Concerning
conformance checking, it differs from compliance checking
especially in the fact that it involves checking the log against
a complete process model instead of compliance rules.

The 3 categories that have received the least attention
so far include, respectively: approaches that collect compli-
ance patterns [34], [35], whose goal is to understand and
categorise the different types of compliance rules that may
exist, regardless of how to automate them; approaches for
specific domains like healthcare [36]; and frameworks that pro-
vide general architectures or infrastructures for compliance
checking [2], [16], [17], [18], [37]. The latter category is
the most closely related to our work. We have found 5
frameworks that can be compared to ours. Next, we explain
how the specifications of these frameworks support our 3
pursued requirements as well as the 10 CMFs.

Table 1 collects the results of the evaluation. In it, +
means that the feature is fully supported, +/− means that it
is partially supported, − means that it is not supported, and
n.a. means that the criterion is not applicable (e.g., CMFs
4-8 are not applicable at design time). Note two considera-
tions beforehand: (i) there are several reasons for a partial
support of Req 2, as explicitly explained for each approach;
and (ii) beyond being able to use exactly the same rule
definition several times by copy-pasting it, Req 3 involves
configurability (i.e., a definition can be adapted to be reused
for different rules - e.g., by means of parameterisation).

The EU FP7 project COMPAS [37] worked on the de-
velopment of an integrated solution for compliance check-
ing [15], resulting in a framework for process monitoring
based on CEP techniques. Three Domain Specific Languages
(DSLs) were developed to define rules in 3 specific domains,
and the processes were modelled with the View-based Mod-
elling Framework (VbMF) [38]. The DSLs support control-
flow, temporal and data-based rules, and their extensibility
capabilities allow supporting the organisational perspective
using the Role-Based Access Control (RBAC) model [39]
(CMFs 1-3). The CEP engine is capable of aggregating and
correlating low-level streams of events, so non-atomic activ-
ities can also be handled (CMF 4). We believe that dealing
with activity lifecycles and multi-instance constraints is also
possible thanks to CEP but we could not find evidence of
such support in the COMPAS literature, so we consider

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Req 1 Req 2 Req 3 CMF 1 CMF 2 CMF 3 CMF 4 CMF 5 CMF 6 CMF 7 CMF 8 CMF 9 CMF 10

Approach in
te

gr
at

io
n

va
ri

ab
ili

ty

re
us

e

ti
m

e

da
ta

re
so

ur
ce

s

no
n-

at
om

ic

lif
ec

yc
le

m
ul

ti
-i

ns
t.

re
ac

ti
ve

pr
o-

ac
ti

ve

ro
ot

ca
us

e

de
gr

ee

COMPAS [15] +/− +/− +/− + + + + +/− +/− + − + +
Awad et al. [16] +/− +/− n.a. + + + + + + + − − −

eCRG [17] +/− +/− + + + + + + + + + + +
OPAL [18] − − + + − − n.a. n.a. n.a. n.a. n.a. + −

Schumm et al. [2] − +/− + + + + n.a. n.a. n.a. n.a. n.a. + −
Our framework + + + + + + + + + + − +/− +

TABLE 1: Requirements and CMFs supported by current compliance management frameworks

those functionalities partially covered (CMFs 5 and 6). CEP
also enables continuous monitoring and early detection of
compliance violations (CMF 7) but violation prediction is
not a goal of the framework (CMF 8). Carefully designed
Compliance Governance Dashboards (CGDs) [40] show
many details of the compliance status (CMFs 9 and 10).
As for our requirements, the framework checks compliance
only at run time so Req 2 is partially supported. The
DSLs are template-based, hence rule definition adaptation
is enabled by customising the placeholders in the templates.
However, each language is inherently linked to a domain,
which hinders the actual reuse of the rule definitions outside
a limited scope. Consequently, we consider this provides
partial support for Req 3. The framework takes data from
event logs and relies on the Esper engine for CEP but it does
not communicate with other systems of the organisation.
Req 1 is thus also partially supported.

Awad et al. introduced a framework for instant busi-
ness process monitoring [16] that also makes use of CEP
technologies taking into account the control flow, temporal
constraints, data and resources (CMFs 1-3) and leveraging
CEP advantages for considering non-atomic activities (CMF
4) divided into states (CMF 5) as well as multiple process
instances executions (CMF 6). When a violation is detected,
a recovery action is triggered in order to enforce compliance
(CMF 7). Violation prediction and reasoning on detected
violations are not addressed in the framework (CMFs 8-
10). Req 2 is partially covered because design-time aspects
are disregarded. The authors suggest using Semantics of
Business Vocabulary and Business Rules (SBVR) for rule
definition but the framework does not enforce a specific
compliance rule language so it cannot be properly evaluated
against Req 3. Finally, the framework integrates with the IT
infrastructure that enacts the processes as well as with the
event logs and the CEP engine but is not flexible enough to
interact with other systems, partially supporting Req 1.

Knuplesch et al. developed a framework for visually
monitoring business process compliance once the CMFs had
been defined, targeting and addressing them all as described
in [17]. The framework relies on the Extended Compliance
Rule Graph (eCRG) language, an expressive graphical no-
tation that enables the reuse of rule definitions (Req 3).
Compliance checking is only done at run time (Req 2) with
ad-hoc algorithms that assume that all the required input
data are available in event logs. Therefore, the integration
with further ISs of the organisation is not addressed (Req 1).

Unlike the previous approaches, the OPAL frame-

work [18] targets design-time compliance checking. Busi-
ness processes and rules are modelled with Business Process
Execution Language (BPEL) and Business Property Spec-
ification Language (BPSL), respectively. These models are
transformed to finite state machines and LTL, respectively,
and a model-checking technique is used to find rule viola-
tions, which are shown to the user with counterexamples on
the BPEL model (CMF 9). As BPSL allows the definition of
Domain-Specific (DS) templates with configuration parame-
ters, these can be reused for compliance rule definition (Req
3). However, the specification of constraints related to data
and resources is part of the envisioned future work (CMFs
2 and 3). Because of this limitation and the restriction to
design time, we consider Req 2 not to have been addressed.
The integration with different process modelling tools and
model-checking engines is possible but the framework does
not access ISs of the organisation (Req 1).

Lastly, Schumm et al. developed a framework for mod-
elling business processes that are likely to be compliant
by design thanks to the reuse of compliance fragments (i.e.,
process fragments that are known to be compliant with
specific rules) [2]. Process fragments modelled with Busi-
ness Process Model and Notation (BPMN), BPEL or Unified
Modeling Language (UML) are then formally represented
in Reo [41]. LTL is preferred for rule definition, and control-
flow, temporal, data and resource-aware constraints can be
enforced (CMFs 1-3). However, Req 2 is only partially sup-
ported because run-time aspects are disregarded. A set of
parameterised compliance patterns are specified for recurring
rules, enabling rule definition reuse (Req 3). Model-checking
tools are suggested for compliance checking so, like before,
the counterexamples generated can help to understand the
cause of the violations (CMF 9). Similarly to the OPAL
framework, the integration with different process modelling
tools and model-checking engines is possible but the frame-
work does not access ISs of the company (Req 1).

