Received: 22 March 2016 | Revised: 29 June 2017

Accepted: 30 June 2017

DOI: 10.1111/mec.14253

ORIGINAL ARTICLE

WI LEY Rien:es)mN:g:lee)Nole)d

Allopatric speciation despite historical gene flow: Divergence
and hybridization in Carex furva and C. lucennoiberica
(Cyperaceae) inferred from plastid and nuclear RAD-seq data

Enrique Maguilla®

Universidad Pablo de Olavide, Seville,
Spain

2Departamento de Biologia Vegetal y
Ecologia, Universidad de Sevilla, Seville,
Spain

3The Morton Arboretum, Lisle, IL, USA

“Botany Department, Field Museum of
Natural History, Chicago, IL, USA

Correspondence

Enrique Maguilla, Universidad Pablo de
Olavide, Seville, Spain.

Email: emagsal@gmail.com

Funding information

Spanish Government, Grant/Award Number:

AP2012-2189, CGL2012-38744, CGL2016-
77401-P; European Community Research
Infrastructures Program, Grant/Award
Number: GB-TAF-2523; Junta de Andalucia
of Spain, Grant/Award Number: RNM2763;
National Science Foundation, Grant/Award
Number: 1255901

1 | INTRODUCTION

| Marcial Escudero?

| Andrew L. Hipp>*@® | Modesto Luceno?

Abstract

Gene flow among incipient species can act as a creative or destructive force in the
speciation process, generating variation on which natural selection can act while,
potentially, undermining population divergence. The flowering plant genus Carex
exhibits a rapid and relatively recent radiation with many species limits still unclear.
This is the case with the Iberian Peninsula (Spain and Portugal)-endemic C. lucen-
noiberica, which lay unrecognized within Carex furva until its recent description as a
new species. In this study, we test how these species were impacted by interspeci-
fic gene flow during speciation. We sampled the full range of distribution of C. furva
(15 individuals sampled) and C. lucennoiberica (88 individuals), sequenced two
cpDNA regions (atpl-atpH, psbA-trnH) and performed genomic sequencing of
45,100 SNPs using restriction site-associated DNA sequencing (RAD-seq). We uti-
lized a set of partitioned D-statistic tests and demographic analyses to study the
degree and direction of introgression. Additionally, we modelled species distribu-
tions to reconstruct changes in range distribution during glacial and interglacial peri-
ods. Plastid, nuclear and morphological data strongly support divergence between
species with subsequent gene flow. Combined with species distribution modelling,
these data support a scenario of allopatry leading to species divergence, followed
by secondary contact and gene flow due to long-distance dispersal and/or range
expansions and contractions in response to Quaternary glacial cycles. We conclude
that this is a case of allopatric speciation despite historical secondary contacts,
which could have temporally influenced the speciation process, contributing to the
knowledge of forces that are driving or counteracting speciation.
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2004), and the strength of intraspecific differentiation correlates in
at least some taxa with speciation rates (Harvey et al., 2017). Gene

Gene flow is generally thought of as a force counteracting popula-
tion divergence (Runemark, Hey, Hansson, & Svensson, 2012).
Increased rates of gene flow are expected on average to increase
genetic and phenotypic similarities among diverged populations (e.g.,
Felsenstein, 1976; Hendry, Day, & Taylor, 2001; Hendry & Taylor,

flow may even counteract the effects of local selection, decreasing
the fitness of divergent populations by migration of alleles beyond
the range in which they are adaptive (Bolnick & Nosil, 2007; Garcia-
Ramos & Kirkpatrick, 1997). Stated another way, hybridization is
generally thought of as a homogenizing process (Latch, Harveson,
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King, Hobson, & Rhodes, 2006; Oliveira, Godinho, Randi, & Alves,
2008). Thus, although hybridization can increase genetic diversity
and thus reduce extinction risk in endangered species—for example,
in a population suffering a bottleneck (Hedrick & Fredrickson, 2010)
—hybridization is more commonly considered a threat to species of
conservation concern due to the risk of genetic swamping and con-
sequent extinction of the species.

These facts notwithstanding, gene flow probably very rarely dis-
rupts divergence among lineages (Rasanen & Hendry, 2008), and it
can in fact act as a creative force promoting speciation (Abbott
et al., 2013; Fitzpatrick, Ryan, Johnson, Corush, & Carter, 2015;
Marques, Draper, Riofrio, & Naranjo, 2014; Soltis & Soltis, 2009;
Stankowski & Streisfeld, 2015). Hybridization among lineages is com-
mon (e.g., Eaton, Hipp, Gonzélez-Rodriguez, & Cavender-Bares,
2015; Mallet, 2005; McVay, Hipp, & Manos, 2017) and is usually
presumed to have neutral ecological and morphological effects
(Rasanen & Hendry, 2008; Van Valen, 1976). Even hybrid speciation
has been demonstrated to be quite rapid in allopolyploid hybrid spe-
ciation (Abbott et al., 2013; Soltis, 2013). Genes or alleles that are
adaptive to certain conditions or ecological niches can be transferred
from one species to another (Hedrick, 2013; Lewontin & Birch,
1966; Whitney, Randell, & Rieseberg, 2010). This is more common
in incipient or recently radiated species, transferring adaptive alleles
that can shape rapid divergence (e.g., Lamichhaney et al.,, 2015;
Pardo-Diaz et al., 2012; The Heliconius Genome Consortium 2012).

