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Abstract— This paper summarizes how Convolutional Neural
Networks (ConvNets) can be implemented in hardware using
Spiking neural network Address-Event-Representation (AER)
technology, for sophisticated pattern and object recognition
tasks operating at mili second delay throughputs. Although
such hardware would require hundreds of individual
convolutional modules and thus is presently not yet available,
we discuss methods and technologies for implementing it in the
near future. On the other hand, we provide precise behavioral
simulations of large scale spiking AER convolutional hardware
and evaluate its performance, by using peformance figures of
already available AER convolution chips fed with real sensory
data obtained from physically available AER motion retina
chips. We provide simulation results of systems trained for
people recognition, showing recognition delays of a few
miliseconds from stimulus onset. ConvNets show good up
scaling behavior and possibilities for being implemented
efficiently with new nano scale hybrid CMOS/nonCMOS
technologies.

I. Introduction

Artificial machine vision systems capture and process
sequences of frames. For example, a video camera captures images
at about 25-30 frames per second, which are then processed frame
by frame, pixel by pixel, usually with convolution operations, to
extract, enhance and combine features, and perform operations in
feature spaces, until a desired recognition is achieved. This frame
convolution processing is slow, specially if many convolutions
need to be computed for each input image or frame [1]-[2].

Living brains do not operate on a frame by frame basis. In the
retina, each pixel sends spikes (also called events) to the cortex
when its activity level reaches a threshold. Pixels are not read by an
external scanner. Pixels decide when to send an event. All these
spikes are transmitted as they are being produced, and do not wait
for an artificial “frame-time” before sending them to the next
processing layer. Besides this frame-less nature, brains are
structured hierarchically in cortical layers [3]. Neurons (pixels) in
one layer connect to a projection field of neurons (pixels) in the
next layer. This processing based on projection-fields is similar to
convolution-based processing [4], at least for the earlier cortical
layers. For example, it is widely accepted that the first layer of
visual cortex V1 performs an operation similar to a bank of 2D
Gabor like filters at different scales and orientations [2] whose
actual parameters have been measured [5]-[7]. This fact has been
exploited by many researchers to propose powerful convolution
based image processing algorithms [1]-[2],[5]-[13]. Fig. 1 shows a
typical hierarchical structure of a feed forward Convolutional
Neural Network. However, convolutions are computationally
expensive. It seems unlikely that the high number of convolutions
that might be performed by the brain could be emulated fast
enough by software programs running on the fastest of today's
computers. Although some researchers are providing some
interesting bio-inspired solutions for frame-constrained vision
systems [14], many researchers believe that a new frame-less
hardware technology is required for approaching the processing
capability of biological brains.
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Address-Event-Representation (AER) is a promising
emergent hardware technology that shows potential for providing
the computing requirements of large projection-field based
multi-layer systems. AER was first proposed in 1991 in one of the
Caltech research labs [15]-[24], and has been used since then by a
wide community of neuromorphic hardware engineers. AER has
been used fundamentally in image sensors, for simple light
intensity to frequency transformations [16], time-to-first-spike
coding [17]-[18], foveated sensors [19], spatial contrast [20]-[21]
and more elaborate transient detectors [22]. But AER has also been
used for auditory systems [25]-[26], competition and
winner-takes-all networks [27]-[28], and even for systems
distributed over wireless networks [29]. Some AER convolution
processing chips with hardwired kernels (slightly tunable) have
also been proposed [43]-[44]. However, it was not until
arbitrary-shape-kernel convolution chips became available (with
[45] or without kernel symmetry restrictions [30]) that their
potential for building large scale AER ConvNets for arbitrary
pattern and object recognition applications became apparent
[31]-[40]. Several AER fully-programmable-kernel convolution
chips have been reported. Either mixed-mode based on pixel-level
charge packet integration [30]-[31], or fully digital with in-pixel
accumulator and adder to emulate leaky integrate-and-fire neurons
[46].