The main difference between those approaches and our
mashup-based framework is that we put specific emphasis
on satisfying real needs that appear in industrial settings
in which data are distributed among several heterogeneous
systems (Req 1) and the large variety of rules urge putting
in place configuration means that enable rule definition
adaptation and reuse (Req 3). Furthermore, our framework
supports design-time and run-time compliance checking
and provides explicit mechanisms to add an open-ended set
of checks (Req 2). Using appropriate formalisms, CMFs 1 to
6 could be supported thanks to the ability of the framework

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

to use different formalisms (cf. Section 3.3.1). CMFs 7, 9 and
10 could be supported based on an MCC system with our
implementation of the BPCMS as described in Section 5.3.
Violation prediction (CMF 8) cannot currently be supported.

3 MASHUP-BASED COMPLIANCE CHECKING

We call compliance mashups the mashups used for the pur-
pose of compliance checking. As depicted in Figure 1, they
are used to provide a way to automate the checking of a
compliance rule at design time and/or run time. Although
several alternative compliance mashups may exist to check
the same compliance rule, one of them has to be selected to
implement the checking of the rule. If no mashup is selected,
the rule will not be automatically checked.

3.1 Preliminaries: Fundamentals of Mashups
A mashup is a data-driven workflow (a.k.a. data flow) built
with information from one or more data sources that might
be transformed and propagated to produce a desired output
in a reusable User Interface (UI) [19]. Mashups were devel-
oped to build new Web services or applications from exist-
ing data in an “easy” way, such that the end user did not
need to have specific technical knowledge but only knowl-
edge on the problem domain [20]. The original concept of
Web mashup has evolved towards data mashup (for short
mashup) and has already been used to address problems in
a variety of domains, such as the analysis of molecular biol-
ogy in bio-informatics [22] and the simplification of patient
management in hospitals [23]. Intel Mash Maker, Yahoo!
Pipes (now Pipes), IBM Mashup Center and Google Mashup
Editor emerged as the first mashup builders to bring this
technology to the end users. More recent and specialised
mashup Application Programming Interfaces (APIs) can be
found at www.programmableweb.com/category/mashups.

To show mashup appearance and use we have created
the mashup in Figure 2. It returns the last 25 international
pieces of news of 2 digital newspapers. Researchers could
be interested in having a similar mashup in order to be
kept up to date about their research interests (e.g., a mashup
that automatically places on a map the venue cities where
the next editions of their favourite conferences will take
place). As illustrated in the figure, mashup editors allow the
definition of the dataflow with 4 types of components. Data
sources provide the information that shall be processed in the
mashup and they range from data warehouses to Uniform
Resource Locators (URLs) pointing at Really Simple Syndi-
cation (RSS) feeds or any kind of accessible data. The data
sources in Figure 2 are the RSS feeds of the New York Times
and The Australian newspapers. Pipes are the elements in
charge of operating on data, so they all have inputs and
outputs that represent the streams of data going in and
out of the pipe, respectively. The input data they receive
can come from another pipe component or from a data
source, whereas the output data stream they produce can
go to another pipe or constitute the output of the mashup to
the UI. Finally, data flows represent the connections between
pipes, data sources and the UI in a mashup.

Pipes can be General-Purpose (GP) components like
those that handle collections of elements to sort or merge

UI (output)

News1,
News2,
…
News40

getNews()

OPERATOR

subset(25)

FILTER

The AustralianNew York
Times

getNews()

OPERATOR

union()

AGGREGATOR

delDuplicates()

OPERATOR

sortByDate()

SORTER

N1, N2,
…
N63

News1, …, News 40,
N1, …, N63

News1, …, News 40,
N1, …, N63

News31, N20, N5,
N49, News2,
News26, N50, … N7

News31, N20, N5,
N49, News2, News26,
N50, … News14

Legend
Data
source

Data
flowPipe UI

Fig. 2: Mashup collecting the last 25 worldwide pieces of
news from 2 digital newspapers

them; and DS components that implement functions specific
to the problem domain (e.g., handling geolocation data to
enrich Google Maps with external information). Some fre-
quently used pipes include operators, aggregators, sorters
and filters. Operators extract, elaborate and transform the
data, constituting a crucial part of the Extract-Transform-
Load (ETL) process [42] from the input data source(s) to
the output UI. They range from GP operators that imple-
ment well-known functions like count, min and max, to DS
operators that, for instance, handle strings or extract and
build geolocation information. In Figure 2, the operator
getNews() extracts entries from an RSS feed, and delDupli-
cates() removes redundant entries from a set. Aggregators
merge or group data according to some criteria. In Figure 2,
union() merges entries from 2 sets into 1 set. Sorters return
the input data in a specific order. In Figure 2, sortByDate()
orders the entries in the input set by the value of the field
date. Filters narrow down the flow of data, supporting the
transformation of the information. In Figure 2, the pipe
subset(25) retains only 25 items of the input set.

3.2 A Metamodel for Building Compliance Mashups
Each mashup framework, tool or specification proposes a
slightly different mashup metamodel. Figure 3 depicts a
metamodel that includes all the elements that are necessary
for building compliance mashups. A mashup is composed
of Nodes (which can be Data Sources and Pipes) and Data
Flows, with the same meaning as defined in Section 3.1.
The pipes and data sources used are referred to by their
name and are chosen from a catalogue of Pipe Components
and Data Source Components, respectively. The characteristics
of the input and output data streams of the components

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Mashup

+ name: String

Parameter

+ name: String
+ type: Any

ParameterBinding

+ value [0..1]: Any

Pipe DataSource

NodeDataFlow

Composite Pipe

+ scope: {stream,
element}

Connector

+ name: String
+ type: Any
+ cardinality: Integer
+ streamSize: Integer

1..*

0..* 1target

inputs

1

0..* source

outputs

0..*

exposedAs
0..11

refersTo

1isOfType

1..*

output

1..*

1..*inputs

1isOfType

0..*

Component

+ name: String

0..*

Pipe Component
Data Source
Component

1..*

1..*

Fig. 3: Metamodel for building compliance mashups

andParameter() :
returns true iff all the
inputs are true

AGGREGATORn

bool

1

bool
and() : returns true iff
all the inputs are true

AGGREGATOR
n

bool

implies() : returns
true iff p0 implies p1

OPERATOR
n

bool

loop(Pipe) : applies
the pipe Pipe sep. to
every element

OPERATORn

any

n

any

lesserThan() : returns
false iff p0 >= p1

OPERATOR
n

bool

n

any

toSet(String[]) :
returns all the input
values in a flat set

AGGREGATORn

String

1

String[]
filter(Filter) : removes
the inputs for which
Filter = true

FILTERn

any

m

any

Pipe

copySplit() : copies
the inputs to several
output pipes

OPERATOR

Filter

n (bool)

n (bool)
…

n (any)

n (any)
…

n (bool)

n (bool)

p0

p1

n (int)

n (int)

p0

p1

Fig. 4: Example GP pipe components

are defined by means of Connectors. Each connector has a
name, a type that specifies the type of the data carried in
the data stream, a cardinality that indicates the number of
streams that go through the connector, and a stream size
that indicates the expected number of elements in each of
the data streams. The stream size of most connectors is n,
meaning that they can carry data streams of any length.
However, some connectors may have a stream size of 1
(e.g., a connector to specify the output of a component that
counts the number of elements received in its input stream).
Connectors are also used to specify the characteristics of the
output streams of data source components.