The genus Carex L. (Cyperaceae), with more than 2,000 species
(Global Carex Group 2015; Judd, Campbell, Kellogg, Stevens, &
Donoghe, 2007), is one of the largest genera of angiosperms and one
that has experienced a relatively fast radiation (Escudero & Hipp,
2013; Escudero, Hipp, Waterway, & Valente, 2012). The sheer size of
the genus and its perceived morphological homogeneity have made it
a taxonomic challenge. Moreover, the genus appears to harbour incip-
ient or very young species whose morphological limits are sometimes
unclear (e.g.,, Gehrke, Martin-Bravo, Muasya, & Luceno, 2010;
Jiménez-Mejias, Luceno, & Martin-Bravo, 2014; Whitkus, 1988,
1992), which has led to erroneous attribution of inadequately charac-
terized morphological variation to historical hybridization (Cayouette
& Catling, 1992; Escudero, Eaton, Hahn, & Hipp, 2014). One such case
appears to be within the species Carex furva Webb, in which two pre-
viously discovered “morphogroups” or groups of populations with
clear synapomorphies (Luceno, 1986) were suggestive of incipient or
recent speciation, one comprising populations in the centre-northern
Iberian Peninsula, and another comprising populations in the southern
Iberian Peninsula. Initially, the presence of morphologically intermedi-
ate individuals in the southern Iberian Peninsula made difficult the
establishment of clear limits between the morphogroups (Luceno,
1986). Nevertheless, a recent and more exhaustive morphological and
molecular study led to the description of part of the variability of
C. furva as a new species, C. lucennoiberica Maguilla & M. Escudero
(Maguilla & Escudero, 2016). This speciation event seems to have
been influenced by gene flow among diverging species.

This study investigates the speciation process of two very closely
related and sister species, C. furva and C. lucennoiberica. We address
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how gene flow shaped this speciation process and how it is currently

shaping these young species, whether by increasing, decreasing or
even maintaining levels of differentiation. Additionally, we aimed to
test the role of Sierra Nevada as a refugium during glaciations for

these two species.

2 | MATERIALS AND METHODS

2.1 | Study species

Carex furva and C. lucennoiberica (Cyperaceae) are reciprocally mono-
phyletic sister species within Carex section Glareosae G. Don
(Maguilla & Escudero, 2016; Maguilla, Escudero, Waterway, Hipp, &
Luceno, 2015). Both species are endemic to the Iberian Peninsula (in
the case of C. furva only from Sierra Nevada, Granada, Spain;
Maguilla & Escudero, 2016), where they inhabit high siliceous moun-
tains from 1,800 to 3,100 m above sea level (Luceno, 2008; Maguilla
& Escudero, 2016). These species grow in cool environments, only in
microclimates where snow persists the longest throughout the year.
These specific habitat requirements have led to a narrow distribu-
tion, discontinuous in the case of C. lucennoiberica (Figure 1), that
we would expect to render the species highly sensitive to environ-

mental or climatic changes.

2.2 | DNA sampling and sequencing

A total of 88 individuals of C. lucennoiberica and 16 of C. furva were
sampled (Table 1). Additionally, we included 15 individuals from a
morphologically intermediate population in Sierra Nevada (Granada,
Spain; population H, Figure 1), which was described as a possible
hybrid population in a previous study (Maguilla & Escudero, 2016).
Twelve to 16 individuals per population across the range of each
species were included (Figure 1, Table 1). The exceptions were two
critically endangered populations of C. lucennoiberica in Portugal
(Covilha, Serra da Estrela, L4) and Spain (Madrid, Sierra de Guadar-
rama, L8), comprising only one and seven individuals, respectively
(Table 1, Figure 1). Because of the scarce morphological variability in
C. furva (Maguilla & Escudero, 2016) and its restricted distribution,
we included only one population of this species.

DNA was extracted from silica-dried leaves of individuals col-
lected in the field and leaves of specimens from nine herbaria
(BABY, BM, DAO, H, M, MHA, RSA, UPOS and WTU; Index Herbari-
orum (Thiers, 2015)) using the DNeasy Plant Mini Kit (Qiagen, Valen-
cia, CA, USA). Two cpDNA regions were PCR-amplified and
sequenced: atplH and psbA-trnH. These regions were shown to be
the most informative in a pilot study with nine commonly used
cpDNA markers: 5'trnK intron (Escudero & Luceno, 2009), atpl-atpH
(Shaw, Lickey, Schilling, & Small, 2007), matK (Ford et al., 2009),
ndhJ-trnF (Shaw et al., 2007), psbA-trnH (Sang, Crawford, & Stuessy,
1997; Tate & Simpson, 2003), rpl32-trL (Shaw et al., 2007), rps16
(Shaw et al., 2005), trnC-ycf6 (Shaw et al., 2005) and ycfé6-psbM
(Shaw et al., 2005). The atplH region was amplified using atpl and
atpH primers (Shaw et al., 2007) following PCR conditions described



5648
—|—W1 | A= MOLECULAR ECOLOGY

MAGUILLA ET AL

8°W 4° W

L2 N ¢
1

42° N 4 85

o

38° N

o S

| F
A Occurrence probability
[ .
0 75 150 300 km
o oo oo oo oo
T Y | DR W E S

FIGURE 1 Map showing the 13 sampled populations across the full distribution of Carex furva and C. lucennoiberica. L1 to L8 indicate