These chips, which can perform large arbitrary kernel
convolutions (32x32 in [30]) at speeds of about 3x10°
connections/sec/chip, can be used as building blocks for larger
cortical-like multi-layer hierarchical structures, because of the
modular and scalable nature of AER based systems. AER
(convolutional) modules can be interconnected through nearest
neighbor LVDS links, either within a single chip (using
Network-on-Chip technology [32], with several tens of modules
per chip) or within a surface mount PCB. Consequently, present
day technology could make it possible to assemble several
thousands of such convolutional modules, allowing a
reconfigurable inter connectivity for a variety of applications.

II. History of ConvNets and Spiking ConvNets

In 1959 Hubel and Wiesel reported their findings on
projection field processing in early stages of visual cortex,
receiving the 1981 Nobel prize. Based on this, Convolutional
Neural Networks (ConvNets) were originally proposed by
Fukushima in 1969 [8]-[9] and further developed by Yann LeCun
[10] and other groups, as a type of continuous-time gradient-based
learning neural paradigm, with great success in a variety of

Fig. 1: Typical Feed Forward ConvNet Structure
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Fig. 2: Conceptual illustration of Frame-constraint (top) vs. a Frame
-free Event-based (bottom) Vision sensing and processing system.

(industrial) applications as well as research. Examples of industrial
applications and developments are, to mention a few: (1) NEC with
products for face/person detection, age and gender recognition for
vending machines, as well as prototypes for cancer cell detection or
mobile phone imaging applications, (2) France Telecom/Orange
with face detection and recognition, text detection and recognition,
various mobile phone applications, (3) Vidient Technologies with
products for video surveillance, human detection and tracking, (4)
Canon with cameras with embedded video surveillance, (5)
Microsoft with handwriting recognition, (6)
AT&T/Lucent-Technologies/ NCR with products for check
recognition. Examples of state-of-the-art research exploiting
ConvNets are (1) Poggio at MIT with object recognition and scene
analysis [2], (2) Seung at MIT with image segmentation, and
biological image analysis (brain circuit reconstruction) [34], (3)
NEC Labs with natural language processing and understanding
[35], (4) NYU with biological image analysis, object recognition
and visual navigation for robots [36].

On the other hand, in 1996, Thorpe demonstrated that the
human visual system is capable of performing object recognition
tasks at such speeds that any neuron involved only had time to fire
one spike [38]. Based on this finding, he developed a Framework
for spiking ConvNets, which is presently being exploited
commercially for high speed object recognition software [39].

In the field of VLSI circuit design we have witnessed, during
the past years, important developments in the field of spiking
neural hardware, and specifically spiking hardware for ConvNet
processing [30]-[40] of visual information sensed by highly
efficient spiking sensors [22]. It is now becoming apparent that the
combination of ConvNets theories and knowledge, the framework
of spiking information sensing and processing, with state-of-the-art
hardware technologies such as Networks-On-Chip [32] and
emergent nano scale CMOS and hybrid CMOS/non-CMOS
nanotechnologies [42], will result in highly efficient systems for
sophisticated cognitive tasks, similar to the human brain. In this
paper we review scaling properties for ConvNets hardware, discuss
spike signal coding, explain spiking convolution chips and how to
use them for assembling large scale modular cortex-like structures
for object recognition. We present some behavioral simulation
results of such structures for human detection and tracking. At the
end we discuss the potential of spiking ConvNets systems for being
implemented with new coming nanotechnology devices.