Figure 4 shows several pipe components that can be
used in a compliance mashup. Each pipe is represented

 COMPOSITE

copySplit()

OPERATOR

actualPerformer(a2,
“complete”)

OPERATOR

trace1, trace2,, … Alex, Lydia, …
actualPerformer(a1,
“complete”)

OPERATOR

samePerson()

OPERATOR

true,
false,
…

a1=“CreateResolutionProposal” a2=“AnalyseReports”

Alex, NaN, …trace1, trace2,, …

n

trace

n

bool

Fig. 5: Composite pipe to check binding of duties at run time

with a box that includes the pipe type, its name and a small
description of its functionality. The connectors that specify
their inputs and outputs are the arrows going in and out
of the box, respectively, and their stream size and type are
specified above or under the arrow. Tags (pi) are used in
pipes in which the input order matters (e.g., lesserThan()).

Pipes and data sources may have Parameters to cus-
tomise their behaviour (e.g., one can have a generic filter
pipe whose filtering condition is specified by means of
a parameter). In Figure 4 the parameters are specified as
lollipops at the bottom of the box. Mashups must include a
Parameter Binding for the parameterised components. These
parameter bindings either provide specific values for pipes
and data sources or expose those parameters as parameters
of the mashup itself. This allows the external configuration
of the mashup and hence, enables the reuse of mashups in
different scenarios. Concerning composite pipes, they are
a special type of pipe component aimed at creating new
higher-level pipes based on the composition of lower-level
pipe components. They are useful because of two reasons:
(1) they enable abstraction, making complex mashups easier
to understand; and (2) they facilitate the reuse of a complex
structure of pipes in different mashups. Like mashups, a
composite pipe groups several pipes connected with data
flows and includes parameter bindings for the parame-
terised pipes it contains. However, unlike mashups, com-
posite pipes cannot contain any data source. Instead, their
inputs and outputs are determined by the pipes contained
in them that do not have any input or output data flow,
respectively. Finally, the scope of a composite pipe can be of
type stream or element. In composite pipes whose scope is
of type stream, the input is processed as a whole and their
behaviour is the same as if their components were used in
the mashup directly. In case of a scope of type element, the
composition is applied to each element in the input stream
separately (one by one). Graphically, the latter composite
pipes have the component name surrounded by a three-
waves symbol. To showcase the difference let us suppose
that we have a composite pipe that contains just one pipe
component that counts the number of elements received in
the input data stream. If the scope of the composite pipe
is of type stream and its input stream contains 5 elements,
then its output stream contains just one element: the number
5. Instead, if the scope is of type element, its output stream
contains 5 elements, each of them being the number 1.

An example of a composite pipe with a scope of type

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

element is depicted in Figure 5. It receives n executions of
a business process (traces) as input and 2 specific activities
that are needed to perform the checks as parameters. The
copySplit() operator copies the stream into 2 output flows,
each of which serves as input of an actualPerformer(act,state)
operator. This operator returns the resource allocated to
activity act when the activity reached the state state for every
trace4. The samePerson() operator checks whether the items
in the 2 input streams are the same on a 1:1 basis, returning a
stream of boolean values that is the output of the composite
pipe. The true values indicate a binding of duties between
the 2 given activities of the business process, meaning that
they were allocated to the same resource [43].

In short, a metamodel suitable for building compliance
mashups must include (i) mechanisms to enable the reuse of
(parts of) mashups (i.e., composite pipes and parameters);
and (ii) the ability to define the scope of a composite pipe
to cover streams (useful at design time to provide a global
evaluation of the rule) and elements (useful at run time to
provide an evaluation of the rule for each process instance).

3.3 Compliance Mashups in Practice

To illustrate the use of compliance mashups in practice,
we use a real process frequently utilised in the Andalusian
Public Administration (APA), which serves to more than 8
million end users. The process represents the procedure to
create and process a resource resolution proposal for hiring
people. Figure 6 shows its BPMN model. Once a resource
resolution proposal is created at the Management Depart-
ment (MD), it is concurrently evaluated by the Consultative
Board (CB) and the Legal Department (LD). When both eval-
uations are finished, the MD analyses the generated reports
and decides whether an external resolution is required. In
case it is, a request is sent to an external committee, which
must create and send a new resolution. Otherwise, the
resolution proposal is reviewed and changes are applied
to the initial document. In any case, the final resolution is
signed and archived, and the result is appropriately notified.

Figure 7 depicts the excerpt of the organisational model
related to the process, which comprises 3 organisational
units and 8 positions within them occupied by 11 people5.
The positions are hierarchically structured. Figure 6 also
illustrates the position-based resource assignments of the
process activities. The assignment of several positions to an
activity means that the resources occupying any of them
can execute it (e.g., activity Review resolution proposal can be
done by a technician of any of the 3 units). More complex
assignments have been omitted in the figure for the sake of
readability. Specifically, there is a binding of duties between
Create resolution proposal and Analyse reports indicating that
these activities must be executed by the same resource.
Several approaches could be used to define such constraints,
either textually (e.g., [43]) or graphically (e.g., [44]).

As part of the compliance controls that affect this pro-
cess, the Business Manager of the MD (the process owner)
needs to know whether the following rule is met: “If the
resolution proposal has been created and the respective

4. NaN is used for any undefined value.
5. Their names have been changed for privacy reasons.

reports from the CB and the LD are available, then such re-
ports must be eventually analysed by the same person who
created the resolution proposal” (CR2). This rule involves
checks related to several process perspectives, specifically:
(i) that specific data objects (Report CB and Report LD) are
created (informational perspective); (ii) that one activity
(Analyse reports) is executed when certain conditions are met
(in this case eventually after the execution of Create resolution
proposal and the activities writing the two data objects) –
behavioural perspective; and (iii) that the binding of duties
between two activities (Create resolution proposal and Analyse
reports) is fulfilled (organisational perspective).

Next, we detail the considerations for the design of the
mashup components and the mashups themselves to check
CR2 at design time (Figure 8) and at run time (Figure 9).

3.3.1 Designing the Mashup Components
In a compliance mashup, the data sources access the repos-
itories and ISs where the organisation stores data that is
relevant to the evidences. Examples of data sources that may
exist are the repositories where business process, organisa-
tion and data models are stored; the DMS of the company
necessary to check which documents have been created; or
the Enterprise Resource Planning (ERP) system that pro-
vides access to financial information6. In our example, we
are checking the compliance of a resource-aware process
model (i.e., a model enriched with resource assignments)
at design time, and a set of running process instances at run
time. Therefore, the data sources are a repository of business
process models and a log of running process instances.

Regarding the pipe components, GP and DS pipes might
be necessary to manipulate the data coming from the data
sources. Figure 4 depicts representative examples of GP
pipes. More GP pipes can be found in mashup development
frameworks, tools and specifications [19], [20], [21]. The set
of available DS pipes depends on the kinds of checks to be
performed in a specific domain. Some might be specific to
one organisation or even to a process and cannot be reused
(e.g., a pipe that parses an ad-hoc document to retrieve the
subprojects contained in one particular project). However,
many DS pipes can be reused in different processes and/or
organisations. For instance, one may have DS pipes that
implement operations on BPMN models, such as obtaining
all the activities defined in a process or all the resources
assigned to an activity; or operations to deal with event logs,
such as checking for precedence between 2 activities.