C. lucennoiberica populations, F for C. furva and H for the hybrid population. Pie charts indicate haplotypes (blue for H1, pink for H2, yellow
for H3, light blue for H4, red for H5, white for H6 and green for H7). Occurrence probability of C. lucennoiberica is also shown as indicated in
the colour legend, as estimated using mMaxenT v.3.3 under current climatic conditions. The haplotype network in the right side of the map was
reconstructed in Tcs using atplH and psbA-trnH cpDNA sequences (the same colours than in the map are shown). Numbers in parenthesis
indicate how many individuals (of the 119 sampled) display each haplotype. Black dots represent unsampled or extinct haplotypes, and lines
refer to single mutational steps. Grey shadow represents hybrid haplotypes and dashed square the only C. furva haplotype (H3)

by the authors in Shaw et al. (2007). Reactions with a final volume
of 25 ul contained: 2.5 ul 10 x PCR buffer, 1.6 ul MgCl, at 50 mm,
2 ul dNTPs at 10 mm, 1 pl of each primer at 10 um, 1 pl of 1 x

BSA, 0.3 pul of Tag DNA polymerase at 5 U/pl and 1 ul of DNA. For
the psbA-trnH region, primers psbAF (Sang et al., 1997) and trnH2
(Tate & Simpson, 2003) were used, and PCR was conducted using
the same reagent concentrations as for the atplH region, with ther-
mal cycling conditions as follows: 5 min of initial DNA denaturation
at 80°C followed by 35 cycles with 30 s of denaturation at 94°C,
30 s of primer annealing at 53°C, and extension at 72°C for 1 min,
finishing with 10 min of final extension at 72°C. All reactions were
conducted in a Bio-Rad T100TM Thermal Cycler, and products were
purified using ExoSAP-IT (USB, Cleveland, OH, USA). Sequencing fol-

lowed Escudero and Luceno (2009).

2.3 | Phylogenetic analyses of cpDNA sequences
and haplotype network

All 119 samples (C. furva, C. lucennoiberica and morphologically inter-
mediate population [hereafter intermediate population], H; Table 1)
were included in phylogenetic analyses, as well as one sample each
of C. brunnescens (SWE), C. canescens (SPA 1) and C. lachenalii (SPA

1; Table 1) as the outgroup, based on previous phylogenetic study
of Carex section Glareosae (Maguilla et al., 2015). Sequences for
atplH and psbA-trnH were assembled and edited separately using
GENEIOUs v.6.1.7 (Biomatters, Auckland, New Zealand), then aligned
with muscLe (Edgar, 2004) before being concatenated in GENElOUs
v.6.1.7. Indels were coded manually as presence or absence at the
end of the data matrix following the “simple indel coding” (Simmons
& Ochoterena, 2000).

Bayesian inference (Bl) was performed using mreaves 3.2 (Ron-
quist et al., 2012) within ceneious v.6.1.7. Two analyses of four
Metropolis-coupled Markov chains (MCMC) were run for 5 million
generations. Substitution models were selected for each of the two
cpDNA regions separately, based on the highest Akaike Information
Criterion weights (AICw; Akaike, 1974) calculated in mMopeLTesT 2.1.3
(Darriba, Taboada, Doallo, & Posada, 2012). Indels were analysed as
a different data partition using a F81-like model following Jiménez-
Mejias, Martin-Bravo, and Luceno (2012). Posterior probabilities (PP)
were calculated as clade support. Unweighted maximum parsimony
(MP) analyses were conducted on the concatenated matrix using TNT
1.1 software (Goloboff, Farris, & Nixon, 2008), and maximum-likeli-
hood (ML) analysis in raxmL 7.2.6 (Stamatakis, Hoover, & Rougemont,
2008) using bootstrap calculation (BS) as clades support, using the
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GTRGAMMA model, with 10,000 fast bootstraps followed by slow
ML optimization (default “—f a” search). Details of phylogenetic

reconstruction follow Maguilla et al. (2015).

The cpDNA haplotype network was reconstructed for the 119
ingroup samples (C. furva, C. lucennoiberica and intermediate popula-
tion; Table 1) using the concatenated matrix of atplH and psbA-trnH
sequences, following the statistical parsimony method (Templeton,
Crandall, & Sing, 1992) as implemented in tcs 1.21 (Clement, Posada,
& Crandall, 2000). Indels were coded following “simple indel coding”
in Simmons and Ochoterena (2000), and gaps were treated as miss-

ing data in the Tcs analysis.

2.4 | Restriction site-associated DNA sequencing
(RAD-seq) analyses

From all ingroup samples included in phylogenetic studies (Table 1),
we selected a subsample of 13 individuals including one sample per
population except for two populations in Spain: Avila, Sierra de Gre-
dos (L7, Table 1; included two samples) and Granada, Sierra Nevada
(population H, the one with intermediate morphology; three samples
included), which were oversampled to represent each of the
detected haplotypes (see Results). In the population in Spain, Avila,
Sierra de Béjar (L5), we could include only one of the two detected
haplotypes due to lack of well-preserved material suitable for RAD-
seq (Table 1). We included one sample of C. canescens (SPA 2) and
one of C. lachenalii (SPA 2) as outgroup (Table 1).

DNA was extracted from silica-dried specimens as specified
above. Preparation of RAD-seq libraries using restriction enzyme Pstl
from genomic DNA followed by sonication and barcoding was per-
formed by Floragenex Inc. (Eugene, OR, USA) following Baird et al.
(2008) using barcodes specific to each sample. We used pyrap v.2.13
(Eaton, 2014) for demultiplexing and clustering, following methods in
Hipp et al. (2014), using a clustering threshold of 90% similarity and
minimum sequencing depth of 10 sequences per locus for within-
sample clustering; 90% similarity and a minimum of four individuals
per locus for among-individual clustering. We investigated the
effects of clustering threshold and minimum number of individuals
per locus (as recommended in Ree & Hipp, 2015) but found essen-
tially no effect on topology, and very little effect on support values
and branch lengths; consequently, we do not report on these alter-
native analyses in this study.