III. Frame-constraint vs. Frame-free Event-based Vision
Sensing and Processing

Fig. 2 illustrates the conceptual difference between a Frame-
and an Event-based sensing and processing system. Each use a
camera sensor to capture reality. In the top row, a frame-constraint
camera captures a sequence of frames, each of which is transmitted
to the computing system. Each frame is processed by sophisticated
image processing algorithms for achieving some recognition. The
Computing system needs to have all pixel values of a frame before
starting any computation. In the bottom row an event-based vision
sensor operates without frames. Each pixel sends an event (usually
its own x,y coordinate) when it senses some property (change in
intensity [16], contrast with respect to neighboring pixels [21], ...).
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Fig. 3: Comparison of timing issues between a (top) Frame-constraint
and a (bottom) Frame-free Event-based Sensing and Processing
System.
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Fig. 4: Illustration about the hardware implementation of the method:
(a) Two persons walking captured with a 128x128 temporal contrast
(motion) retina [22]. Pixels sensing a positive time derivative in light
intensity send a positive event (white), while those sensing a negative
time derivative send a negative event (black). Grey pixels are silent.
The figure shows the events captured during an interval of about
80ms with a total of about 1500 events. (b) As these pixel events are
generated asynchronously by the motion retina, they are received and
processed one by one by a receiver convolution chip programmed with
a 7x7 vertical Gabor 2D spatial filter. The computation delay in the
convolution chip is about 150ns per event. The figure shows about 300
output events produced during the same 80ms by the convolution
chip.

Events are sent out to the Computing System as they are produced,
without waiting for a Frame Time. The Computing System updates
its state after each event. Fig. 3 illustrates the inherent difference in
timings between both concepts. In the top (Frame-constraint),
reality is binned into compartments of duration T%,,,. During the
first frame 7' an event happens (such as a flashinig shape), but the
information produced by this event does not reach the computing
system until the full frame is captured (at 7}) and transmitted (with
an additional delay A). Then the computing system has to process
the full frame, handling large amount of data and requiring a long
“Frame Computation Time” 7Tgc before the “recognition”
information is available. In the bottom of Fig. 3, pixels “see”
directly the event in reality and send out their own events with a
delay A' to the computing system. Events are processed as they
flow with an Event Latency T, (in the order of ns). For performing
recognition not all events are necessary. Actually, more relevant
events usually come out first or with higher frequency.
Consequently, recognition time 7, reg Can be smaller than the total
time of the events produced. Note that recognition is possible
before frame time T, resulting in a negative T"'r- when compared
to the recognition delay of a Frame-constraint system [54].

Fig. 4 provides an illustration of a typical operation of an
AER based hardware [46]. In this case the hardware is composed
of one temporal contrast (motion) sensing retina of 128x128 pixels
[22] that is sending its output events to a 2D convolution chip
programmed with a 7x7 pixel vertical Gabor filter. A pixel in the
retina sends out an event (which usually consists of its x,y
coordinate) every time its incident light intensity changes a relative
amount of at least 2.5%. Fig. 4(a) shows the 1500 events generated
by the retina during about 80ms when observing two persons



-
Sem [ 2ms

- T/ 20-20ms -

Fig. 5: Biological action potential travelling through a nerve

walking. The receiver convolution chip processes each event as it
comes in with a delay of about 7, = 150ns. Pixels in the 2D array
of integrators of the convolution chip will generate their own
output events. Fig. 4(b) shows the 300 output events produced by
the convolution chip during the same 80ms. This 7x7 kernel
typically requires between 5 and 20 spatio-temporal correlated
input events to produce an output event. As soon as these events
are fed to the convolution chip, the corresponding output event
appears with a delay of 100-200ns. Consequently, in practice, input
and output event flows are simultaneous.