The DS pipe components can be implemented in an ad-
hoc manner or encapsulate existing solutions (cf. Section 2).
If an existing technique is going to be encapsulated, the
granularity of each pipe must be decided. One could have
a coarse-grained pipe that encapsulates the whole tech-
nique (e.g., a MobuconLTL [33] component that uses an
LTL specification as a parameter to check the LTL formula
against the process instances in an event log); or several
fine-grained pipes that implement specific steps (e.g., use
MobuconLTL to implement several fine-grained pipes that
carry out different checks that usually appear while moni-
toring the compliance of event logs, such as the occurrence

6. Note that the data sources do not need to provide access to the
whole ERP system but they can be as specific as necessary.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Hacienda Process w/ Resources

AP
A

APA

Resolution
needed

Create
resolution
proposal

Review
resolution
proposal

Analyse
reports

Resolution

Generate
consultative

report

Generate legal
report

External resolution required?

External
resolution
received

Resolution

Resolution
Proposal

Resolution
Proposal

Request
external

resolution

Report CB

Report LD

Sign, store
and notify
resolution

Resolution
produced

Data warehouse

Tech. MD
[Position]

Tech. MD
[Position]

Tech. CB
[Position]

Tech. LD
[Position]

Secretary MD
[Position]

Secretary
[Position]Assistant CB

[Position]

Assistant LD
[Position]

EXTERNAL COMMITTEE

N
o

Ye
s

Fig. 6: Simplified version of the process to generate a resource resolution proposal
Hacienda OM

Technician of the
Management
Department

Technician of the
Legal

Department

Technician of the
Consultative Board

Secretary of the
Management
Department

Assistant of the
Legal

DepartmentAssistant of the
Management
Department

Assistant of the
Consultative Board

Alex

Lydia

Carol
Samuel

Anna

Daniel
Chris

Diana

Lucas

David

Business ManagerMario

MD

LD CB

Fig. 7: Excerpt of the organisational model of the APA

and co-occurrence of activities, or the ordering of execution
between activities; in this case, the parameters of the pipe
would be the activities instead of a whole LTL specification).

The choice between using coarse-grained or fine-grained
pipes depends on several factors. Coarse-grained pipes have
the advantage of being able to exploit the logic languages in
which they are usually built to optimise or reason about
the checks in a manner that cannot be done if the logic
of the compliance check is in the mashup. Instead, fine-
grained pipes have the advantage of making the logic of
the compliance check more explicit in the mashup and
allowing combining different techniques to implement the
compliance checks. For instance, data-based checks could
be implemented using [32], whereas temporal checks could
be implemented using [11]. An example of this can be
found in Figure 8, which combines one technique for check-
ing resource assignments (bodDT(om,a1,a2)) with another
for checking control-flow constraints (alwaysFollows(bp,a2)).
Moreover, fine-grained pipes are also useful if the same type
of check is used in many mashups since it avoids that the
same customisation be spread through several mashups.

Finally, besides combining different techniques, DS pipes
can also be used to seamlessly integrate data from different
ISs. For instance, if some data are not stored in the event log
but in a document saved in a DMS, one could implement
a pipe (or a composite pipe) that extracts the name of the
document from the log, retrieves it from the DMS and

checks its content. Figure 9 shows an example of this with
components getUrl(D[1]), getDocument(), and lastModified().

3.3.2 Composing the Compliance Mashup
Using 1 data source, 3 GP pipes and 4 DS pipes, and receiv-
ing the ID of the resource-aware business process model to
be checked (bp), the organisational model associated with
the process (om), two activities (a1 and a2) and a set of data
objects (D) as input parameters, the check of CR2 at design
time can be done in the following steps (cf. Figure 8):

1) The model of the business process bp is extracted from
the repository of business process models and copied
into several streams to be processed by different pipes.

2) The activities of the process that write the input data
objects are identified in the model since, according to
CR2, both the activity a1 and these activities must be
finished in order to check the rest of constraints. The
second parameter of the writes(D,any) pipe used for this
purpose indicates whether the activities that write any
or all the data objects D are selected.

3) A set is then created with the activities previously
identified plus a1.

4) The next step is to check that the input activity a2
always follows the activities in that set as defined in the
model bp. The result of that check is a boolean value.

5) The last constraint to be satisfied is the binding of duties
between a1 and a2 also as specified in the process model
bp against the organisational model om.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Mashup_CR2

UI (output)

Business
process
models

copySplit()

OPERATOR

writes(D, any)

OPERATOR

bp

bodDT(om, a1, a2)

COMPOSITE

and()

AGGREGATOR

toSet({a1})

OPERATOR

alwaysFollows(bp, a2)

OPERATOR

“GenerateConsultativeRe
port”,
”GenerateLegalReport”

true

getBPModel(bp)

FILTER

bp om a1=“CreateResolutionProposal” a2=“AnalyseReports”
D={“ReportCB”,
”ReportLD”}

bp

{“GenerateConsultative
Report”,
”GenerateLegalReport”,
a1}

true

true

Fig. 8: Compliance mashup to check rule CR2 at design time

Case Activity Time Resource Type

1 Create resolution... 2019-05-21T08:40... Alex complete
1 Create legal rep... 2019-05-22T14:03... Anna complete
1 Create consulta... 2019-05-23T11:20... Diana complete
1 Analyse reports 2019-05-25T14:51... Alex complete

2 Create resolution... 2019-06-11T09:15... Lydia complete
2 Create consulta... 2019-06-27T15:41... Diana complete

.

TABLE 2: Event log of running process instances

6) Finally, the two boolean values obtained from (4) and
(5) are aggregated with an and() pipe. The output indi-
cates whether the setting is prepared to fulfill CR2.

As depicted in Figure 8, in this concrete case the process
is compliant with CR2 at design time. If we wanted to give
a slightly different meaning to CR2, we could reconfigure
the properties of the respective components in Figure 8
and reconnect them, or even insert new components to
deal with the new interpretation (e.g., if the activity Analyse
reports should immediately follow the activity Create resolution
proposal).

We assume that for every process there is a data source
that provides an event log with ongoing instances (cases),
where every event contains information about an activity, its
state (where at least the transition type complete is stored),
the temporal data specifying when it was stored, and an

RTmashup_CR2

UI (output)

bodRT(a1,a2)

 COMPOSITE

lastTimestamp(a2)

OPERATOR

and()

AGGREGATOR

Running
process

instances (bp)
copySplit()

OPERATOR

getURL(D[1])

OPERATOR

lastTimestamp(a1)

OPERATOR

trace1, trace2,, …

true,
true,
…

true
false,
…

hasActivity(a1,
“complete”)

OPERATOR

and()

AGGREGATOR

implies()

OPERATOR

getDocument()

OPERATOR

copySplit()

OPERATOR

checkExists()

OPERATOR

lastModified()

OPERATOR

lesserThan()

OPERATOR

and()

AGGREGATOR

trace1, trace2, …

lesserThan()

OPERATOR

c:/…,
c:/…, …

doc1, doc2,
…

doc1, doc2,
…

true, true, …

2019-05-21T08:4
0:12+00:00,
2019-06-11T09:1
5:12+00:00, …

2019-05-25T14:5
1:12+00:00, NaN,
…

true,
false,
…2019-05-23T11:2

0:12+00:00,
2019-06-27T15:4
1:12+00:00, …

true,
false,
…

true, false, …

true, false, …

true,
true,
…

true, false, …

bp a1=“CreateResolutionProposal” a2=“AnalyseReports” D={“ReportCB”, ”ReportLD”}

copySplit()

OPERATOR

2019-05-25T14:5
1:12+00:00, NaN,
…

Fig. 9: Compliance mashup to check rule CR2 at run time

associated resource. This is common information stored in
real-life event logs [45]. An excerpt of an event log for the
example scenario is shown in Table 2. Then, the check of
CR2 at run time can be done in the next steps (cf. Figure 9):

1) The traces of the running instances of the process bp are
extracted from the respective event log and copied into
several streams to be processed by different pipes.