Loci were concatenated to make a supermatrix using the package
raDAMI v.1.0-3 (Hipp, 2014) in r v.3.2.2 (R Core Team 2015), which
was analysed using Bayesian inference (Bl) in exasaves v.1.5 (Aberer,
Kobert, & Stamatakis, 2014) under an unpartitioned GTRGAMMA
model and posterior probability supports for clades. Two indepen-
dent runs of 10 million generations and four chains were run and
with 25% of burn-in. We used the postprocessing tools to obtain a
consensus tree (consense function), establish clade support (cledi-
bleSet function) and to check parameters sampling (postProcparam
function). Our data set was also analysed using maximum likelihood
in rRaxML 7.2.6 (Stamatakis et al., 2008) under an unpartitioned
GTRCAT model and bootstrap supports for clades calculated using

200 nonparametric bootstrap replicates. Additionally, a network anal-
ysis was performed using SNPs from RAD-seq data in NeTviEW Vv.1.1
(Neuditschko, Khatkar, & Raadsma, 2012; Steinig, Neuditschko, Khat-
kar, Raadsma, & Zenger, 2016) as implemented in r v.3.2.2 (R Core
Team 2015). A k = 10 value was applied after testing for the best k
using mutual k-nearest neighbour graphs (mkNNGs).

Finally, to test for the genetic structure of the species, discrimi-
nant analysis of principal components (DAPC; Jombart et al., 2010)
was performed using SNPs as the input on R package ADEGENET
v.2.0.1 (Jombart, 2008). The optimal number of genetic clusters was

estimated using find.cluster function in ADEGENET.

2.5 | Patterson’s D-statistic test for introgression

To detect historical introgression between main lineages of the
resulting phylogeny from RAD-seq analyses, we used the four taxon
D-statistic (Durand, Patterson, Reich, & Slatkin, 2011; Green et al.,
2010) as implemented in pyrap v.2.13 (Eaton, 2014). The D-statistic
test is based on the expectation that introgression from a population
P3 into either of two populations P1 or P2 can be distinguished
from the effects of lineage sorting if the species tree topology is
known to be asymmetrical, with this form: (((P1,P2),P3),0), where O
is the outgroup. Based on the topology obtained from the phyloge-
netic analysis using RAD-seq data, the P3 clade, which must fall sis-
ter to the P1 and P2 clades, comprised C. furva plus a putative
hybrid with haplotype H3. We performed the D-statistic analysis
with every possible combination of the populations/individuals of
C. lucennoiberica from Portugal (Covilha, Serra da Estrela, population
L4; Table 1) and from Spain such as Avila, Sierra del Barco (L6),
Avila, Sierra de Béjar (L5) or specimens of the intermediate popula-
tion from Granada, Sierra Nevada (H) with haplotypes H4 or H7 (as
P1); Oviedo, Sierra de Somiedo (L2), Madrid, Sierra de Guadarrama
(L8), Palencia, Curavacas Mountain (L3), Orense, Sierra Segundera
(L1) or Avila, Sierra de Gredos (L7) (as P2); specimens of C. lucen-
noiberica and the intermediate population with haplotype H3 from
Granada, Sierra Nevada (F and H populations) (as P3, sister to P1
and P2); and the clade formed by C. canescens and C. lachenadlii (as
0O). We included heterozygous sites in the analyses and ran 1,000
bootstrap iterations for each replicate to get the standard deviation
of the D-statistic.

We performed a partitioned D-statistic test (Eaton & Ree, 2013;
Eaton et al., 2015) to infer the direction of introgression. This test is
based on the asymmetry of occurrence of derived alleles present in
two P3 sublineages or only one of these, and present in lineage P2
or P1 but not both, given the topology ((P1,P2),(P31,P3,)),0). We
selected the same samples to represent lineages P1, P2 and O as we
had used in the four-taxa D-tests, with two exceptions: for P3, we
selected P3; to be the C. furva, population F Table 1); and P3, com-
prised population H (intermediate) from Granada, Sierra Nevada
(Table 1). With this sampling, if the dominant direction of introgres-
sion was from one of the Sierra Nevada populations (C. furva [P34]
or the intermediate population [P3,]) to the C. lucennoiberica popula-
tions P1 or P2 (the latter also including intermediate individuals), we



MAGUILLA ET AL

would expect to find introgressed alleles in both P3 populations due
to shared ancestry. This is because the split of P1 or P2 from P3
under this scenario would have preceded divergence between the
P3 populations, so P3; and P3, should share these alleles from an
exclusive common ancestor and then introgressed into P1 or P2.
Conversely, if the direction of introgression were from P1 or P2 to
one of the P3 populations, the other population of P3 would not
exhibit these because the introgression occurred after the split of
both P3 populations from only one of those populations (P3; or P3,)
to P1 or P2 (Eaton & Ree, 2013; Eaton et al., 2015). Thus, the 5-
taxon D-statistic tests complements the 4-taxon test in our study by
allowing us to evaluate first whether gene flow is present between
both species, then whether gene flow from C. lucennoiberica may be
swamping the species with more restricted distribution, C. furva. All
D-statistic tests were corrected for multiple comparisons using a
Holm-Bonferroni correction, using a significance level of o = 0.01 as
cut-off as recommended in Eaton and Ree (2013).