IV. Scaling Properties of ConvNets Hardware

Interestingly, AER hardware sensing or processing modules
can be assembled into large hierarchical structures, as if one
assembles bricks [40]. This is because of the robustness and
asynchrony of the AER communication links between the modules,
and the availability of “glue” modules such as AER splitters,
mergers, and mappers [40]-[41]. A typical ConvNet architecture
(see Fig. 1) usually contains a reduced number of sequential layers
(4-10), each of which performs several 2D filtering operations in
parallel. Early stages extract simple features (such as edge
orientation and scale), which are progressively combined into more
complex shapes and figures at later stages. Early stages usually
operate with small but dense kernels, while later stages use longer
range but sparser ones [2]. To increase the knowledge (dictionary
of shapes and figures) of the system one simply adds more 2D
filters in later layers. Example ConvNets systems for face and
character recognition applications may have several tens to
hundreds filters per layer. What is interesting about ConvNets,
compared to other neural networks, is their graceful scaling
capability. To increase knowledge one simply has to increase the
number of filters in a layer. Thus, number of neurons (pixels)
scales linearly with the number of modules. There is a fixed
number of synapses per filter (the convolutional kernel weights).
Consequently, number of synapses also scales linearly with the
number of filters. On the other hand, the latency of the computing
structure (if implemented as parallel hardware) is determined
mainly by the number of sequential layers, which is a reduced
number and does not change for a given application. Therefore,
speed does not degrade by adding more modules per layer (more
knowledge). In other neural network architectures the number of
synapses scales quadratically with the number of neurons.
Consequently, ConvNets seem very appealing for configurable,
modular and scalable spiking hardware implementations.

V. Energy/Information Efficiency of Spike Signal Coding

Biological brains code and transmit information as spiking
signals. This is because spike coding is highly energy efficient as
well as information processing efficient. Fig. 5 shows a typical 2ms
“action potential” neural spike travelling about 1m from the brain
to a finger muscle in about 20-40ms. In space, such spike only
charges about Scm of nerve, but not the whole line. Thus, the spike
sender only needs to provide charge for this 5c¢m travelling nerve
segment. This contrasts with present day electronic systems where
digital information (bits) are transmitted by fully charging and later
discharging wires. Furthermore, when using transmission lines for
high speed, there is usually a 50Q) resistive component, besides the
capacitive load, which is permanently dissipating energy (even in
the absence of information transmission). Spike encoding in
biology is therefore highly energy efficient. It is true that in present
day AER systems, although information is encoded in spikes, it is
still transmitted by fully charging and later discharging
interconnect wires. However, researchers should start looking into
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Fig. 6: Rate-coded point-to-point AER inter-chip communication link
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Fig. 7: AER multi-kernel Convolution Chip Diagram

more efficient approaches, such as soliton technology [47],
because the energy dissipation of interconnects is going to be
major problem when scaling up neural systems to brain
complexities, while scaling down sizes using new nano
technologies.

Regarding information coding, spikes allow for very efficient
schemes. Thorpe demonstrated in 1996 [38] that, in the human
brain, fast recognition of sophisticated figures (such as animal
detection in a photograph) is performed in a feed forward manner
in such a way that the neurons involved only generate one spike.
Thorpe later developed  spike-processing  convolutional
architectures and rank-order coding schemes capable of
performing this type of recognition efficiently in software [39].

VI. AER Convolution Chips

Fig. 6 illustrates event communication in a point-to-point
AER link [48], where pixel intensity is coded directly as pixel
event frequencyl. The continuous-time states of pixels D; in an
emitter chip are transformed into sequences of fast digital pulses
(spikes or events) of minimal width (in the order of ns) but with
much longer inter-spike intervals (typically in the order of ms).
Each time a pixel generates a spike, its x,y address is written on the
inter-chip digital bus, after proper arbitration. This is called an
"Address Event". The receiver chip reads and decodes the
addresses of the incoming events and sends spikes to the
corresponding receiving pixels for reconstruction or further
processing. In an AER convolution receiver chip, incoming events
are sent to a neighborhood of pixel x,y onto which the 2D kernel is
added. Fig. 7 shows the conceptual diagram of a fully digital AER
Convolution chip. It contains a pixel array, where each pixel
includes an adder/accumulator where incoming events are
accumulated. When the accumulator reaches a positive (negative)
threshold, the pixel is reset and generates a positive (negative)
output event. The convolution kernels are stored in the kernel
RAM. The controller copies the kernel line by line from the kernel

1. Other more efficient coding schemes have been proposed, such as
rank-order coding [53] where the order of the events carries the
information, instead of pixel frequency.
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Fig. 8: Chip photograph and pixel layout details

RAM to the pixel array. Kernels are shifted left/right depending on
the incoming event coordinate. In parallel, the controller subtracts
a fixed number from each pixel accumulator at a fixed rate, to
emulate a leak. This way, leaky integrate-and-fire neurons [30] are
implemented with fully digital circuitry.