2) The first check that has to be done (in every trace) is
that activity a1 has been completed.

3) Moreover, the 2 input data objects D must have been
created. That implies obtaining the location of such files
and retrieving them from the respective repositories.
Note that for the sake of readability, only the operations
corresponding to 1 of the data objects are illustrated.
The respective components should be duplicated.

4) Several checks will be performed upon those docu-
ments, so the files are first copied into several streams
to be processed separately.

5) To check the first part of rule CR2, activity a1 must
have been finished and the documents must exist in
the repositories. An and() pipe is in charge of that.

6) The second part of the rule states that activity a2
must be executed after a1 is completed and the doc-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

uments are written. lesserThan() pipe components check
whether an instance of activity a2 has been completed
after the last modification of the data objects D accord-
ing to their timestamps. Similarly, another lesserThan()
pipe checks whether the last instance of a1 was com-
pleted before the last instance of a2. These checks are
aggregated with an and() pipe to ensure the control-
flow constraint.

7) The result of (6) is then aggregated with the result of
the binding of duties check. The latter is conducted by
a composite pipe (bodRT(a1,a2)) whose implementation
is shown in Figure 5.

8) Lastly, the implies() pipe checks whether there is an
implication relation between the result of (5) and the
result of (7). The outcome of this check determines
whether the rule is fulfilled or not.

As depicted in Figure 9, the first running instance of
the process is currently compliant with CR2 but the second
instance currently violates the rule because there is no evi-
dence about the subsequent completion of activity Analyse
report. Note that a firm statement about the fulfilment or
violation of a rule can only be made once the execution of
the process instance is over. The intermediate compliance
results could change depending on the occurring events.

4 A METHODOLOGY TO IMPLEMENT MASHUP-
BASED COMPLIANCE CHECKING

Several roles and documents are involved in the process
of creating a mashup-based compliance checking (MCC)
system. Figure 10 provides an overview of how such a
process can be carried out. We assume that a previous
process has identified which are the regulations that apply
to the organisation as well as the internal policies that must
be implemented according to good practices or corporative
business goals. Therefore, the starting point is the set of
regulations and internal policies that must be accounted for
by the MCC system. Next, we detail each of the steps.

Create compliance controls. The first step is to create
the controls to be satisfied. The amount of effort required
by this task highly depends on two factors. On the one
hand, the level of abstraction can vary significantly between
regulations. For instance, the Payment Card Industry Data
Security Standard (PCI DSS), which is an information secu-
rity standard for organisations that handle credit card data,
is very specific and already provides a catalogue of controls
that must be supported; whereas other regulations like
Sarbanes-Oxley Act (SOX) are more generic and a greater
effort is required to identify the set of controls. On the other
hand, there is usually some overlapping in regulations. This
means that additional effort should be put into trying to
create controls that are valid for several regulations at the
same time because keeping the number of controls as low
as possible will make it easier to deal with the complexity
of the system. There are some methodologies that might be
useful in this step (e.g., [46]). The outcome is the catalogue
of controls that should be satisfied by the organisation.

Identify compliance rules. The second step is to identify
how these controls can be materialised within the organi-
sational context. As explained in Section 2, this requires a

deeper understanding of the processes and how the ISs are
organised and hence, a cooperative effort between compli-
ance experts, process owners and system architects. CR1 (cf.
Section 1) is an example of rule for CC1. The outcome of
this step is a set of rules that detail how to check each of the
compliance controls at design time and run time.

These first two steps are necessary to build an MCC
system but they are not yet related to mashups in any
way. In fact, these steps (possibly with minor variations)
are common to all compliance checking system approaches
that have been discussed in the literature [1], [2]. It is after
the compliance rules have been identified that the mashup
creation process starts. This is specified in the subprocess
depicted in Figure 10 and comprises the following steps.

Identify mashups and their DS components. This step
takes as input the controls with rules and obtains both the
definition of the mashups that are necessary for specifying
the compliance rules and the DS pipes that must be im-
plemented. Regarding the former, in Section 3 we showed
how mashups can be parameterised to be reused by several
rules. Thus, in this step the goal is to group all the rules that
have some similarities. For instance, CR1 should be grouped
with the rules that involve periodically checking that a given
document has been uploaded to the DMS. Concerning the
DS pipes, their identification requires a compliance mashup
expert supported by a system architect that knows the
details of the ISs of the organisation. For insights on how
to build high-quality mashups we refer to [47].

Implement DS components. This task involves devel-
oping the DS components of the mashups from the list of
DS pipes previously obtained. It should ideally be done by
developers that are knowledgeable both on the compliance
mashup framework and on the technologies with which the
DS pipe components must interact (e.g., the DMS).

Develop mashups. The next step is to build the mashups
as detailed in Section 3.3. While building the mashups it is
recommended to group small parts in composite pipes be-
cause the abstraction they provide makes complex mashups
easier to understand, and they increase the reuse possibili-
ties. This should be done by a compliance mashup expert.

Assign mashups to rules. The last step involves assign-
ing one mashup to each compliance rule. Concrete values
are given to the parameters of the mashup. This step can be
done by a compliance mashup expert.

Note that it is usually hard to identify all the mashups
and DS components that shall be necessary in a first attempt.
Several iterations of the mashup creation process may be
necessary to build mashups for all the compliance rules.

5 EXPERIENCE REPORT

Our approach was used to build a BPCMS [8] based on an
MCC system for the IT department of a multinational com-
pany from the energy supply domain as an R&D project.

5.1 Context
The goal of the BPCMS was to address compliance check-
ing at design time and at run time for the IT projects
in which the company was involved. The company had

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Creation_MCC_system

Compliance
to be

accounted for

Create
controls

Identify
compliance

rules

Mashup creation

Compliance
mashups
needed

Identify mashup
and its DS

components
Implement DS

component
Develop
mashup

Assign mashup
to compliance

rule(s)
Compliance

mashups
in place

Component
definition

Mashup
definition

Component

Mashup

Compliance
checking

addressed

Regulations

Internal
policies

Controls
catalogue

Controls
with rules

Fig. 10: Creation of an MCC system

recently finished a process modelling and analysis effort
for that department, resulting in the definition of more
than 20 processes that specified how the projects should be
carried out. They had also defined 122 compliance controls
that were obtained by a consultancy firm after analysing
the implication of 3 well-known regulations (SOX, SCIIF
and L262) plus additional controls that responded to inter-
nal business policies. An example of control is “For new
projects, the project owner must verify the correct execution
of the Test Plan”. At the moment of starting the project, these
compliance controls were not being evaluated yet. Instead,
a previous set of compliance rules was checked by the com-
pliance department. The assessment of the rules depended
on the application that contained the information required
as evidence. For some applications a rule was evaluated
automatically but for others there was no automation and
it had to be checked manually. Besides, since the way rules
were implemented varied from rule to rule, it took time and
resources to consolidate them in a unified view.