2.6 | Generalized phylogenetic coalescent
demographic analysis

We investigated the demographic history of the species using the
generalized phylogenetic coalescent sampler (G-PhoCS; Gronau,
Hubisz, Gulko, Danko, & Siepel, 2011) applied to 36,329 RAD-seq
loci. Two different sampling strategies were used: one excluding
intermediate individuals using a simple topology in which C. furva is
sister to C. lucennoiberica individuals altogether; and an alternative
including all samples, where the total-evidence ML tree topology
from RAD-seq data, was utilized (Figure 2). The latter case is more
complicated topologically: C. lucennoiberica, Clade C, is sister to a
major clade comprising additional C. lucennoiberica, C. furva and
intermediate individuals, which is subdivided into a subclade contain-
ing C. lucennoiberica plus two intermediate individuals (clade B) and
another subclade containing a single C. furva and one intermediate
individual (clade A). Default settings described in Gronau et al.
(2011) were used for prior distributions of model parameters, with
find-finetunes = TRUE. We allowed migration between C. lucennoiber-
ica and C. furva in either direction in the first approach, and between
clades A-B and A-C in the second approach, to test for the effect of
secondary contacts between C. furva and C. lucennoiberica, using
default migration rate priors.

We ran 180,000 Markov Chain Monte Carlo (MCMC) iterations
for four independent runs, sampling parameters every 100 iterations.
We assessed convergence using TRACER v.1.6 (Rambaut & Drummond,

2014) and removed the first 10% of recorded values as burn-in.

2.7 | Past and present distribution modelling

To evaluate changes in distribution ranges of C. furva and C. lucen-
noiberica due to Quaternary climatic fluctuations, we performed spe-
cies distribution modelling for both species independently, using
maximum entropy analysis in mMaxent v.3.3.3k (Phillips, Anderson, &
Schapire, 2006). We downloaded 19 current bioclimatic variables
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FIGURE 2 Maximum-likelihood (ML) phylogram obtained from
rAXML analysis of the RAD-seq sequences. Analysed matrix was
obtained using clustering at 90% of similarity, a minimum of 10
sequences per locus as depth coverage per individual and a
minimum of at least four individuals having a given locus to maintain
it in the final matrix. Values above branches indicate ML bootstrap
support. Tip labels indicate population names as in Table 1 using
triangles to represent C. lucennoiberica individuals, circle for C. furva
and squares for hybrid individuals. Haplotypes are shown using
colours as legend (blue for H1, pink for H2, yellow for H3, light blue
for H4, red for H5, white for H6 and green for H7). Scale bar
corresponds to substitutions per site. Grey arrows indicate the
direction of introgression detected using the D-statistic test at .01
significance level showing the percentage of each of the 50 analyses
performed that support each scenario of introgression

from the woribcum website (www.worldclim.org; Fick & Hijmans,
2017). Then, we selected uncorrelated variables using a cluster den-
drogram analysis in r v.3.2.2 (R Core Team 2015), applying a thresh-
old of 0.6 dissimilarity for the selection of the variables. For the
occurrence data of both species, we included herbarium materials
and field trips data published by Maguilla and Escudero (2016), total-
ling seven C. furva and 48 C. lucennoiberica localities excluding dupli-
cates.

For the estimation of current potential distribution of species,
we ran 1,000 bootstrap replicates using 80% of species localities as
training data, and the remaining 20% to test the model. Then, we
projected resulting distribution models to past climatic conditions
assuming stable ecological niche requirements through time, at least
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in the last climatic cycle (Nogués-Bravo, 2009). Projections to the
last glacial maximum (LGM, ca. 21 kyr before present) were per-
formed using palaeoclimate data obtained from the Community Cli-
mate System Model (CCSM4; Gent et al., 2011) and the Max-
Planck-Institut Earth System Model (MPI-ESM-P; Giorgetta et al.,
2013) of atmospheric circulation. In the case of the last interglacial
period (LIG, ca. 120,000-140,000 years bp), we used palaeoclimatic
data published in Otto-Bliesner, Marshall, Overpeck, Miller, and Hu
(2006).

3 | RESULTS

3.1 | Phylogenetic analyses of cpDNA sequences

We sequenced atplH and psbA-trnH regions for all 136 sampled indi-
viduals (see matrices in Data S1 and S2). Based on results from ymop-
eLTesT (Darriba et al., 2012) including all C. furva and C. lucennoiberica
samples, plus C. brunnescens (SWE), C. canescens (SPA 1) and
C. lachenalii (SPA 1) as outgroup (Table 1), the evolutionary model
that best fits for atplH was GTR (AICw = 0.3182 [AICw for
GTR+l = 0.2913, for GTR+G = 0.2784, for GTR+I+G = 0.1073]),
whereas for psbA-trnH the selected model was HKY (AICw = 0.2350
[AICw for F81 = 0.1917, for GTR = 0.1094, for HKY+l = 0.0864]).
Analyses using the second-best evolutionary model for each partition
retrieved the same tree topology and almost the same posterior
probability values for all clades (results not shown).