A 4.3x5.4mm? prototype chip has been fabricated in the AMS
0.35um CMOS process. A die photograph is shown in Fig. 8,. The
largest block is the 32x32 array of pixels, with an approximate area
of 3x3.2mm? The synchronous controller consumes around
4500X300;1m2, the static kernel-RAM of 32x32 6-bit words
600X2700;1m2, and the left/right column shifter 600x3100m>. The
rest of the circuits, like the AER-arbiters, 2's complement and
clock generator, consume much less area. The pixel layout, with an
area of 95.6X101.3/.zm2, is also shown in Fig. 8. Most of this area is
consumed by the 18-bit adder and accumulator. The rest of the
circuits are: the forgetting block, the multiplexer, the comparator
and the AER interface. Although the chip resolution is 32x32
pixels, it can address an input space of 128x128. Chip power
consumption depends both on the input throughput and the kernel
size and varies between 66mW and 198mW.

Fig. 9 shows oscilloscope captures of the input and output
ports handshaking signals of the convolution chip. The chip was
programmed with a 3x5 kernel and configured in such a way that
one input event (see the 68-70ns pulses in Rqgst_in and Ack in)
would generate 10 output events (Rgst out and Ack out are
shorted and show 10 pulses). The delay between the onset of the
incoming event and the onset of the first outgoing event is 177ns.

As an illustration of the high speed performance of this kind
of chips, Fig. 10 shows the recognition results of propellers
rotating at 5000 rps (revolutions per second). The convolution chip
is fed with an input event flow representing two propellers of
different shapes (one rectilinear and one S-shaped) rotating at
Skrps and moving across the field of view. The convolution chip is
programmed with a kernel that performs template matching on the
S-shaped propeller. As can be seen, the output of the chip follows
correctly the trajectory of the center of the S-shaped propeller.

VII. Modular Systems

Reported (software) ConvNets need tens, hundreds, or even
thousands of convolutional filters to perform properly on
real-world pattern recognition tasks. Consequently, if we want to
provide a realistic hardware infrastructure for real-world
applications, it will be essential to assemble hundreds or thousands
of AER convolutional modules like the one shown in Fig. 7.
Furthermore, the infrastructure needs to offer a good degree of
reconfigurability and programmability, so that arbitrary ConvNet
architectures could be implemented and tested easily.

Fig. 11 shows a conceptual solution to achieve this. It consists
of a 2D array of modular convolutional units. Each unit includes a
programmable-kernel convolution module (like the one in Fig. 7)
plus a local router. Each module can receive input events from any
four neighbors, and sends its own output events to one or more of
its four neighbors. Each local router is programmed with a local
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Fig. 10: Recognition of propellers rotating at 5000 revolutions per
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routing table. The router detects, for each incoming event, the input
port and decides to either process it by the local convolution
module, or transfer it to one or more of its output ports. The events
produced by the local convolution module are also processed by
the local router who sends them out through the proper output
port(s). It is fairly easy to show that any arbitrary multi-filter
architecture netlist can be implemented in this 2D structure by
generating proper local routing tables for each module in the 2D
array. Furthermore, such process can be automated by a compiling
software which, given a ConvNet netlist, would generate
automatically all local routing tables. The modular 2D structure in
Fig. 11 can be implemented physically using surface mount PCBs
with miniature individual convolution chips with local router, or
could be implemented with large chips of the type called
Network-on-Chip (NoC), capable of hosting tens to hundreds of

convolution module + Router

Fig. 11: Concept of modular ConvNet Structure
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such modules per chip [32]. Multiple boards (or NoCs) can be
further assembled hierarchically to scale up such systems.