Thus, the goal of the project was threefold: (i) to im-
plement the new set of controls defined by the consultancy
firm; (ii) to automate many of the compliance rules that were
checked by hand at that moment; and (iii) to automatically
consolidate all compliance rules that were checked in dif-
ferent tools into one unique tool with a common dashboard
and automatic alerts sent to the appropriate person when
a rule was not fulfilled. They were interested in doing so
in a way that new controls could be easily implemented or
removed since the set of compliance controls was expected
to change due to the need to support new regulations
because of recent acquisitions in different countries.

5.2 Application of the Approach

To apply our approach we first developed an MCC engine in
.NET, which included 4 GP pipe components, a mechanism
to model mashups based on the software modelling tool
Enterprise Architect, and a mechanism to specify controls
and link them with mashups, which was based on an Excel
spreadsheet. The MCC engine was completely domain-
independent and could be reused in any project.

After developing the MCC engine we followed the
methodology described in Section 4 to apply our frame-
work in the context described above. Since the controls
catalogue was already defined, we skipped the first step of
the methodology and started with the identification of com-

pliance rules. This task was performed by 1 researcher and
2 members of the compliance department of the company
in three 2-hour meetings with some preparatory sessions of
about 8 hours that were held along 2 weeks. The result was a
description of the rules that had to be checked. Each control
had 2 rules associated to it (1 for design-time compliance
checking and 1 for run-time compliance checking) except for
3 cases in which 2 or 3 rules were defined for each of them.
The reason why different rules were defined for design time
and run time is that they had no explicit traceability between
the process models and the ISs that supported them. Hence,
it was not possible to automatically infer how to implement
a run-time rule from a design-time rule because it required
implicit knowledge on the IS architecture.

The next step was the identification of the mashups and
the DS components of the mashups that were necessary
to check the rules. This was carried out by 2 researchers
and members of the teams that supported the ISs used in
the BPCMS. We first categorised the rules obtained in the
previous step. This resulted in 11 different categories. The
distribution of rules amongst these categories was not ho-
mogeneous. Some categories had up to 38 rules while others
had just 1. The categorisation criteria we used included
the IS involved (e.g., DMS, model repository, or helpdesk
system), the type of check (e.g., the existence of a document,
an element in a model, or specific data in an IS) and the
conditions under which the check applied (e.g., after the
execution of an activity, or when a project is critical). Once
the compliance rule categories were identified, a mashup
and the necessary DS components were devised for each of
them. They included both data sources and pipes. Concern-
ing the former, only 1 data source was defined for each IS
that was used in the mashups except for 1 case in which
2 data sources were defined because the system handled
very different data types. As for the pipes, we chose to use
fine-grained pipes because the same pipe component was
going to be used in many mashups and we wanted to avoid
the same customisation to be spread over several different
mashups. The next steps involved the implementation of the
data sources and DS pipes as well as the mashups. This step
was performed by 2 researchers and 2 software developers,
who implemented the components that involved interacting
with external ISs. Finally, the mashups were assigned to
controls using a spreadsheet that linked each control to 1
or more mashups and provided their parameters.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

All these steps, from the identification of the mashups
to their implementation and assignment to controls was
an iterative process because some mashups required un-
foreseen components that had to be defined or because
some components were generalised so that they could be
used in other mashups. After all the iterations a total of 11
mashups based on 5 data sources and 18 DS pipes (9 filters,
4 to perform API calls to the IS, 3 to extract information
from complex data structures, 1 URL builder, and 1 to
query inside documents) were defined. The definition and
implementation of mashups and DS components that did
not involve the interaction with external ISs took around 60
hours, whereas the implementation of the components that
connected the MCC system with external ISs was done in 30
hours by a team that was already familiar with those ISs.

Figure 11 depicts the system we obtained. 4 different ISs
provided data to the mashups for compliance evaluation,
namely: process models from an enterprise modelling tool
for design-time rules, project and process documents from a
DMS, data about projects status from a project management
tool, and data about incidents and claims from a helpdesk
system. The information obtained from the compliance
evaluation was exploited in 2 different ways. On the one
hand, compliance violations were notified by email to the
person responsible for the project or process that caused the
violation. On the other hand, a dashboard was developed to
present the compliance evaluation results. The dashboard
was structured in 3 levels of detail: executive level, which
provided an overview of the state of compliance grouped by
normatives and organisational structure; management level,
which provided more details about the state of the com-
pliance in the different functions of the organisation; and
operational level, which provided full details about the state
of each of the controls involved. Based on the information
provided by the MCC engine, the dashboard and the notifi-
cation system was implemented in 45 hours.

Due to data privacy reasons, we cannot share the full
working system, but the source code of the MCC engine is
available at https://github.com/isa-group/mcc-engine.

5.3 Reflections and Lessons Learned
The application of our conceptual framework in practice
helped us to validate its feasibility and usefulness as well
as to refine the methodology. It showed that it was pos-
sible to model and check real design-time and run-time
compliance controls that involved 4 ISs already deployed in
the company. Furthermore, we could access the possibility
of supporting CMFs 7, 9 and 10 (cf. Table 1). Since rule
violations can be detected during process monitoring and
reported to the person(s) responsible for the rules as well
as shown in a compliance dashboard, subsequent recovery
actions could be taken (CMF 7). Moreover, thresholds can be
defined in order to classify the degree of compliance both at
process-instance and at process level (CMF 10). The reason
of a violation cannot be specifically reported but the mashup
component(s) that failed can be identified and hence, we can
figure out where the problem is (CMF 9).

We also learned some lessons concerning several steps
of the methodology and the approach, as described next:

1) The identification of compliance rules is a key activity
in the methodology and may take more time than

initially expected. When the project started, it seemed
that having the controls catalogue was enough to start
implementing the MCC engine. However, it turned
out not to be true. There is usually a gap between a
description of a control and the rules in which it can be
decomposed. Bridging this gap is not straightforward
and often requires knowledge on both the control and
the way information is handled by the ISs.

2) The parameterisation of mashups happened to be very
useful as many rules were based on the same mashup
and only changes in the parameters were necessary. As
a matter of fact, it was necessary to define just 11 differ-
ent mashups to implement the compliance rules for all
controls. However, it was necessary to make an effort
in order to make these mashups as reusable as possible,
which sometimes required a couple of iterations.

3) The integration of new ISs with the MCC engine was
easier than expected. The reason is that data sources
and DS pipes provide useful abstractions that, on the
one hand, help the developer to focus just on the
interaction with the IS without considering the specific
compliance controls and, on the other hand, provide a
homogeneous way to interact with external ISs.

4) Some compliance rules may require human intelligence
to ensure that, e.g., the content of a document adheres
to certain guidelines that could not be automatically
checked. In our project, these rules were loosened and
the mashup checked that a specific section appeared in
the document regardless of its content. An extension
could consist of introducing a new pipe that handled
the compliance checking interaction with a human user
(e.g., through emails or a dedicated UI). For each doc-
ument that had to be checked the component could
return one of these three states: valid, invalid, and
pending. The last state would allow the system to pro-
vide data without having to wait for the user validation.