Carex furva and C. lucennoiberica constitute an exclusive lineage
significantly supported in Bl and ML analysis of the combined
matrix (1.0 PP/99% ML-BS; Fig. S1). The populations of C. lucen-
noiberica together form an exclusive lineage with significant support
(0.98 PP and 99% BS; Fig. S1). The populations of C. furva are
paraphyletic with respect to samples of the intermediate morpho-
type with haplotype H3, with significant support (1 PP and 99%
BS-ML, 86 BS-MP; Fig. S1). The intermediate morphotype (H) is
paraphyletic with respect to all other populations of C. furva and

C. lucennoiberica.

3.2 | Analysis of DNA haplotypes

The cpDNA haplotype network shows seven sampled (four haplo-
types in C. lucennoiberica [H1, H2, H5 and Hé], one in C. furva [H3],
and three in the hybrid population [H3, H4 and H7]) and six missing
haplotypes (Figure 1, but see Table S1 for a full list of haplotypes
per individuals). Three major haplotypes are geographically segre-
gated: one from the northern and central-western populations (H1),
one from the central-eastern populations (H2) and one (H3) exclu-
sive to the south. Eight mutational steps differentiate H1 (C. lucen-
noiberica) from H3 (C. furva and hybrids), while only two steps
separate the C. lucennoiberica haplotype H1 from H2 (Figure 1).
Haplotypes between H1 (C. lucennoiberica) and H3 (C. furva and
intermediate morphotype) were found in the intermediate population
in the south (haplotypes H4 and H7), and two minor haplotypes in
the central populations of C. lucennoiberica (H5 and Hé) differing

only by one mutational step from H2 and H1, respectively (Fig-

ure 1).

3.3 | Restriction site-associated DNA sequencing
(RAD-seq) analyses

Individuals in this study are represented by an average of 764,000
sequencing reads (566,000-2,680,000) after quality filtering in
pYRAD v.2.13 (Eaton, 2014). After clustering, we recovered 20,200
loci per individual that passed paralog filtering (15,600-32,100).
The concatenated matrix of aligned loci including gaps had a total
3,120,000 sites and 45,100 variable sites including indels (of
which 11,300 were potentially parsimony informative), with
55.28% missing data. Obtained RAD-seq data are deposited in
NCBI SRA.

The Bl (Fig. S2) and ML (Figure 2) phylogenies of the RAD-seq
matrix show almost the same topology including three major clades:
clade A (1.0 PP/100% BS support) containing all northern popula-
tions of C. lucennoiberica (L1 to L3) and the easternmost central pop-
ulations (L7 and L8) in a different subclade, both subclades with 1.0
PP/100% BS support. Topology within subclade containing L7-L8
populations differs between Bl and ML analyses [((L7-H5,L8-H2)L7-
H2) and ((L7-H5, L7-H2)L8-H2), respectively]; clade B (1.0 PP/98%
BS), including the westernmost-central populations of C. lucennoiber-
ica (L4-L6) and two individuals from the intermediate (H) population
from the south with haplotypes H4 and H7 (Figures 1 and 2); and
clade C (1.0 PP/100% BS) containing all C. furva individuals and indi-
viduals in the intermediate population with haplotype H3 (Figures 1
and 2).

Network analysis suggests strong interconnections among C. lu-
cennoiberica populations (Figure 3). The only C. furva individual is
the most isolated, connected only by intermediate individuals (H)
with haplotypes H3 and H7, plus population L1 and L6 of C. lu-
cennoiberica (haplotype H2). Intermediate individuals present from
six to nine connections, where the individual with haplotype H3 is
the most isolated among intermediate individuals (Figure 3).

The DAPC analysis using k = 10 classified C. furva plus the inter-
mediate individual with haplotype H3 as a single genetic group,
whereas all C. lucennoiberica individuals plus intermediate individuals

with haplotype H4 and H7 comprised a second group (Fig. S3).

3.4 | D-statistic test for introgression

Four-taxa D-statistic tests detected introgression mostly between
clades B and C, supported by 88.33% of the 60 tests performed
(Table S2). This is congruent with the best-supported pattern of
introgression showed by partitioned D-statistic test (five-taxa), from
central to southern populations, from clade B to clade C (Figure 2;
Table S2), which is supported at .01 significance level in 52% of the
50 tests we performed. Two other patterns of introgression were
detected from clade C, which consists of southern populations of
C. furva (F) and the hybrid (H) with haplotype H3, to clade A (12%
of tests) and clade B (36% of tests; Figure 2; Table S2).
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FIGURE 3 Population network of Carex furva and

C. lucennoiberica obtained using NETviEW v.1.1 in R v.3.2.2. A 21,214
SNPs matrix from RAD-seq was used as input, and a maximum
nearest neighbour (NN) of k = 10 was used. Node labels indicate
population names as in Table 1 (F for C. furva individual; H for
hybrid individuals; L1-L8 for C. lucennoiberica). Haplotypes are
shown using colours as in Figure 1 (blue for H1, pink for H2, yellow
for H3, light blue for H4, red for H5, white for H6 and green for
H7)

3.5 | Demographic analysis

Results from G-PhoCS analysis excluding intermediate individuals
show a greater population size for C. lucennoiberica (0 = 5.936E-4
[5.8E-4 — 6.1E-4 95% Cl]) than for C. furva (6 = 8.946E-5 [8.946E-5
— 8E-5 95% ClI]) (Fig. S4), with most migration events from C. lucen-
noiberica to C. furva [99.9% migrations (98.1%-100%) vs. 0.1% (0—
0.4%) in the other direction; Fig. S4]. When analysing migration
among the three major clades detected in the Bl and ML analyses of
the RAD-seq data (Figure 2), most events occurred from clade B
(containing C. lucennoiberica plus intermediate individuals with haplo-
types H4 and H7) to clade C (containing C. furva plus a intermediate
individual with haplotype H3), representing 98.4% (97.9%-98.8%) of
all migration events (Figure 4). Although additional migration pat-
terns are significantly small, we find some migration from clade C to
B (0.9%-1.2%), but also from clade A to C (0-0.4%) and C to A
(0.3%-0.5%; Figure 4).