VIII. AER LVDS Serial Links

In Fig. 11 each AER link is represented by 2 wires. This
symbolizes a serial link of the type LVDS (low voltage differential
signalling). In LVDS bits are sent serially on a differential wire at
low voltage excursions. Lines are terminated with 100Q
impedance. LVDS is an industrial standard [49] and many
commercial products use this serial communication internally.
However, present day LVDS links need to maintain a continuous
flow of information permanently to keep sender and receiver
synchronized. When no information needs to be transmitted,
meaningless symbols (called ‘commas’) are sent. If sender and
emitter loose synchronization, long wait times are required to
recover synchronization.

We propose to use a different approach, where there can be
silent periods, and sender and receiver synchronize quickly. The
idea is to exploit Manchester encoding [50] to transmit data and
clock. This allows for very simple sender and receiver circuitry and
fast locking between sender and receiver after silent periods, at the
cost of transmitting information at half the speed. Fig. 12 shows the
block diagram a Manchester encoding sender receiver pair for
AER communication [51]. The sender, shown in Fig. 13 contains a
serializer triggered by the AER Request signal, and a Manchester
coder. The receiver is shown in Fig. 14. It includes a clock
recovery circuit containing 5 delay inverters, whose delay tunes to
the incoming stream during data transmission. In the absence of
data, the state of the inverter delay is memorized, which allows to
quickly read new incoming data when it arrives. Since the receiver
is idle during the silent periods, it is possible to devise schemes
where the power consumption of both sender and receiver is made
negligible during these periods, while allowing instant recovery to
the data transmission state [52].

IX. System-Level Behavioral Simulations

So far, it seems feasible to provide a hardware technology for
spiking ConvNets based on AER. However, it is true that at present
such large scale hardware systems have not been reported yet.
Probably the largest AER system reported so far is the CAVIAR
systems [40], which uses four custom made AER chips (motion
retina, convolution chip, winner-take-all chip, and learning chip)
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Fig. 16: Example circuit (top) and its netlist description (bottom) of a
2-convolution (horizontal edge) ConvNet System.

plus a set of FPGA based AER interfacing and mapping modules.
The CAVIAR system includes 45k neurons, emulates up to 5
million synapses, performs an equivalent of 9 giga-connects-per-
second, and can sense, identify and track objects with a 3ms delay.
However, this system only has 4 convolution modules. Obviously,
present-day AER hardware state-of-the-art is still not at the level of
what is shown in Fig. 11 (with about 107 neurons emulating about
10! synapses). In order to estimate the performance and evaluate
the limitations one may encounter when assembling larger scale
ConvNet with AER hardware, we have developed an event-based
AER system simulator [54]. Fig. 16 shows an example circuit and
netlist description used in this simulator. AER links are represented

s “channels”. At the end of the simulation, each channel would
contain a list of all the events that have travelled through this
channel including event information (such as its x,y address) and
timing information (time at which the event was generated inside
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Fig. 17: Behavioral simulation results of a bank of AER Gabor filters
of different scales and orientations over a physical sensory input
obtained with an AER motion retina.
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Fig. 18: Structure of spiking ConvNets trained for recognizing people
from visual data captured from an AER motion retina

the emitter module, and time of physical use of channel). The input
to the system (like “File” in Fig. 16) can be real physical events
captured from a real AER retina and recorded as a file. Individual
blocks in the netlist are behaviorally modelled, including all timing
delays of handshaking signals, parasitic effects, finite precision
effects, etc. This way, we can use real performance figures of
already physically available AER chips/modules to model them in
the simulator. The combination of real sensory event-format data
with performance figures of physical AER hardware allows to
estimate reasonably well the performance of scaled-up systems.