5) The specification of the controls catalogue, the com-
pliance rules and the parameterisation of the mashups
should be done together and in a way that is accessible
for end users, not only for system developers. This
allows end users to change them more easily. In the
project we used an Excel spreadsheet for that task
because it was consistent with the way in which the
controls catalogue was handled before. This had some
advantages, such as the fact that it was familiar to the
users. However, it was also prone to errors because the
system could not check the correct parameterisation of
the mashups until they were deployed.

6) Debugging the system, especially the mashups, was not
an easy task due to their componentisation. It would
be convenient that the MCC engine provided some
sandbox to help to debug mashups. Nonetheless, the
componentisation in data sources and pipes eases the
creation of unit tests of the different components.

6 CONCLUSIONS AND FUTURE WORK

The development of a BPCMS that had to be used in a real
scenario involving distributed and heterogeneous ISs and a
catalogue of 122 diverse compliance controls led us to focus
on needs that were not fully covered by existing compliance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Input

MCC Engine

Mashups

Output

Mashup
expert

DS
Component

DS
Component

Control
Spread-
sheets

Compli-
ance

Results

Alerts

Enterprise
Architect

Compliance
expert

Excel

DS
Component

DS
Component

Dashboard

Notification
system

 R

 R

Enterprise
Modelling

Tool

Document
Mgmt.

System

Project
Mgmt. Tool

Helpdesk
System

 R R

 R R

End user

Fig. 11: Architecture of the BPCMS developed

proposals. We chose to develop a mashup-based approach
encouraged by the advantages found in this technology
from their use in Web applications [20].

From the work performed we conclude that compliance
mashups provide a framework that may help to simplify
an important problem in business process compliance man-
agement: the specification of compliance rules in a way that
enables their automated checking. Its power is propelled by
the fact that already existing approaches can be utilised for
specific functionalities provided that they are adapted to be
used together. In that regard, the framework does not aim
to overlap with other compliance checking approaches but
to complement them by adding an integration mechanism.
In addition, it moves the state of the art on business pro-
cess compliance closer to complex real-life settings. New
components could be added to the framework based on
new system requirements (e.g., to cover new sets of rules).
Similarly, note that although the focus of this paper is on
forward compliance checking, the idea could be applied
to extend the conceptual framework to address backward
compliance checking, too.

Our framework is best suited for organisations with dis-
tributed and heterogeneous ISs and/or that manage a signif-
icant amount and variability of compliance rules, which can
benefit from the open-ended set of types of reusable rules.
For organisations with homogeneous process-aware ISs and
few compliance rules, it is probably easier to use a solution
that focuses on those specific data sources and types of rules,
like those covered in [5]. Likewise, if processes are executed
by hand or process models are not available, the automation
capabilities of the framework are rather limited. Finally,
for other types of compliance like IT security compliance
it could be useful as long as its compliance rules can be
expressed as a data flow in a mashup.

As a next step, compliance prediction features could be
incorporated and the application of compliance mashups in
different domains could be explored to check on general-
isability and scalability. A similar mashup-based approach
could also be used for other types of analyses in the BPM
field, leveraging their reusability and integration properties.

ACKNOWLEDGEMENTS

This work was partially funded by the Austrian Sci-
ence Fund (V 569-N31); projects US-1264651 and P18-FR-
2895, and the MCI/AEI/FEDER, UE (RTI2018-101204-B-
C21, RTI2018-101204-B-C22 and RTI2018-100763-J-100).

REFERENCES

[1] M. Papazoglou, “Making Business Processes Compliant to Stan-
dards & Regulations,” 10 2011, pp. 3 – 13.

[2] D. Schumm, O. Türetken, N. Kokash, A. Elgammal, F. Leymann,
and W. van den Heuvel, “Business Process Compliance through
Reusable Units of Compliant Processes,” in ICWE Workshops -
Revised Selected Papers, vol. 6385, 2010, pp. 325–337.

[3] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamen-
tals of Business Process Management - Second Edition. Springer, 2018.

[4] M. E. Kharbili, A. K. A. de Medeiros, S. Stein, and W. M. P. van der
Aalst, “Business process compliance checking: Current state and
future challenges,” in Modellierung betrieblicher Informationssysteme
(MobIS) Conference, 2008, pp. 107–113.

[5] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M.
van der Aalst, “Compliance Monitoring in Business Processes,”
Inf. Syst., vol. 54, no. C, pp. 209–234, 2015.

[6] S. C. Tosatto, G. Governatori, and P. Kelsen, “Business Process
Regulatory Compliance is Hard,” IEEE Trans. on Services Comput-
ing, vol. 8, no. 6, pp. 958–970, 2015.

[7] S. Sadiq and G. Governatori, “Managing Regulatory Compliance
in Business Processes,” in Handbook on BPM 2: Strategic Alignment,
Governance, People and Culture, J. vom Brocke and M. Rosemann,
Eds. Springer, 2015, pp. 265–288.

[8] C. Cabanillas, M. Resinas, and A. Ruiz-Cortés, “Exploring Fea-
tures of a Full-Coverage Integrated Solution for Business Process
Compliance,” in CAiSE Workshops, vol. 83, 2011, pp. 218–227.

[9] A. Gericke, H.-G. Fill, D. Karagiannis, and R. Winter, “Situational
method engineering for governance, risk and compliance informa-
tion systems,” in Int. Conf. on Design Science Research in Information
Systems and Technology (DESRIST). ACM Press, 2009, p. 1.

[10] C. Giblin, S. Muller, and B. Pfitzmann, “From Regulatory Policies
to Event Monitoring Rules: Towards Model-Driven Compliance
Automation,” IBM Research GmbH, Tech. Rep. RZ 3662, 2006.

[11] L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam, “Monitoring
Business Process Compliance Using Compliance Rule Graphs,” in
On the Move Conf. (OTM), vol. 7044, 2011, pp. 82–99.

[12] L. T. Ly, S. Rinderle-Ma, K. Göser, and P. Dadam, “On enabling in-
tegrated process compliance with semantic constraints in process
management systems,” Information Systems Frontiers, vol. 14, no. 2,
pp. 195–219, Apr. 2012.

[13] M. Strembeck and J. Mendling, “Modeling process-related RBAC
models with extended UML activity models,” Inf. Softw. Technol.,
vol. 53, pp. 456–483, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[14] L. T. Ly, S. Rinderle-Ma, and P. Dadam, “Design and Verification
of Instantiable Compliance Rule Graphs in Process-Aware Infor-
mation Systems,” in Int. Conf. on Advanced Information Systems
Engineering (CAiSE), 2010, pp. 9–23.

[15] A. Birukou, V. D’Andrea, F. Leymann, J. Serafinski, P. Silveira,
S. Strauch, and M. Tluczek, “An Integrated Solution for Runtime
Compliance Governance in SOA,” in Int. Conf. on Service-Oriented
Computing (ICSOC), vol. 6470, 2010, pp. 122–136.

[16] A. Awad, E. Pascalau, and M. Weske, “Towards Instant Monitor-
ing of Business Process Compliance,” Entwicklungsmethoden fuer
Informationssysteme und deren Anwendung (EMISA) Forum, vol. 30,
no. 2, pp. 10–24, 2010.