3.6 | Distribution modelling analysis

The current distribution for C. lucennoiberica as inferred using distri-
bution model, closely reflected the observed distribution of the spe-
cies, but also included some areas in the Pyrenees (Spain) and in the

Atlas Cordillera (Morocco) where this species has never been found
(Figure 5). In the case of C. furva, the modelled area was much
greater than the area of the observed distribution, including most
regions predicted for C. lucennoiberica except some northwestern
points of the Iberian Peninsula, plus the easternmost part of the Sis-
tema Central mountain range in Spain (Figure 5). Both models were
highly supported by an average area under the receiver-operating
characteristic curve (AUC) of 0.997 (0.001 SD) and 1.0 (~O SD) for
C. lucennoiberica and C. furva, respectively. The most informative
variables were bio8 (mean temperature of the wettest quarter) and
biol (annual mean temperature).

Past projections for C. lucennoiberica showed a greater range
during the LGM in the northern Iberian Peninsula than is projected
for the current range, whereas during the last interglacial period
(LIG), the average probability of occurrence increases considerably in
southern latitudes (Sierra Nevada and Morocco), with on average
smaller distribution range of the species than in the LGM, but still
larger than the present potential distribution (Figures 5 and 6). In
the case of C. furva, the general occupancy seems to be almost
invariable during glacial and interglacial periods, although probability
of occurrence increases in higher altitudes during the last glacial
maximum (Figure 6). The CCSM4 and MPI-ESM-P models for the
LGM retrieved almost the same pattern, although probabilities of
niche suitability changed moderately (data not shown).

4 | DISCUSSION

4.1 | Origin and differentiation of Carex furva and
Carex lucennoiberica

Alpine plants of the Mediterranean Basin have mostly followed a
common biogeographic pathway in response to climate changes dur-
ing the Quaternary: migration to lowlands during glaciations and to
higher altitudes during warmer periods (Hewitt, 2000; Van Andel &
Tzedakis, 1996; Vargas, 2003). The evolutionary history of C. furva
and C. lucennoiberica is, in part, one more such example. The origin
of the C. furva-C. lucennoiberica clade in the Pleistocene to early
Pliocene (ca. 1.98 Ma; Maguilla et al. in review) suggests a broader
distribution of both species during glacial periods (Figure 6), followed
by relative isolation in high mountain refugia during interglacial peri-
ods such as the present (Figure 1). This pattern of range contraction
at higher elevations is well documented in other alpine plant species
(Pauli, Gottfried, & Grabherr, 1996; Walther, 2003; Walther, BeiRner,
& Burga, 2005).

The lberian, Italic and Balkan Peninsulas as well as the Caucasus
region all acted as floristic refugia in Europe during glacial periods
(Hewitt, 2004; Petit et al., 2003; Taberlet, Fumagalli, Wust-Saucy, &
Cosson, 1998), while the highest alpine altitudes serve as refugia for
alpine species during interglacial periods (Bennett, Tzedakis, & Willis,
1991; & Nordal, 2003; Tribsch &
Schonswetter, 2003). The resulting disjunct distribution we find in

Brochmann, Gabrielsen,

C. lucennoiberica (Figure 1) is found in other medium altitude mon-

tane Carex species such as C. reuteriana (Jiménez-Mejias, Escudero,
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Guerra-Cardenas, Lye, & Luceno, 2011), and a number of other spe-
cies endemic to Iberian alpine habitats such as Campanula herminii
(Saez & Aldasoro, 2001), Gentiana boryi (Renobales, 2012), Linaria
elegans (Fernandez-Mazuecos & Vargas, 2013) or Senecio boissieri
(Peredo et al., 2009). Such restriction of gene flow among mountain
refugia could be a precursor to speciation. Carex furva—C. lucen-
noiberica clade may be thought of as either one species in the midst
of speciation or as two very young species with an intermediate
morphotype. Nevertheless, these lineages satisfy the evolutionary
species criteria (they are both lineages with their own evolutionary
roles and tendencies; De Queiroz, 2007), and they are diagnosable
both morphologically and genetically (Maguilla & Escudero, 2016;
but see also Figure 1). Allopatry seems to have driven differentiation
of C. furva and C. lucennoiberica.

4.2 | Secondary contacts and speciation during the
Quaternary

Climatic oscillations during the Quaternary shaped the biodiversity
of Europe by forcing species to move along altitudinal and latitudinal
gradients, driving diversification and genetic differentiation of these
species in glacial refugia (Hewitt, 2004). Although climatic changes
during the Pleistocene have been shown to decrease speciation rates
in some organisms (Turgeon, Stoks, Thum, Brown, & Mcpeek, 2005),
the effect of glaciations in isolating populations within species had a
positive effect on speciation rates in many groups of organisms (e.g.,
Bennett, 2004; Good-Avila, Souza, Gaut, & Eguiarte, 2006; Zink,
Klicka, & Barber, 2004). Alternating cycles of population fragmenta-
tion and expansion during the Pleistocene provided opportunities for
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FIGURE 5 Results of species distribution modelling in MaxenT v.3.3 under current climatic conditions, showing average potential distribution