As an illustrative example, Fig. 17 shows the simulation
results of a bank of 24 Gabor filters with 4 scales and 6
orientations. The input is a 4 second 128x128 pixel motion retina
recording of two persons walking from right to left, totaling about
130k events. Convolution modules compute their outputs as the
events flow in. Each convolution module/chip needs about
100-200ns of computation time per input event [30]. After a few
input events (about 10, depending on kernel) a convolution module
provides its own output events. Consequently, the delay between
input and output flow of events in a convolution module is of the
order of microseconds (or fraction), making both flows in practice
simultaneous. Fig. 17 shows for each convolution module and
retina, the events captured during the same 40ms.

A bank of Gabor type filtering is usually the first stage of
visual processing, like in the human brain [2]. For pattern and
object recognition more stages are required. Fig. 18 shows an
example ConvNet trained to recognize humans recorded with an
AER motion retina. The input visual flow was captured with a
physical temporal contrast (motion) AER retina [22] when
observing people walking. A person walking produces about 3keps
(kilo events per second). Visual pixel array was down sampled to
32x32. The spiking convolutional network has 7 layers. The first
layer is a Gabor filter bank, second layer is subsampling, third
layer is a trainable 5x5 kernels filter bank, fourth layer is
subsampling, fifth layer is again a trainable 5x5 kernel filter bank,
and sixth and seventh layers are fully connected trainable
perceptrons. The system was trained off-line through back
propagation learning to categorize inputs as vertical humans, up
side down humans, horizontal humans, or other objects. After
training, it was tested with new retina recordings, showing a
correct recognition rate of above 86%. Correct recognition was
performed after receiving only between 50-80 retina events
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Fig. 19: CMOS neurons underneath a nano scale device fabric. Each
neuron has one input and one output node. A grid of nano wires is
fabricated on top of CMOS. At each nano wire intersection there is a
nano scale synapse device. Each horizontal nanowire connects to one
neuron output only, and each vertical nanowire connects to one
neuron input only.
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Fig. 20: Memristor (a) symbol, (b) characteristic learning function,

and (c) saturating function for restricting R to the interval [R,,;,,
(18-27ms of input stimulus) with a negligible throughput delay of a
few microseconds.

X. NanoTechnology Implementation Potential

Present-day AER convolution chips compute by scanning
row-wise the kernel over its array of pixels. This is a sequential
operation which introduces delays in the order of hundreds of
nano-seconds, depending on kernel size. In present days we are
witnessing a new trend micro and nano technologies, and new nano
scale devices, such as the memristor, are being reported with high
potential to be used as compact and trainable synapses [55]. The
memristor, whose symbols are shown in Fig. 20(a), is an adaptive
2-terminal resistive device, postulated in 1974 [59] but not
available until recently [55]. Our objective is to exploit such device
as the synaptic element of a neural perceptron. Neurons can be
designed using available CMOS VLSI technology, while synapses
(which are required in much larger quantities) can be fabricated as
nano-scale devices arranged on top of a silicon chip using some
post-CMOS fabrication technique, in a CMOL-like arrangement
[56], as shown in Fig. 19. The synaptic devices require two modes
of operation: (1) a computational mode in which they contribute to
a neuron’s integral with a characteristic weight, and (2) an
adaptation mode in which they change its characteristic weight
when their terminal voltages meet some requirement. In the first
mode we will use the devices as resistors, while in the second we
want to change its conductance when some of their terminal
voltage difference exceeds a threshold v,,. For example, Fig. 20
shows symbols and characteristics learning function of a voltage
controlled memristor which can be defined by the following
equation [61]-[62]

= GwW)vyp w = fvyr) (@))]
If |v Rl < Vg, its conductance does not change, otherwise it
changes according to eq. (1) where w is a parameter controlling
conductance Ge [G max) - Fig. 21 shows a macro model
circuit that can be usegi in"an electric circuit simulator [60]. I
includes a variable resistor, a nonlinear transconductor NOTA
implementing the function in Fig. 20(b), a capacitor to implement
the derivative and store the actual weight w, and a saturating
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Fig. 22: (a) STDP characterization in biological synapses. Vertical axis
is synaptic strength change and horizontal axis is time delay between
pre- and post-synaptic spikes. (b) Action potential waveform.
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element g, described by the curve in Fig. 20(c), to restrict
GelG,,,G, X] . By combining memristors with spiking
signals, Spike- Hme- Dependent-Plasticity arises naturally [S7].