[17] D. Knuplesch, M. Reichert, and A. Kumar, “A framework for vi-
sually monitoring business process compliance,” Inf. Syst., vol. 64,
pp. 381–409, 2017.

[18] Y. Liu, S. Muller, and K. Xu, “A static compliance-checking frame-
work for business process models,” IBM Systems Journal, vol. 46,
pp. 335–362, 2007.

[19] F. Daniel and M. Matera, Mashups - Concepts, Models and Architec-
tures. Springer, 2014.

[20] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding
Mashup Development,” IEEE Internet Computing, vol. 12, pp. 44–
52, 2008.

[21] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul,
and F. Casati, “Rapid development of spreadsheet-based web
mashups,” in The Web Conf. (WWW), 2009, pp. 851–860.

[22] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows
of services,” Nucl. Acids Res., vol. 34, pp. 732, W729, 2006.

[23] L. Baresi and S. Guinea, “Mashups with mashlight,” in Int. Conf.
on Service-Oriented Computing (ICSOC), 2010, pp. 711–712.

[24] C. Cabanillas, M. Resinas, and A. Ruiz-Cortés, “Hints on how
to face business process compliance,” in JISBD Workshops (PNIS),
2010, pp. 26–32.

[25] A. Förster, G. Engels, T. Schattkowsky, and R. V. D. Straeten,
“Verification of Business Process Quality Constraints Based on
Visual Process Patterns,” in IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering (TASE), 2007, pp. 197–208.

[26] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Ob-
jectives for Business Process Compliance,” in Int. Conf. on Business
Process Management (BPM), 2007, pp. 149–164.

[27] A. Awad, G. Decker, and M. Weske, “Efficient Compliance Check-
ing Using BPMN-Q and Temporal Logic,” in Int. Conf. on Business
Process Management (BPM), vol. 5240, 2008, pp. 326–341.

[28] O. Türetken, A. Elgammal, W. van den Heuvel, and M. P. Papa-
zoglou, “Enforcing compliance on business processes through the
use of patterns,” in EU Conf. on Inf. Syst. (ECIS), 2011, p. 5.

[29] S. Goedertier and J. Vanthienen, “Designing Compliant Business
Processes with Obligations and Permissions,” in BPM Workshops,
2006, pp. 5–14.

[30] A. Ghose and G. Koliadis, “Auditing Business Process Compli-
ance,” in Int. Conf. on Service Oriented Computing (ICSOC), 2007,
pp. 169–180.

[31] I. Weber, G. Governatori, and J. Hoffmann, “Approximate Com-
pliance Checking for Annotated Process Models,” in CAiSE Work-
shops, 2008.

[32] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der
Aalst, “Monitoring business constraints with the event calculus,”
ACM Trans. Intell. Syst. Technol., vol. 5, no. 1, pp. 17:1–17:30, 2013.

[33] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der
Aalst, “Monitoring business constraints with linear temporal logic:
An approach based on colored automata,” in Int. Conf. on Business
Process Management (BPM), vol. 6896, 2011, pp. 132–147.

[34] A. Awad, M. Weidlich, and M. Weske, “Consistency Checking of
Compliance Rules,” in Int. Conf. on Business Inf. Syst. (BIS), 2010,
pp. 106–118.

[35] E. Ramezani, D. Fahland, and W. M. P. van der Aalst, “Where Did I
Misbehave? Diagnostic Information in Compliance Checking,” in
Int. Conf. on Business Process Management (BPM), 2012, pp. 262–278.

[36] J. Stevovic, J. Li, H. R. Motahari-Nezhad, F. Casati, and
G. Armellin, “Business process management enabled compliance-
aware medical record sharing,” Int. J. Bus. Process Integr. Manag.,
vol. 6, no. 3, pp. 201–223, 2013.

[37] P. Silveira, C. Rodríguez, A. Birukou, F. Casati, F. Daniel,
V. D’Andrea, C. Worledge, and Z. Taheri, “Aiding compliance gov-
ernance in service-based business processes,” in Non-Functional
Properties for Service-Oriented Systems: Future Directions, 2011.

[38] E. Mulo, U. Zdun, and S. Dustdar, “Domain-specific language
for event-based compliance monitoring in process-driven SOAs,”
Service Oriented Computing and Applications, vol. 7, pp. 59–73, 2013.

[39] I. American National Standards Institute, “Role-Based Access
Control. ANSI INCITS 359-2004,” http://csrc.nist.gov/rbac, Last
accessed in July 2019 2004.

[40] P. Silveira, C. Rodriguez, F. Casati, F. Daniel, V. D’Andrea,
C. Worledge, and Z. Taheri, “On the Design of Compliance Gov-
ernance Dashboards for Effective Compliance and Audit Manage-
ment,” in ICSOC 2009 Workshops, 2010, pp. 208–217.

[41] F. Arbab, “Reo: A Channel-based Coordination Model for Compo-
nent Composition,” Mathematical. Structures in Comp. Sci., vol. 14,
no. 3, pp. 329–366, 2004.

[42] Z. E. Akkaoui and E. Zimanyi, “Defining ETL worfklows using
BPMN and BPEL,” in Int. Workshop on Data warehousing and OLAP,
2009, pp. 41–48.

[43] C. Cabanillas, M. Resinas, A. del Río-Ortega, and A. Ruiz-Cortés,
“Specification and Automated Design-Time Analysis of the Busi-
ness Process Human Resource Perspective,” Inf. Syst., vol. 52, pp.
55–82, 2015.

[44] C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert, J. Mendling,
and A. Ruiz-Cortés, “RALph: A Graphical Notation for Resource
Assignments in Business Processes,” in Int. Conf. on Advanced Inf.
Syst. Eng. (CAiSE), vol. 9097, 2015, pp. 53–68.

[45] W. M. P. van der Aalst, Process Mining - Data Science in Action,
Second Edition. Springer, 2016.

[46] R. A. Gandhi and S. W. Lee, “Discovering multidimensional corre-
lations among regulatory requirements to understand risk,” ACM
Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp. 1–37, 2011.

[47] C. Cappiello, F. Daniel, A. Koschmider, M. Matera, and M. Picozzi,
“A quality model for mashups,” in Int. Conf. on Web Engineering
(ICWE), 2011, pp. 137–151.

Dr. Cristina Cabanillas is a post-doctoral re-
searcher at the ISA Research Group of the
University of Seville (Spain). She is currently
coordinating the CONFLEX project on the inte-
gration of context-aware resource management
into flexible process-oriented organisations. Her
main research interests relate to business pro-
cess management with a especial focus on their
organisational perspective.

Dr. Manuel Resinas is an Associate Professor
at the University of Seville (Spain), and a mem-
ber of the ISA Research Group. His current re-
search lines include analysis and management
of service level agreements, business process
management, process performance analytics,
and cloud-based enterprise systems. Previously,
he worked on automated negotiation of service
level agreements.

Prof. Dr. Antonio Ruiz-Cortés is a Full Profes-
sor and head of the Applied Software Engineer-
ing Group at the University of Seville (Spain).
His current research focuses on service-oriented
computing, business process management, test-
ing and software product lines. He is an asso-
ciate editor of Springer Computing, recipient of
the Most Influential Paper of SPLC (2017) and
VAMOS award (2020), and elected member of
the Academy of Europe.