(=average niche suitability) of Carex furva and C. lucennoiberica

demographic fluctuations and population divergence as well as epi-
sodes of secondary contact or hybridization (Avise, 2000). The origin
of C. furva-C. lucennoiberica, ca. 1.98 Ma (Maguilla et al., under
review) suggests that a broader and more continuous distribution of
the ancestral species during colder periods was followed by disjunc-
tion among populations that became isolated in high mountains after
glaciations of the Pleistocene (Figure 1). This pattern of range expan-
sions and contractions is congruent with our projections to the LGM
and LIG (Figure 6); both species present the widest potential distri-
butions during glacial periods (see projection to LGM). Differentia-
tion between the species identified in this study (Figure 1) was thus
most likely a consequence of allopatry during the warmest periods.
The projections to the LGM indicate that the distribution of C. furva
and C. lucennoiberica was wider but not continuous, at least during
the LGM. Nevertheless, a more widespread ancestral distribution
could have facilitated gene flow among populations by long-distance
dispersal (LDD). Carex furva and C. lucennoiberica suffered distribu-
tion-range contractions and geographic isolation during warm peri-
ods, as has been reported in at least one other plant species (Kropf,
Comes, & Kadereit, 2006). This cycle of range expansions and con-
tractions would explain the finding of haplotypes intermediate

between C. furva and C. lucennoiberica in the southern Iberian Penin-
sula (Figure 1). Based on RAD-seq analyses (Figures 2 and 3), the
individuals of the intermediate population with intermediate haplo-
types (H4 and H7) are more closely related to C. lucennoiberica than
to C. furva. This suggests that during secondary contact, the domi-
nant direction of introgression has been from the more widespread
species (C. lucennoiberica) to the more narrowly distributed species
(C. furva). An alternative scenario would be the existence of single
refugium of the ancestral species and diversification in Sierra Nevada
followed by colonization of northern latitudes by C. lucennoiberica.
However, two lines of evidence suggest at least a second refugium
in the Sistema Central (in the central Iberian Peninsula): (i) the high-
est diversity of haplotypes (H1, H2, H5 and H7) is found in Sistema
Central, and these four haplotypes are exclusive of C. lucennoiberica
(none of them are found in C. furva or the intermediate individuals),
and (ii) none of these four haplotypes is found in Sierra Nevada. As
stated before, this evidence suggests the existence of at least two
refugia disjunct from each other. Thus, we cannot fully discard the
single refugium hypothesis in the Southern Iberian Peninsula and
later dispersion to northern latitudes. Nevertheless, our results sug-
gest that this hypothesis is less plausible.
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Based on partitioned D-statistic tests (Figure 2; Table S2), the
most plausible pattern of secondary contact is from central popula-
tions of C. lucennoiberica to the south, which is also supported by
the G-PhoCS analysis (Figure 4). These secondary contact events
might be due to recent LDD. However, the lack of any haplotype
typical of C. lucennoiberica (H1, H2, H5 and Hé) and the presence of
intermediate haplotypes (H4 and H7) in the south make recent long-
distance dispersal very unlikely (Figure 1). In addition, the finding of
secondary patterns of introgression from northern populations of
C. lucennoiberica to the south and south-to-north introgression (Fig-
ures 2 and 4; Table S2) makes sense in the light of the history of
range expansions and contractions inferred under alternating glacial
and interglacial cycles during the Pleistocene (lkeda, Carlsen, Fuijii,
Brochmann, & Setoguchi, 2012) and admixture among populations of
both species in lower altitudes during colder periods. These popula-
tion expansions and contractions appear to be a common pattern in
mountain plant species in the Iberian Peninsula (Fernandez-Mazue-
cos & Vargas, 2013; Robledo-Arnuncio, Collada, Alia, & Gil, 2005).
This does not rule out the possibility that LDD may have contributed

to gene flow between C. furva and C. lucennoiberica, which were not
fully continuous during glacial periods. LDD is not uncommon in the
Cyperaceae (Viljoen et al, 2013), including Carex (e.g., Villaverde,
Escudero, Luceno, & Martin-Bravo, 2015; Villaverde, Escudero,
Martin-Bravo et al., 2015). This fact notwithstanding, our study
strongly supports asymmetrical introgression during periods of sec-
ondary contact due to range expansion and LDD as the dominant

cause of gene flow between C. furva and C. lucennoiberica.

4.3 | Speciation with gene flow vs. speciation
reversal

While moderate levels of gene flow can prevent speciation or diver-
gence among populations (Bolnick & Nosil, 2007; Rasanen & Hendry,
2008), speciation is possible even in the face of limited dispersal and
gene flow between populations (Runemark et al., 2012). Gene flow
or historical hybridization has been relatively common among species
during the Quaternary (Cronn & Wendel, 2003; Pelser et al., 2010),
and it can occur in both endemic and widespread species (lkeda
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et al., 2012) without eroding species boundaries. However, specia-
tion reversal in the face of gene flow has been demonstrated in ani-
mals (e.g., Bhat et al., 2014; Seehausen, 2006; Taylor et al., 2005;
Vonlanthen et al., 2012; Webb, Marzluff, & Omland, 2011) and is
typically shown to erode incipient species boundaries in few genera-
tions (Taylor et al., 2005). Speciation reversal requires the rate of
gene flow between species to exceed the rate of gene flow among
individuals within the species, which may be due to a change in eco-
logical conditions that favours contact among species (Seehausen,
2006).

While there has been gene flow between C. furva and C. lucen-
noiberica, the strong morphological, genetic and ecological coherence
of each species suggests that interspecific gene flow is weaker than
gene flow within the species. This is not, therefore, an example of
speciation reversal (Turner, 2002). Carex furva and C. lucennoiberica
have maintained morphological and phylogenetic distinctiveness in
spite of historical gene flow among them, but also despite climatic
and ecological oscillations during the Quaternary.

We conclude that the species diverged in allopatry in at least
two different interglacial refugia and that multiple instances of sec-
ondary contact during glacial periods of the Quaternary have been
insufficient to reverse speciation.
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