Spike-time-dependent-plasticity (STDP) is a neural learning

mechanism originally postulated [63] in the context of artificial
machine learning algorithms (or computational neuroscience)
exploiting spike-based computations (as in brains) and has evolved
to powerful algorithms [64]-[67]. Astonishingly, experimental
evidences of biological STDP have later been reported by several
neuroscience groups worldwide [68]. In STDP the change in
synaptic weight Aw is expressed as a function & of the time
difference between the post-synaptic spike at f,,, and the
pre-synaptic spike at #,,... Specifically, Aw = §(AT), with AT = £,
- Ipre - The shape of the STDP function € can be interpolated from
experlmental data from Bi and Poo [68] as shown in Fig. 22(a). For
positive AT there will be a potentiation of synaptic weight Aw > 0,
which will be stronger as |A7] reduces. For negative AT there will
be a depression of synaptic weight Aw < 0, which will be stronger
as |AT] reduces. We recently demonstrated [57]-[58] that if a
memristor (as defined in eq. (1)) is stimulated on its two terminals
by two asynchronous spiking signals of the shape shown in Fig.
22(b) separated by a time A7, and attenuating the post-synaptic one
by a,,,<1, then the weight update function shown in Fig. 22(a) is
mathematically obtained, which is identical to the one obtained by
Bi and Poo from physiological experiments. This opens the
possibility that in biological synapses there might be a memristive
type of mechanism responsible for biological STDP [57]. Also, it
turns out that the action potential shape strongly influences the
resulting STDP function [58].

Using these concepts we can propose a crossbar architecture
using memristors as synapses and spiking neurons that send back a
replica. Fig. 23 shows a possible arrangement for implementing an
STDP spiking memristive feed forward perceptron. Depending on
the polarity of the memristors, the neural spikes need to be inverted
or not. The inset shows a conceptual block diagram of the neuron
circuit required. Neurons are made of integrators whose input node
is maintained at virtual ground by a high-gain differential amplifier
with a capacitor connected at its negative feedback input, thus
acting as an integrator. At the output of the differential amplifier
appears the accumulated integral (signed reversed) of the
in-flowing current. Whenever this integral reaches threshold Vg,
an action potential spike as in Fig. 22(b) will be triggered. During
the time of the action potential spike (including fast positive spike
plus longer negative tail), a reset pulse will also be provided to
short the integrating capacitor. This has three reasons: (a) to reset
the accumulated integral, (b) to buffer the output spike to send it
back through the input collecting line, (c) and to avoid any further
input signal integration during spike production. An attenuated
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Fig. 23: Feed forward synaptic memristive array simulated
behaviorally with Cadence Spectre

version of the spike voltage is sent forward to the next layer
synapses. This architecture avoids cross-coupling of spikes
between rows and columns. Using this arrangement with the
memristor macro model of Fig. 21 we performed intensive
behavioral simulations in Cadence-Spectre to test the concept on
the 4x4 feed forward array shown in Fig. 23. Only the first 2
column synapses are stimulated with 200ms period spikes (of 45ms
duration) with a 25ms relative delay between the two columns. The
result was that only synapses at the first two columns change their
resistance, while those on the other two columns do not,
confirming the correct operation of STDP, without any crosstalk
between columns nor rows [60]. Since STDP works correctly for a
feed forward crossbar array, it can be extended to CMOL like
networks wired with a connectivity compatible with ConvNets.

XI. Conclusions

We have shown how to implement ConvNets with spiking
hardware to perform sophisticated pattern recognition task. Large
scale systems have been emulated using a behavioral simulator, but
using performance figures of already available hardware, together
with real stimuli obtained with physical AER retina chips.
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